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Topological spin liquids in two spatial dimensions are stable phases in the presence of a small magnetic field,
but may give way to field-induced phenomena at intermediate field strengths. Sandwiched between the low-field
spin liquid physics and the high-field spin-polarized phase, the exploration of magnetic phenomena in this
intermediate regime, however, often remains elusive to controlled analytical approaches. Here we numerically
study such intermediate-field magnetic phenomena for two representative Kitaev models (on the square-octagon
and decorated honeycomb lattice) that exhibit either Abelian or non-Abelian topological order in the low-field
limit. Using a combination of exact diagonalization and density matrix renormalization group techniques, as
well as linear spin-wave theory, we establish the generic features of Kitaev spin liquids in an external magnetic
field. While ferromagnetic models typically exhibit a direct transition to the polarized state at a relatively low
field strength, antiferromagnetic couplings not only substantially stabilizes the topological spin liquid phase, but
generically lead to the emergence of a distinct field-induced intermediate regime, separated by a crossover from
the high-field polarized regime. Our results suggest that, for most lattice geometries, this regime generically
exhibits significant spin canting, antiferromagnetic spin-spin correlations, and an extended proximate spin liquid
regime at finite temperatures. Notably, we identify a symmetry obstruction in the original honeycomb Kitaev
model that prevents, at least for certain field directions, the formation of such canted magnetism without
breaking symmetries—consistent with the recent numerical observation of an extended gapless spin liquid in this

case.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are a fascinating example
of the “more is different” philosophy of modern condensed
matter physics [1], featuring fractionalized excitations and
emergent gauge structures [2] that can only exist within the
confines of a many-body system. Typically arising in sys-
tems which feature an element of frustration, thus hindering
conventional magnetic ordering even at the lowest tempera-
tures, they come in many different flavors, depending on the
physical dimension and nature of the emergent excitations
and underlying gauge structure. Though there are numerous
material candidates, exhibiting various expected experimental
signatures, it has proven difficult to unambiguously identify a
QSL in nature [3].

For a QSL, or indeed any magnetic phase of matter, a natu-
ral question to ask is what happens when an external magnetic
field is applied? More precisely, if we have a Hamiltonian

H=HosL— ) h-S;,

where the ground state of Hgsy is a QSL and h points in
some fixed direction, what is the resulting phase diagram

*chickey @thp.uni-koeln.de

2469-9950/2021/103(6)/064417(20)

064417-1

as a function of the field magnitude 4 = |h|? The physics
in the two extreme limits of such a phase diagram can be
immediately deduced. (i) In the high-field limit, 7 — oo,
the system should obviously be in a trivial polarized, or
partially polarized, phase (depending on whether there is a
conserved spin rotational symmetry about the field direction
or not). In this limit the ground state is a simple product
state, or approaches one as h — oo, and its excitations can
be accurately described by linear spin-wave theory (LSWT).
(ii) However, in the infinitesimal field limit, # — 0, many
QSLs remain stable up to some finite critical field strength
h., their existence not relying on any symmetry requirements.
Gapped QSLs are certainly stable, with the gap providing
protection against infinitesimal perturbations. However, there
are some special cases of gapless QSLs that are believed to
be unstable, even against an infinitesimal field, e.g., they may
harbor a fermionic spectrum with pairing instabilities that can
be immediately triggered by a finite field [4]. We are thus
left with an (almost) generic phase diagram in which, in the
high-field limit, there is a polarized state, and, in the low field
limit, the QSL (in most cases) remains stable up to some
finite critical field /.. This leaves a wide model-dependent
and nonuniversal region of “intermediate fields,” between the
low-field QSL and the high-field polarized state as depicted
in Fig. 1, in which new physics may emerge. It is precisely
examples of this region that we wish to explore in this
manuscript.
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FIG. 1. Generic phase diagram of a gapped QSL in a magnetic
field with a finite extent of the QSL at low fields, a trivial polar-
ized state (PL) at high fields, and a nonuniversal intermediate field
regime.

To study the physics at “intermediate fields” we should
ideally choose a model in which the physics in the two lim-
its, h — 0o and h — 0, is already well-known. In this case
we can keep track of what happens as we move toward the
intermediate field regime, from both above and below. Unfor-
tunately, though the physics of the &~ — oo limit is relatively
easy to describe, it is in general an extremely challenging task
to accurately determine the physics in the 7 — 0 limit, i.e., to
accurately describe the properties of Hqsr.. To make progress
we will specialize here to studying the Kitaev model [5],
which consists of bond-dependent nearest-neighbor Ising
interactions between spin-1/2 degrees of freedom on a trico-
ordinated lattice. The ground state of the model is known to be
a QSL, which we refer to as the Kitaev spin liquid (KSL), al-
lowing us to replace Hqsy, with Hksp.. The primary advantage
of using the Kitaev model is that, owing to its special structure,
it is exactly solvable, with its ground state, finite temperature,
and dynamical properties all well-known and signatures char-
acterized [6]. Furthermore, it can be defined on a range of 2D
and 3D tricoordinated lattices [7-20], giving a whole family
of models within which to explore. However, one must keep
in mind that the model’s unique properties are not necessarily
common to all QSLs, or even all QSLs with a similar gauge
structure. As a result one must always be cautious in extending
any lessons learned from studies of the Kitaev model to other
QSLs.

We have now sharpened our initial, general yet unwieldy
question of what happens to a QSL when an external field
is applied to the more specific and manageable question of
what happens to the KSL when an external field is applied?
For example, what is the critical field s, for the KSL and
how does it differ between different lattices? What is the
field at which LSWT about the polarized phase begin to
fail? Are there any new phases or phenomena that appear
at intermediate fields? A remarkable example in this regard
is the original honeycomb Kitaev model, for which it was
recently demonstrated that a distinct gapless QSL appears at
intermediate fields for antiferromagnetic (AFM) couplings by
a variety of techniques [21-27]. Does similar physics play
out on other tricoordinated lattices? Is there any universal
behavior to the KSL in a magnetic field across different
lattices?

To summarize our main conclusions, we will argue in
this manuscript that the appearance of a distinct (gapless)
QSL is not the generic behavior for generalizations of the
Kitaev model to other lattice geometries. Instead, we show
that generically one will find an intermediate regime of en-
hanced canted magnetic moments in the ground state of
AFM Kitaev models, smoothly connected to the high-field

polarized regime and preceded at higher temperatures by
a broad regime of proximate spin liquid physics [28-33],
i.e., signatures of fractionalization akin to the temperature
regime above a true QSL ground state. For FM Kitaev mod-
els one simply finds a single direct transition from the KSL
to the polarized phase. With regard to the honeycomb Ki-
taev model, we identify a symmetry mechanism that prevents
the formation of a canted magnetic regime, consistent with
the unusual situation of an intermediate gapless QSL phase
there.

We arrive at these conclusions by studying two represen-
tative generalizations of the Kitaev model, for the decorated
honeycomb (DH) [34] and square-octagon (SO) lattices. Both
lattices give rise to gapped KSLs in the absence of a field,
but they differ in that the DH KSL supports gapless edge
modes and non-Abelian anyons [7] while the SO KSL has
a gapped edge and Abelian anyons [8]. To study the field-
driven physics of these Kitaev systems we employ a range
of techniques—exact diagonalization (ED), infinite density
matrix renormalization group (iDMRG) calculations and lin-
ear spin-wave theory (LSWT)—to provide a comprehensive
picture of the KSL in the presence of a field.

The remainder of the manuscript is structured as follows.
In Secs. I and IV we review the Kitaev model and the effects
of adding an infinitesimal magnetic field. In Sec. V we use
LSWT to elucidate the physics of the polarized phase and
how the spin wave spectrum behaves as the field is lowered.
Sec. VI covers the intermediate-field regime, with the numer-
ical results of our ED and iDMRG computations presented
and analyzed. Finally, Sec. VII provides a comprehensive
discussion of all of the results obtained and their place within
the wider context of the physics of the Kitaev model and
QSLs.

II. THE KITAEV MODEL

The Kitaev model, originally defined on the honeycomb
lattice, can be straightforwardly extended to any tricoordi-
nated lattice with the Hamiltonian

Hgg =+K ) SIS 1)
(i,j)ey

where HI?SL indicates an AFM/FM Kitaev coupling and
the three bond directions are denoted by y € {x,y,z}.
Crucially this Hamiltonian has an extensive number of lo-
cally conserved plaquette variables W), [Hf(tsu W,] =0 and
[W,, Wy] =0, defined as the product of bond operators

i.jvey Si S} over the bonds of the plaquette. They thus take
values W, = %1 (&i) for plaquettes with an even (odd) num-
ber of bonds. On each lattice there are 2/? such plaquettes,
splitting the Hilbert space into sectors with fixed values of
W, and with 2V /2N/2 = 2N/2 = (ﬁ)N degrees of freedom in
each sector. Note that both the SO and DH lattice have two
different types of plaquettes, shown in Fig. 2.

Kitaev showed [5] that by representing the spin operators
in terms of Majorana fermion operators it is possible to rewrite
the Hamiltonian in terms of a single, free Majorana fermion
coupled to a static Z, gauge field, whose flux is precisely
W,. The ground-state flux sector can be determined either
numerically, or, in certain cases, via application of Lieb’s
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(b) Square Octagon

(a) Decorated Honeycomb

FIG. 2. Lattice structure of (a) the decorated honeycomb (DH)
and (b) square octagon (SO) lattices with unit cells of six and four
spins, respectively. Each lattice contains two distinct plaquettes, a
3-site triangular plaquette, W,, and 12-site dodecagonal plaquette,
Wo, for the DH lattice and a 4-site square plaquette, W3, and 8-site
octagonal plaquette, Wo for the SO lattice.

theorem [35]. Flux excitations, or “visons,” occur when one
of the W,, is flipped relative to their ground-state value. These
gauge excitations cost a finite energy, i.e., the visons are
gapped excitations with a gap A, ~ O(K/10). However, the
band structure of the free Majorana fermion depends on the
lattice geometry. For the original honeycomb case, it consists
of gapless Dirac cones [5] while for the DH and SO cases the
band structure is gapped [7,8]. The KSLs on the SO and DH
lattices are thus fully gapped, in both the gauge and matter
sectors.

The intrinsic topological properties of the fully gapped
KSLs can be classified according to the Chern number C of
their Majorana band structure. The Majorana band structure
on the SO lattice is trivial [8], C = 0, and thus the KSL has
the same Abelian topological order as the toric code [36].
However, on the DH lattice, the Majoranas inhabit a nontrivial
band structure [7] with C = %1, resulting in non-Abelian
Ising anyon topological order. In terms of edge physics, this
means that the SO KSL has a trivial gapped edge whereas the
DH KSL has a gapless, chiral Majorana edge mode (reflected
in a chiral conformal central charge ¢ = 1/2).

In the presence of a uniform magnetic field of arbitrary
orientation, the Hamiltonian now becomes

H*=%K ) SIS - "h-S;=Hy +Hn (2

(i.j)ey i

Here, to simplify the discussion, we will focus on a field
direction that affects all spin components equally, i.e., a field
along the [111] direction, h = (A, A, h)/\/g. For the honey-
comb and DH models this direction naturally corresponds to
the out-of-plane c-axis direction, its relationship to the SO
model is discussed in Appendix F.

III. METHODS

To start out, we give a brief overview of the tools used to
study the field-induced behavior of the Kitaev model, namely
linear spin-wave theory, exact diagonalization and the density
matrix renormalization group.

A. Linear spin-wave theory

Given a classical ordered state—such as the polarized state
in the high-field limit—it is possible to look at quantum
fluctuations about such a state in a 1/S expansion, with S
the spin length and S = oo corresponding to the classical
limit. This can be achieved by a standard Holstein-Primakoff
transformation, in which the spin operators, at leading order,
are replaced by boson creation and annihilation operators:

ST~ N2Sh;,  S7 A~ V2Sh),

for a spin S; aligned along the z axis. For a general classi-
cal ordered ground state, one can locally rotate each spin to
point along the z axis and then use the above expressions
to rewrite the Hamiltonian in terms of the classical ground-
state energy, at order 2, plus quantum corrections quadratic
in the boson operators, at order S (we neglect higher-order
corrections). The resulting spin-wave Hamiltonian can be
straightforwardly diagonalized, allowing the calculation of the
spin-wave spectrum and dynamical spin structure factor using
standard procedures [37,38].

S xS —bib, (3)

B. Exact diagonalization

To study the intermediate field regime we use a combina-
tion of ED and iDMRG simulations. The ED was numerically
implemented using the ARPACK library [39] and translational
symmetry was used in all cases to block diagonalize the
Hamiltonian. We studied N = 18, 24 site clusters for the DH
lattice (corresponding to Ny = 3, 4 unit cells) and N = 16, 24
site clusters for the SO lattice (V. = 4, 6 unit cells). In both
cases the results are qualitatively consistent for the two dif-
ferent system sizes and, as a result, we show throughout the
data only for the larger N = 24 site system. The next largest
system sizes, Ny = 5 (7) for the DH (SO) lattice, contain a
prime number of unit cells and thus can only be realized in
an L, x L, geometry as a highly anisotropic, essentially 1D
system, 5 x 1 (7 x 1). Such geometries are not suitable for
our study and, beyond that, larger system sizes are beyond the
scope of the present study. The finite-temperature ED results
were calculated using the method of thermal pure quantum
states [40,41].

C. Density matrix renormalization group

We complement ED by employing iDMRG [42—44] and
representing the quantum many body wave function, i.e., the
ground state, as a matrix product states (MPS). While initially
developed for one-dimensional systems, MPS and iDMRG
have been proven to be fairly unbiased and well controlled
even for two-dimensional systems, which can be accessed by
wrapping its lattice on a cylinder and winding a chain along
the sites. Translational symmetry allows to study cylinders
whose length is in the thermodynamic limit, while the cir-
cumference remains finite. This results in lines of accessible
momenta in reciprocal space. Here, we use various geometries
(DH, DH-2, SO, and SO-2) with L, =3 and 4 unit cells
along the circumference. The geometries and their accessible
momenta are illustrated in Fig. 17 in Appendix A. We use a
bond dimension of up to y = 1200 for the ground-state MPS.
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A matrix product operator based time-evolution
(tMPO) [45] enables us to compute the dynamical spin
structure factor as the spatiotemporal Fourier transform of the
dynamical correlation function C]7 = (Wo|S] U (1)S7|%y),
where |Wy) is the ground state. The time-evolution operator
for discrete time-steps U(At) is hereby represented as a
matrix product operator and iteratively applied to the MPS.
Due its computational cost, we compute the time-evolution
only using SO and DH geometry with L, = 3, and limit the
bond dimension to x = 256.

IV. LOW-FIELD REGIME: h « K

First we review the physics of the low-field regime, 4 — 0,
which is already well-known in the literature for the two lat-
tice geometries at hand [7,8] and, due to the exact solvability
of the Kitaev model, has been explored in a variety of other
lattice geometries in two [10] and three [11-18,20] spatial
dimensions. Here, concentrating on the two principal lattice
geometries at hand, we will remark first on the impact on the
flux degrees of freedom and then the Majorana sector.

A. Flux degrees of freedom

In the presence of a magnetic field the plaquette variables
W, which correspond to the flux of the Z, gauge field, are
no longer conserved [H%SL, W,1 # 0. This means that the
gauge field can no longer be considered static, but instead be-
comes dynamic, with the visons now mobile excitations with a
nonzero bandwidth. The exact solvability of the model is lost,
with the Hilbert space no longer separable into well-defined
flux sectors.

Though the model is no longer exactly solvable, we can
still make a definite statement on the stability of the KSL
in the presence of the field. The flux gap, which is finite
in the absence of a field, ensures that the KSL is stable to
infinitesimal perturbations, including a magnetic field. There
will thus be a finite extent of the KSL in the field-dependent
phase diagram and a finite /5" > 0 at which it is destroyed.

B. Majorana degrees of freedom

To investigate the impact on the Majorana degrees of free-
dom, Kitaev performed perturbation theory about the exactly
solvable point with Hy = HKiSL and the magnetic field term as
a perturbation V = Hy [5]. At linear order in A, there is no
contribution. At second order there is a nonzero contribution
that simply renormalizes the value of the Kitaev interaction
(and crucially does not break time-reversal symmetry). At
third order, there are two distinct types of contributions, one
of which can be rewritten in terms of Majorana fermions
as a quadratic next-nearest-neighbor (NNN) hopping term
(the other cannot be simplified, breaking the integrability of
the model). Adding just this NNN hopping term, which is
proportional to (h.hyh;), the model remains exactly solvable
and explicitly breaks time-reversal symmetry (TRS). In the
language of the spin degrees of freedom adding this term
leads to

H*=4K Y SIS —k ) SIS)Si, @)
(

i.j)ey ijk

KSL

®
SO: Toric Code TO (C' = 0) he
DH: Ising Anyon TO (C = +1)
HC: Ising Anyon TO (C = £1)

777

FIG. 3. Generic low-field behavior of the KSL for the FM/AFM
cases. It is stable up to a finite critical field &, with the topological
order for the square-octagon (SO), decorated honeycomb (DH), and
honeycomb (HC) lattices listed as examples of low-field KSLs (the
Chern number C of the Majorana bands are also given).

where ijk are NNN sites and « ~ (hxhyhz)/(AL"Aﬁk), with
AY the flux gap due to creating visons on the two plaquettes
neighboring the ij bond.

Note that, for the perturbation theory to be valid, it is
necessary not for the field to be small compared to the Kitaev
coupling K, but small compared to the flux gap A,. Since
A, ~ O(K/10) for the zero-field KSL this means that there is
a limited range of fields in which perturbation theory should
be trusted, 1 << O(K/10).

For the honeycomb case, the addition of the NNN hopping
term for the Majorana fermions gaps out the Dirac cones,
creating a fully gapped QSL with non-Abelian, Ising anyon
topological order [5]. However, for the DH and SO cases, as
the band structure is already gapped at zero-field, the addi-
tional term does not qualitatively alter the physics: The DH
also exhibits an extended phase with Ising topological order,
while the SO shows a stable phase with Abelian topological
order. This is schematically summarized in Fig. 3. The impact
of a small magnetic field, within the context of the perturba-
tion theory outlined above, on KSLs for other tricoodinated
lattices has been discussed in Refs. [16,17].

C. Summary

In the low-field regime we have a finite extent of the KSL,
due to the finite flux gap A,. Hence, all lattices have a finite
critical field AXSt at which the KSL is destroyed. Using per-
turbation theory, for 7 < A,, one can qualitatively investigate
the effects of the field on the Majorana band structure by
adding one of the terms that appears that breaks TRS but
retains the exact solvability of the model, a NNN hopping
term in the Majorana description. For the SO and DH lattices
there is no qualitative change in the band structure, and thus
the KSL. The situation is summarized in Fig. 3.

V. HIGH-FIELD REGIME: i » K

In the high-field regime the system will always form a
partially polarized state, independent of the underlying lattice.
The lack of any spin rotational symmetry in the Kitaev model
means that the ideal fully polarized state, |11 ...), with a fully
saturated magnetization, is not an eigenstate of the Hamil-
tonian. It is only as & — oo that the system approaches this
ideal product state. Quantum fluctuations are suppressed with
increasing field and we can do a spin-wave expansion around
the classical polarized state.
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FIG. 4. Generic high-field behavior of the FM/AFM Kitaev
models. Shown is the dynamical spin structure factor for the SO
model, with panel (a) showing the FM case at # = 0.01 and panel
(b) showing the AFM case at & = 1.01. The dotted black lines indi-
cate the spin wave bands (intensity is in arbitrary units).

We will restrict ourselves to linear spin-wave theory, using
the standard Holstein-Primakoff expansion about the clas-
sical fully polarized state. Such a study has already been
done for the Kitaev model on the honeycomb lattice [46,47],
which found the appearance of topological magnons (with
their bands carrying a nontrivial Chern number), as well
as extended Kitaev models on the honeycomb [48-50] and
hyperhoneycomb lattices [51,52]. Here, we investigate what
happens for the pure Kitaev model on other tricoordinated
lattices, with a focus on the DH and SO lattices. In particular,
we are interested in what happens as the field is decreased,
when does LSWT fail? How do the bands evolve with field?

A. Results: FM model

The first step in LSWT is to determine the classical ground
states of the model about which we do the spin-wave expan-
sion. For the FM Kitaev model the classical fully polarized
state, with all spins pointing along the direction of the applied
field, is the classical ground state all the way down to zero
field. That this is true can be easily seen starting from the
zero-field limit. In this limit the ground state is a classical
spin liquid with a large manifold of degenerate states [53]
(giving rise to a Coulomb phase [54,55]). Included within
this manifold is the fully polarized state. As a result, applying
a field immediately lowers the energy of the polarized state
relative to the other classical states within the manifold and it
becomes the classical ground state. It is thus possible to carry
out LSWT all the way down to zero field.

For the Kitaev model, the same qualitative behavior can
be seen in all 2D/3D lattices, as summarized in Fig 4. The
bandwidth stays constant as a function of field and the spin
gap goes to zero as the field goes to zero. There is a flat
band(s) that hits zero energy at zero field. As an example,
the dynamical spin structure factor at # = 0.01 is shown in
Fig. 4(a) for the SO lattice where one can clearly identify an
almost flat band just above zero energy.

We know, from the previous section, that the KSL is stable
to a finite critical field so the LSWT prediction of a sta-
ble polarized state all the way to 7 = O is clearly incorrect.

Nevertheless, the fact that LSWT can be applied down to zero
field suggests that, generically, for the FM Kitaev model, there
will only be a small field window at low fields within which
interesting quantum effects will occur.

B. Results: AFM model

For the AFM model the zero-field classical ground-state
manifold does not include the polarized state (such a state
has FM spin-spin correlations and so clearly would not be
a ground state of the AFM model). As a result an infinites-
imal field is not expected to polarize the system. Indeed,
the fully polarized state is only the classical ground state
for h > 2S. Below this, & < 28, there is no simple ordered
classical ground state but instead a complex ground-state
manifold which cannot be treated within simple LSWT (see
Appendix B for further details). For the spin-1/2 problem
at hand LSWT about the polarized state is thus restricted to
h> 1.

Again we see the same qualitative behavior in all 2D/3D
lattices. Similar to the FM case the bandwidth is constant and
the spin gap goes to zero via a flat band(s) hitting zero energy,
except this time at s, = 1, rather than 7 = 0 as in the FM
case. Figure 4(b) shows the dynamical spin structure factor for
the AFM SO model at & = 1.01, where again one can clearly
observe, in this case, two almost flat bands just above zero
energy.

We note that nonlinear corrections beyond LSWT will
change the critical field value . = 1 at which the polarized
phase becomes unstable, indeed this has been shown explicitly
in the honeycomb case [46,50]. This failure of LSWT can
also be clearly seen in Fig. 5, in which we compare the
dynamical structure factor for the DH lattice calculated using
iDMRG and LSWT. At high fields, we see a nice agreement
between the two methods, as shown in Figs. 5(a) and 5(b)
for h = 2.0, due to the suppression of quantum fluctuations
and mixing with the two-particle continuum. However, as the
field is lowered, the methods begin to diverge, at 7 = 1.4 in
Figs. 5(c) and 5(d) the total bandwidth is noticeably smaller
in iDMRG and weight begins to appear at higher energies. At
h = 1.0, 1.01 in Figs. 5(c) and 5(d) the lowest three bands in
LSWT are almost at zero energy and flat across the BZ, signal-
ing the impending instability of the polarized state, whereas
in iDMRG there is still a sizable spin gap ~0.2K and also
a significant region of continuum excitations. The polarized
phase thus exists over a wider field range than LSWT would
suggest.

The fact that LSWT about the polarized state fails at a finite
critical field is at least, unlike the FM case, consistent with the
finite extent of the KSL phase. Indeed, compared to the FM
case, this failure leaves a substantial field range within which
new quantum phenomena may occur.

C. Summary

There is a universal behavior to the classical fully polarized
state of the 2D /3D Kitaev models as field is reduced within
LSWT. The magnon bands move to lower and lower energies
and a single, or multiple, flat bands hit zero energy at a critical
field h. = O for the FM case and /. = 1 for the AFM case (for
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FIG. 5. Comparison of the dynamical spin structure factor for the
AFM Kitaev model on the DH lattice within the polarized phase, as
computed by iDMRG in panels (a, c, e), and LSWT in panels (b, d,
f). The dotted black lines in panels (b, d, f) indicate the spin wave
bands (the intensity is in arbitrary units).

S =1/2). Going beyond LSWT to the fully quantum model
we thus expect that there is a much wider region of parameter
space for interesting physics to emerge in the AFM case, as
compared to the FM case.

VI. INTERMEDIATE-FIELD REGIME: i ~ K

So far we have seen that the KSL must be stable up to some
finite critical field A, and that, within LSWT, the high-field
polarized phase becomes unstable at 7 =0 (h = 1) for the
FM (AFM) model. Now we move on to examine the full phase
diagram for the specific case of the DH and SO lattices, and in
particular explore what happens at intermediate fields, away
from the simple limits studied in the previous two sections.
For this, we turn to unbiased numerical techniques, namely
ED and iDMRG, to go beyond the perturbative and semiclas-
sical regimes of the previous sections.

A. Results: FM model

First we take a look at the FM Kitaev models, which turn
out to show rather straightforward behavior in the presence of
an applied field.

h || [111]

Vol

—
PL

0.05 0.10

h

FIG. 6. ED results for the FM Kitaev model on the DH lattice
with (a) energy spectrum (different colored points correspond to dif-
ferent momentum sectors), (b) second derivative of the ground-state
energy, d°Ey/dh?, and (c) magnetization parallel to the [111] field
direction, my, (the six different markers correspond to the six sites in
the unit cell).

0.15 0.20

1. Decorated-honeycomb lattice

The ED energy spectrum for the DH lattice for an N = 24
site cluster is shown in Fig. 6(a). There is a clear transition
at Kt = 0.024, which occurs via a level crossing, between
the low-field KSL and the high-field polarized state. The
transition is reflected in a sharp peak in the second derivative
of the ground-state energy, shown in Fig. 6(b) (as well as a
sharp drop in the ground-state fidelity, shown in Appendix D).
Above the critical field the lowest-lying energy levels exhibit
a linear increase in energy with increasing field, as expected
for the lowest-lying magnon excitations of the polarized state.
The magnetization parallel to the field, m, shown in Fig. 6(c),
jumps at the transition and then smoothly increases as field
increases, reaching, for example, ~86% of its saturated value
of 1/2 ata field of h = 0.2.

2. Square-octagon lattice

The phase diagram for the SO lattice is qualitatively similar
to the DH case. The energy spectrum and ground-state energy
second derivative, shown in Figs. 7(a) and 7(b), again clearly
point to a single transition from the low-field KSL to the high-
field polarized phase, in this case at a field of 25t = 0.044
(with, again, the transition also reflected in the ground-state
fidelity shown in Appendix D). The low-lying energy levels
show a clear linear increase in field above hfSL, with the
plaquette flux on the squares/octagons smoothly going to
zero and the magnetization parallel to the field, m shown
in Fig. 7(c), smoothly approaching saturation as the field is
increased further, e.g., W, = —0.09 (—0.05) for squares (oc-
tagons) and m; = 0.42 at h = 0.2.
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FIG. 7. ED results for the FM Kitaev model on the SO lattice
with (a) energy spectrum (different colored points correspond to dif-
ferent momentum sectors), (b) second derivative of the ground-state
energy, d°Ey/dh?, and (c) magnetization parallel to the [111] field
direction, my (the four different markers correspond to the four sites
in the unit cell).

B. Results: AFM model

Turning now to the AFM models, we discuss their phase
diagrams and the nontrivial behavior that arises within the
intermediate field regime.

1. Decorated-honeycomb lattice

The ED energy spectrum for the N = 24 site DH lattice
cluster is shown in Fig. 8(a). There is a clear transition out
of the KSL at a field of A%t = 0.15. However, unlike the
FM case, there is an intermediate regime visible, between
hSL = 0.15 and h = 0.78, before the spectrum bends and the
lowest-lying states start to exhibit the linear-in-field behavior
of the high-field polarized state. This intermediate regime can
also be observed in the second derivative of the ground-state
energy, shown in Fig. 8(b). There, the sharp peak at hXSE
is followed by a rather broad peak at higher fields, centered
at h = 0.78. Indeed, in the field range 0.6-1.0, Fig. 8(b)
actually includes a'on/dh2 data from both ED, N = 18,24
site clusters, and iDMRG, cylinders of width L, = 3, 4. All
of the curves lie on top of one another, indicating that this
higher-field peak is completely independent of system size
and geometry. Its broadness in field, with a width in field
of ~0.2, does not fit the behavior expected for a first-order
transition and the lack of any kind of scaling with system
size or geometry does not fit the behavior of a continuous
second-order transition either. Instead, such behavior suggests
a crossover, rather than a true phase transition, from the
intermediate-field region to the high-field polarized region.

What quantitative changes occur when crossing to the
intermediate-field region? Figure 8(c) shows the canting
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FIG. 8. ED results for the AFM Kitaev model on the DH lattice
with (a) energy spectrum (different colored points correspond to
different momentum sectors), (b) second derivative of the ground-
state energy, d*E,/dh?* (note that in the marked region & = 0.6 — 1.0
additional ED and iDMRG data is shown), (c) canting angle 6, of the
local moments (S;) away from the field direction (the six different
markers correspond to the six sites in the unit cell), and (d) NN spin-
spin correlations on the y bonds connecting the triangular plaquettes.

angle 6,, the angle between the local magnetic moments
(S;) and the [111] field direction, from ED as a function of
applied field. Approaching from high fields the spins begin to
cant away from the field direction, with 6, reaching a local
maximum just beyond the crossover and then decreasing and
going to zero midway within the intermediate-field region.
This zero of the canting angle signals a switch from one
form of symmetry-allowed canting pattern to another, with
the relevant patterns shown in Fig. 8(c) (for more details see
Appendix F). We thus refer to this intermediate-field region
as the “canted-polarized” regime. Finally, in Fig. 8(d), the
NN spin-spin correlations (S S}’) for y bonds connecting
triangles switch from being FM at high fields to AFM at
the crossover field. Note that all of these results are fully
consistent with iDMRG, though there, because the cylinder
geometries used do not support all lattice symmetries of the
Hamiltonian, the two canting patterns at low and high-field
are different to those two encountered in ED.

The trivial nature of the canted-PL regime is further re-
flected in the iDMRG data of Fig. 9. The extent of the KSL
region is slightly smaller, with #/%St = 0.10 in Fig. 9(a), as
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FIG. 9. iDMRG results for the AFM Kitaev model on the DH
lattice showing (a) second derivative of the ground-state energy,
d*Ey/dh?, (b) entanglement entropy Sen/Lew, and (c) the extracted
correlation length.

compared to At = (.15 in the ED data of Fig. 8(b). Within
the canted-PL regime, the entanglement entropy, Sen, displays
the characteristic area-law behavior expected for a gapped
state. This is reflected in the fact that Sen/Lcy, Shown in
Fig. 9(b), does not scale with cylinder width. In other words,
Sent/Lcut 1S constant and thus Sepe o Loy, as expected for a
trivial gapped phase. Sen does not exhibit any signature of the
crossover between the canted-PL and high-field PL regimes,
nor does the correlation length exhibit any significant in-
crease. Combined with the ED results, we thus get a clear
picture of the ground-state phase diagram. There is just a
single phase transition with the low-field KSL phase giving
way to a canted-PL regime, which is then smoothly connected,
via a crossover, to the high-field PL phase.

The finite-temperature behavior of the canted-PL regime
can be seen in the specific heat data, calculated with ED using
the thermal pure quantum states method [40,41], in Fig. 10. In
the KSL there is a signature two-peak structure [56] to the spe-
cific heat, associated with the onset of fractionalization at the
higher-T peak, and the ordering of the plaquettes at the lower-
T peak. Once the transition out of the KSL is crossed the
lower peak begins to move to higher and higher temperature,
eventually merging with the higher-T peak to form a single
peak, as expected for a trivial gapped phase, at a field just
above the crossover to the high-field PL regime. We further
comment on the thermodynamics of the intermediate phase,
in particular its relation to proximate spin liquid behavior, in
the discussion section below.

2. Square-octagon lattice

To discuss the in-field physics for the SO lattice, it is
helpful to first consider more general, tilted field directions
between the [111] and, for example, the [011] directions.

FIG. 10. Specific heat for the DH lattice as a function of applied
field calculated using ED. The black dots denote peaks in the specific
heat, with their size proportional to the height of the peak.

Much of the key physics readily reveals itself for such tilted
field directions, while the [111] field direction turns out to be
somewhat special. To set the stage for this discussion, Fig. 11
shows the two-dimensional phase diagram from ED for field
directions varying from the [111] to the [011] direction, with
the field direction parameterized by a tilting angle 6 via h =
h(cos 6 ﬁ[m] + sinf fl[om). For the vast majority of tilting
angles, & = 7°, we find a phase diagram qualitatively similar
to the DH case, with the KSL at low fields, followed by a
phase transition to an intermediate canted-PL regime, and then
a crossover to the high-field PL regime. For small tilt angles,
i.e., fields close to the [111] direction, we observe a new
phase that emerges between the canted-PL and PL regimes.
First though we focus on a cut at 45°, to examine the physics
that dominates the majority of the phase diagram, before then
discussing the special case of small tilt angles.

The energy spectrum for a 6 = 45° cut can be seen in
Fig. 12(a). There is a clear transition out of the KSL at a
field of KXt = 0.18. Beyond this there is an extremely broad
shoulder in the second derivative of the ground-state energy,
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FIG. 11. Tilted field phase diagram for the AFM Kitaev model
on the SO lattice with respect to fields tilted between the [111] and
[011] directions.
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FIG. 12. Phase diagram at @ = 45° for the AFM Kitaev model on
the SO lattice with (a) the energy spectrum (different colored points
correspond to different momentum sectors), (b) the second derivative
of the ground-state energy, (c) canting angle 6, of the local moments
relative to the applied field (the four different markers correspond to
the four sites in the unit cell), and (d) NN spin-spin correlations on
the z bonds, which connect the square plaquettes.

shown in Fig. 12(b) (and associated broad dip in the fidelity,
see Appendix D). The absence of any real peak suggests that
there is no phase transition. Rather, we identify the feature,
centered at 1 = 0.52, as a crossover between the high-field po-
larized regime and a canted-polarized regime at intermediate
fields, 0.18 < h < 0.52. Figure 12(c) shows that the canting
angle between the local moments and the applied field begins
to saturate just below the crossover. Figure 12(d) demonstrates
that the NN spin-spin correlations on the z bonds, which
connect squares, turn from AFM to FM at the crossover, the
same behavior observed at the crossover in the DH lattice for
bonds connecting triangles.

As the applied field is rotated toward the [111] direction
the broad shoulder seen in Fig. 12(b) begins to very slowly
sharpen before splitting into two clear distinct peaks for tilting
angles 6 < 7°. This splitting leads to the emergence of a new
intermediate phase, as evidenced in the energy spectrum and
d’Ey/dh? results from ED shown in Fig. 13. Approaching this
new phase from either side we see that the energy spectrum is
driven down to low energies, resulting in an almost continuous
spectrum above the ground state, suggesting that it harbors
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FIG. 13. Phase diagram in a [111] field for the AFM Kitaev
model on the SO lattice with (a) the energy spectrum (differ-
ent colored points correspond to different momentum sectors) and
(b) second derivative of the ground-state energy.

gapless degrees of freedom [57]. The clear peaks in d>E/dh?
indicate that, unlike the 45° cut, there are true phase transi-
tions at intermediate fields. The phase diagram for a [111]
field thus consists of the KSL in the region h < h*St = 0.16,
the canted-PL regime in the region 0.16 < & < 0.57, a new
gapless (GPL) intermediate phase for 0.57 < & < 0.73 and
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FIG. 14. iDMRG results for the AFM Kitaev model on the SO
lattice showing (a) the second derivative of the ground-state energy,
(b) entanglement entropy Sen/Leut, and (c) the correlation length. The
inset shows the scaling of S, against L., at a field value & = 0.4
within the intermediate canted-PL regime. The linear fit is consistent
with a zero intercept, indicating the absence of any topological en-
tanglement entropy. Data within the region 0.57 < h < 0.73 is not
converged and thus not shown.
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then the PL phase for fields 4 > 0.73. As discussed above, it
is important to keep in mind that the canted-PL regime can be
smoothly connected to the high-field PL phase via a crossover
once the field is tilted 6 > 7° away from [111].

The appearance of a new intermediate phase for a field
along the [111] direction can also be seen in the iDMRG
data of Fig. 14. It is marked by an isolated region, 0.58 <
h < 0.75, in which the numerical results do not converge
within the cylinder widths and bond dimensions studied here,
indicating that the ground state within this region either har-
bors significant entanglement or cannot be easily captured
by iDMRG. However, the KSL phase has the same critical
field, 251 = 0.16, as in the ED data of Fig. 13. The topo-
logically trivial nature of the intermediate canted-PL regime
is confirmed by the scaling of the entanglement entropy,
shown in the inset of Fig. 14. At h = 0.4, the data is fit to
the form Sep = Loy — v, With the resulting fit giving y =
—0.02 £ 0.03. This is consistent with y = 0, as expected for
a topologically trivial ground state.

VII. DISCUSSION

The multitude of detailed results presented in the preceding
sections for the field-driven physics of two specific incar-
nations of Kitaev spin liquids mandates that we close with
a discussion of what we expect to be generic field-driven
phenomena. In doing so we will focus on three key aspects:
(i) the disparity of critical field strengths for KSLs arising
from the sign of the Kitaev couplings, and, concentrating
on the intermediate field regime for AFM couplings, (ii) the
enhancement of spin canting, the role of lattice symmetries
and the important exception of the honeycomb model, as well
as (iii) the emergence of proximate spin liquid behavior in
finite-temperature and finite-energy observables.

A. Critical field strengths

One of the most striking features, which we expect to play
out for all KSLs independent of their topological features and
underlying lattice geometry, is a strong disparity in critical
field strengths with FM Kitaev models transitioning out of
the KSL at XL ~ O(K/100), versus a considerably larger
value 151 ~ O(K/10) for AFM models. The microscopic
origin of this disparity can be traced back to the nature of
local spin-spin correlations in the KSL. In the FM models
these spin-spin correlations at zero-field are already of the
same sign as the polarized state, whereas this is not true for
the AFM models. For AFM couplings, the field needs to first
flip the sign of the spin-spin correlations, from AFM to FM,
and then polarize the local moments. This mechanism was
first identified for the honeycomb Kitaev model [23,24,58]
and subsequently discussed for a variety of 2D/3D lattice
geometries on a Majorana mean-field level [27]. The disparity
in critical fields is clearly evident in the numerical calculations
of this manuscript, with quantitative values for the critical
field strengths summarized in Table 1.

This disparity in critical fields is also consistent with the
classical limit of the Kitaev model, as well as our semi-
classical LSWT analysis. In the classical limit, the zero-field
Kitaev model is a classical Coulomb spin liquid [54] at zero

TABLE I. Overview of KSL critical fields for a field along the
[111] direction, showing the order of magnitude difference between
the FM and AFM models. All values are taken from ED calcula-
tions on N = 24 site clusters, values given in brackets correspond to
iDMRG results.

Lattice FM 155t AFM hESt
Honeycomb 0.025 (0.024) 0.38 (0.38)
Decorated-honeycomb 0.024 0.15 (0.10)
Square-octagon 0.044 0.16 (0.16)

temperature, with a large manifold of degenerate spin con-
figurations [53]. For FM couplings, the polarized state is
contained within this manifold and so can be immediately
selected by the application of an infinitesimal field. However,
for AFM couplings, the polarized state, with its FM spin-spin
correlations, clearly cannot lie within the classical manifold of
degenerate states. An infinitesimal field thus does not lead to
immediate polarization but rather it is only reached at a finite
field h = 1 (see also Appendix B).

The expanded stability of the KSL in AFM systems makes
the search for materials with AFM Kitaev interactions highly
desirable, see also our outlook at the end of this section.

B. Symmetry-allowed canting

Upon closer inspection of the magnetism playing out at
intermediate field strengths for the AFM Kitaev model, we
have seen that the DH lattice exhibits an intermediate, canted-
PL regime before a crossover into the high-field PL phase.
At first, this result might seem somewhat surprising as the
honeycomb model, which shares many of the same features
as the DH model, instead exhibits a gapless intermediate QSL
phase before a phase transition to the high-field PL phase.
Both lattices share the same symmetries (the DH lattice can
be constructed by simply replacing the sites of the honeycomb
lattice by triangles of sites), and both share the same low-field
Ising anyon topological order. Why does a magnetic field
induce canting in one case and a QSL in the other?

One crucial difference between the honeycomb and DH
models is that the latter, due to its larger unit cell, admits
a canting pattern, i.e., finite mlJ- that does not break any
symmetry of the Hamiltonian in the presence of a [111]
magnetic field. It is thus possible, as the field is decreased,
for the spins to smoothly cant away from the field direction
and lower their energy with respect to the Kitaev interaction
term. On the honeycomb lattice, it is not possible to generate
canting, a finite mii, in the presence of a [111] field with-
out breaking a symmetry [59]. As the field is decreased the
spins are thus unable to cant away from the field direction
without triggering a phase transition to a symmetry-broken
state. In fact, the honeycomb lattice is special amongst the 2D
Kitaev models in that it possesses such a field direction for
which canting is not allowed, all other models admit some
form of symmetry-allowed canting pattern regardless of the
field direction (see Appendix F for more details). We note
that there are instances in extended Kitaev models in which
symmetries are spontaneously broken, and subsequent canting
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occurs, e.g., in extended models with an additional symmetric
off-diagonal I" exchange and a [111] field [60-62].

We are thus lead to speculate that the generic behavior of
the 2D AFM Kitaev model in the presence of a field consists
of a single phase transition, at A%t ~ O(K/10), from the
KSL to a gapped phase with significant canted moments,
followed by a crossover, at 1 ~ O(K), at which the canting
rapidly decreases, all spin-spin correlations become FM and
the high-field partially polarized regime is reached. Though
this behavior is likely generic, there are exceptions for special
lattices or field directions. With regard to two-dimensional
lattice geometries, the one (and probably most relevant) ex-
ception would be the honeycomb lattice, which cannot support
canted moments without spontaneously breaking a symmetry
for a [111] field. Instead, it exhibits a gapless intermediate
QSL phase. Note though that for generic field directions,
i.e., away from [111], the honeycomb also allows for canted
moments as the field itself will already break symmetries.
Nevertheless, the gapless QSL behavior is observed to persist.
In the case of special field directions, we have seen that the
SO lattice offers an exception, as for fields very close to
[111] there is an additional intermediate phase that emerges.
We comment on three-dimensional lattice geometries in the
outlook Section.

C. Proximate spin liquid behavior

Having established the formation of enhanced canted mo-
ments in the intermediate field regime as the expected generic
scenario for AFM 2D Kitaev models—with the notable ex-
ception of the honeycomb Kitaev model, one might conclude
that no spin liquid physics is to be anticipated beyond the
critical field strength hfSL. This, however, is somewhat pre-
mature since remnants of QSL behavior might still be found
at finite temperatures and energies, despite the trivial nature
of the ground state. As an example, signatures of fraction-
alization have been observed in the finite-energy dynamics
of 1D spin chain compounds [63], even though the ground
state is ultimately a 3D long-range ordered state (due to the
always present interchain couplings). In the context of the
Kitaev materials, this concept has been used to describe for
example the similarities between the high-energy continuum
observed in neutron scattering [28,29] or resonant inelastic
X-ray scattering (RIXS) [30] experiments and the continuum
that arises in the Kitaev model and its extensions [32,64,65].
Such similarities have led to the notion of a “proximate spin
liquid” regime [28,29].

At finite temperature, one of the key characteristics of
the Kitaev model is the double peak structure of its specific
heat [56], as illustrated in the upper left panel of Fig. 15 for
the SO model in zero field. The two peaks indicate subsequent
crossovers from the high-temperature paramagnetic regime
into a fractionalized, flux-disordered intermediate regime to
the true (flux-ordered) KSL as temperature is lowered. Under
a magnetic field, even though the KSL ground state is de-
stroyed at AXSL, this double peak structure is found to persist
to considerably higher fields. The upper right panel in Fig. 15
shows such a specific heat trace midway within the canted-PL
regime for a field 4 = 0.4 along the [111] direction, more than
a factor of 2 above the critical field strength of XSt = 0.16
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FIG. 15. Comparison of spin liquid and proximate spin liquid
behavior. Shown are the specific heat (a, b) and dynamical structure
factor (c, d) for parameters deep in the KSL regime, & = 0.0 for
panels (a) and (c), and the canted-polarized regime, 7 = 0.4 for
panels (b) and (d). All data is for the SO lattice and a field along
the [111] direction. The shaded area in panels (a) and (b) marks one
standard deviation above/below the mean.

for the SO model at hand, but still almost identical to the zero-
field specific heat trace. A similar picture is found when going
to finite energy, e.g., by looking at the dynamical structure
factor of the Kitaev model. As plotted in the lower left panel of
Fig. 15 the dynamical structure factor of the SO KSL exhibits
a sharp gap equal to the two-vison gap, as S} flips the value
of W, on two adjacent plaquettes creating two gapped visons
(see Appendix E for more details). The static nature of the
vison excitations results in a flat dispersionless band. Above
this sharp feature there is a broad continuum of fractional-
ized excitations, a key signature of the nontrivial nature of
the Kitaev model. Interestingly, if we look again at h = 0.4
midway within the SO canted-PL regime, then the dynamics
looks strikingly similar to that of the pure Kitaev model. The
dynamical structure factor is shown in Fig. 15(d). There is
again a sharp gap above which lies a flat dispersionless band,
followed by a broad continuum, albeit slightly smeared out
compared to the zero-field limit. It is quite remarkable that the
SO canted-PL phase in the intermediate-field regime shares,
at finite temperatures and energies, so many of the same char-
acteristics features of the pure Kitaev model, despite having
a topologically trivial ground state (as clearly demonstrated
in the scaling of Se, in the inset of Fig. 14). It is as such
a rather clean example of what is considered proximate spin
liquid behavior.

Eventually, for sufficiently strong field strengths, the prox-
imate spin liquid regime disappears. In the specific heat data,
for instance, this can be seen as the two peaks eventually
merge into a single peak. This is shown for a variation of
different tilt angles in Fig. 16, again for the AFM SO model.
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FIG. 16. Thermodynamic signature of proximate spin liquid be-
havior. The color-coded specific heat for the SO lattice at different
tilt angles exhibits a distinct two-peak structure in a broad field range
beyond the actual KSL phase.

For 6 = 45° (lowest panel), we see the principle signature of
an extended proximate spin liquid regime with the lower of
the two peaks in the specific heat slowly shifting upwards
before merging with the upper peak, similar to what is shown
in Fig. 10 for the DH lattice. Going to smaller tilt angles,
the 6 = 7.5° cut in Fig. 16(b), the proximate spin liquid
regime is even more pronounced as the lower peak slightly
decreases on entering the canted-PL regime and retains this
position over a wide field range. For 6 = 0°, i.e., a field
along the [111] direction, the lower peak is pushed down
to even lower temperatures and loses its structure on entry
to the gapless phase. As a result, the specific heat within
the canted-PL regime close to [111] looks almost identical
to that of the pure Kitaev model itself—this is what we
shown in the comparison of Fig. 15(a), taken at 7 = 0, and
Fig. 15(b), taken at & = 0.4 midway within the canted-PL
regime.

Notably, such a proximate spin liquid regime is found in
both the AFM and FM models, though it persists over a much
wider field range in the AFM model. In fact, for the DH lattice,
the ratio of the phase boundaries A /hg<SL (where hyp, is the
field strength at which the two peaks in the specific heat merge

into a single peak) is roughly the same for both cases. This
suggests that the extended double peak regime in the AFM
model is, in fact, due to the extended stability of its KSL
phase. That is, the more stable KSL phase also induces a wider
proximate spin liquid regime.

D. Outlook

Taking a look ahead, our study reemphasizes the interest
in AFM Kitaev materials. These systems not only exhibit
KSL phases which are considerably more stable in the pres-
ence of a magnetic field. They also give rise to an extended
intermediate-field strength regime that—despite the generic
formation of a conventional ground state with canted magnetic
moments for most lattice geometries—exhibits proximate
spin liquid behavior in its finite-temperature and finite-energy
observables. A route toward the experimental exploration of
such AFM Kitaev materials has been laid out theoretically,
identifying 4 f materials [66,67] as well as spin-1 Kitaev ma-
terials [68,69] as alternatives to the current family of 4d/5d
spin-orbit entangled j = 1/2 Mott insulators that have pre-
dominantly FM Kitaev couplings [70-73].

A particularly intriguing direction to pursue is the explo-
ration of 3D Kitaev materials, such as the hyperhoneycomb
systems S-Lilr,O3 [74] and y-Lilr,O3 [75], but with domi-
nant AFM couplings. While such systems might have an even
stronger tendency to exhibit magnetically ordered ground
states compared to their 2D counterparts, the prospect of
experimentally realizing proximate spin liquid physics in a
3D system is tantalizing. It would provide us with a setting
to explore signatures of fractionalization that is quite different
from other 3D spin liquid materials, pursued, e.g., in the
search for a Coulombic quantum liquid [76] in the spin-1/2
rare earth pyrochlore systems [77]. Particularly interesting lat-
tice geometries to realize in candidate materials might be the
hyperhoneycomb and its higher harmonics (see Appendix F),
which similar to the honeycomb lattice in two spatial dimen-
sions obstruct spin canting for certain field directions due to
their underlying symmetries.
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APPENDIX A: iDMRG GEOMETRIES

To be able to use iDMRG, we wrap the two-
dimensional DH and SO lattices on a cylinder and wind the
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FIG. 17. iDMRG cylinder geometries and reciprocal space of the
SO (a, ¢, e) and DH (b, d, f) models. The roman numbers denote the
way the bonds are connected across the boundary. Two geometries
are used: (i) a ringlike geometry denoted as SO or DH, where the
top and bottom bond belong to the same row, and (ii) a geometry
with shifted boundary condition, denoted as SO-2 and DH-2. Both
geometries result in different cuts of accessible momenta, k, in
reciprocal space. These cuts are either parallel to the k, vector for
SO (c) or DH (d), respectively, or tilted for SO-2 (e) or DH-2 (f).

one-dimensional matrix product state structure around the
cylinder. Due to the cylindrical geometry, only discrete steps
of the wave vectors k, /L, are available, where k, is the recip-
rocal lattice vector corresponding to m, and L, is the number
of unit cells along the circumference. This results in lines of
accessible momenta in the reciprocal space. The way in which
the lower and the upper boundaries are connected determines
the orientation of these lines, while the circumference deter-
mines the spacing between them.

Here, we employ two different ways of connecting the
upper and the lower bond across the boundary, ringlike which
we denote as SO and DH, and shifted which we denote as
SO-2 and DH-2. See Fig. 17 for an illustration of each geom-
etry and their corresponding accessible momenta. We restrict
ourselves to circumferences L, = 3 and 4 when computing
the ground state due to an exponentially with L, increasing

h=11
() (b)

FIG. 18. Common origin plots for the classical AFM Kitaev
model on the SO lattice.

computational cost. The time evolution is performed on the
ringlike geometries, SO and DH, with L, = 3.

APPENDIX B: CLASSICAL KITAEV MODEL IN FIELD

In its classical limit, the Kitaev honeycomb model is known
to evade any finite-temperature ordering transition and to ex-
hibit a classical spin liquid ground state that can be framed
as a Coulomb phase [53,54,79]. On a more technical level,
the exchange frustration—arising from the competing bond-
directional interactions also on the classical level—leads to
an extensive manifold of classical spin configurations with the
same minimum ground-state energy, including, for example,
configurations formed of local dimers of spins pointing par-
allel along one of the three principle spin axes. This dimer
formation allows to map this submanifold of degenerate spin
configurations to the manifold of dimer coverings of the un-
derlying lattice. Since the origin of this degeneracy-inducing
mechanism plays out at the level of a single tricoordinated
vertex, we expect it to play out for all classical Kitaev models,
independent of their tricoordinated lattice geometry and spa-
tial dimensionality. Though the details of the classical dimer
model might still subtly differ depending on the lattice, in all
cases a classical spin liquid emerges as the classical ground
state.

In the presence of a [111] magnetic field, the FM Kitaev
models are immediately polarized as the classical fully polar-
ized state is contained within its full manifold of degenerate
ground-state spin configurations. As a result, LSWT about the
polarized state can be easily carried out at any finite field.
However, the AFM Kitaev models exhibit extremely nontriv-
ial behavior in field. We will not go into details of this physics
here but instead we merely point out that the fully polarized
state is only stable for fields # > 1 (assuming classical spins
normalized to |S| = 1/2). This means that LSWT can only be
reliably carried out for & > 1.

In Fig. 18 we show a series of common origin plots, in
which all of the spins in a classical spin configuration are
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plotted with the same base point, for the classical AFM Kitaev
model on the SO lattice as an example. The configurations are
generated via simulated annealing of lattices of 96 x 96 unit
cells, resulting in 36 864 spins for the SO lattice, and taken at
a final temperature 7 = 107>, For & = 1.1 we see in Fig. 18
that the ground state is clearly the polarized state, with all of
the spins point along the [111] field direction. However, for
a field h = 0.9, we see in Fig. 18 that the ground-state spin
configuration is disordered, albeit constrained to a specific
region of the sphere (a region which varies as & decreases).
As there is no well-defined magnetic unit cell, it is thus not
possible to carry out conventional LSWT for such disordered
configurations. Interestingly we note that the difference in the
energy per site between the disordered configurations gener-
ated via simulated annealing and the translationally invariant
configuration produced by minimizing the energy of a sin-
gle unit cell is ~107> (with the analytic expression for the
energy per site from minimizing a single unit cell given by
Ey = [K(h? — 25%) — 2h*]/4 for h < 1). Similar results hold
for the honeycomb and decorated honeycomb lattice.

APPENDIX C: MAGNON DIMENSIONAL
REDUCTION WITHIN LSWT

We would like to briefly note an interesting quirk within
LSWT of the polarized phase of the Kitaev model. For fields
in which one or more components vanish the magnon spec-
trum becomes flar along certain directions in momentum
space. For example, if we were to take h = (0, 0, &,), then
the spins will be classically polarized purely along the z axis.
In this case, terms on the z bonds, SizS;". , will only contribute

on-site terms, b, b; and b;bj, within LSWT. This means that
there is no hopping along the z bonds, but instead only along
x and y bonds.

The most dramatic example of this occurs in the SO lattice.
In this case, if the bond connecting squares is the z bond,
then a field along the z axis will result in Holstein-Primakoff
bosons purely confined within each square, i.e., hopping be-
tween squares vanishes. The resulting magnon bands are thus
completely flat due to the O-dimensional nature of the result-
ing spin-wave Hamiltonian. If instead the field is chosen to
point purely along either the x or y axis then the resulting
magnon bands will be flat only along certain directions in mo-
mentum space. In other words the Hamiltonian within LSWT
only contains one-dimensional hopping terms, along chains in
the lattice.

The reduction of the full 2D magnon dispersion of the
polarized state to a 1D dispersion, i.e., the appearance of
flat directions in momentum space, occurs for magnetic fields
parallel to the cubic axes in all 2D /3D Kitaev models. This is
related to the fact that all models admit Jordan-Wigner strings
that fully cover all sites. Of course, it should be emphasized
that the exact flatness is a quirk of LSWT, corrections beyond
LSWT will induce interactions across all bonds, destroying
the reduced dimensionality of the Hamiltonian.

APPENDIX D: GROUND-STATE FIDELITY

The ground-state fidelity is defined as F(g) =
[(Wo(2)|Wo(g+ 8g))| for some tuning parameter g. It is
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FIG. 19. Fidelity traces for the in-field phase diagrams of the DH
and SO models.

an order-parameter independent quantity that can signal
the presence of phase transitions as g is varied. In the
thermodynamic limit, the associated susceptibility, d*F /d gz,
exhibits characteristic scaling behavior that can further
distinguish between first and second order transitions. In ED,
a transition which occurs via a level crossing in the ground
state results in F'(g) = 0 while a transition via mixing between
the ground state and excited states results in a smooth dip in
F(g). Within a phase, away from any transitions, F'(g) ~ 1.

To complement the phase diagrams in the main text we
show the ground-state fidelity F' (%) for the FM Kitaev models
on the DH and SO lattice, as well as for the AFM Kitaev
models on the same lattices (in all cases for a [111] field). The
KSL transition at hfSL is clearly visible in all cases. However,
the crossover from the canted-PL regime to the high-field
polarized regime fro the DH lattice only produces a weak
change in F (h) (note the extremely fine scale on the F'(h) axis
in Fig. 19). The intermediate gapless phase for the SO lattice
is also clearly visible in the fidelity.

APPENDIX E: VISON GAPS

In the Kitaev model, there is a finite-energy cost to flipping
a plaquette W), which, in the context of the exact solution,
corresponds to a finite-energy cost to making a Z, gauge exci-
tation, or “vison.” The operators S¢ acting on the ground state
create two visons in the plaquettes adjacent to the o bond.
Unlike the honeycomb model, the DH and SO lattices possess
two different types of plaquettes, and thus two different vison
gaps A, (note that here we are using A, to denote the gap
to creating two visons on adjacent plaquettes, not the gap to
creating a single vison). The gaps can be straightforwardly
calculated at zero field within the Majorana reformulation of
the model.

The different potential vison gaps are illustrated in Fig. 20,
with Fig. 20(a) showing how, on the SO lattice, S7 always
flips two octagonal plaquettes whereas SY (or SY) will always
flip one octagonal plaquette and one square plaquette. The
associated energy costs are 0.02 K and 0.13 K, respectively.
In Fig. 20(b) we see how, on the DH lattice, S7 can either
flip two dodecagonal plaquettes or one triangular plaquette
and one dodecagonal plaquette, depending on the site i (sim-
ilarly for S} and S7). Here, the energy costs for such flips
are 0.07 K and 0.03 K, respectively (note that the vison gap
for two-dodecagon excitations is almost identical to that for
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FIG. 20. Two-vison excitations on the (a) SO lattice and (b) DH
lattice, created by acting S on the sites indicated.

two-hexagon excitations on the honeycomb lattice, if one re-
places the triangles of the DH lattice by sites the dodecagons
become the hexagons of the honeycomb lattice).

The finite vison gap can be directly observed in the dynam-
ical structure factor which, at zero field, has a sharp gap equal
to A,. For the DH lattice there is no clear way to disentangle
the two different vison gaps. However, owing to the unique
structure of the square-octagon lattice, which has one bond
distinct from the other two (the bond connecting squares),
it is actually possible to separately observe both vison gaps
by looking at the spin-resolved components of the dynamical
structure factor. In Fig. 21 we show the diagonal components
of the dynamical structure factor, S**(Q, w), calculated using
iDMRG. There is a clear difference between the S**/S”Y and
S§% components, with $™/S$” sensitive to the square-octagon
vison gap and S¥ sensitive to only the octagon-octagon vison
gap. The specific values of the gaps are note the same as those
found via the exact solution due to the cylinder geometry used
in the iDMRG simulations.

APPENDIX F: SYMMETRY-ALLOWED
CANTING PATTERNS

In this Appendix, we extend the discussion of the
symmetry-allowed canting patterns of Sec. VII B. For all lat-
tices we discuss the symmetries of the Kitaev model and how
they are affected by a [111] field. We also examine gener-
alizations of the Kitaev model to three dimensional lattices,
with a focus on field directions along high-symmetry lines.
In the following, we write m; as the magnetization at unit
cell position i. To start, we review the symmetries of Kitaev’s
original model on the honeycomb lattice.

(a)z.o
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FIG. 21. Spin-resolved dynamical structure factor for the SO
lattice at zero field. The energy gaps in panels (a) and (b) correspond
to the excitation energy of creating visons on adjacent square and
octagonal plaquettes, whereas the gap in panel (c) corresponds to
exciting visons on adjacent octagonal plaquettes.

ZA [IIO]

[111]

(a)

FIG. 22. The honeycomb lattice can (a) be embedded in 3D such
that all symmetry operations act equally on lattice and spin. The
[111] direction is perpendicular to the lattice plane. (b) Symmetries
of the Kitaev model. The C¢ symmetry is composed of a sixfold
rotation and a reflection at the lattice plane.

1. Honeycomb lattice

Due to the strong spin-orbit entanglement, the symmetries
act on both spin and spatial degrees of freedom. It turns out to
be especially useful to embed the lattice in 3D with the [111]
direction (¢ direction) pointing perpendicular to the lattice
plane, as visualized in Fig. 22(a) [80]. Precisely the same
orientation is found in the Iridium-based material realizations.
The symmetries then act equally on spin and lattice degrees of
freedom.

The symmetry group of the Kitaev model contains an op-
eration Cs composed of a sixfold c-axis rotation followed by a
reflection across the lattice plane, and a reflection o across
the x = y plane. Together with translations 77, 7, and time
reversal T, the full symmetry group is (7, Ty, T», Cg, o). The
symmetries are visualized in Fig. 22(b).

Upon switching on a magnetic field in the [111] direction,
mirror and time reversal symmetry are individually broken
but their combined action and Cs remain symmetries. Twofold
application of Cs preserves the position within a unit cell but
maps (oy, gy, 0;) — (0y, 07, 0). The magnetization can thus
not deviate from the field direction without breaking further
symmetries.

Any field component perpendicular to the [111] direction
breaks the Cs symmetry. It is natural to ask whether special
field directions exist which preserve a subset of the symme-
tries and whether canting is allowed within this subset. Fields
lying in the [11x] plane preserve inversion and 7o [81]. The
magnetization can deviate from the field direction without
breaking further symmetries, as long as the [110] components
vanish. In contrast, no canting is allowed for fields pointing
along the lattice bonds, e.g., [110]. Such a field preserves
o [81] which would allow for a canting pattern where the
[111] components of m; and m, have equal magnitude but
opposite signs. However, as m; and m; are also related by
inversion symmetry, m; = m, must hold.

Any other field direction generically allows canting as all
symmetries except for inversion and translation are broken.

2. Decorated honeycomb lattice

Replacing each site of the honeycomb lattice by a triangle
gives rise to a new structure called the decorated honeycomb
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lattice, shown in Fig. 2 [7]. The Kitaev model on this lattice
has the same symmetry group as its honeycomb cousin. In
contrast to the latter, only full 27 rotations map one position
in a unit cell to itself. The restriction for m in a [111] field
that emerged as a consequence of the twofold application of
Cs is therefore omitted. The more complicated unit cell admits
canting. More precisely, Cs enables a continuous manifold
of configurations that can be constructed by simultaneously
rotating all m around the ¢ direction by an arbitrary angle,
starting in an all in all out order, where all m in the left
(right) pointing triangles in Fig. 2 point inwards (outwards).
The symmetry 7 o picks two special canting patterns of this
manifold, namely, the ones where mlJ- is perpendicular to the
bond connecting site i to a different triangle. These are the two
configurations shown in Fig. 8.

3. Square-octagon lattice

The square-octagon lattice is visualized in Fig. 2. Its space
group consists of a fourfold rotation C4 around the axis
perpendicular to the lattice and four reflections at planes per-
pendicular to the lattice plane, which bisect the four different
bonds vertically (note that there are two different z bonds).
The most natural way to embed the lattice in 3D is to select
x and y axis parallel to the respective bonds and the z axis
perpendicular to the lattice plane. This guarantees that a real
space symmetry transformation, combined with the same op-
eration in spin space, is a symmetry of the Kitaev model [82].
The symmetry group of the Kitaev model is further enriched
by T and reflection at the lattice plane L. The latter leaves the
lattice itself invariant but maps (oy, oy, 0;) = (—0y, —0y, 03).
Together with the translations 77, 7, the full symmetry group
is generated by (T, T», C4, M, T, L), where M, is the reflec-
tion at the plane with the normal vector x.

Unlike in the honeycomb model, a [111] field breaks
the rotation symmetry. The residual symmetries are £(Cy)?,
TM,5, and TLM,,, where M; (M,,) are mirror reflec-
tions at planes perpendicular to [110] ([110]). They enforce
the constraint my = m3 = (a,a, b), my =my = (¢, c,d), in
agreement with the numerical results. The subset of the con-
served symmetries thus allows a finite m;- without further
reducing the symmetry group.

A field perpendicular to the lattice plane preserves more
symmetries. Here, a [001] field preserves C4, LCj, all mirror
symmetries M; as well as 7M; and LT M;. Canting is not
possible without breaking symmetries. However, such a [001]
field is special, as it conserves the flux through the square
plaquettes. In other words one always has Wg = —1 (its zero
field value), no matter the magnitude of the field.

4. (10,3)a hyperoctagon lattice

To go beyond the numerically addressed lattices, we apply
the above symmetry considerations to the Kitaev model on
a variety of three-dimensional lattices [17]. We study the
influence of a [111] field on the magnetization and investigate
whether special field directions that do not allow for canting
exist. When studying the spin transformations, the spin axes
are chosen to coincide with the lattice coordinate system.
The choice of such a global coordinate system is reasonable

FIG. 23. The (10,3)a hyperoctagon lattice consists of counter
rotating square and octagon spirals as shown in panel (a). It has
three fourfold screw axes, one of them is shown in light blue. It
is also invariant under a 7 rotation around each lattice bond. The
threefold rotation axes are perpendicular to the planes spanned by a
lattice point i and its three neighbors, as visualized here for the [111]
axis in orange. (b) In a [111] field, the preserved symmetries are the
combinations of 7 and the rotations around the bonds perpendicular
to the field direction, here the [110], [101], and [011] direction, and
the threefold rotation around the field direction. The dark red arrows
indicate the symmetry-allowed m;". m, is aligned in field direction.

because, in material realizations, the local spin axes are fixed
by the surrounding octahedral oxygen cages. For the lattices
considered here, this allows one to chose the spin axes accord-
ing to the real space axes [13,72].

The lattice (10,3)a is described by the cubic space group
14,32 (214). It consists of counter-rotating spirals formed by
squares and octagons that penetrate in the directions of the
cubic lattice vectors, see Fig. 23. The Kitaev model hosts a
gapless KSL with two Majorana Fermi surfaces [13].

The space group 214 contains 48 elements that—as the
lattice points sit not at the most generic positions but at
high symmetry positions—correspond to only 24 symmetry
operations for (10,3)a. These operations are (i) the identity,
(ii) three fourfold screw rotations around the square-spirals,
i.e., the conventional cubic lattice vectors (9 elements), (iii)
four threefold rotations around [111], [T11], [111], and [111]
(eight elements), see Fig. 23(a), and (iv) six twofold rotations
around the lattice bonds. The action of these operations is
summarized in Table II.

Switching on a [111] field breaks all symmetries except
for the threefold rotation around the field direction and the
twofold rotations around the three bonds perpendicular to the
field when combined with 7T, as visualized in Fig 23(b). m; is
aligned along the field direction. The unit cell positions 2,3,4
have the same m|, but the orthogonal components allow the
canting pattern sketched in Fig. 23(b).

Natural candidates for field directions that preserve more
symmetries are the other rotation axes, pointing along bonds,
e.g., [110], and along square spirals, e.g., [001]. How-
ever, these two directions also lower the symmetry group
substantially and preserve only four and eight symmetries,
respectively.

5. (10,3)b hyperhoneycomb lattice

The (10,3)b or hyperhoneycomb lattice has recently gained
a lot of attention as it is actually realized in the material
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TABLEII. Action of the symmetry operations of the space group
14,32 on the Kitaev model on the (10,3)a lattice. The order of
the transformations is chosen according to Ref. [83]. Columns 2-5
indicate how the position within a unit cell, defined as in Ref. [17],
changes under a transformation. Columns 6-8 describe the behavior
of both, bonds and spin operators, e.g., a —y in the x column indicates
that x bonds are mapped to y bonds and o, — —o,. All operations
correspond to (screw-)rotations, specified by the axis n, an angle «
(and a translation vector T'), given in columns 9-11.

Sites Bonds Interpretation

1 2 3 4 «x y Z n o/ T
1 1 2 3 4 «x y z  Identity — —
2 4 3 2 1 —=x =y z 001 1 z/2
3 3 4 1 2 —x y -z 010 1 $/2
4 2 1 4 3 x -y -z 100 1 x/2
5 1 3 4 2 vy b4 X 111 2/3
6 2 4 3 1 —y —z «x 111 4/3
7 4 2 1 3 -y z —x 111 4/3
8 31 2 4 y —z —x 111 4/3
9 1 4 2 3 z X y 111 4/3
0 3 2 4 1 —z —-x vy 111 2/3
1 2 3 1 4 —z x -y 111 2/3
12 4 1 3 2 z —x -y 111 2/3
13 4 2 3 1 x -z 110 1
4 1 3 2 4 —y —x -z 110 1
5 3 1 4 2 —y «x z 001 -1/2  -z/4
6 2 4 1 3 y —x z 001 1/2 z/4
17 4 3 1 2 x —z 'y 100 —-1/2  —3/4
8 2 1 3 4 —x z y 011 1
9 1 2 4 3 —x —z -y 011 1
20 3 4 2 1 «x z =y 100 1/2 x/4
21 4 1 2 3 —z 'y X 010 1/2 /4
2 3 2 1 4 z -y X 101 1
23 2 3 4 1 Z y @ —x 010 —-1/2  —9/4
241 4 3 2 —z -y —x 101 1

B-LirIrO3. It consists of parallel zigzag chains formed by x
and y bonds along two distinct directions, that are coupled
by z bonds. The Kitaev model hosts a gapless spin liquid
with a nodal line in the Majorana Brillouin zone [12,15].
It is described by the orthorombic space group Fddd (70).
Figure 24(a) visualizes the lattice, with the orthorombic lattice
vectors chosen as a = (—2,2,0),b = (0,0,4), ¢ = (6,6, 0).
In contrast to (10,3)a, the lattice has one preferred direction—
along c¢—and no symmetry operation relates z bonds with x
or y bonds. The symmetry group 70 consists of 32 elements.
They correspond to eight symmetries of the (10,3)b lattice,
whose action is summarized in Table III. The eight symme-
tries are (i) the identity, (ii) inversion, with the inversion center
being located in the middle of the x or y bonds, (iii) three &
rotations around the a, b, and ¢ vectors, where the rotation axis
cuts the z bonds in the middle, and (iv) three glide symmetries,
i.e., mirror reflections at the planes spanned by two of the
three orthorombic lattice vectors, followed by a translation.
Adding a [111] field conserves three symmetries. Apart
from inversion, only the rotation around the axis perpendic-
ular to the field and the glide symmetry with the glide plane
containing the field direction, both supported by 7, remain

FIG. 24. The hyperhoneycomb lattice and its higher harmonics.
(a) (10,3)b or hyperhoneycomb lattice, consisting of xy-zigzag chains
that are connected via z bonds aligned in ¢ direction. The light
blue and magenta arrows demonstrate the allowed canting pattern
in a [111] field. The a components of m are all equal in magnitude
but differ in sign for 1,4 (light blue) and 2,3 (magenta). (b) stripy-
honeycomb lattice, consisting of rows of one complete hexagon in
¢ direction, coupled by z bonds. (c) Honeycomb lattice, emerging
here as the N — oo member of the harmonic honeycomb series,
consisting of an arrangement of stripes of N hexagons in ¢ direction
coupled by z bonds. All lattices shown here have a twofold rotation
symmetry around the ¢ axis, that preserves the unit cell positions.

symmetries of the Kitaev model. Within this subset, canting is
possible without breaking additional symmetries. More pre-
cisely, the constraints are m; = my = m,a + mpb + m.c and
m; = m3 = —m,a + mpb + m.c, giving rise to the magneti-
zation pattern shown in Fig. 24(a).

As for the honeycomb case field directions exist for which
all symmetries in Table III remain a symmetry of the Kitaev
model, if appropriately supported by 7. For (10,3)b, these
field directions are a, b and c. Inversion, rotation around the
field direction and glide symmetry, with the glide plane per-
pendicular to the field, are symmetries whereas the remaining
operations have to be supported by 7. For a field along a (b),
all m, vanish and the component along the field direction, m,
(mp), is identical on all lattice sites. The components along
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TABLE III. Action of the symmetries operations of the space
group Fddd on the Kitaev model on the (10,3)b lattice. The order
of the transformations is chosen according to Ref. [83]. The unit cell
positions in columns 2-5 and the vectors a; in column 11 are taken
from Ref. [17]. For the glide symmetries in rows 2—4, n indicates the
direction perpendicular to the glide plane and T the translation that
follows the reflection. For the rotations in rows 6-8, n and « give the
rotation axis and angle.

Sites Bonds Interpretation

1 2 3 4 «x y Z n a/m T
1 1 2 3 4 «x y z Identity — —
2 21 4 3 —y —x —z a —  (a3—ay)/2
321 4 3 —x -y z b — az/2
4 4 3 2 1 vy x -z [ — a;/2
54 3 2 1 «x y z  Inversion — —
6 3 4 1 2 —y —x —z a 1 —
7 3 41 2 —x -y z b 1 —
8 1 2 3 4 vy x -z c 1 —

the remaining orthorombic lattice vector, my, (m,), differ by a
sign for the sites 1,4 and 2,3. Therefore, canting is possible.
For a c field, the situation is different. Rotations around the
field direction—symmetry transformation 8 in Table I[II—do
not alter the position within a unit cell but exchange o, and oy
and change the sign of o;. It follows that m cannot cant away
from the field direction without breaking this symmetry.

6. Stripy honeycomb and harmonic honeycomb series

The arguments from the preceding section remain valid
for another three-dimensional lattice that is realized in the

material y-LiyIrO3, the stripyhoneycomb lattice, sketched in
Fig. 24(b) [52,75]. Its space group is Cmmm (66). It consists
of two rows of complete honeycombs along two distinct di-
rections, that are coupled by z bonds. The 16 elements of
Cmmm reduce to eight distinct transformations of the lattice.
They have the exact same interpretation as for the (10,3)b
lattice: reflections at the planes perpendicular to the a, b, and
¢ vectors, followed by a translation, 7 rotations around these
vectors and inversion. As for (10,3)b, fields parallel to the
a,b,c directions preserve eight symmetries. For fields along
the a and b direction, a similar canting pattern as for (10,3)b
is possible. A ¢ field does not allow canting as this breaks
the rotational symmetry around the z bonds that preserves the
structure of the unit cell.

In fact, the (10,3)b and stripyhoneycomb lattices are only
the first representatives of a whole family of lattices, called
the harmonic honeycomb lattices [14,75], consisting of rows
of N complete honeycombs in the ¢ direction that are con-
nected by c-axis (z) bonds. Two successive honeycomb rows
in the ¢ direction are rotated against each other. For N =
0, 1, oo, we regain the (10,3)b, stripyhoneycomb and hon-
eycomb lattice, as depicted in Fig. 24. The ¢ axis rotation
is a symmetry for all members of the harmonic honeycomb
series and we expect a field in this direction to generically
forbid canting. For the honeycomb lattice, a combination of
mirror symmetry and inversion prevented canting in a field
parallel to a bond. When interpreting the honeycomb lattice
as a 3D object, this combination corresponds indeed to the ¢
axis rotation. Note that the ¢ direction chosen here—parallel
to the z bonds—must not be confused with the common
definition of the ¢ axis for the honeycomb/N = oo lattice,
where it points perpendicular to the 2D lattice plane; see
Appendix F 1.
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