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Abstract. We investigate the performance of flat-histogram methods based
on a multicanonical ensemble and the Wang–Landau algorithm for the three-
dimensional ±J spin glass by measuring round-trip times in the energy range
between the zero-temperature ground state and the state of highest energy.
Strong sample-to-sample variations are found for fixed system size and the
distribution of round-trip times follows a fat-tailed Fréchet extremal value
distribution. Rare events in the fat tails of these distributions corresponding to
extremely slowly equilibrating spin glass realizations dominate the calculations
of statistical averages. While the typical round-trip times scale exponentially
as expected for this NP-hard problem, we find that the average round-trip
time is no longer well defined for systems with N ≥ 83 spins. We relate the
round-trip times for multicanonical sampling to intrinsic properties of the energy
landscape and compare with the numerical effort needed by the genetic cluster-
exact approximation to calculate the exact ground-state energies. For systems
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with N ≥ 83 spins the simulation of these rare events becomes increasingly hard.
For N ≥ 143 there are samples where the Wang–Landau algorithm fails to find
the true ground state within reasonable simulation times. We expect similar
behaviour for other algorithms based on multicanonical sampling.

Keywords: classical Monte Carlo simulations, energy landscapes (theory), spin
glasses (theory)
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1. Introduction

The three-dimensional ±J Ising spin glass has been extensively studied [1] as a prototype
system which exhibits a finite temperature second order phase transition to a slowly
equilibrating glassy phase [2, 3]. The simulation of such a system with conventional
Monte Carlo methods is slowed down by long relaxation times in the spin-glass phase.
This problem has been addressed by a number of algorithmic developments such as the
multicanonical method [4], simulated and parallel tempering [5], broad histograms [6]
and transition matrix Monte Carlo [7]. In order to speed up equilibration most of
these methods aim at broadening the energy range sampled within the Monte Carlo
(MC) simulations from the sharply peaked distribution of canonical sampling at a fixed
temperature.

Recently, Wang and Landau introduced a new algorithm which systematically
calculates an estimate of the density of states and iteratively converges to sampling a flat
histogram in energy [8]. The Wang–Landau (WL) algorithm simulates a biased random
walk in configuration space. The bias depends only on the total energy of a configuration
and is defined by a statistical ensemble with weights w(E). For this ensemble the transition
probabilities are given by the Metropolis scheme

p(E1 → E2) = min

(
w(E2)

w(E1)
, 1

)
. (1)

The equilibrium distribution of the energy in this ensemble is nw(E) ∝ w(E)g(E) where
g(E) is the density of states. By setting the weights w(E) ∝ 1/g(E) the WL algorithm
aims at sampling a flat histogram in energy. The crucial feature of the WL algorithm
however is that the simulated ensemble is dynamically modified during the course of
the simulation: after every spin update the current estimate of the density of states is
multiplied by a modification factor f and the ensemble weights are analogously updated.
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The modification factor is iteratively reduced to unity whenever the sampled energy
histogram is close to the expected equilibrium distribution, that is when the histogram is
‘flat’ within a given range. The dynamic modification of the ensemble allows to push the
random walker towards the low entropy states in the initial stages of the algorithm while
ensuring that it converges to a flat-histogram/multicanonical ensemble in the final stages
of the computation.

In this paper, we determine the performance of the Wang–Landau algorithm for the
three-dimensional ±J Ising spin glass for both stages of the algorithm. First, we study the
dynamic behaviour of the algorithm in the initial stages by considering its ability to find
the ground-state energy of a number of three-dimensional spin-glass samples which is a
well known NP-hard problem [9]. We compare the obtained ground-state energies to exact
results calculated with the genetic cluster-exact approximation (CEA) [14, 15]. While the
WL algorithm reproduces the exact ground-state energy for small systems, we find that
for moderately large systems (N ≥ 143) the WL algorithm does not find the exact ground-
state energy for a few spin-glass samples. Even when restricting the simulated energy bin
around the known ground-state energy the algorithm does not find the lowest energy state
within a reasonable number of sweeps (Nsweeps ≈ 107). The genetic CEA gives a superior
performance to find ground-state energies, but does not give the full thermodynamic
information. Second, we investigate the asymptotic behaviour of the WL algorithm
by measuring round-trip times in energy for the converged ensemble. The round-trip
time gives a direct estimate of the equilibration time for the multicanonical ensemble.
The asymptotic scaling of the Wang–Landau algorithm therefore also reflects the
performance of other flat-histogram methods based on multicanonical sampling, such as
the multicanonical method [4], broad histograms [6] or transition matrix Monte Carlo [7].
We find large sample-to-sample variations of the round-trip times which can be described
by fat-tailed Fréchet extremal-value distributions. We discuss important implications
for statistical sample averaging which are caused by the rare events in the fat tails of
these distributions. The intrinsic character of the observed extremal-value distributions
is demonstrated. Finally it is shown that these distributions scale exponentially with the
linear system size. In comparison, we find that the computational effort of the genetic
CEA is also correlated to the density of states, but is less sensitive to the low-energy
landscape than the WL algorithm. Finally, we discuss these limitations of multicanonical
sampling by measuring the local diffusivity of the random walker in energy. We find a
pronounced minimum of the diffusivity near the ground-state energy which is symptomatic
for the entropic barrier which slows down the equilibration of the random walker.

2. Dynamic performance

To study the dynamic performance of the Wang–Landau algorithm we have tested its
ability to find the ground-state energy of a number of spin-glass samples where the
exact ground state is known. Finding the ground-state energy of the ±J spin glass is
an extensively studied problem, both by physicists and computer scientists. For the two-
dimensional ±J spin glass the full density of states can be calculated with polynomial
effort [10, 11]. However, for the three-dimensional ±J spin glass as well as the two-
dimensional ±J spin glass with an external field, even the problem of finding the ground-
state energy has been shown to be NP hard [9]. The direct calculation of the ground-state
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energy of spin-glass samples using sophisticated exact branch-and-cut algorithms [12, 13]
is therefore limited to rather small systems. In this study, we applied a combination of
a genetic algorithm with cluster-exact approximation (CEA) to determine ground-state
energies [14, 15]. The algorithm, although based on heuristics, is able to find true ground
states of samples up to size N = 163 = 4096 in reasonable, although exponentially growing,
time [15].

We use the results obtained from this genetic + CEA approach to check the accuracy
of the ground-state energies found with the WL algorithm for samples up to size N = 143.
For system size, N ≤ 63, the density of states of each sample was calculated without
energy binning by 50 independent runs. For all runs we find that the WL algorithm gives
the exact ground-state energy. For N = 83, for a few samples (17 out of 1000) the exact
ground-state energy was found only by running extensive runs after the comparison with
the results from the heuristic approach revealed that the true ground-state energy has not
been found.

For larger systems with N = 103 and more spins we have restricted the WL
simulations to the smallest allowed energy range around the ground-state energy
calculated by the genetic CEA. In order to keep ergodicity the energy bin has to be
larger than

∆E/J > 4Ld−1, (2)

to assure that two domain walls can be inserted, which thus enables moves which
subsequently flip all spins and ergodicity within the energy bin is given.

Each sample was simulated by six independent runs. For all samples with N = 103

spins the WL algorithm found true ground-state energies. However, for three samples
not all runs gave the true ground-state energy, but sampled energies down to the first
excited state only (within (2.8 ± 0.2) × 107 MC sweeps). For the samples with N = 123

spins we find similar results. For all samples there is at least one run which finds the
true ground-state energy within some (2.9± 0.1)× 107 MC sweeps. However, for nine out
of ten samples the WL algorithm does not converge to sampling a flat histogram in the
full energy range. For the samples with N = 143 spins the WL algorithm finds the true
ground-state energy for four samples only. For six out of ten samples the algorithm did
not sample the exact ground-state energy once within (3.0 ± 0.1) × 107 MC sweeps for
all independent runs. Furthermore, there is one sample where even the first excited state
is not found within the given number of sweeps. For all samples the simulated ensemble
does not converge towards the multicanonical ensemble sampling a flat energy histogram
and the WL algorithm gets stuck.

3. Asymptotic performance

We now turn to the asymptotic behaviour of the WL algorithm and flat-histogram
methods in general which we determine by measuring the round-trip times in energy of the
simulated random walker for the converged flat-histogram ensemble. Here the round-trip
time corresponds to the number of single-spin flips needed to get from a configuration with
the ground-state energy to a configuration with highest energy (the anti ground state).
The round-trip time thus gives an estimate of the equilibration time for the flat-histogram
ensemble. For the Ising model the number of energy levels scales linearly with system
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Figure 1. Convergence of the round-trip time τ versus the modification factor f in
the Wang–Landau algorithm. Shown are the results for three randomly generated
three-dimensional ±J spin glass samples with N = 33 = 27, 43, 63 = 216 spins.
The measurements are averaged over 500 independent runs for N = 27 and 64
and over 30 runs for N = 216, respectively.

size N . While the round-trip time of an unbiased random walker scales like τ ∼ N2, it
was recently shown that for various two-dimensional Ising models the growth with the
number of spins is significantly stronger for the biased flat-histogram random walker [16].
For the ferromagnetic and fully frustrated Ising models polynomial scaling, τ ∼ N2.4 and
τ ∼ N2.9, was found, and exponential growth for the two-dimensional ±J spin glass [16].

For a given sample we find that the round-trip time measured during the iterations
of the WL algorithm converges as the simulated ensemble approaches the flat-histogram
ensemble. The convergence of round-trip times is illustrated for three randomly generated
spin-glass samples in figure 1. Since correct convergence to the round-trip times of the
exact flat-histogram ensemble was shown for the two-dimensional ±J Ising spin glass [16]
we assume correct convergence for the 3D case as well and thereby justify that our results
for the asymptotic round-trip times hold for any flat-histogram method.

3.1. Sample-to-sample variation

To study the sample dependence of the round-trip times we have analysed 5000 randomly
generated spin-glass samples for N = 33, 43, 53, 63 and 1000 samples for N = 83 = 512,
respectively. To assure convergence of the measured round-trip times we restrict the
measurement to the final step in the Wang–Landau algorithm. We find strong sample-to-
sample variations over several orders of magnitude for fixed system size N which is shown
in the left panels of figure 2 (N = 33 and 53). For the spin glass of size N = 83 = 512
the full distribution of round-trip times is shown in figure 3. The distribution covers some
four orders of magnitude and contains spin-glass samples which were simulated between
some minutes and about a month on a 500 MHz Pentium III CPU.
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Figure 2. Left panels: distribution of round-trip times τ for 5000 randomly
generated spin-glass samples of size N = 33 = 27 and N = 53 = 125 respectively.
Right panels: distribution of the ratio of the number of first excited states to the
number of ground states g(E1)/g(E0) for the same system sizes. In all panels the
solid curves indicate fits to fat-tailed Fréchet extremal-value distributions.

To quantitatively analyse the extremal events in the tails of the distributions, we
use extremal-value theory [17]. The central-limit theorem for extremal value states
that the extrema of random subsets of any distribution follow a generalized extremal-
value distribution [18]. This distribution takes one of three characteristic forms:
Fréchet (algebraic decay, fat tailed), Weibull (exponential decay) or Gumbel (faster than
exponential decay, thin tailed). Here we find that all measured round-trip times seem to
follow a fat-tailed Fréchet extremal-value distribution, similar to the two-dimensional
±J spin glass [16]. This implies that the central-limit theorem applies even to the
smallest possible subset—a single round-trip time. As a consequence, every single three-
dimensional ±J spin-glass sample constitutes an extremal event. The integrated form of
the Fréchet distribution is given by

Hξ,µ,β(τ) = exp

(
−

(
1 + ξ

τ − µ

β

)−1/ξ)
. (3)

The parameter µ indicates the location of the distribution, that is the most probable
round-trip time, and the parameter β defines the scale of the distribution, e.g. the height
of the peak. The shape parameter ξ, which is positive for fat-tailed distributions, describes
the decay of the tail of the distribution. We have determined the three parameters µ, β and
ξ of the fitted Fréchet distributions with a maximum likelihood estimator. The resulting
fits are shown as solid curves in figure 2.

We now turn to the scaling of the shape parameter with system size N which is shown
in figure 4. With increasing system size the shape parameter monotonically increases.
This strongly affects the fat tails of the distributions which in the limit τ → ∞ exhibit a
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Figure 3. Log–log plot of the distribution of round-trip times τ for the three-
dimensional ±J spin glass with N = 83 = 512 spins. The round-trip times τ
were measured for the converged flat-histogram ensemble in the final step of the
Wang–Landau algorithm. Data from 1000 randomly generated spin-glass samples
are shown.

Figure 4. Scaling of the shape parameter ξ of the fitted Fréchet distributions
versus system size. The mth moment of a fat-tailed Fréchet distribution is well
defined only if ξ < 1/m. The dashed lines indicate where variance and mean of
the respective distributions become ill defined.

power-law decay of the form

d

dτ
Hξ,µ,β(τ)

τ→∞
−−−−−→ τ−(1+1/ξ). (4)
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Figure 5. Log–log plot of the running mean of round-trip times defined in
equation (5) versus the number of samples used for averaging. Results for various
system sizes are shown. For N ≤ 63 = 216 the mean is well defined and the
running mean seems to converge (dashed line). For N = 83 = 512 the mean
becomes ill defined and the running mean diverges (see footnote 4).

From this asymptotic behaviour we can see that the m-th moment of a fat-tailed Fréchet
distribution is well defined only if ξ < 1/m. The scaling in figure 4 suggests that for
N > 43 = 64 (N ≥ 83 = 512) the shape parameter becomes larger than 0.5 (1) and thus
the variance (mean) of the distribution is no longer well defined.

To illustrate this unusual behaviour we can calculate running moments of the
distribution, e.g. by only considering subsets of the first n round-trip times of all measured
round-trip times {τ} when calculating the moments of the distribution. The running mean
of round-trip times is then defined by

Mean{τ}(n) =
1

n

n∑
i=1

τi, (5)

and the running variance by

Var{τ}(n) =
1

n − 1

n∑
i=1

(
τi − Mean{τ}(n)

)2
. (6)

The running mean and variance are calculated for a fixed random order of the set of
round-trip times {τ} ≡ {τ1, τ2, . . . , τ5000}. Figures 5 and 6 show the running mean and
variance for various system sizes. For small system sizes, N ≤ 64, both mean and variance
are well defined and the running mean and its error converges. For larger systems the
variance becomes ill defined as the shape parameter ξ becomes larger than 0.5. Irregular
‘jumps’ indicating rare events occur in the calculation of the running mean. For systems
with N ≤ 216 spins the running mean still converges, but the error of the running mean
does not reduce even for large sample sets. For systems with more than N = 83 = 512
spins the shape parameter becomes larger than unity and the mean thus ill defined. This
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Figure 6. Log–log plot of the running variance of the distribution of round-trip
times defined in equation (6). Results for various system sizes are shown. For
N ≤ 43 = 64 the variance is well defined and the running variance seems to
converge (dashed line). For N ≥ 53 = 125 the variance becomes ill defined and
the running variance diverges (see footnote 4).

divergence of the mean round-trip time also becomes apparent in the calculation of the
running mean where the irregular jumps occur so frequently that the mean round-trip
time no longer converges4.

This behaviour becomes even more evident for the variance, the second moment of
the distribution, which according to the scaling of the shape parameter illustrated in
figure 4 is no longer well defined for systems larger than N > 43 = 64. As illustrated in
figure 6 the running variance diverges for larger systems (see footnote 4). Again, frequent
‘jumps’ in the running variance indicate the occurrence of rare events in the fat tails of
the distribution which dominate the calculation of the running variance.

3.2. Intrinsic correlations for the WL algorithm

In order to test whether the occurrence of the Fréchet extremal-value distributions reflects
an intrinsic property of the energy landscape of the three-dimensional spin glass we
have analysed the calculated density of states near the ground-state energy. The energy
landscape near the ground state dominates to a large extent the measured round-trip
times which is further discussed in the context of diffusivity measurements in section 4.
Here we study ratios in the density of states, such as the number of first excited states
to the number of ground states, g(E1)/g(E0). From the ground state a single-spin-flip
update can connect at most Ng(E0) states of energy E1 and thus the ratio g(E1)/g(E0)

4 For the finite set of 22N distinct spin glass realizations of a given system size N the Fréchet distribution is cut
off at some finite value. The average round-trip time does not diverge, but is dominated by this cut-off value. For
the system with N = 83 spins we can estimate the average round-trip time form the fitted Fréchet distributions
to be τaverage > 10100 which for all practical purposes cannot be distinguished from a divergence.
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Figure 7. Correlation of the round-trip time τ and ratios in the density of
states for various system sizes. In the left panels the ratio R1 = g(E1)/g(E0) is
shown. In the right panels transitions to higher excited states are also included,
R2 = g(E1)/g(E0) + g(E2)/g(E1) + g(E2)/g(E0). Shown are data from 5000
randomly generated spin-glass samples for N = 27, 125, 216 and 1000 for
N = 83 = 512, respectively.

gives a qualitative measure of the number of local minima, i.e. which are not reachable
from a ground state via a single spin flip. In the right panels of figure 2 the distribution
of this ratio g(E1)/g(E0) is shown for 5000 spin-glass samples of size N = 33 = 27
and N = 53 = 125 respectively. Again we find that these distributions follow fat-tailed
Fréchet extremal-value distributions. For these system sizes a strong correlation to the
distribution of round-trip times is found which spans over several orders of magnitude as
demonstrated in the left panels of figure 7. For larger systems these correlations become
less pronounced. However, if we consider additional transitions, such as the transition
from the second to first excited state, E2 → E1 and E2 → E0, and calculate the sum
of the respective ratios in the density of states, we can recover a correlation over several
orders of magnitude as shown for systems with N = 63 = 216 and N = 83 = 512 spins in
the right panels of figure 7.

3.3. Intrinsic correlations for the heuristic approach

The strong correlation between intrinsic features of the energy landscape and the measured
round-trip times for flat-histogram sampling naturally leads to the question of whether
the computational effort of other algorithms also complies with these intrinsic features.
To this end, we compare the computational effort of the alternative heuristic approach
with the density of states and the round-trip times measured in the WL algorithm for
1000 samples with N = 83 = 512 spins.

We define the computational effort of the genetic CEA as the running time of
the algorithm which strongly depends on the parametrization of the underlying genetic
algorithm, namely the following.
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Figure 8. Correlation of the computational effort, tgen.+CEA, of the genetic CEA
(see text) and the ratio in the density of states for N = 83 (1000 samples).
Here the ratio R2 = g(E1)/g(E0) + g(E2)/g(E1) + g(E2)/g(E0) is shown. The
correlation to R1 = g(E1)/g(E0) looks similar.

Figure 9. Correlation of the computational effort, tgen.+CEA, of the genetic CEA
(see the text) and the round-trip time τ/N2 measured for multicanonical sampling
in the final step of the WL algorithm for a system with N = 83 spins (1000
samples).

• Mi = initial size of population, i.e. how many configurations are optimized in parallel.

• no = average number of offspring per configuration, i.e. how many iterations of the
algorithm are run.

• nmin = number of CEA minimization steps per configuration and per iteration.

The running time then depends linearly on the product Minonmin. If the algorithm is run
independently several times, one finds that not all runs result in ground states and we
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Figure 10. Scaling of the location (µ) and scale (β) parameter of the Fréchet
distribution versus the linear system size L = N1/3. The parameters were fitted
by a maximum-likelihood estimator. The solid lines indicate exponential fits of
the respective data points.

denote the fraction of runs which find the true ground state as fGS. In general one can
observe that this fraction increases with the running time.

We now define the computational effort for a given sample and parameter set
{Mi, no, nmin} as t̃(Mi, no, nmin) = Minonmin/fGS (i.e. t = ∞, if no ground state is found).
For ‘simple’ samples, many ground states are found for most parameter combinations,
while ‘hard’ samples need large sizes of populations and/or many iterations and/or many
minimization steps, thereby increasing the computational effort. For a given spin-glass
sample we perform multiple simulations with different combinations of parameters, and
define the overall computational effort of a sample as the minimum over all parameter
combinations considered (using a fixed value nR = 20):

tgen.+CEA = min
(Mi,no,nmin)

(Minonmin/fGS) . (7)

In figure 8 the correlation of the computational effort of the genetic CEA algorithm
is shown versus the ratio R2 of the density of states as defined above for 1000 samples
with N = 83 = 512 spins. There is only a weak correlation, indicating that the heuristic
algorithm is less sensitive to the energy landscape close to the ground state than the WL
algorithm. A direct comparison between the genetic CEA and the WL algorithm is shown
in figure 9. We find that the computational effort for the heuristic algorithm spreads over
only two orders of magnitude in comparison to some four orders of magnitude for the WL
algorithm. The correlation between the two algorithms is weak, and less pronounced for
those samples which are especially hard to equilibrate using multicanonical sampling.

3.4. Scaling of typical round-trip times

Although the mean round-trip times are no longer well defined for larger systems, the
location and scale parameter of the Fréchet distribution stay well defined and can be
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Figure 11. Local diffusivity D(E, tD) in energy of a flat-histogram random walker
for the three-dimensional Ising ferromagnet. Data for various diffusion times are
shown for a system with N = 43 = 64 spins.

used to further characterize the scaling of these fat-tailed distributions with system size.
Figure 10 shows that these parameters exponentially diverge with linear system size as

µ ∝ exp(L/(1.34 ± 0.03)),

β ∝ exp(L/(1.00 ± 0.03)).
(8)

The study of the equilibrium behaviour of larger system size is thus not only limited by the
occurrence of rare events, but also by the exponential growth of the round-trip times in the
‘bulk’ of the distribution, which renders a comprehensive study of the sample-to-sample
variations impossible.

4. Diffusivity measurements

We have seen that both the asymptotic and the dynamic performance are limited by the
rough energy landscape close to the ground state. To study these limitations in more
detail we measure the local diffusivity of the random walker in energy. Recently, it was
shown that the simulated statistical ensemble can be optimized by a feedback loop which
reweights the ensemble based on preceeding measurements of the local diffusivity [19].
Although we do not follow up on this idea in the present study, we can measure the
diffusivity to reveal the ‘bottlenecks’ of the biased random walk in energy as local minima
in the diffusivity. Here we use a time-dependent definition of the diffusivity, D(E, tD), in
energy space

D(E, tD) = 〈(E(t) − E(t + tD))2〉/tD, (9)

where tD is the diffusion time. The relevant timescale for the diffusion time is set by the
round-trip time in energy.
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Figure 12. Local diffusivity D(E, tD) in energy of a flat-histogram random walker
for two three-dimensional ±J Ising spin-glass samples. Data for various diffusion
times are shown for systems with N = 43 = 64 spins.

As a first example we study the local diffusivity of the three-dimensional ferromagnetic
Ising model which undergoes a second-order phase transition from a magnetically ordered
to a disordered phase at finite energy Ec/3N ∼= −0.43 [20]. The measured diffusivity
D(E, tD) of the flat-histogram random walker is shown in figure 11. We find that the
diffusivity is not constant as expected for an unbiased random walk, but there is a broad
minimum below the critical energy. In this energy region the random walker is slowed
down due to the slow dynamics of domain walls which separate droplets of magnetically
ordered phases.

Next we turn to the three-dimensional spin glass. Measurements of the diffusivity
of the flat-histogram random walker for two randomly generated samples are shown in
figure 12. For both samples we find a minimum of the diffusivity at the ground-state
energy. We further note that with increasing round-trip times the minimum in the
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diffusivity becomes more pronounced. These diffusivity measurements further underline
that the bottleneck of the flat-histogram random walker are at the ground-state energy.
The suppressed diffusivity in this energy region gives rise to an entropic barrier which
results in long round-trip times and aggravates equilibration of the random walker in
the low energy phase. For larger systems the suppressed local diffusivity of the flat-
histogram random walker renders a comprehensive study of the glassy phase impossible
as it becomes computationally too expensive to equilibrate a large number of samples
needed to calculate statistical averages. The recent development of a systematic means to
optimize the simulated statistical ensemble [19] holds promise to overcome some of these
limitations.

5. Conclusions

To summarize, we have studied the performance of the Wang–Landau algorithm for the
three-dimensional ±J Ising spin glass. The asymptotic performance—which corresponds
to the performance of any flat-histogram method sampling a multicanonical ensemble
such as the multicanonical method [4], simulated and parallel tempering [5], broad
histograms [6] and transition matrix Monte Carlo [7]—is found to be dominated by
strong sample-to-sample variations. The measured round-trip times follow fat-tailed
Fréchet extremal-value distributions. The typical round-trip times in the bulk of these
distributions obey exponential scaling, as expected for this NP-hard problem. The fat tails
of the distributions dominate the calculation of statistical averages. A careful statistical
analysis is needed which goes beyond the calculation of the moments of a finite sample
distribution as done in previous studies. The intrinsic character of the Fréchet extremal
distributions becomes evident in strong correlations over several orders of magnitude
between the round-trip time and the behaviour of the density of states near ground-state
energy. The origin of the extremal character of every single spin-glass sample remains an
open question which deserves further investigations.

Our measurements of the dynamic performance and comparison with ground states
obtained by genetic CEA showed that for samples with up to N = 83 spins the
Wang–Landau algorithm always finds the correct ground-state energies. For sizes 103,
123, one can find true ground states, if one restricts the random walk to a small energy
bin around the exact ground-state energy calculated by the heuristic CEA approach. For
samples with N = 143 spins we identified samples for which the Wang–Landau algorithm
does not find the true ground-state energy within reasonable simulation times (≈107 MC
sweeps) and does not converge towards the multicanonical ensemble.

The entropic barrier near the zero-temperature ground state can be revealed as a
pronounced minimum in the local diffusivity of the flat-histogram random walker in energy.
The recent development of optimized statistical ensembles based on feedback of the local
diffusivity holds promise to overcome the observed slow-down of the flat-histogram random
walker and thereby enhancing equilibration in these systems [19].
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