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A Fermi surface is a rather complicated object. While the low-energy behavior of bosons

is determined by isolated points in momentum space, dense Fermi systems are governed by

a manifold of codimension one. For generic systems it was shown by Landau in his theory

of Fermi liquids how to deal with this issue. For metals near a quantum critical point,

singularities in the fermion-fermion scattering amplitude are expected that go beyond the

ones captured by Landau’s theory. Thus, Fermi liquid theory, that has been the foundation

of the theory of metals in two and three dimensions, may not apply. Despite important steps

towards a solution, metallic quantum criticality remains one of the major unsolved problem

in condensed matter physics. It is believed to be of importance for correlated oxides (e.g.

cuprate high-Tc superconductors, ruthenates), the iron based superconductors, and heavy

fermion systems.

A popular approach to metallic quantum criticality is based on a low-energy theory with

a collective bosonic order-parameter ϕ that interacts with otherwise free fermions via the

coupling

Hint = g

ˆ
ϕψ†Oψ. (1)

g determines the strength of the interaction and ψ†Oψ is some fermionic bilinear, with O

standing for the vector of the Pauli matrices (for magnetic critical points) or acts on the
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coordinates (in the case of a nematic instability where rotational symmetries are broken).

With no obvious small parameter in sight, analytical techniques have been based on the

expansion in the inverse number of fermionic flavors (1/NF ) or bosonic flavors (1/NB). While

the 1/NF -expansion was shown to be significantly more complex that previously believed1,

the 1/NB-expansion seems to be limited to high, possibly intermediate energies2.

Important progress was recently made in the above manuscripts by formulating appropri-

ate lattice versions of two-dimensional fermion-boson models with interactions of the type

Eq.(1) and devising Quantum Monte Carlo (QMC) simulations that are free of the unsavory

minus-sign-problem. Schattner et al. [i ] consider an Ising nematic quantum critical point

and avoid the sign problem because the operator O is trivial in spin space. Li et al.[ii ]

and Schattner et al.[iii ] consider antiferromagnetic order and fluctuations. Following Ref.3

they analyze a two-band version of the theory that also avoids negative probability densi-

ties. Note, that similar investigations, with specific focus on the physics of the iron based

superconductors, were recently performed by Li, Wang, Yao, and Lee5 and Dumitrescu, Ser-

byn, Scalettar, and Vishwanath6. In particular, the latter analysis is performed for a purely

electronic model that naturally leads to strong nematic fluctuations.

Let us first discuss the paper by Schattner et al. [i ] who study a particularly well defined

problem: an Ising-nematic transition where a C4-symmetric system spontaneously breaks

this symmetry down to C2. This paper makes the most direct statement about the univer-

sality near a metallic quantum critical point, which, in the language of Fermi-liquid theory,

is a l = 2 Pomeranchuk instability. It studies a transverse-field Ising model (representing the

nematic order parameter ϕ) coupled to fermions according to Eq.1. First of all, the authors

do find a metallic quantum critical point! The coupling to fermions changes the universality

class from 2 + 1-dimensional Ising, yet it does not lead to a first order transition or an-

other instability (at least for the finite temperatures studied). The authors see at best very

modest renormalizations of the fermionic degrees of freedom with small or zero anomalous

dimension (the latter corresponds to an ordinary Fermi liquid). In addition, they analyze the

momentum, frequency, temperature, and transverse-field dependence of the boson two-point

function and obtain at low energies a behavior well described by

D (q, ωn) =
A

T + b (h− hc) + κq2 + c |ωn|
, (2)

where h is the transverse field and hc its value at the quantum critical point (A, b, κ, and
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c are numerical constants). The static form of this propagator is consistent with mean field

exponents ν = 1/2, γ = 1, and η = 0, i.e. qualitatively different from the transverse-

field Ising model without the coupling to fermions. Except for hard to identify logarithmic

corrections the static behavior is fully consistent with a simple one-loop analysis. However,

the frequency dependence yields z = 2 (q2 ∼ |ωn|), instead of z = 3, a behavior expected

by particle-hole excitations, reflecting Landau-damping. Even though it was shown in Ref.1

that the 1/NF expansion is much more complex for two-dimensional systems than the simple

loop-expansion that yields z = 3, the value of z seems to be among the few properties not

affected by those complications (see however for4 for the possibility of logarithmic corrections

to z = 3). While z = 2 was in fact obtained in the large-NB limit2, the concomitant large

anomalous dimension of fermions of Ref.2 does not seem to occur in the simulation. Thus,

none of the known analytic approaches seems to naturally explain the findings by Shattner

et al. [i ]. Even if Eq.2 is only valid at intermediate energies, the quite convincing scaling

behavior over more than a decade suggests that the system is affected over a wide energy

regime by a new fixed point. To get a better understanding of this new fixed point is a

sharply defined challenge to the community.

The manuscripts by Li et al.[ii ] and Schattner et al.[iii ] study antiferromagnetic fluctua-

tions, with a range of highly interesting results. Both find a strong tendency towards d-wave

superconductivity, putting on firm ground what was obtained earlier in other, approximate

approaches of the same model. In addition, both demonstrate that d-wave pairing is most

pronounced near the antiferromagnetic quantum critical point and show that pronounced

short range charge density-wave correlations, yet no long range charge density wave order

emerges. Li et al.[ii ] also consider nematic fluctuations (i.e. allow for two different kinds of

collective bosons) and demonstrate that spin-fluctuation induced d-wave pairing is boosted by

nematic fluctuations. Overall, these results seem to capture important aspects of the physics

of iron-based superconductors (see also5,6). On the other hand, it is less clear whether the

physics of the pseudogap, a hallmark of the cuprate superconductors that is at best weakly

visible in these simulations, is fully captured by models of free fermions coupled to collective

bosonic modes.

The above manuscripts have in common that they study lattice versions of models widely

discussed as low energy theories of metallic quantum critical points. The models are devised

to avoid the minus sign problem of Monte Carlo simulations, allowing the study of inter-



4

mediate and low energy behavior for reasonably large systems (up to 24× 24 lattice sites).

This opens the door to study universal behavior of metallic quantum critical points reli-

ably. While it is unclear at the moment whether there exists a realistic (e.g. Hubbard like)

model of strongly interacting fermions with a quantum critical point, that is asymptotically

equivalent to free fermions coupled to collective bosons, a study of such effective theories

is sufficiently interesting on its own right. The insights obtained in these preprints clearly

help us to get a firmer grip on quantum criticality in metals or the emergence of secondary

order near quantum critical points.
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