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Quantum circuits offer a versatile platform for simulating digital quantum dynamics and uncovering novel
states of nonequilibrium quantum matter. One principal example are measurement-induced phase transitions
arising from nonunitary dynamics in monitored circuits, which employ midcircuit measurements as an essential
building block next to standard unitary gates. Although a comprehensive understanding of the dynamics in
generic circuits is still evolving, we contend that monitored quantum circuits give rise to robust phases of
dynamic matter, which—akin to Hamiltonian ground-state phases—yield emergent universal behavior, which
can be categorized based on circuit symmetries and spatial dimensionality. To illustrate this concept, we focus
on measurement-only quantum circuits within symmetry classes BDI and D, which are measurement-only circuit
adaptations of the paradigmatic Kitaev and Yao-Kivelson models, embodying particle-hole-symmetric Majorana
fermions with or without time reversal. We establish a general framework (Majorana loop models) for both
symmetry classes (in arbitrary spatial dimensions) to provide access to the phenomenology of the entanglement
dynamics in these circuits, displaying both an area-law phase of localized Majorana loops and a delocalized,
highly entangled Majorana liquid phase. The two phases are separated by a continuous transition displaying
quantum Lifshitz scaling, albeit with critical exponents of two distinct, non-Hamiltonian universality classes.
The loop model framework provides not only analytical understanding of these universality classes in terms
of nonlinear sigma models but also allows for highly efficient numerical techniques capable of simulating
excessively large circuits with up to 108 qubits. We utilize this framework to accurately determine universal
probes that distinguish both the entangled phases and the critical points of the two symmetry classes. Our work
thereby further solidifies the concept of emergent circuit phases and their phase transitions.
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I. INTRODUCTION

Many-body entanglement has emerged as a fundamental
concept in understanding and classifying quantum phases of
matter [1]. In an equilibrium setting, it can serve as a tool
to discern ground states of gapped from gapless Hamiltoni-
ans, to identify topological order, and to distinguish between
generic and nongeneric excited states [2–4]. Recently, this
notion of many-body entanglement has been extended beyond
static Hamiltonian states to characterize dynamically gener-
ated quantum states, in particular those arising in monitored
quantum circuits. Analogously to Hamiltonian systems, ro-
bust entanglement structures, such as for instance area-law or
volume-law scaling, arise in quantum circuits and can be used
to characterize the generated quantum states [5,6].

The robustness of these entanglement structures against
small variations in microscopic circuit parameters defines
entanglement phases of matter, akin to phases of matter in
thermal equilibrium, which depend only on global properties,
such as underlying symmetries, the range of quantum gates

*These authors contributed equally to this work.

and measurements, and the spatial geometry. This perspective
of defining entanglement phases in quantum circuits is intri-
cately connected to the concept of universality in statistical
mechanics—stating that macroscopic features of a many-body
system are governed by a few global properties, such as
symmetries, interaction range, and dimensionality—and it an-
ticipates a symmetry classification of entanglement phases in
monitored quantum circuits.

Along these lines it has been recognized that in generic
quantum circuits with measurements, the presence or absence
of a U(1) symmetry, associated with the conservation of the
total particle number or magnetization, dramatically alters the
potential phases [7–11]. A comprehensive classification of cir-
cuit phases, along with their universal characteristics in terms
of symmetries, however, remains an open challenge. Here we
take a significant step toward this goal by presenting a detailed
characterization of the emergent universal long-wavelength
behavior in two symmetry classes of measurement-only cir-
cuits in two spatial dimensions. We demonstrate that each
symmetry class exhibits unique universal properties, which
are independent of microscopic details and which differ sig-
nificantly from those of Hamiltonian universality classes.
These distinctions enable the differentiation of symmetry
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FIG. 1. Monitored Kitaev models. Left: Spatial geometry of the
circuit in which bond-directional XX , YY , and ZZ parity checks are
performed at random with probabilities Kx , Ky, and Kz, respectively.
Right: Circuit representation where the qubit parity checks are per-
formed at discrete time time steps.

classes through experimentally accessible observables. Addi-
tionally, we introduce a robust framework for the analytical
and numerical investigation of these circuits and symmetry
classes in arbitrary spatial dimensions.

In a quantum circuit with midcircuit measurements, mon-
itored circuit for short, the global symmetries are inherited
from the symmetries of the combined set of generators of the
dynamics, i.e., from all measurement projectors and quantum
gates that evolve the wave function. In this work, we focus on
systems characterized by particle-hole symmetry, expressed
through operators that are even in Majorana fermions. Specif-
ically, our circuits are measurement-only circuit analogs of
the paradigmatic Kitaev model [12] (and variations thereof
[13,14]), where frustration arises not from noncommuting
Hamiltonian terms but from noncommuting two-qubit par-
ity check measurements; see Fig. 1 for an illustration. In
terms of symmetry, these “Kitaev circuits” adhere to C2 =
1 particle-hole symmetry and, depending on the underlying
spatial geometry of the circuit, fall into two categories with
regard to time-reversal symmetry. For bipartite spatial geome-
tries (such as the honeycomb geometry) the system exhibits
T 2 = 1 time-reversal symmetry and falls within symmetry
class BDI of the 10-fold way classification of free-fermion
systems [15]. While bipartite Kitaev circuits have been intro-
duced in Refs. [16–18], these works do not explicitly focus on
symmetry class BDI and its universal behavior.

Here we further consider nonbipartite circuit geometries,
such as the next-nearest-neighbor Kitaev [12] or the decorated
honeycomb geometry, for which time-reversal symmetry is
broken and the system belongs to symmetry class D. In the
Hamiltonian model, this symmetry class was first explored
by Yao and Kivelson [13]). For the Hamiltonian systems,
this distinction with regard to time-reversal symmetry has
crucial impact on their (spin liquid) ground states. The Yao-
Kivelson model, for instance, allows for the formation of a
chiral spin liquid which is absent in the conventional hon-
eycomb Kitaev model. Whether a similar distinction arises
also for the quantum states stabilized by the corresponding
measurement-only circuits in symmetry class BDI and D is a
central question that we address in this paper. We note that
a symmetry classification of nonunitary quantum circuits in

d dimensions with uncorrelated nonunitary disorder—rather
than Born measurements—has previously revealed a connec-
tion to the classification of (d + 1)-dimensional Hamiltonians
and Gaussian fermionic tensor networks in thermal equi-
librium, by mapping random Gaussian fermion circuits to
Chalker-Coddington-type models across symmetry classes,
as shown in Ref. [19]. In contrast, the symmetry classifica-
tion put forward in our work for monitored circuits realizes
genuinely nonequilibrium universality classes, despite sharing
the same underlying symmetries. Technically, this distinction
arises from a different replica limit (R → 0 for Hamiltonian
systems and Ref. [19] vs R → 1 for circuits with Born mea-
surements) and different loop fugacities in the associated loop
models (n = √

2 for Hamiltonian systems vs n = 1 for moni-
tored circuits; see below).

For both symmetry classes, e.g., the Kitaev honeycomb
circuit or its generalizations including next-nearest-neighbor
couplings or the Yao-Kivelson geometry, we find that when
the measurement-induced frustration is large, i.e., when non-
commuting operators are measured frequently, each circuit
creates an entangled Majorana liquid state. It displays a dis-
tinctive subsystem entanglement entropy S(A) ∼ L log(L) for
a subsystem A = L × L of linear dimension L. In contrast,
when the measurement-induced frustration is low, a weakly
entangled area-law state is realized. The two phases are
separated by a critical line, which displays a characteristic
quantum Lifshitz scaling behavior [20], previously associ-
ated with quantum dimer models [21,22], Dirac fermions and
certain (2 + 1)-dimensional conformal field theories (CFTs)
[23,24]. But while the general entanglement phase diagrams
appear almost identical for the two systems, their underlying
symmetry does manifest itself, primarily at the phase transi-
tion between the two principal entanglement phases which fall
into distinct universality classes whose critical exponents we
determine.

To unveil this physics, we fully utilize Majorana loop
models [16,25–27] in (d + 1) dimensions as a comprehensive
theoretical framework. These models naturally encapsulate
the dynamics of Majorana world lines, distinguishing between
the symmetry classes BDI and D through the orientability or
nonorientability of the world lines [26]. The loop framework
gives access to both analytical arguments and efficient numer-
ical simulation techniques for monitored Majorana circuits.
This allows for a detailed and thorough analysis of the sta-
tistical mechanics of circuits in symmetry classes BDI and
D in two spatial dimensions and a detailed exploration of
universal behavior and Lifshitz criticality in the setting of free,
monitored fermions.

The loop model framework provides an analytical under-
standing of entanglement phases in terms of localized or
delocalized Brownian walkers, allowing us to analytically
predict accurate phase boundaries for different microscopic
geometries. Importantly, since the loop model encompasses
both Hamiltonian and measurement-only cases, differenti-
ating between them using an internal parameter—the loop
fugacity n (also known in topological terms as the d-
isotopy parameter) [28]—we offer an intuitive interpretation
for the emergent nonequilibrium universality. For Hamilto-
nian ground states, equilibrium universality arises as world
line configurations corresponding to high-energy states are
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suppressed, with n = √
2. In contrast, in measurement-only

circuits, all world lines appear with equal probability (n = 1),
giving rise to nonequilibrium universality [29–31].

The numerical precision of the loop model framework is
enabled through new, optimized simulation techniques for
loop models, which yield a numerical complexity scaling as
O(N log(t )) for N ∝ L2 numbers of qubits and circuit depth
t . In numerical simulations, system sizes of 108 qubits can be
realized, reaching the largest system sizes currently accessible
for monitored circuits and raising the standard for the quan-
titative determination of critical exponents and correlation
functions in two spatial dimensions. In addition, we simulate
the monitored Kitaev and Yao-Kivelson circuits of interest
in this paper also in the conventional stabilizer representa-
tion. We employ state-of-the-art Clifford circuit simulations
techniques [32,33] that reach system sizes of 104 qubits and
critically analyze what kind of qualitative and quantitative
insight they afford.

In summary, we discuss measurement-only Kitaev and
Yao-Kivelson models as representatives of symmetry classes
BDI and D in monitored circuits. We utilize a joint frame-
work for both classes (Majorana loop models) to accurately
determine the long-wavelength properties of a localized area-
law and an entangled Majorana liquid phase, as well as
the measurement-induced phase transition separating them.
This constitutes a rigorous step toward a symmetry classifi-
cation of monitored circuits in arbitrary dimensions. Further
key advancements from the loop model framework include
(i) a scalable mapping from monitored Clifford circuits to
Majorana loop models, enabling large-scale simulations in
(2 + 1) dimensions and significantly improving the numerical
precision of critical exponents; (ii) an analytical, micro-
scopic understanding of the approximately circular shape of
the phase diagram, in terms of an effective diffusion con-
stant of world lines in the Majorana metal; and (iii) the
identification of quantum Lifshitz scaling along the entire
critical line, revealing a broad and previously unexplored link
between monitored free fermions, loop models, and (2 + 1)-
dimensional conformal field theories.

The paper is organized as follows: Below we provide an
overview of the main results for the universal long-distance
behavior of both circuits from the loop model and the Clifford
simulations. In Sec. II, similarities and differences between
Hamiltonian and measurement dynamics are discussed, in-
troducing the Kitaev and Yao-Kivelson models both in the
Hamiltonian as well as in the measurement-only circuit frame-
work. In Sec. III, the framework of Majorana loop models is
introduced for class BDI and class D and for Hamiltonians
and circuits in arbitrary dimensions. In addition, we provide
a dictionary between the loop framework and circuit observ-
ables. The analytical and numerical results for the loop model
framework are presented in Sec. IV. These are complemented
by a selection of observables obtained in high-performance
Clifford simulations in Sec. V. A discussion and conclusion is
presented in Sec. VI.

A. Overview of main results

The measurement-induced dynamics of monitored circuits
(discussed in this paper) share several similarities with the

TABLE I. Majorana loop models. Summary of a number of key
distinctions for Majorana loop modesl on bipartite vs nonbipar-
tite lattice geometries, and their realization in quantum circuits or
Hamiltonian systems. Asterisks: (*) indicates results for isotropically
coupled Kitaev honeycomb and Yao-Kivelson models, while (†)
indicates results for isotropic probabilities.

Lattice/circuit Bipartite Nonbipartite
geometry (e.g., honeycomb)(e.g., Yao-Kivelson)

Symmetry class BDI D

Loop model

Loop symmetry Orientable Nonorientable
Field theory (sigma model) CP n−1 RP n−1

Quantum circuit†: Loop model with fugacity n = 1

Entanglement scaling
√
D × L log(L)

Dynamics (asymptotic loops) P(�) ∼ const. P(�) ∼ (L − �)−
1
2

Quantum Hamiltonian∗: Loop model with fugacity n = √
2

Entanglement scaling L + log L L − γtopo

Majorana spectrum Gapless Dirac Gapped Chern
Spin liquid Z2 Chiral (Ising TQFT)

energetics-induced dynamics of their Hamiltonian counter-
parts. In both cases, frustration is induced by the presence
of noncommuting operators and the statistical mechanics of
the stationary state can be mapped to a suitable (2 + 1)-
dimensional loop model. While, however, the physics of
Kitaev and Yao-Kivelson Hamiltonians is typically under-
stood in terms of their Majorana band structure, their circuit
counterparts feature a different link to many-body quantum
physics. As a guiding picture, the Majorana loop model rep-
resentation of both the measurement-only Kitaev and the
Yao-Kivelson model in d spatial dimensions anticipate a link
between the measurement-only circuits and the physics of
diffusive Majorana metals—highly entangled liquid phases
of Majorana fermions undergoing Brownian motion on a
lattice—and disorder-induced localization in (d + 1) dimen-
sions. The transition between the liquid and the localized
phase is induced by the degree of measurement-induced
frustration, which we will use as an organizing principle
in the following. A qualitative summary of the loop model
framework, quantum circuits and quantum Hamiltonians with
respect to their general properties in both symmetry classes is
provided in Table I.

1. Large measurement-induced frustration:
Entangled Majorana liquid state

When all allowed bond operators of nearest-neighbor
qubits (or free Majorana fermions) in the honeycomb or
decorated honeycomb lattice are measured with equal prob-
ability, i.e., at the isotropic point in the phase diagram, the
measurement-induced frustration is maximal. This pushes the
wave function into an entangled state with the subsystem
entanglement of an A = L × L square growing as

S(A) ∼ L log(L) ,
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FIG. 2. Kitaev circuits and entanglement phase diagrams. The top row shows the family of “Kitaev circuits” considered in this paper.
They are all made up of bond-directional two-qubit parity checks XX , YY , and ZZ sampled with probabilities Kx , Ky, and Kz in varying
circuit geometries. From left to right, this is (a) the conventional honeycomb model, (b) a Kekulé Kitaev model where the parity check
assignment of the bonds of the honeycomb lattice forms a Kekulé pattern, (c) the honeycomb model augmented by next-nearest-neighbor
parity checks (rendering the lattice geometry nonbipartite), and (d) the Yao-Kivelson circuit on the decorated honeycomb model where every
vertex is replaced by a triangle (red) with three different types of bond-directional parity checks. The bottom row shows the entanglement phase
diagrams as a function of the sampling probabilities of the various XX , YY , and ZZ parity checks. Localized phases with area-law entanglement
are shown in blue, while delocalized phases with liquidlike L log(L)-entanglement scaling are marked in red. The dark red contour marks the
phase boundary, i.e., the quantum Lifshitz-type localization transition between the two principal phases, whose critical behavior we discuss in
the paper. The orange circles mark special points at which the theory is captured by percolation (in a dimensional reduction).

characteristic of quantum liquids with a nodal (Fermi) surface
in two dimensions [34–37]. This two-dimensional liquid state
has been reported in class BDI circuits in Refs. [16–18]. Here
we study its properties in both class BDI and D. It is robust
against small variations in the circuit parameters, i.e., away
from the point of maximum frustration, defining an extended
highly entangled phase at large measurement frustration, as
illustrated in the phase diagrams of Fig. 2.

For measurements drawn randomly in space-time, this liq-
uid phase is reminiscent of diffusive metals arising in weakly
disordered Fermi systems. We strengthen this picture using
the loop model framework: We show that large measurement
frustration causes the end points of Majorana loops to perform
a random walk in (d + 1)-dimensional space-time with an
effective diffusion constant D, which we derive in Sec. IV A 3.
This yields an entanglement structure akin to a disordered
metal.

The long-distance properties of such random walkers are
known to be governed by a nonlinear sigma model NLσM in
class CP n−1 for symmetry class BDI or RP n−1 for symme-
try class D; see Refs. [29,30,38–40] and Eq. (4) below. The
replica limit is determined by the fugacity n of the underly-
ing loop model, i.e., n = 1 for the circuit. Both NLσMs are
single-parameter theories and depend only on the diffusion
constant D, which consequently determines the behavior of
physical properties at large distances. For instance, we derive
the entanglement entropy in the Majorana liquid phase from

the random walk picture to be

S(A) ∼
√
D × L log(L) .

The effective diffusion constant D at large distances emerges
from the NLσM under renormalization group transforma-
tions. Deep in the liquid phase, the renormalization of
D is negligible and we find reasonable agreement when
approximating D = Dmic, where Dmic is the microscopic
diffusion constant from the measurement probabilities; see
Fig. 13(a).

Deriving a rigorous mapping from the Kitaev circuit to
loop models, we show that the physical properties in the
circuit, such as, e.g., entanglement, mutual information, and
correlation functions, can be inferred from the distribution
function P(�) of Majorana loops of length � in (d + 1)-
dimensional space-time. For a two-dimensional system with
linear dimensions Lx, Ly in the x and y directions, this distri-
bution separates into two parts [41–43]: a Brownian regime
for � < LxLy and a Poisson-Dirichlet tail at space-time vol-
ume filling distances � > LxLy. We confirm this behavior in
the circuit in Fig. 11. The Brownian regime features a loop
distribution P(�) ∼ �− 5

2 , which does not distinguish between
symmetry class BDI and D. In contrast, the Poisson-Dirichlet
tail differentiates between both symmetry classes: It dis-
plays an asymptotic behavior P(�) ∼ �−1(L − �)θ−1, where
L is the maximum distance of a single loop in space-time
and θ = 1 for class BDI and θ = 1

2 for class D, respec-
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tively. Both symmetry classes thus realize space-time filling
loops in the Majorana liquid phase. The tails of the distri-
bution are not detectable at the space time boundary and
therefore do not discriminate different wave functions at final
times.

Instead, they reflect different dynamics in the circuit, which
can be detected by out-of-time-ordered correlators (OTOCs).
We show that this difference can be made observable via
circuit-ancilla measurement schemes; see Fig. 12. Such mea-
surements allow one to universally discriminate the dynamics
of Majorana liquids in different symmetry classes even deep in
the metallic phase. This reveals detectable universal behavior
far away from the critical lines.

2. Small measurement-induced frustration:
Localized Majorana world lines

For small measurement-induced frustration, i.e., when
a large fraction of measurements can be satisfied si-
multaneously, the Majorana world lines rarely undergo a
measurement-induced motion. Instead, they remain local-
ized in space with an average localization length ξ , akin
to disorder-induced localization of a Fermi liquid. The loop
distribution P(�) thus acquires an exponential cutoff, P(�) ∼
�− 5

2 exp(−�/ξ ), suppressing the buildup of correlations and
entanglement over distances larger than ξ . Consequently, the
subsystem entanglement of a contractible region L × L obeys
an area law

S(A) ∼ L log ξ − ln 2 + · · ·
on distances L > ξ . The negative subleading term is a univer-
sal topological correction contributed by the gauge flux, as the
complementary part of the fractionalized degrees of freedom
from the qubits. Such a topological state is in the same uni-
versality class as the toric code wave function [44], and the
circuit can potentially serve as a (dynamical) quantum error
correction code—when the frustration is tuned towards zero,
the state resembles an instantaneous state of the Hastings-
Haah Floquet code [45–48].

3. Critical measurement-induced frustration:
Localization-delocalization phase transition

The Majorana liquid and the area-law phase are separated
by a phase transition at a line of critical measurement-
induced frustration. In the Majorana loop framework, this
is a localization-delocalization transition, which takes place
when the diffusion constant in the nonlinear sigma model
renormalizes to zero [29,30]. Monitoring the fermion en-
tanglement, we reveal that precisely at the transition, the
Majorana fermions obey an entanglement area law but with
a peculiar subsystem-dependence that reveals quantum Lif-
shitz criticality. This represents the first instance of quantum
Lifshitz scaling behavior observed in a free fermion circuit
(Ref. [18] reports Lifshitz scaling for interacting Clifford
circuits). Despite obeying an area law, correlation functions
and the loop distribution function are not bound by a finite
correlation length but display algebraic, scale-invariant decay,
which is faster than the conventional ∼1/(distance)2.

Exploiting the fact that the NLσM is a single-parameter
theory, with the only microscopic parameter entering being

the microscopic diffusion constant Dmic, we analytically iden-
tify the location of the critical line of the phase transition. It
is located at Dmic = Dmic,c for some critical value Dmic,c. In
symmetry class BDI, we can extract the value of Dmic,c =
3/16 exactly from the high symmetry points of the phase
diagram [the yellow circles in Fig. 2(a)]. This enables us to
analytically determine, without any free parameter, the phase
boundary in the Kitaev honeycomb geometry [see Fig. 13(b)]
and, tracing the same value of Dmic,c, also allows us to de-
termine the phase boundary of the Kekulé Kitaev model [see
Fig. 13(c)]. This connection to the universal value of Dmic,c in
these two BDI models not only illustrates the universality of
the loop framework but also explains the previously obtained
circular structure of the phase diagram for the honeycomb
geometry [16–18].

The universal critical behavior at long wavelengths is de-
termined by the CP n−1 (RP n−1) nonlinear sigma model for
symmetry class BDI (D) with the replica limit n → 1 in d + 1
dimensions. The corresponding universality classes have been
discussed in the context of dense (fully packed) polymers
[49–51], localization in gapless spin-singlet superconductors
with disorder [38], quantum magnets, and spin-ice systems
[52–56]. We numerically extract four different universal expo-
nents using both the loop model framework with simulations
of up to 108 qubits and, using the stabilizer framework, for
Clifford circuits with up to 104 qubits. These results are sum-
marized in Table II, where we also compare our estimates with
previous loop model simulations of both symmetry classes
(which reached system sizes equivalent to 106 qubits [39]).

The critical exponents and their interpretation in the loop
model and in the quantum circuit can be summarized as
follows:

(i) The correlation length exponent ν determines the aver-
age loop length 〈�〉 and the spanning number between the final
and the initial state in the loop framework. In the circuit, the
former sets the average entanglement entropy in the localized
phase and the latter controls the late-time residual entropy
during dynamical purification; see Fig. 15.

(ii) The anomalous dimension η describes the power-law
scaling of loop correlations in the bulk of space-time. In par-
ticular, for the two-point watermelon correlator we have

G2(r) ∼
⎧⎨
⎩

exp(−r/ξ ) localized phase
r−(1+η) critical point
const. liquid phase

. (1)

In the circuit this corresponds to the scaling of a two-point
OTOC; see Fig. 18. Alternatively, the anomalous dimen-
sion can be extracted through the hyperscaling relation τ =
(11 − η)/(5 − η) through the Fisher exponent τ . The latter
determines the loop length in (d + 1)-dimensional space time
P(�) ∼ �−τ ; see Figs. 16 and 17.

(iii) The fractal dimension d f , which is related to η, τ

by hyperscaling relations d f = (5 − η)/2 = 3/(τ − 1), de-
scribes the structure of the loops in space-time. As with η,
these correlations are reflected in circuit OTOCs in the bulk
of space-time. See Fig. 16 for the scaling at the transition and
Figs. 11 and 34 for scaling in the critical phase.

(iv) The order parameter exponent β determines the
probability that a given space-time point falls on a macro-
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TABLE II. Critical exponents. Shown are the critical exponents of the localization transition in symmetry class BDI and D, comparing
results from loop model simulations (with up to 108 qubits) to previous results in the literature [38,39] (with up to 106 qubits) as well as
results from Clifford simulations (with up to 104 qubits). The correlation length exponent ν is extracted from spanning number (see Fig. 15).
The anomalous dimension η is extracted from the scaling of the length of spanning loops (see Fig. 17) and, alternatively, from the scaling of
watermelon correlators (see Fig. 18). The fractal dimension df is extracted from the bulk loop lengths (see Fig. 16). The critical exponent β

is calculated from the watermelon correlator in Fig. 18. References [38,39] have determined either the anomalous or fractal dimension and
calculated the other via the scaling relation η = 5 − 2df , indicated by the asterisk (*). The critical exponent β in both works was obtained
via the hyperscaling relation β = ν(3 − df ), indicated by the dagger (†). We note that the literature values for class D deviate from the ones
obtained in this work. We analyze this discrepancy and confirm our results by comparing different scaling ansätze and lattice geometries in
Appendix C. The critical exponent ν from Clifford simulations is obtained from a scaling collapse of the tripartite mutual information I3 in
Fig. 20. A systematic deviation from the more accurate loop model exponents towards smaller values is observed.

Critical exponent ν η df β Reference

Loop model (this work) 108 qubits
BDI/orientable 0.9987 ± 0.0007 −0.084 ± 0.004 2.5383 ± 0.0011 0.4590 ± 0.0020 Figs. 15–18
D/nonorientable 0.9403 ± 0.0006 −0.066 ± 0.007 2.5263 ± 0.0011 0.4400 ± 0.0040 Figs. 15–18

Loop model (literature) 106 sites
BDI/orientable 0.999 ± 0.002 −0.068 ± 0.018∗ 2.534 ± 0.009 0.4650 ± 0.0033† Ref. [38]
D/nonorientable 0.918 ± 0.005 −0.091 ± 0.009 2.546 ± 0.005∗ 0.4168 ± 0.0051† Ref. [39]

Clifford simulations (this work) 104 qubits
BDI/orientable 0.96 ± 0.01 – – – Fig. 20
D/nonorientable 0.91 ± 0.02 – – – Fig. 20

scopic loop. Analogous to quantum magnets, extensive loops
correspond to macroscopic ordering of the spins, e.g., in a
ferromagnet. This is determined by the two-leg watermelon
correlator in the limit of large separations, G2(r 	 1,�) ∝
�2β , where � is the distance to the critical point in the liquid
phase; see Fig. 18. This determines circuit OTOCs at long
space-time distances.

Together with the universal OTOC ratios in the Majorana
liquid phases, this provides a complete characterization of the
two symmetry classes of measurement-only circuits.

II. KITAEV MODELS, CIRCUITS, AND SYMMETRIES

To set the stage we briefly review the fundamental traits of
Kitaev physics—the fractionalization of quantum mechanical
degrees of freedom and the subsequent formation of long-
range entanglement [12,57]. We do this first in the context of
the well-known honeycomb Kitaev model, i.e., in the Hamil-
tonian model in the parlance of this paper, where the ground
states are quantum spin liquids with a characteristic and defin-
ing entanglement structure. We then introduce the quantum
circuit variants of interest in this paper, comparing them to
their Hamiltonian counterparts and what has previously been
explored. In a second step, we discuss the hitherto unexplored
symmetry classification of these circuits, again drawing con-
nections to the well-known classification of their Hamiltonian
counterparts, with a particular focus on the gauge physics
in symmetry classes BDI and D, respectively. We discuss
the conclusions one can draw from this with regard to the
formation of long-range entanglement.

A. Kitaev physics

1. Hamiltonian model

The Kitaev Hamiltonian can be defined on any lattice ge-
ometry that allows for a tricolorization of its bonds. This is

naturally the case for trivalent lattice geometries such as the
honeycomb lattice but can also be expanded to more com-
plicated lattice geometries with higher coordination number
[57–59]. On each bond, an Ising-like interaction couples two
neighboring spin-1/2 degrees of freedom along the X,Y, Z
directions (in spin space) associated with the bond’s color,

H =
∑
〈 jk〉μ

Kμσ
μ
j σ

μ

k , (2)

where μ = x, y, z indicates the easy-axis of the bond-
directional exchange.

For any tricoordinated lattice geometry, this model can be
exactly solved via rewriting the model in a Majorana basis
[12]. To this end, each spin-1/2 is mapped onto four Ma-
jorana fermions {bx, by, bz, c} satisfying a gauge constraint
bxbybzc = 1; see also the illustration in Fig. 3. This new
basis allows us to reexpress the Pauli operator as Majorana
bilinears σ

μ
j = ibμ

j c j . The bond-dependent Ising interaction
is then equivalent to a gauged Majorana hopping bilinear
σ

μ
j σ

μ

k = iuk jc jck , where uk j ≡ ibμ

k bμ
j = ±1 denotes the Z2

gauge connection on the bond. Note that the gauge field
u is not a gauge-invariant physical observable, but instead
one needs to consider the Wilson loop plaquette operator,
as a product of the Ising interactions surrounding a plaque-
tte, which evaluates the gauge flux penetrating the plaquette.
Importantly, these Z2 gauge fields remain entirely static and
assume a fixed low-energy configuration (favored by a Majo-
rana fermion mediated interaction between the gauge fluxes)
that can typically be predicted via Lieb’s theorem [60]. We
will discuss this gauge physics in more detail below for the
two principal lattice geometries of our paper.

The virtue of this reformulation, which at first sight might
be perceived as simple operator algebra, is that it faithfully
captures the low-energy physics of the Hamiltonian model:
The spin-1/2 degrees of freedom fractionalize into an itinerant
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FIG. 3. From quantum magnets to quantum circuits. Left: For
quantum magnets, the Kitaev Hamiltonian with its characteristic
bond-directional Ising-like exchange terms is a paradigmatic spin
model that is exactly solvable and exhibits gapless and gapped
quantum spin liquid ground states. The analytical solution (for any
trivalent lattice geometry) employs a Majorana fermionization that
faithfully captures the fractionalization of elementary spin-1/2 (or
qubit) degrees of freedom into itinerant Majorana fermions (yellow)
and static Z2 gauge fields (represented here as Majorana bilinears on
the bonds). Right: In its measurement-only quantum circuit adapta-
tion, the Kitaev model consists of bond-directional two-qubit parity
checks whose noncommutativity induces frustration and, starting
from a random product state, dynamically stabilizes an ensemble of
pure quantum states with a typical entanglement structure.

Majorana fermion coupled to a static Z2 lattice gauge theory
in the background—key characteristics of quantum spin liquid
ground states [61]. The precise nature of these spin liquids
depend on the underlying lattice geometry and the relative
strength of couplings but generally include gapless, gapped,
and chiral spin liquids which are accompanied by long-range
entanglement structures [57]. In fact, it is this formation of
long-range entanglement in a quantum magnet that is the
defining characteristic of a quantum spin liquid state and
allows us to unambiguously distinguish them from ordered
ground states or finite-temperature paramagnetic states [1].

2. Quantum circuits

In a new twist on Kitaev physics, several groups have
recently started to look into monitored Kitaev models [16–18]
or “Kitaev circuits.” In these circuits one replaces the
bond-directional exchange terms of the Hamiltonian by bond-
directional joint two-qubit measurements, also known as
parity checks. These are illustrated in Fig. 4, along with their
circuit implementation using an ancilla qubit. On a theoret-
ical level, these bond-directional parity checks implement a
nonunitary Kraus operator

Mjk ≡ exp
(
−τ

2
s jkσ

μ
j σ

μ

k

)
/
√

2 cosh(τ ) , (3)

where μ = x, y, z indicates the type of bond-directional parity
check, s = ±1 is the measurement outcome of the ancilla
qubit, and τ ∈ [0,+∞) characterizes the strength of measure-
ment that is controlled by a unitary entangling gate parameter
t ∈ [0, π/4]: tanh(τ/2) = tan(t ). The entangling CNOT gates
of Fig. 4 correspond to t = π/4 rotations, resulting in strong,
projective measurements. Here we focus on this Clifford

FIG. 4. Building blocks of two-qubit parity measurements. The
three panels correspond to parity measurements of ZZ (blue), XX
(red), and YY (green), respectively. The most important ingredient is
an ancilla qubit |0〉 which, entangled via two CNOT gates to the two
qubits involved in the parity check, is the only qubit that is actually
measured (and collapsed). Note that for all three parity checks, the
ancilla qubit is initialized in a Z eigenstate and measured in the
Z basis. Depending on the parity check, the two-body entangling
CNOT gates are sandwiched by one-body Hadamard gates H or a
phase gate S† = √

Z that rotates the Pauli basis. Note that any circuit
built from these building blocks only relies on Clifford gates.

regime of projective measurements and randomly sample the
two-qubit parity checks in every microstep without evoking
any spatiotemporal ordering (see Fig. 1 above). On a global
scale one thereby transitions from (continuous) Hamiltonian
dynamics where each exchange term is a projector onto a
single, energetically favored two-spin state to a (discrete)
measurement-only dynamics [62–65] where each projective
measurement results in two possible, random outcomes.

While this might sound like a somewhat obscure idea, one
should be reminded that such a connection between Hamilto-
nian and measurement-only circuit is also deeply embedded
in the concept of the toric code [44]—it points to the im-
plementation of a topological quantum memory via stabilizer
measurements, i.e., a measurement-only quantum circuit that
implements rounds of four-qubit measurements (whose out-
come is interpreted as a syndrome and fed into a decoder to
perform quantum error correction). Of course, the toric code is
also very well known in its Hamiltonian version which serves
as an exactly solvable spin model that gives rise to a topo-
logical spin liquid ground state. A key distinction between
the toric code and the monitored Kitaev models of interest
here is the commutativity of operators. While all Hamiltonian
terms/measurement operators commute with one another for
the former, they do not for the latter. This elevated level of
measurement-induced frustration has important consequences
on the entanglement structures that can be stabilized in these
circuits as we have discussed in the Introduction and which, in
contrast to the toric code, are also distinct from the entangle-
ment in the ground states of the corresponding Hamiltonians.

Returning to the monitored Kitaev models at hand, it is
important to note that running such a Kitaev circuit on a given
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FIG. 5. Majorana fermions, measurement-induced teleportation, and long-range entanglement in Kitaev circuits. [(a) and (b)] Each
elementary qubit is represented by a four Majorana fermions. (c) The pairings of the bα

i Majoranas are fixed after a short purification time.
Plaquette operators are stabilized by the random protocol and commute with all following measurements, effectively allowing a decomposition
ρ f (t ) = ρc(t ) ⊗ ρb (up to a global gauge constraint), where ρb = |ψb〉〈ψb| with ibi1 bi2 |ψb〉 = |ψb〉—thus only the c Majoranas (orange circule)
are involved in the subsequent dynamics. (d) A projective measurement (here: (1 + XiXj )/2 on the lower triangular bond) fixes the parity
icic j = 1 of the Majorana fermions involved; global parity conservation forces ic′

ic
′
j = 1 for the now unpaired Majoranas thereby effectively

inducing Majorana teleportation [66]. (e) After long times, t ∼ O(L), the state can exhibit long-range entanglement, which is captured by the
fixed parities of Majorana pairs far from each other (arising from measurement-induced long-distance teleportation).

initial state will give rise to a multitude of possible trajecto-
ries, depending on the sequence of measurement outcomes.
It is the ensuing ensemble of pure states, created by running
a Kitaev circuit multiple times, that is the object of interest
in the following. It allows us to define (in a statistical sense)
typical states with a characteristic entanglement structure
which we wish to classify and compare to the ground-state
entanglement stabilized by Hamiltonian dynamics (see Ap-
pendix A for some Hamiltonian phase diagrams).

To understand the formation of long-range entanglement
in the circuit setting, one can again rely on the language
of fractionalization which we have introduced above in the
context of the exact solution of the Hamiltonian model in
a Majorana basis. To do so, let us perform a completely
analogous rewriting of the two-level qubit states in terms of
four Majorana fermions and a subsequent regrouping into one
c-Majorana fermion per site and Z2 gauge connections (aris-
ing from Majorana bilinears on every bond) as illustrated in
Fig. 5. In this language, every two-qubit parity check has the
effect of measuring the local Majorana fermion parity, while
effectively teleporting single Majorana fermions [66]—for a
schematic illustration see Figs. 5(c) and 5(d). Repeated local
measurements can then quickly lead to teleportation over large
distances and the formation of long-range entanglement; see
Fig. 5(e).

B. Time-reversal symmetry and gauge physics

In the classification of the possible ground states of Kitaev
Hamiltonians and their entanglement structure, the role of
time-reversal symmetry and its relation to gauge physics has
long been appreciated as a crucial ingredient. One purpose
of this paper is to apply this line of thinking in a similar
fashion to the typical states stabilized by Kitaev circuits and
their emerging entanglement structures. To set the stage, let
us recall that, for a bipartite lattice/circuit geometry, the time-
reversal transformation can be defined as T = iσ yK where K
is the complex conjugate, which leads to σ x(y)(z) → −σ x(y)(z).

The combination of time-reversal symmetry T 2 = +1 with
the intrinsic particle-hole symmetry of Majorana fermions
puts both the Hamiltonian model and the quantum circuit
in the BDI symmetry class. The situation is fundamentally
different when the symmetry class is changed from BDI to
class D, which can be realized by moving to a nonbipartite
geometry as first noted by Kitaev [12] and later explored
in the context of a lattice model by Yao and Kivelson [13].
Even though on the microscopic level of the Hamiltonian or
quantum circuit description the system remains time-reversal
invariant, the low-temperature ground state or dynamically
stabilized typical state is not. Instead, time-reversal symmetry
is spontaneously broken in this nonbipartite setting, as we will
discuss in the following.

1. Hamiltonian model

Let us first recall the impact of time-reversal symmetry in
the context of Hamiltonian models, where its role in stabiliz-
ing ground-state flux patterns and its spontaneous breaking
for nonbipartite lattice geometry is well established. As a
first example, consider the seminal honeycomb model with
its bipartite lattice geometry. Here the Wilson loop, indicating
the flux through one elementary hexagonal plaquette, can be
expressed as Wp = σ x

1 σ
y
2 σ z

3σ x
4 σ

y
5 σ z

6 = ±1, with a clockwise
ordering of the six spin-1/2s around the plaquette. This flux is
invariant under time-reversal symmetry, i.e., T −1WpT = Wp.
In addition, the Wilson loop operator commutes with the
Hamiltonian, resulting in a static flux pattern, which by virtue
of Lieb’s theorem [60] is the completely flux-free state in
the ground state. As a consequence, the ensuing spin liquid
is primarily characterized by the band structure of the free
Majorana fermions. For isotropic coupling, Kx = Ky = Kz in
Eq. (2), this is the celebrated quasirelativistic band structure
with two gapless Dirac cones. In terms of entanglement,
this is an area-law entangled state albeit one with a sub-
leading O(ln L) correction [24,67–69] (for certain boundary
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conditions1)

S(A) ∼ L + ln L + . . . .

Now, if we move to the Yao-Kivelson model on its non-
bipartite lattice, note that while the flux through the large,
dodecagonal plaquette (of length 12) is invariant under time
reversal, the triangle flux is not—W� = σ x

1 σ
y
2 σ z

3 changes sign
under time reversal. In the low-temperature regime of the
Hamiltonian (i.e., below the thermal crossover at which the
spin degrees fractionalize [70]), the Majorana fermions medi-
ate an effective Ising interaction between the triangle fluxes
[71]. This leads to a flux-ordering transition at a finite tran-
sition temperature [72] at which the system spontaneously
breaks time-reversal symmetry. Simultaneously, the Majorana
fermions respond to the chiral triangle flux and form a p + ip
superconductor which falls into two topologically distinct
phases [73]: a topological phase at weak pairing and a trivial
phase at strong pairing. The transition between the two states
can be driven by the relative strength of the triangle versus
hexagonal coupling (J and K in the overview of Fig. 2). In the
language of quantum magnetism, the time-reversal symmetry
breaking, topological state is called a chiral spin liquid [74],
with an entanglement structure

S(A) ∼ L − ln 2 ,

where the topological nature of this phase is reflected by a
nonvanishing, subleading topological correction γtopo = ln(2)
to the area-law entanglement [2,3].

2. Quantum circuits

Let us now turn to a discussion of the role of time-reversal
symmetry and gauge physics in the measurement-only circuit
analogs of the Kitaev model. If starting from a featureless,
maximally mixed state, then the purification dynamics due
to measurements can be separated into two contributions
[16–18]—a gauge flux purification and a Majorana purifica-
tion. Since the gauge flux commutes with the measurement
operators, it is purified with a constant rate leading to an
exponential decay of its entropy in time. The Majorana pu-
rification, in contrast, depends on the degree of frustration—it
is exponentially fast for the small frustration phase but al-
gebraically slow for the large frustration phase. Its behavior
is tightly related to the pure-state entanglement entropy that
will be discussed in the following. To summarize our main
results, the purification time for the gauge flux always scales
logarithmically with the system size O(ln N ), while the pu-
rification time of the Majorana fermion takes O(ln N ) in the
less frustrated and less entangled phase but O(N p) power-
law scaling with the system size in the highly frustrated and
entangled liquidlike phase. Such two-stage purification dy-
namics was previously found to be a rather generic feature for
measurement-only circuits built from subsystem codes [75].

1Note that the entanglement entropy of the Dirac fermions depends
on the boundary condition and a 1

3 ln L subleading contribution oc-
curs only when the system is placed in certain periodic boundary
conditions such that the quantized momentum exactly crosses the
Dirac nodes. Otherwise, such a gapless Dirac fermion contribution is
missed.

a. Gauge purification. Let us first discuss the gauge flux
purification dynamics in more detail. Note that the flux is not
directly measured in our protocol but instead indirectly via the
Majorana fermion parity checks. Every single Majorana parity
measurement enforces a Majorana hopping (see Fig. 5), and
when a set of measurements encircles a plaquette the moving
Majorana detects and collapses the gauge flux to one of its
eigenstates. As a consequence, a particular block in the block-
diagonal matrix representing the Gaussian Majorana fermion
state is picked up⎛

⎜⎜⎝
ρ(W ) 0 0 · · ·

0 ρ(W ′) 0 · · ·
0 0 ρ(W ′′) · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎠ ,

where each block corresponds to a fixed gauge flux config-
uration W , W ′, W ′′. Over time, this block matrix is being
purified towards a pure state, akin to lowering the temperature
of a free fermion system. Due to the Clifford nature of the
Kitaev circuits discussed here, the probability distribution for
any possible flux configuration is equal, such that the state
is purified into a random flux configuration, distinct from the
flux-ordered Hamiltonian ground state [12]. Nevertheless, the
states associated with any gauge flux configuration share ex-
actly the same entanglement entropy. This is due to the generic
property of Clifford stabilizer states: The entanglement of a
Clifford stabilizer state ρ = ∏N

j=1
1±Oj

2 where {Oj} are the
stabilizer generators does not depend on the eigenvalues be-
ing positive or negative. A minimal example is that all four
possible Bell pairs |↑↑〉 + |↓↓〉, |↑↓〉 + |↓↑〉, |↑↑〉 − |↓↓〉,
|↑↓〉 − |↓↑〉 share one bit of entanglement entropy. Since the
Majorana parity checks are performed stochastically, there is
a constant rate of purifying the gauge flux (denoted as r in the
following), which leads to an exponential decay of the flux
entropy in time [16–18,48]

Sflux(t ) ∼ Npe−rt ,

where Np is the number of the plaquettes of the same type.
This decay is illustrated in Fig. 6 for various points in the
phase diagram of the monitored honeycomb Kitaev model—
the initial decay of the state entropy towards a plateau at
S(t )/N = 1

2 signals the flux purification, which is indepen-
dent of the circuit phase. In general, the purification rate r
depends on microscopic details, such as the number of edges
of the plaquette—the larger the plaquettes, the slower the
gauge purification. Apart from these microscopic details, the
timescale to purify the flux to a pure configuration can be
estimated as t ∝ ln Np/r—the purification evolution here is
akin to lowering the temperature to approach the ground-state
flux configuration in the Hamiltonian [70].

For plaquettes with an odd number of edges [75] there
is an obstruction to purification (that renders r = 0) due to
the time-reversal symmetry of the protocol, as proved in the
following: Any stabilizer of the time-evolved state O is com-
posed of a subset of the local quantum measurement operators
Kj ,

O =
∏

j

Kj .
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FIG. 6. Purification dynamics. Time evolution of the state en-
tropy (not to be confused with the pure-state entanglement entropy)
under the action of Kitaev (a) and Yao-Kivelson (b) circuits at a
system size of L = 24. Color coding is in accordance with Fig. 2.
The initial state is an empty generating set for which S = N bits.
The dynamics are averaged over 3840 disorder realizations. As be-
fore, a single timestep in the honeycomb (dodecagonal) geometry
corresponds to N = 2L2 (N = 6L2) random measurements. After the
initial drop from adding (any) mutually commuting stabilizers to the
generating set, the entropy decays exponentially from the constant
rate at which the gauge flux is purified. This rate depends on the de-
gree of anisotropy in the measurement probabilities. The percolation
point (yellow) corresponds to the decoupled stacking limit, say, a
stack of horizontal chains with XX and YY parity checks. It leaves a
single logical operator as the global flux pumped horizontally. When
infinitesimal weak ZZ measurement is turned on, the interchain
Majorana hopping measures the

∏Ly
j=1 σ

y
j operator, which purifies the

remaining horizontal flux (manifesting in the curve changing from
the orange to the red).

Thus, when every local measurement respects a global sym-
metry such as time reversal, so does any stabilizer operator of
the evolved state,

T −1OT =
∏

j

(T −1KjT ) = O .

For example, a hexagon or dodecagon plaquette can be de-
composed into its surrounding six bond operators, while a
triangle plaquette operator is time-reversal odd and cannot
be generated by any two-body time-reversal-even operator
measurements. Nevertheless, an even product of triangle pla-
quettes are time-reversal even and can be purified, for example
considering the sequence of stabilizer generators depicted in
Fig. 7 below.

This implies that a product of an even number of tri-
angle plaquettes can still be purified exponentially fast,
while a product of an odd number of triangle plaquettes
remains always undetermined, respecting the global time-
reversal symmetry. Thus, one global bit, corresponding to
the action of a chiral Ising time-reversal transformation, re-
mains conserved, leaving one bit of entropy, the same as

FIG. 7. Purification of paired triangle fluxes. Shown is a mea-
surement sequence that can purify the fluxes in two gray-shaded
triangles. In the last step, the product of the three stabilizer generators
is equal to the product of the two triangle fluxes.

the time-reversal symmetric mixed state of the Yao-Kivelson
Hamiltonian at low temperature.

Crucially, for the quantum circuits, the entanglement dy-
namics does not depend on the individual flux assignments of
the gauge configurations. Thus we have two strategies to break
time-reversal symmetry: (i) we directly measure the three-
body next-nearest-neighbor (n.n.n.) Kitaev interaction on the
honeycomb lattice, which explicitly breaks the time-reversal
symmetry by fixing the ±π/2 fluxes on this triangle spanned
by the n.n.n. spins; (ii) we move to the decorated honeycomb
lattice with triangle plaquettes (à la Yao and Kivelson) and
fix a single triangle flux from the initial state. Both strategies
yield, as we will show in the following, the same entanglement
phases.

b. Majorana purification. The purification dynamics of
the Majorana fermions (the second stage of purification in
Fig. 6), in contrast, primarily depends on the amount of
frustration, given by the relative weight of noncommuting
operators, and not the specifics of the underlying lattice
geometries. For small frustration, i.e., a large bias towards cer-
tain commuting measurement patterns (such as the toric code
stabilizers), the Majorana fermion purifies into the preferred
dimer states exponentially fast, thereby stabilizing only a few,
exponentially long-lived, global topological states (potentially
serving as logical qubits). For large frustration, i.e., closer to
the point of isotropic measurement strengths, in the liquidlike
phases of the phase diagram, the Majorana fermion generally
purifies in a power law, governed by the physics of the statis-
tical loop model to be introduced in Sec. III.

C. Relation to Hastings-Haah code

This section has introduced and discussed Kitaev circuits
as measurement-only quantum circuit analogs of the Kitaev
model with an eye on the underlying lattice/circuit geometry.
Before closing we also want to draw a few connections to
the Hastings-Haah code [45,46]. The latter has attracted con-
siderable interest from the quantum information community
for its ability to dynamically stabilize a topological qubit,
while also being intimately connected to the Kitaev physics
discussed above. The Hastings-Haah code imposes two-qubit
parity checks with a strong spatiotemporal ordering. In space,
it assigns a Kekulé pattern of couplings to the honeycomb
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geometry (see Fig. 2) and then performs time-periodic mea-
surements of all XX , YY , and ZZ parity checks. This Floquet
dynamics periodically swaps the instantaneously stabilized
state among the three corners of the Kekulé Kitaev circuit
phase diagram (see Fig. 2), which like their conventional
honeycomb counterpart, are toric code phases. This is what
allows it to create a topological qubit state.

Here we take the broad interest in the Hastings-Haah code
as motivation to study the measurement-only circuit variant
of the Kekulé Kitaev model [14] along with its conventional
honeycomb siblings.

III. MAJORANA LOOP MODELS IN (2 + 1) DIMENSIONS

Loop models arise quite generically in systems of quadratic
Majorana fermions [25,26,76–78]. Here we describe how the
loop picture emerges, both in Hamiltonian dynamics and in
quantum circuits. We briefly review the statistical mechanics
of loops in three-dimensions (3D) and then discuss the uni-
versality classes of loop models, based on symmetry and loop
fugacity, and name representative models therein. Finally, we
define important observables and entanglement quantities for
loops and Majorana circuits, providing a dictionary between
the two.

In a quadratic Majorana model all information about the
state is encoded in the two-point Majorana correlation func-
tions 〈iγlγm〉. If one asks, in addition, that the quadratic
Majorana state is also a stabilizer state, then all Majoranas
have definite pairings 〈iγlγm〉 = 0,±1. Such a stabilizer state
can be graphically represented by a pairing diagram wherein
nodes l and m are connected by an open arc if and only if
|i〈γlγm〉| = 1 [25–27]. Any generic Gaussian state can then
be written as a linear combination of stabilizer states or, al-
ternatively, of pairing diagrams. Evolving the state over time
leads to rearrangement of the Majorana pairings, with fermion
world lines tracing out loops in space-time as schematically
illustrated in Fig. 8. The entanglement and mutual information
between two distinct subregions in space A, B are given by the
number of arcs connecting A and B [26] (e.g., the blue loop
in Fig. 8), independent of the sign of the Majorana parities.2

When the number of Majoranas is conserved at all times (e.g.,
as for a spin-chain after a Jordan-Wigner transformation), the
space-time is fully packed with loops.

It is well established that generic models of fully packed
loops may be described by a braid-monoid algebra [79,80].
Loop configurations and transformations between them are
then generated by a sequence of local operations (i.e.,
generators of the algebra) which rearrange the world lines.
The allowed local operations acting on Majoranas γl and γm

are depicted in Fig. 9(a). The identity 1lm leaves the pairings
unmodified, amounting to uninterrupted propagation forward
in time. By contrast, the Temperley-Lieb (TL) generators elm

result in spatial propagation of loops. On the Majoranas,
this generator acts as a projector onto the local fermion

2Diagrammatic representations including the parity sign are possi-
ble but follow a more complicated loop algebra than required here
[26].

FIG. 8. Majorana loop models in 3D space-time. The loop model
description emerges from the dynamics of the Majorana fermions in
space-time. The final state produced by the corresponding circuit is
insensitive to closed loops contained in the space-time bulk (such as
the black loop). Dynamical purification is sensitive to the presence
of spanning loops (red) which connect the two temporal boundaries.
Open arcs with both ends on a single temporal boundary (blue) have
both a bulk path length �bulk and a projected surface length �surf.

parity,

elm ∝ Plm = 1
2 (1 + iγlγm) .

In particular, for initial pairings (k, l ) and (m, n), elm imple-
ments a loop surgery to yield new pairings (l, m) and (k, n).
Finally, the braid operator blm acts as the Majorana swap
operator

Rlm = 1√
2

(1 + γlγm),

exchanging the two Majoranas and causing the world lines to
cross over one another.

FIG. 9. Generators and relations of the loop algebra. (a) Lo-
cal generators of the loop algebra and the corresponding quadratic
Majorana operation. The nontrivial generators elm generate a
Temperley-Lieb subalgebra and are proportional to the fermion par-
ity projector Plm. The blm are proportional to the Majorana swap
operators and generate a braid group. [(b)–(d)] Elementary relations
between the generators. (b) Ambient isotopy of loops allows smooth
deformation. (c) Closed loops can be replaced by a scalar factor n, the
loop fugacity. (d) Untwisting loops after a braid operation introduces
a scalar factor ω.
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FIG. 10. Quantum dynamics. (a) Trotterizing the imaginary time
evolution of a quadratic Majorana Hamiltonian H leads to a product
of transfer matrices involving projectors Plm onto fixed parity for
pairs of Majoranas corresponding to edges in the lattice. This can
be viewed as a “postselected” measurement dynamics, where nor-
malization only appears at the end of the evolution, hence yielding
a loop algebra with fugacity n = √

2. (b) For a measurement-only
quantum circuit, random spatiotemporal concatination of individual
projective measurements, each with random outcome and subsequent
normalization, yield a loop model with fugacity n = 1.

Loop models corresponding to a braid-monoid algebra
have three key properties—ambient isotopy, scalar fugac-
ity (d-isotopy), and twist relations—which are depicted
in Figs. 9(b)–9(d). Ambient isotopy reflects the ability to
smoothly deform loops. The scalar fugacity endows closed
loops with a weight n. Last, the twist relations allow braids
blm (b−1

lm ) to be undone by incurring a factor ω (ω−1) related
to spin statistics. All three leave the connectivity of the loop
end points unchanged and may thus be viewed as equivalence
relations (up to a scalar) between Majorana trajectories with
identical entanglement in the initial and final states.

Throughout this work, we are interested exclusively in the
dynamics of entanglement and mutual information in Majo-
rana models, such that only the connectivity |〈iγlγm〉| matters.
Braiding phases can thus be neglected and we fix ω = 1.
This yields the equivalence relation blm ∼ b−1

lm on the space
of loop configurations, reducing the braid-monoid algebra to
the Brauer algebra B(n) [51].

By decomposing the Majorana dynamics into a sequence
of operations {1lm, elm, blm}, one obtains a transfer matrix
representation of the evolution, i.e., a brickwall quantum cir-
cuit as illustrated on the left-hand side of Fig. 10. We may
now distinguish two principal scenarios where Majorana loop
models arise: Hamiltonian and circuit dynamics.

A. Hamiltonian dynamics

Let us now briefly recall how the loop model picture
emerges in Hamiltonian dynamics. Suppose that the local
transfer matrix takes the form

T ∼ 1 + τPlm .

Such a transfer matrix arises naturally from Trotterizing
the imaginary time evolution e−βH of a quadratic Majorana
Hamiltonian H = i

∑
〈lm〉 Almγlγm. In order to satisfy the loop

isotopy condition elmemnelm = elm, we take normalized pro-
jectors elm = √

2Plm akin to defining the generators of the
TL algebra [81]. This implies the relation e2

lm = √
2elm and

identifies the loop fugacity

n =
√

2

for the imaginary time evolution of a Gaussian Majorana
Hamiltonian. Thus the transfer matrix dynamics produce a
wave function given by a coherent superposition of loop
configurations. The details of the Majorana adjacency matrix
Alm �= 0 fix the geometry and the symmetries for the model.

B. Circuit dynamics

Alternatively, the transfer matrix may arise in a
measurement-only circuit consisting of projective measure-
ments of parities iγlγm [26]. Here the sign of the measurement
outcome poses a challenge to specifying a loop representa-
tion. In particular, the two possible outcomes correspond to
Plm and Pml . Distinguishing such phase information in the
graphical language of loops would require nontrivial twisting
relations (ω �= 1), thereby complicating the relative weights
in the trajectory-averaged loop ensemble. If, however, we are
interested only in entanglement and other quantities which
depend exclusively on the modulus |〈iγlγm〉|, then the sign of
the measurement outcome may be neglected. This amounts
to imposing a twist relation ω = 1 and thus an equivalence
relation Plm ∼ Pml , with a loop configuration now represent-
ing an equivalence class of circuits. Unlike the Trotterized
imaginary-time evolution from before, here the projector Plm

is always accompanied by a normalization of the state (i.e.,
|ψ〉 → Plm√〈Plm〉 |ψ〉) yielding a transfer matrix of the form

T ∼ 1 + p

1 − p
Plm.

Due to the normalization, projective measurements automati-
cally satisfy the loop isotopy condition. We may thus identify
the generator elm as the operator which acts on any state |ψ〉 as
the normalized projective measurement Plm. In addition, the
idempotence of projectors P2

lm = Plm fixes the loop fugacity

n = 1

for each individual measurement in the circuit. Last, we note
that whereas the transfer matrix or Hamiltonian dynamics
produce a coherent superposition, the circuits considered here
produce a single loop configuration for each circuit trajectory.
Nonetheless, observables which are diagonal in the basis of
loop configurations (e.g., loop lengths or connectivity) may
be faithfully computed as both the coherent superposition and
the incoherent statistical ensemble yield the same result [82].
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C. Universality classes of loop models

The behavior of correlation functions and observables at
large distances in loop models is determined by two ingre-
dients: the loop fugacity n and the underlying symmetry of
the loop model. Despite realizing a different loop fugacity,
the transfer matrix of both the Hamiltonian and measurement-
only circuit are generated by the operators Plm, which are
quadratic in Majorana fermions. Thus each Hamiltonian sym-
metry class has a corresponding symmetry class counterpart in
the measurement-only circuit. The loop fugacity then yields a
fine structure of universality classes for each symmetry class.

For quadratic Majorana theories, particle-hole (PH) sym-
metry is always present and we thus distinguish two different
symmetry classes based on whether time-reversal symmetry
is present or not. In class BDI time reversal is present, which
enables a bipartition of the Majorana lattice into sublattices A
and B, such that each operator Plm acts exactly on one Ma-
jorana fermion on sublattice A and on one Majorana fermion
on sublattice B. The paradigmatic example of such a model
is Kitaev’s honeycomb model in two spatial dimensions [12].
In the loop model framework, this symmetry is known as
“orientability” [40,83–85]. It allows one to assign a unique
orientation to each lattice site, either forward or backward
in time, such that each loop carries this orientation through
space-time.

In the absence of time reversal, no bipartition of the lattice
can be found, translating to the absence of orientable loop
configurations. In the loop framework, the latter is known as
nonorientable loops models or completely packed loop mod-
els with crossings. This is symmetry class D and paradigmatic
Hamiltonian models include the Yao-Kivelson model [13],
the Kitaev honeycomb model with next-nearest-neighbor in-
teractions as well as in the presence of a magnetic field.
In the following, we will synonymously apply the language
of Hamiltonian symmetry classes and loop model symmetry
classes, i.e., we will refer to symmetry class BDI for ori-
entable loop models and symmetry class D for nonorientable
ones.

D. Statistical mechanics of loops in 3D

A d-dimensional Majorana circuit (d = 2 in this work)
corresponds to a d + 1-dimensional loop model in space-time.
Each lattice site l with Majorana fermion γl at a given time t
when measurements are performed represents a vertex in a
regular space-time lattice. When all Majorana fermions are
included in at least one measurement Plm during the circuit
evolution, the loop model is fully packed, meaning that every
vertex in the lattice has coordination number z = 4. Then the
space of possible loop configurations is generated by routing
loops through each vertex in one of the three ways depicted in
Fig. 9(a). Such a model is described by a partition function

Z =
∑
C

W (C)nN (C) ,

where the sum is over all possible loop configurations C. Each
term in the sum involves two components: (i) a “local” part
W (C) and (ii) a “nonlocal” part nN (C). The local term W (C)
is a product of Boltzmann weights associated to the choice
of loop connections at each vertex, giving the probability of

performing the unique series of measurements (or Hamilto-
nian evolution steps) that yields the loop configuration C.
This is the product of local measurement probabilities (or
Hamiltonian matrix elements Alm. The nonlocal term nN (C)

accounts for the loop fugacity n associated to each of the N (C)
closed loops in configuration C.

As a side remark, we note that the weight nN (C) poses
a challenge to Monte Carlo simulations of loop models for
any fugacity n �= 1 since it cannot be represented by a lo-
cal update rule for evolving a single time slice. This singles
out measurement-only circuits with n = 1 as a particularly
attractive example for simulating novel entanglement phases.
For larger integer fugacity n ∈ Z+, simulation is possible by
more complicated Monte Carlo methods involving the whole
space-time lattice [29–31,39,42] or additional ancilla degrees
of freedom [86], but this is beyond the scope of this work.

E. Nonlinear sigma models

A field theory formulation of the loop model partition
function Z is provided by Z = ∫

D[Q] exp(−S[Q]) with the
nonlinear sigma model (NLσM) action

S[Q] = 1

2g

∫
dd x Tr[(∇Q)2] + (topological terms). (4)

Here Q takes values in CP n−1 for symmetry class BDI and
RP n−1 for symmetry class D. The field Q is parametrized
by a vector z, which is complex for class BDI and real
for class D, such that Qαβ = zα z̄β − δαβ is a traceless n × n
Hermitian (orthogonal) matrix with normalization condition
z†z = n. At short distances, the coupling constant g scales
with the microscopic diffusion constant Dmic ∼ g−2, which is
derived in Sec. IV A. The measurement-only limit n = 1 is
obtained by taking n → 1+ as a replica limit or alternatively
by considering a supersymmetric formulation [51,84,87].

Both the CP n−1 and the RP n−1 nonlinear sigma models
appear in a variety of different applications. Prominent exam-
ples are disordered fermion systems and quantum Hall layers
in two dimensions. Although the loop models considered here
are in (2 + 1) dimensions, the relation to disordered fermions
remains prominent: Independent of the loop fugacity and the
symmetry class, but depending on the parameter g and the
topological terms, the NLσM support (i) a long-loop phase
with D �= 0 at the largest distances, yielding long-range en-
tangled Majorana pairs akin to a disordered metal for which
the topological terms are irrelevant, and (ii) a short-loop phase
with a diffusion constant D flowing to zero under renormaliza-
tion group transformations, yielding area-law entanglement
akin to localized fermions states but with distinct topological
properties.3

While for n = 2 the metallic phases of the action S[Q] in
(2 + 1) dimensions are known from the Hamiltonian case,

1We note that this is different from the (1 + 1)-dimensional case,
for which class BDI is always localized, except for at the critical
points separating different topological phases, while class D may
support a metallic state akin to weak antilocalization, known as
Goldstone phase.
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the n = 1 limit describes loops undergoing Brownian motion
with diffusion constant D ∼ g−2. For n = 1, the intermediate
distance behavior, i.e., on distances � � LxLy of the spa-
tial volume, of Brownian random walkers is the same for
both symmetry classes. This, however, manifestly changes
on larger distances � � LxLy: Here, the Brownian random
walkers have nonzero probability of forming space-time vol-
ume filling loops which occupy a nonzero fraction of the
space-time lattice. These macroscopic loops are sensitive to
the symmetry class and yield a means to distinguish symmetry
classes BDI and D in a measurement-only quantum circuit;
see Sec. IV A.

At the transition from the metallic to the localized regime,
a phase transition occurs with universal scaling behavior de-
pending on the symmetry class and the fugacity n [30,39],
which we explore below.

F. Loop-circuit dictionary

Here we connect the key observables of the loop model
framework to the Majorana circuits, providing a mapping
between the two pictures. In passing from loops in (2 +
1)-dimensional space-time to the dynamics of Majorana
fermions in two dimensions, one dimension in the loop picture
is designated as time. The state of the Majorana circuit at a
given time corresponds to the surface of the loop model along
one direction. There are two such temporal surfaces: (i) that
at t = 0 where boundary conditions on the loops correspond
to a choice of initial state for the Majoranas, and (ii) that at
time t = T corresponding to the final state produced by the
circuit. Correlations in this output state amount to boundary
correlations in the loop model. By contrast, loop correlations
in the space-time bulk require the ability to peek at the state
midway through the circuit evolution.

To track information regarding both the surface and the
bulk of the loop model, we keep track of not only the loop
connectivity but also their integrated path lengths. Any open
arc is labeled by a tuple (l, m, �), where l and m represent the
end points and � is the path length. In a numerical simula-
tion this information is readily incorporated into the update
scheme: Consider a state with initial pairings (k, l, �1) and
(m, n, �2) where l and m are nearest neighbors. Measuring
the parity iγlγm yields a state with new pairings and loop
lengths (k, n, �1 + �2 + 1) and (l, m, 1). When k = m, such
a measurement closes the loop with total length �1 + 1 which
is then recorded in a histogram for the trajectory.

G. Loop length distributions

The central observable for the loop models we consider
here is the probability distribution for the length of loops, both
along the (temporal) surface and through the space-time bulk.
The surface loop length between two points l, m at fixed time
T describes the distances between two entangled Majorana
fermions γl , γm in the circuit. The distribution of surface loops
thus yields complete information on the quantum state at time
T with regard to its entanglement and mutual information.
The bulk loop length yields information on OTOCs, explored
below.

For an open arc connecting Majoranas γl and γm on the
t = T boundary, we define the surface length �α

surf along the
α direction as follows. Let �xx̂ + �yŷ be the vector connecting
sites l and m in the two-dimensional plane. Using periodic
boundary conditions (PBC), the surface lengths of the loop
are defined as �α

surf ≡ min(|�α|, Lα − |�α|). We define the cor-
responding length distributions Pα

surf(�) as that obtained in the
stationary state of the circuit when taking a pure initial state
with only local pairings.

Characteristics of the entanglement dynamics during the
evolution are encoded in the bulk loop length distribution
Pbulk(�). It is the probability distribution for the total path
length of a randomly selected loop. Here we need to make a
distinction between open arcs and closed loops, as these will
generically exhibit distinct length distributions. During the
circuit evolution, many closed loops are formed, but the num-
ber of open arcs is fixed by boundary conditions and remains
constant. If we impose PBC in time, then all loops are closed
and there is no need to make this distinction. In practice, tem-
poral PBC can be implemented with the assistance of ancilla
measurements, which is discussed in Sec. IV A together with
the subtle but important role of boundary conditions for the
bulk loop statistics.

H. Surface observables: Entanglement entropy
and mutual information

Observables described by the loop distribution of a tem-
poral surface at time t = T correspond to the entanglement
content of the Majorana fermion state ρ(T ). We consider the
von Neumann entanglement entropy SA ≡ − Tr[ρA log2 ρA]
for a subsystem A, where the reduced density matrix ρA ≡
TrĀ[ρ] is obtained by tracing out the complementary system
Ā, and the mutual information I2(A, B) ≡ SA + SB − SAB be-
tween subsystems A and B. For Majorana stabilizer states,
these measures of entanglement are determined wholly by the
nonvanishing two-point Majorana correlations |〈iγlγm〉| = 1.
Thus the connectivity encoded by the loop representation con-
tains all necessary information to specify SA and I2(A, B). The
mutual information I2(A, B) therefore corresponds precisely
to the number of loops connecting subsystems A and B, while
the von Neumann entanglement entropy for a pure state is
SA = 1

2 I2(A, Ā), reflecting that each Majorana arc carries a
half qubit of entanglement. Multipartite entanglement mea-
sures such as the tripartite mutual information I3(A, B,C)
vanish due to the additivity of mutual information in the loop
framework.

Throughout this work we will frequently consider the en-
tanglement entropy of a cylindrical subsystem of length �,
with boundaries encircling the system in the x̂ or ŷ direc-
tions. For such a partition, the entanglement entropy can be
computed from the surface loop length distribution [26]. In
particular, the average entanglement entropy for subsystem
A in a cylindrical region of length � along the x̂ direction is
given by 〈〈

Sx
�

〉〉 = Ly

∑
�′

min(�, �′)Px
surf(�

′) . (5)

The mutual information between such cylindrical subsystems
can be computed in a similar manner.
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I. Spanning loops and purification

A single loop connecting the two temporal surfaces at t =
0 and t = T correspond to Majorana fermions, which remain
unpaired during the entire circuit evolution. Such loops are
called spanning and reflect the dynamical purification under
measurement: Consider a maximally mixed initial state ρ(t =
0) ∝ 1, corresponding to each Majorana being unpaired at
t = 0. The purity of the Majorana state ρ at time t = T
is given by the total entropy SL(T ) = − Tr[ρ(T ) log2 ρ(T )].
Each unpurified qubit at time T corresponds to two unpaired
Majorana fermions and thus to half the number of spanning
loops ns(T ), i.e., SL(T ) = 1

2 ns(T ).
In the loop model framework, the spanning number, i.e.,

the dynamical purification, serves as an accurate quantifier for
the different loop model phases and the critical point sepa-
rating them [29,30,38,40]. To do so, we assume fixed aspect
ratios T/Ly and Lx/Ly. Then for small distance δ from the
critical point, we employ a scaling ansatz,

ns(δ, L) = f (x)[1 + βLyirr ] ,

x = L1/νδ[1 + αδ] , (6)

where yirr is the dimension of the leading irrelevant operator
and α �= 0 gives a polynomial correction.

J. Bulk loops, watermelons, and OTOCs

Beyond the distribution of bulk loop lengths Plink(�), bulk
properties of the loop model are captured by the watermelon
correlators Gk (r), the probability that two points in space-
time separated by distance r are connected by exactly k
distinct arcs. For example, G2(r) gives the probability that
two points with separation r lie along the same loop. When
the points do not lie along the same fixed-time slice, then
Gk (r) takes the form of an OTOC for the Majoranas. As
was previously pointed out in Ref. [26], watermelon cor-
relators can be accessed in the circuit by an ancilla-based
measurement scheme. For example, the two-leg watermelon
correlator G2(r) can be measured by considering space-time
points (t1, l ) and (t2, m) separated by distance r. Consider
ancilla A and B, each consisting of a pair of definite parity,
e.g., |〈iγA,1γA,2〉| = 1. After evolving the circuit to time t1
(t2), a “marked” loop can be effectively inserted into the
circuit by coupling the ancilla and bulk via measurement of
iγA,2γl (iγB,2γm). The history of the world lines which had
been passing through these points in space-time is then ef-
fectively stored in the remaining ancilla γA,1 and γB,1. We
then evolve the circuit to late time t f 	 t2 and impose bound-
ary conditions on the bulk qubits (e.g., by measurement)
such that the only remaining open arcs are those through the
ancilla. Had we taken only individual Majoranas for each
ancilla, then the watermelon correlator G2(r) would explic-
itly take the form of an OTOC, 〈γA(t f )γA(0)γB(t f )γB(0)〉 −
〈γA(t f )γA(0)〉〈γB(t f )γB(0)〉, which for stabilizer states co-
incides with the mutual information between the ancilla
I2(A, B). By construction, the mutual information I2(A, B)
counts the number of loops connecting points (t1, l ) and
(t2, m) in space-time such that G2(r) = 1

2 I2(A, B). For higher-
order correlators Gk (r), additional ancilla are required, but the
general procedure remains the same. When examining such

geometric observables, the ordering of the relevant ancilla cor-
relation function reflects the specific loop connectivity being
considered, with out-of-time-order being strictly required to
distinguish certain loop configurations.

IV. DYNAMICS OF MAJORANA LOOPS

In this section we present results from large-scale simula-
tion of the measurement-only circuits in the loop framework.
As representatives for the symmetry classes, we consider the
honeycomb Kitaev model for class BDI and the next-nearest-
neighbor honeycomb Kitaev model for class D. Numerical
results for the Yao-Kivelson circuit are presented in Ap-
pendix C 1. By varying the relative probability for measuring
different bonds, one may tune the circuit between distinct
measurement-induced phases, including several topologically
distinct area-law phases and an extended metallic phase with
a logarithmic area-law violation and long space-time loops.
In symmetry class BDI, i.e., in the measurement-only Kitaev
circuit, the area-law phases arise in the toric-code limit where
one flavor of bond measurement dominates. Area-law phases
also appear in symmetry class D, i.e., in the next-nearest-
neighbor Kitaev geometry and the Yao-Kivelson circuit by
appropriate choice of parameters; see Fig. 2. Besides the var-
ious area-law phases, circuits in both symmetry classes host
an entangled liquid phase, reminiscent of a weakly disordered
Majorana metal phase, which we characterize in Sec. IV A.
Then in Sec. IV B, we shed light on the universality of the en-
tanglement transition separating metallic and area-law phases.
Finally, we discuss the shape of the phase diagram for class
BDI and the properties of the metallic phase based on the
picture of random Brownian walkers.

A. Long loops and the Majorana liquid phase

When the noncommuting measurements introduce a suf-
ficient degree of frustration, the end points of the Majorana
world lines no longer remain confined to a finite area but
start to undergo a random Brownian motion. This generates
long loops in the circuit and stabilizes a Majorana liquid or
metallic phase with characteristic L log L entanglement. The
entanglement structure in the stationary state is determined by
the surface loop distribution in the loop model. In the liquid
phase, this distribution does not distinguish between the two
symmetry classes BDI and D, which we discuss below. A uni-
versal distinction between BDI and D, however, is observable
in the bulk loop distribution.

1. Surface loops and entanglement

The entanglement structure of a Majorana state ρ(T ) at
time t = T is captured by the probability distribution Px,y

surf(�)
of open loop arcs along the temporal boundary of the loop
model. In the liquid phase, the loop length distribution ex-
hibits power-law scaling,

Pα
surf(�) ∼ �−2 .

For a cylindrical subsystem of length L and circumference Ly,
Eq. (5) yields an entanglement entropy S(L, Ly) ∼ Ly log(L)
(see Appendix D for a numerical confirmation). Such a log-
arithmic violation of the area-law of fermions in 2D is often
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FIG. 11. Bulk loop statistics. Distribution of bulk loop lengths Pbulk(�) in the measurement-only Kitaev circuit with PBC in both time
and space. The isotropic point of the nonorientable circuit Kx = Ky = Kz = J = 1/4 (blue) is contrasted with the orientable circuit Kx = Ky =
Kz = 1/3 (red). (a) Both the orientable and nonorientable cases exhibit the expected Brownian scaling regime �Pbulk(�) ∝ �−3/2 for loop lengths
� � LxLy. (b) Breaking orientability leads to a distinct scaling behavior for macroscopic loops � 	 LxLy, following a Poisson-Dirichlet (PD)
distribution with universal parameter θ as in Eq. (7). We find θ = 1 and θ = 1/2 in the orientable and nonorientable circuits, respectively, with
the corresponding fit shown as a black dashed line.

associated with the presence of a Fermi surface [34–37], but
it is also expected for metallic states with nonvanishing con-
ductivity in the presence of weak disorder [88].

The scaling of Pα
surf(�) and of the entanglement entropy is a

general feature of the liquid phase for both class BDI and D.
Let us denote c̃α for α = x, y as the coefficient for the entan-
glement S = c̃αLα log(L) for a cut along the α direction. Away
from the critical point, this coefficient is generally not univer-
sal but rather varies continuously with microscopic details of
the model (i.e., the lattice geometry and the bond weights).
This may be seen analogously to a smooth deformation of
the Fermi surface yielding a continuous modification of the
logarithmic entanglement scaling in the Hamiltonian setting,
an analogy, which we develop further below.

The effect of orientability here is a rather trivial one. Sup-
pose that we fix the length �x. In the orientable case, there are
fewer allowed Majorana pairings for any �x, as correlations
between sites on the same sublattice must necessarily vanish.

As a result, the typical total loop length � =
√

�2
x + �2

y is

longer, and the probability density Psurf(�x ) is reduced by a
constant factor.

2. Bulk loops and universal circuit correlations

The two symmetry classes BDI and D are distinguishable
by their bulk loop statistics. On short distances � � LxLy and
away from the critical point, Brownian motion in three space-
time dimensions yields a mean-field decay

Pbulk(�) ∝ �−τ

with τ = 5/2 and a fractal dimension d f = 3/(τ − 1) = 2
for both symmetry classes, depicted in Fig. 11. However,
Brownian walkers in 3D have a nonzero probability of never
returning to their starting point and to form “macroscopic”
loops which occupy a nonzero fraction of the space-time
volume. The statistics of such extensive loops provide an
unambiguous means for distinguishing between the two sym-
metry classes.

For finite system sizes, macroscopic loops are sensi-
tive to the spatiotemporal boundary conditions. Here, one
distinguishes absorbing boundary conditions, yielding open
Majorana world lines, such as, e.g., a mixed initial state, from
reflecting boundary conditions in space-time.4 For the latter,
all world lines are closed including at the final and initial time.
This is realized by starting with a pure initial state at t = 0 and
by terminating the circuit at t = T with a fixed set of measure-
ments that closes all world lines. With reflecting boundaries
all loops are closed, and macroscopic loops manifest in the
distribution Pbulk(�) giving rise to a distinct scaling regime at
distances � � LxLy, shown in Fig. 11(b). Here, macroscopic
loops follow a Poisson-Dirichlet (PD) distribution [41–43],

� × Pbulk(�) = θ

L

(
1 − �

fL

)θ−1

, (� 	 LxLy) (7)

where L is the total number of links in space-time (i.e., the
volume). Although f is a nonuniversal quantity, the parameter
θ is a universal parameter which depends only on the loop
fugacity n and the symmetry class. In the most general case,
one finds θ = n for symmetry class BDI, while for symmetry
class D, θ = n/2. For the Majorana circuits at hand with
fugacity n = 1, this leads the normalized bulk loop length
distribution to approach a constant,

� × Pbulk(�) ∼ L−1 (orientable), (8)

for � → L in class BDI, while class D displays a square-root
divergence,

� · Pbulk(�) ∼ L−1/2(L − �/ f )−1/2 (nonorientable) . (9)

Such a divergence reflects the tendency for a concentration
of probability density in larger macroscopic clusters, due to
the greater mobility of loops without the BDI constraint of

4Strictly speaking, macroscopic loops would emerge also for peri-
odic boundary conditions in time, which are, however, challenging
to implement in a circuit.
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FIG. 12. Loop statistics reveal universal ratios of long-distance loop connectivities. (a) Illustration of an ancilla scheme for probing the
statistics of macroscopic loops, shown here for the correlator P2 that requires two ancilla probes. The two ancillae have a well-defined parity iff
they are connected by a long string through the bulk. The definite parity can be probed by a decoder taking the Majorana parity measurement
outcomes in the bulk as input. This scheme can be generalized to probe Pn as defined in Eq. (10), i.e., the probability that n points �r1, . . . , �rn in
space-time lie along the same loop. The distance ri j ≡ |�ri − �r j | is taken to be macroscopically large such that nonzero Pn necessarily implies
that the points lie along an infinite loop. At initial time ti, a marked loop is injected into the circuit at each �ri by preparing a pair of ancilla
Majoranas and then measuring the parity between one ancilla and the corresponding bulk Majorana. In the qubit language, this amounts
to measuring the parity between a system qubit and an ancilla qubit. After running the circuit to late times (t f ), all system Majoranas are
projected out. Information about Pn is then encoded in the mutual information between different ancillae. The ratios (b) P2

2 /P4 and (c) P3
2 /P2

3

in the entangled phase approach universal values (dashed lines) which differ for the two symmetry classes. Data shown here are taken at the
isotropic point, but the ratios are universal throughout the entire phase. Data averaged over 100 disorder realizations with 10 000 samples each.

time reversal. The results of numerical simulations, shown in
Fig. 11(b), confirm the PD scaling regime for macroscopic
loops, with the parameter θ consistent with loop fugacity
n = 1.

In order to access the universal part of the PD distribution,
i.e., the parameter θ , one faces two challenges: (i) implement-
ing measurements of loop quantities in space-time and on
distances � 	 LxLy much larger than the spatial extent and
(ii) eliminating the dependence on the nonuniversal parameter
f in Eq. (7). Let us start by solving the latter. Consider m
points �ri with i = 1, . . . , m in space-time which are separated
by macroscopic distances |�ri − �r j | � Lx, Ly. In the thermody-
namic limit, if any two points �ri and �r j are on the same loop,
then that loop is macroscopic. The probability that all m points
lie along the same loop is [89]

Pm ≡ P(�r1, . . . , �rm) = f m �(1 + θ )�(m)

�(m + θ )
. (10)

Here � is the � function and the nonuniversal quantity f
appears as a prefactor. Thus, f can be eliminated by taking
appropriate ratios Pk1

m1
/Pk2

m2
for m1k1 = m2k2, leading to uni-

versal quantities which distinguish the two symmetry classes
[42].

We propose a way to measure the probabilities Pm directly
by generalizing existing ancilla schemes [26,90]. Since P2 is
simply the large-separation limit r → ∞ of the two-point wa-
termelon correlator G2(r), it may be measured via the protocol
described earlier in Sec. III J. For higher-order quantities Pm,
we use m ancillae to insert marked loops at all m points in
space-time, as depicted in Fig. 12. Once again we evolve the
circuit to late times and then measure all bulk Majoranas,

leaving open loops only terminating on the ancillae. The mu-
tual information between groups of ancillae counts precisely
the probability that the space-time points where we measured
the bulk and ancilla had been along the same loop, so a
quantity like P3 amounts to requiring I2(A, B) = I2(B,C) =
I2(C, A) = 1. In practice this can be obtained by comparing
the magnitude of I2(A, B) before and after tracing out ancilla
C, where the latter case simply reduces to P2. Here we con-
sider such a scheme with four points �ri at separations on the
order of Ly and measure P2, P3, and P4 to obtain the following
ratios:

P2
2

P4
= �(1 + θ )�(4 + θ )

6�(2 + θ )2
=

{
1, θ = 1
35
36 , θ = 1

2

,

P3
2

P2
3

= �(1 + θ )�(3 + θ )2

4�(2 + θ )3
=

{
9
8 , θ = 1
25
24 , θ = 1

2

.

Importantly, both give values which differ between the two
symmetry classes. In Fig. 12, we show that the ratios indeed
converge toward the universal value as system size is in-
creased. This then offers a practical scheme for distinguishing
between the long-loop phases which would otherwise not be
possible from the steady-state entanglement.

We note that when implementing (open) absorbing bound-
aries in space-time, any macroscopic loop will be cut into
an extensive number of individual open loops. Then the loop
length distribution matches the first passage time distribution
for a random walk in one spatial dimension with absorbing
boundaries

Pbulk(�) ∼ PFP(�) ∼ �−5/2e−α�
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with α−1 ∼ LxLy. In Fig. 34 (see Appendix), we verify this
expected scaling for open loops in the metallic phase of both
symmetry classes.

3. Analytical entanglement scaling and phase boundaries
from the diffusion picture

Viewing the dynamics in the metallic phase as Majorana
world lines undergoing Brownian motion in space-time allows
us to establish a direct link between (i) the nonlinear sigma
model in Eq. (4), (ii) the entanglement entropy, and (iii) for
class BDI, the microscopic measurement probabilities. Note
that the latter enables accurate analytical predictions, for
symmetry class BDI, for the entanglement scaling and the
location of the transition line between the metallic and the
localized phases for arbitrary geometries.

We start by considering loop end points undergoing Brow-
nian motion in space-time with an effective diffusion constant
D at large wavelengths. The entanglement entropy at a fixed
time t = T is then determined from open arcs terminating
at the temporal boundary. Designating one of the arc end
points as the “start,” we may view the arc as the path of a
random walker which starts near and eventually terminates on
an absorbing boundary at t = T . Then the total bulk length
of the arc is equivalent to the first passage time τ of the
random walker.5 The distribution of first passage times for
one absorbing boundary in three dimensions is known to be

PFP(τ ) ≈
√

2
π
τ−3/2. During this time, both end points un-

dergo Brownian motion in the two-dimensional spatial plane,
yielding a distribution for the distances between end points
P2D(r, τ ) ≈ 2r

Dτ
e−r2/Dτ . Averaging with respect to the time τ ,

yields the expected distribution of spatial displacements

Psurf(r) =
∫

dτ PFP(τ )P2D(r, τ ) =
√

2D/r2

with r2 = �2
x + �2

y . The entanglement entropy along a cut de-
pends on the distribution of loop lengths projected along a
fixed axis. For isotropic Brownian motion in space, this gives

Px
surf(�x ) = 4

∫ ∞

0
d�y

Psurf(r)

2πr
= 2

√
2D

π�2
x

.

From this distribution we infer that the logarithmic entan-
glement scaling has coefficient c̃x = 6

√
2Dπ . Varying the

relative measurement probabilities of different bonds will
generally introduce some anisotropy to the Brownian motion
such that Dx �= Dy and c̃α ∝ √

Dα . This scaling of the log-
arithmic entanglement proportional to the square root of the
diffusion constant appears also in monitored fermion systems
with unitary dynamics [9,91] and is seemingly generic for
measurement-induced fermion liquid-type phases.

The effective diffusion constant D emerges at long wave-
lengths from the renormalization group (RG) flow of the

5More precisely, the movement of the loop end point along the
temporal direction should be viewed as a persistent random walk,
where the direction of propagation is reflected whenever the Majo-
rana is involved in a measurement. This yields a mild correction to
the timescales but does not alter the universality.

NLσM in Eq. (4). The NLσM is a single-parameter theory,
initialized with the microscopic short-distance diffusion con-
stant Dmic, which depends on the lattice geometry. The RG
flow only depends on the fugacity n, the symmetry class and
the dimensionality d . For n = 1 and d = 3, each symmetry
class thus has a one-to-one correspondence Dmic ↔ D. For bi-
partite lattices, i.e., for class BDI, the random walker is always
on the same sublattice after two steps and the microscopic
diffusion constant is readily inferred from the measurement
probabilities. Consider the measurement-only Kitaev circuit,
where bonds are measured with probabilities Kx + Ky + Kz =
1. The diffusion constants may be estimated by considering
the mean-squared displacement of a random walker with jump
rates set by Kα and bonds of unit length. Setting Dz

mic as the
diffusion constant for the direction parallel to the ZZ bonds
and D⊥

mic as the diffusion constant perpendicular to it yields

Dz
mic = 9

8 Kz(Kx + Ky) , D⊥
mic = 1

6

(
2Dz

mic + 9KxKy
)
,

Dmic = 1
2

(
Dz

mic + D⊥
mic

) = 3
4 (KxKy + KxKz + KyKz ) .

The total diffusion constant Dmic is invariant under continuous
rotation of Kx/y/z with respect to the isotropic point—this
explains the circular symmetry of both the metallic phase and
its phase boundary, as numerically found in Refs. [16–18].

We emphasize two particular regimes: (i) In the vicinity of
the isotropic point Kα = 1/3, i.e., deep in the metallic phase,
we expect the RG flow corrections to D to be weak. Thus
setting D = Dmic proves to be a good approximation in the
vicinity of the isotropic point; see Fig. 13(a). Since under RG,
the diffusion constant will generally flow towards a smaller
value, Dmic at the isotropic point serves as an upper bound for
the average entanglement growth in each direction D � 1/4.
(ii) In the vicinity of the critical line marking the transition
between the metallic and the localized phase, the renormal-
ization of Dmic is strong and Dmic 	 D. Nevertheless, the
one-to-one correspondence Dmic ↔ D6 allows us to extract
the position of the critical line for any bipartite geometry. At
Kx = Ky = 1

2 and Kz = 0, the location of the critical point
is exactly known: The system decouples into disconnected
one-dimensional strings each of which displays percolation
critical behavior [26]. Using this point as an estimate for the
critical value Dmic,c provides

critical diffusion constant: Dmic,c = 3
16 . (11)

For the Kitaev honeycomb lattice, this yields a circular con-
tour in parameter space [see Fig. 13(b)] which coincides
exceptionally well with numerical estimates for the entan-
glement transition. To further underpin the strength of the
diffusion picture, we provide the numerically obtained phase
diagram for the measurement-only Kekulé-Kitaev geometry
illustrated in Fig. 2(b). This system also belongs to sym-
metry class BDI but its phase diagram exhibits a different
shape of the critical line as displayed in Fig. 13(c). Us-
ing Eq. (11) again provides a rather accurate estimate for
its phase boundary based on a calculation of the diffusion
constant as Dmic = 3

8 [KgKr (2 − 3KgKr ) + Kb(Kg + Kr )(2 +

6Neglecting the effect of anisotropy in the microscopic values.
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FIG. 13. Effective diffusion constant for the critical phase of
the measurement-only Kitaev model. (a) A comparison of the ef-
fective diffusion constant D extracted from the distribution Psurf(�)
(blue) and the microscopic diffusion constant Dmic (orange), com-
puted along the line Kx = Ky = 1

2 (1 − Kz ). At the transition, D
vanishes, while the microscopic Dmic crosses the threshold value
Dmic,c = 3

16 . The vertical dashed lines mark the critical measurement
probability Kc found by finite-size scaling in Fig. 15 (blue) and by
Dmic (orange). Rescaling by the numerically obtained fraction 1 − ρ

of volume available to the Brownian walkers brings Dmic(1 − ρ )
(brown) and D closely in line with one another. Phase diagrams for
the measurement-only (b) Kitaev and (c) Kekulé-Kitaev models. We
show a direct comparison of the phase boundary determined via the
microscopic diffusion constant Dmic = Dmic,c (solid colors) and via
scaling collapse of the spanning number (black crosses).

KgKr ) − 3K2
b (K2

g − KgKr + K2
r )], where again we have con-

sidered the mean-squared displacement of a random walker
after two steps along lattice edges, averaging over starting
points in the unit cell.

Last, let us discuss a more rigorous approximation scheme
for the entanglement entropy. We note that even deep in the
metallic phase, the microscopic diffusion constant Dmic is
larger than D determined from the entanglement scaling by
a factor of approximately 3/2. This difference reflects the
fact that the microscopic calculation treated the loop end
points as noninteracting Brownian walkers. In actuality, due
to the Pauli principle, the loops are constrained to not overlap
with themselves or one another, corresponding to an effective
excluded volume. To account for this, consider the role of a
nonzero density ρ of closed loops in the bulk of space-time.
These act as obstructions to the Brownian motion of open arc
end points, suppressing diffusion. At leading order, this may
be treated as a uniform probability ρ that at any step the ran-
dom walker remains in place, sending D → D(1 − ρ). The
density ρ is hard to extract analytically but easily accessible
numerically. We find that the fraction ρ varies continuously
from ρ ≈ 1/3 at the isotropic point to ρ = 1 in the area-law
phase. In Fig. 13(a), we show that the rescaled microscopic
diffusion coefficient Dmic(1 − ρ) better matches the fitted D,

reproducing the magnitude deep in the metallic phase and
going to zero continuously at the transition. Thus, accounting
for the excluded volume effect accurately captures the inter-
actions neglected in Dmic. Alternatively we might arrive at
the same correction by considering a self-avoiding walk on a
lattice with coordination number z and connectivity constant
μ. Here the quantity 1 − ρ corresponds to the ratio μ/z, which
falls in the range μ/z ∈ [1.2, 1.5] for various 3D lattices [92].

The direct relation between the entanglement scaling, i.e.,
the prefactor c̃ of the metallic L log(L) term, and the effective
diffusion constant D at distance L allows us to numerically
track the RG flow of D from its microscopic starting point
Dmic towards its asymptotic value as illustrated in Fig. 13(a)
for linear system sizes L = 16, 64, 1024. This is remarkable,
since in d = 3 dimensions, the NLσM is no longer pertur-
batively controlled and the RG flow of D is not accessible
analytically. We emphasize the connection between c̃, the
diffusion constant for Brownian motion of loops, and their
relation to the logarithmic entanglement scaling found in
weakly disordered Fermi liquids. In the ground state of a dis-
ordered metal with disorder strength γ , the diffusion constant
is related to the Fermi velocity vF and the disorder by D ∼
v2

F /γ , implying c̃ ∼ vF /
√

γ . Indeed, such proportionality is
expected from calculations of the entanglement entropy from
a Fermi surface [34–37].

B. Quantum Lifshitz criticality and universal scaling behavior
at the entanglement transition

In both symmetry classes, the Majorana liquid and local-
ized phases are separated by a critical line exhibiting quantum
Lifshitz scaling of the entanglement entropy. At this critical
line, the effective diffusion constant vanishes, resulting in an
area law for the entanglement entropy. The distribution of Ma-
jorana loop lengths, however, is not yet localized but displays
universal algebraic scaling behavior that clearly differentiates
the two symmetry classes. This unique combination of univer-
sal algebraic scaling and the area law leads to the distinctive
subleading entanglement scaling characteristic for quantum
Lifshitz criticality.

In the Kitaev honeycomb model for symmetry class BDI,
the critical line is reached by tuning the probabilities Kα .
Quantum Lifshitz scaling is observed, except at the three
points where one of the Kα = 0, reducing the model to
an array of one-dimensional chains. For class D, we set
the next-nearest-neighbor bond measurement probabilities to
Jx = Jy = Jz = J and tune J, Kα through the critical regions.
For J > 0, quantum Lifshitz scaling is generally present.

1. Quantum Lifshitz entanglement and surface loops

The entanglement entropy in the loop framework is com-
puted from Eq. (5). At a genuine two-dimensional transition
we observe an algebraic decay of surface loop lengths,
Psurf(�) ∝ �−γsurf . Away from the percolation points with one
Kα = 0, we find that γsurf ≈ 3, shown in Fig. 14(a). This is
faster than in the Majorana liquid phase, where γsurf = 2 leads
to an L log(L) − growth. As a result, the transition exhibits a
subsystem dependence of the entanglement entropy S(�, L) =
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FIG. 14. Quantum Lifshitz criticality from surface loops. (a) Sur-
face loop length distribution at the critical point along the line py =
pz = (1 − px )/2 for the orientable (red) and nonorientable (blue)
loop models. The dashed black line reflects an asymptotic scaling
Psurf(�) ∼ �−3. (b) Data collapse of the subsystem entanglement en-
tropy S(�) onto a single curve described by the Lifshitz scaling
function J (l/L) of Eq. (12). In both panels we show data for linear
system sizes L = 64, 128, 256, 512, 1024.

aL + bJ (�/L). Here J (u) is the “Lifshitz” scaling function7

J (u) = log

(
θ3(iλu)θ3(iλ(1 − u))

η(2iu)η(2i(1 − u))

)
, (12)

where θ3 is the Jacobi theta function, η is the Dedekind eta
function, and λ is a fitting parameter [20,22]. In Fig. 14(b)
we show the collapse of the entanglement data onto a curve
accurately described by this Lifshitz scaling function. For both
symmetry classes, we find λ = 3.4 ± 0.1 for cuts along either
direction of the system.

Although derived initially for a quantum Lifshitz model
[20], this torus entanglement scaling has been observed in
a variety of (2 + 1)-dimensional CFTs [23,24]. Notably, the
Rényi entropy takes precisely the form of Eq. (12) also for
quantum dimer models and resonating valence bond states
[21,22]. Given the close link between models of dimers, loops,
and height fields [20,28,93–96], one may expect that this
entanglement scaling ought to extend also to the case of loops
with fugacity n = 1 (relevant to the quantum circuits at hand).
Indeed, higher fugacity loop models have been employed in
numerical studies to verify the Lifshitz scaling of entangle-
ment in quantum magnets [23,97]. Similarly, the bond-length
distribution in the antiferromagnetic Heisenberg model on the
square lattice exhibits the same scaling exponent as Psurf(�)
in our circuit model [98]. We note here that quantum Lif-
shitz scaling is compatible with the simultaneous presence of

7For unit aspect ratio of the spatiotemporal volume.

TABLE III. Critical point and correlation length exponent from
the spanning number in Fig. 15.

Symmetry BDI (orientable) D (nonorientable)

Kc 0.6523817 ± 0.0000021 0.7324564 ± 0.0000015
ν 0.9987 ± 0.0007 0.9403 ± 0.0006

conformal symmetry and an area law of the entanglement in
(2 + 1) dimensions. It is remarkable that this entanglement
scaling, though apparently quite universal, has been reported
previously only in the context of interacting circuits [18,64].
For fermion-parity symmetric circuits, the mapping to an
interacting dimer model suggests that Lifshitz entanglement
scaling is quite generic. More broadly, requiring conformal
invariance at the entanglement transition imposes strict con-
straints such that one might generically expect scaling of the
form Eq. (12) except at fine-tuned points.

2. Correlation length exponent ν

To accurately determine the critical point Kc and the cor-
relation length exponent ν, we consider the spanning number
ns for fixed aspect ratios Lx = 2Ly (i.e., Lx × Lx plaquettes)
and circuit depth t = Ly. We then perform a finite-size scal-
ing (FSS) analysis using an ansatz generically of the form
in Eq. (6) and a cubic B-spline to fit the scaling function.
Moreover, by taking sufficiently large system sizes and a
narrow window around the critical point, we find that any
irrelevant scaling variables may be dropped from the ansatz.
In Fig. 15 we show the resulting data collapse for the tran-
sition in (i) the (orientable) honeycomb Kitaev circuit along
the line Kx = Ky = (1 − Kz )/2 and (ii) the (nonorientable)
honeycomb Kitaev circuit with next-nearest-neighbor parity
checks along Kx = Ky = J = (1 − Kz )/3.

The results are summarized in Table III. We find consistent
values of ν in both symmetry classes for several other lattice
geometries (see Appendix C). These results thereby high-
light that the entanglement transitions in (2 + 1)-dimensional
measurement-only Majorana circuits have distinct universal-
ity depending on the presence or absence of orientability, i.e.,
depending on the symmetry class. We fix the critical points Kc

at the values reported here and use them in all further analysis.

3. Fisher exponent τ

At the transition and throughout the extended critical
phase, the bulk loop length distribution is expected to follow
a power law Pbulk(�) ∝ �−τ , where the Fisher exponent τ

is related to the fractal dimension d f via the hyperscaling
relation τ = (d/d f ) + 1. In the extended critical phase, the
Brownian nature of the loops yields d f = 2 and thus τ = 5/2.
By contrast, a mean-field analysis [30,99–101] predicts η = 0,
corresponding to d f = 5/2 and τ = 11/5 at the transition.
Tuning to the critical point determined from FSS of the span-
ning number, we obtain the exponent τ by fitting a power
law to the bulk loop length distribution Pbulk(�). The result
is provided in Table IV.

These results deviate very slightly from previous numeri-
cal studies on 3D classical loop models, where hyperscaling
gave τ = 2.184 ± 0.003 for the orientable case [38] and τ =

224301-20



ENTANGLEMENT DYNAMICS IN MONITORED KITAEV … PHYSICAL REVIEW B 111, 224301 (2025)

FIG. 15. Correlation length exponent from spanning number.
Data shown are for the honeycomb Kitaev circuit. Row (a) cor-
responds to symmetry class BDI with orientable loops and (b) to
class D with broken orientability. We take K = Kx in both
cases, while Ky = Kz = (1 − K )/2 in (a) and Ky = Kz = J = (1 −
K )/3 in (b). Top panels: Scaling collapse of the spanning num-
ber in the vicinity of the transition, with scaling variable K̃
as defined in Eq. (6). Data shown are for linear system sizes
L = 128, 256, 512, 1024, 2048, 4096 with up to N = 2L2 = 225 ≈
3.35 × 107 qubits. The inset shows the unscaled data close to the
critical point. Bottom panels: Error estimation of critical exponent ν

for the nonorientable and orientable loop model. Keeping all other
scaling coefficients fixed we vary the estimate for the critical point
Kc and correlation length exponent ν and evaluate the cost function.
The heatmap then shows the normalized cost function χ2/χ 2

∗ for the
FSS analysis of the spanning number shown in the top panels, stars
mark the minima (K∗

c , ν∗). The colormap has been truncated at four
times the minimum cost to give a visual estimate for the uncertainty
in K∗

c and ν∗. The error value has been estimated from the χ 2
∗ + 4

contour. The optimization was performed on system sizes L � 256
for K̃ ∈ (−6, 6), K̃ ∈ (−7, 7) for the orientable and nonorientable
case, respectively. In both cases, the final cost function divided
by the number of degrees of freedom is sufficiently close to one
|χ 2

r − 1| < 0.025, indicating a good fit.

2.178 ± 0.002 for the nonorientable case. In both symmetry
classes, the decay of Pbulk(�) is slower than expected for
τ = 11/5, indicative of small but finite renormalization due to
fluctuations beyond the mean-field prediction. However, the
difference in τ between the two symmetry classes is rather

TABLE IV. Fisher exponent and fractal dimension from Fig. 16.

Symmetry BDI (orientable) D (nonorientable)

τ 2.1819 ± 0.0005 2.1875 ± 0.0005
df 2.5383 ± 0.0011 2.5263 ± 0.0011

FIG. 16. Fisher exponent at the critical point. Shown is the
power-law scaling of the bulk length distribution for closed loops
Pbulk(�) at the transition with circuit depth t = 4Ly. Data are shown
for linear dimension Ly = 32, 64, 128, 256, 512, 1024. We fix K =
Kc known from the spanning number collapse in Fig. 15. The black
dashed line marks the power law found by fitting Pbulk(�) ∼ �−τ to
all data in the scaling regime 105/2 � � � 10−2L3. In both symmetry
classes, the resulting Fisher exponent τ deviates clearly from the
mean-field value τ = 11/5.

subtle, making it challenging to distinguish them even at the
large system sizes accessible in the loop framework.

Finally, we note that a direct observation of the Fisher
exponent τ might be practically infeasible as it would require
access to the bulk lengths of loops in space-time. As an
alternative, it might be far more practical to employ ancilla
probes [26,90] to instead extract the anomalous dimension η,
from which we may determine τ via hyperscaling relations;
see below.

4. Anomalous dimension η

The anomalous dimension η can be determined by exam-
ining the finite-size scaling behavior of the total length of
spanning loops M,

ML−(5−η)/2 = f (L1/ν (K − Kc)).

Moreover, this provides a second, independent estimate of
the correlation length exponent ν. In Fig. 17, we show the
scaling collapse of M in both symmetry classes. The results
are displayed in Table V. We note that the estimates for ν

obtained in this finite-size scaling analysis are independent
of the values extracted from the spanning number collapse,
Table III. Both approaches yield almost perfect agreement,
which is a strong internal consistency check of our numerical
approach.

An alternative way to obtain an estimate for the anomalous
dimension η is to probe the two-leg watermelon correlator
G2(r). At the transition, this correlator decays algebraically
with the distance r, G2(r) ∝ r−(1+η). Analogously to the cor-
relators Pn discussed in Fig. 12 which we considered earlier,
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FIG. 17. Anomalous dimension. Scaling collapse of the quantitiy
M/L(5−η)/2 as a function of x = (K − Kc )L1/ν for the orientable
(a) and nonorientable (b) circuit. Data shown are for linear sys-
tem sizes L = 128, 256, 512, 1024, 2048. To avoid the need for
higher-order terms in the finite-size scaling ansatz, optimization
was restricted to x ∈ (−1, 2) and x ∈ (−2, 2) for the orientable and
nonorientable case respectively, L � 256. Also here the cost function
per degree of freedom is close to one, |χ2

r − 1| < 0.05.

G2(r) can be measured in an experiment by using an ancilla
scheme: G2(r) is the average mutual information between two
ancillae that were entangled with the circuit at space-time
points separated by a distance r.

Here one would entangle ancillae at identical spatial posi-
tions but at times t1, t2 such that r = |t1 − t2|. Then, for a fixed
system size, the scaling of G2(r) can be studied by simply
varying the temporal separation (i.e., the circuit depth). As
shown in Fig. 18(a), we observe a power-law decay of the
watermelon correlator with respect to the space-time separa-
tion that allows one to extract the anomalous dimension for
both symmetry classes, displayed in Table V. We note that
this approach is highly sensitive to subleading corrections and
small deviations from the exact local of the critical point. We
consider it thus generally less accurate to extract η in this
manner.

5. Order parameter exponent β

In the loop framework, the Majorana liquid phase acquires
a nonzero ferromagnetic-type order parameter, represented by
the probability that two infinitely far separated space-time
coordinates are connected by a single closed loop, i.e., P2 ∼
|K − Kc|2β . The critical exponent β associated to this order
parameter can be detected in an ancilla scheme similar to that
in Fig. 12. In practice, for systems of linear dimension L,
one measures G2(r) for large space-time separations r ∼ L.
This introduces a subleading correction G2(r) = Ar−x2 + P2,
where x2 = 2 for Brownian loops [30,101]. For even moderate

TABLE V. Anomalous dimension. Top rows: anomalous dimen-
sion η and correlation length exponent ν from the spanning lengths
in Fig. 17. Bottom row: Anomalous dimension η, obtained in an
alternative way from the watermelon correlators in Fig. 18.

Symmetry BDI (orientable) D (nonorientable)

ν 1.002 ± 0.002 0.942 ± 0.004
η −0.084 ± 0.004 −0.066 ± 0.007
η (alt) −0.073 ± 0.007 −0.066 ± 0.009

FIG. 18. Watermelon correlator. (a) Scaling of the two-leg wa-
termelon correlator G2(r) at the critical point for the orientable
(red) and nonorientable (blue) circuit. The separation r is varied by
increasing the circuit depth t between the two points where ancillae
couple to the bulk. Data here and in (b) are shown for system
sizes L = 32, 64, 128, 256, 512, 1024. The black dashed lines show
a regime of power-law scaling t−(1+η), from which we find η =
−0.073 ± 0.007 for the orientable class and η = −0.066 ± 0.009
for the nonorientable class. (b) Scaling collapse of the two-leg wa-
termelon correlator G2(K, r) at macroscopic distances r ∼ L. The
rescaled correlator G2(K, L)L2β/ν is a smooth function of the scaling
variable K̃ defined in Eq. (13). The critical point Kc and critical ex-
ponent ν are fixed using the results from FSS of the spanning number
in Fig. 15. We find order parameter exponent β = 0.460 ± 0.001 in
the orientable circuit and β = 0.441 ± 0.001 in the nonorientable
circuit.

system sizes L, this subleading correction becomes negligible.
We may then treat finite-size effects for G2 similarly to those
for the order parameter in percolation,

G2(r ∼ L, K ) = L−2β/ν f (K̃ ),

K̃ = (K − Kc)L1/ν[1 + A(K − Kc)]. (13)

In the liquid phase, this scaling function reduces to the simpler
form G2(r ∼ L, K ) ∝ |Kc − K|2β on distances L much larger
than the correlation length ξ .

We determine β by fitting the ansatz in Eq. (13) to the data
in a narrow window enclosing the critical point. In order to
avoid systematic drift in the fitted exponents, we fix ν and Kc

at the values found previously from examining the spanning
number. The resulting scaling collapse is shown in Fig. 18(b).
This yields accurate estimates of the critical exponent β from
the ancilla scheme which clearly distinguish both symmetry
classes and which are summarized in Table VI.

TABLE VI. Order parameter exponent from the watermelon cor-
relator of Fig. 18.

Symmetry BDI (orientable) D (nonorientable)

β 0.460 ± 0.001 0.441 ± 0.001
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TABLE VII. Hyperscaling relations and corresponding alterna-
tive estimates of critical exponents.

Hyperscaling relation BDI (orientable) D (nonorientable)

η = 5 − 6
τ−1 −0.0766 ± 0.0021 −0.0526 ± 0.0021

β = ν(η + 1)/2 0.4590 ± 0.0020 0.4400 ± 0.0040

β = 3ν(τ − 2)/(τ − 1) 0.4611 ± 0.0013 0.4454 ± 0.0012

6. Hyperscaling and discussion

Having obtained several independent estimates of various
critical exponents, we now examine their consistency with one
another via hyperscaling relations. We further comment on the
reliability of the different approaches for determining critical
exponents and justify the choice of values reported in Table II.

Given the Fisher exponent τ , the anomalous dimension
is given by the scaling relation η = 5 − 6

τ−1 . The resulting
values are given in Table VII. For class BDI, scaling gives a
value of η which lies between the two estimates determined
earlier in Table V. In symmetry class D, scaling suggests
a slightly smaller but not inconsistent magnitude of η than
previously found. The anomalous dimension η is notoriously
difficult to determine directly, even for the large system sizes
accessible with our loop model simulations. Computing η

via the hyperscaling relation is highly susceptible to small
deviations in the Fisher exponent τ and thus even smallest
uncertainties in the critical point Kc. By contrast, determining
η directly via FSS of M leaves Kc as a fitting parameter and
is generally found to be more robust. This is supported not
only by the near perfect scaling collapse shown in Fig. 17
but also by the close agreement with the value of ν found by
FSS of the spanning number. As such we opted to report the
corresponding value of η in Table II.

Hyperscaling allows for two alternative ways of estimating
the order parameter exponent β: (i) given exponents η and ν

from the FSS of M, one finds β = ν(η + 1)/2, and (ii) using
the correlation length exponent ν and Fisher exponent τ from
the FSS of M and Pbulk(�), one finds β = 3ν(τ − 2)/(τ − 1).
We find that both approaches give values consistent with one
another and clearly distinct in the two symmetry classes.
Moreover, hyperscaling gives values of β which are in very
good agreement with those found from the FSS analysis of
the watermelon correlator G2(r, K ) (see Table VI). For con-
sistency we also report β as determined by the hyperscaling
relation β = ν(η + 1)/2 in Table II.

Last, let us comment on how the exponents we determine
here compare with previous numerical studies. The orientable
loop model was studied previously in Ref. [38]. Our results for
the measurement-only Kitaev model yields critical exponents
perfectly consistent with these earlier results (see Table II),
confirming the universality of the entanglement transition.
With our loop model simulations alloing us to reach appre-
ciably larger system sizes (by two orders of magnitude) we
are able to refine the estimated critical exponents to greater
precision.

By contrast, the nonorientable loop model was studied
only relatively recently in Ref. [39]. Unlike the orientable
case, the critical exponents we report for this symmetry class

seem to differ appreciably from these previous estimates. In
particular, whereas we find ν = 0.9403 ± 0.0006, Ref. [39]
suggested a smaller value ν = 0.918 ± 0.005. This in turn
leads to a systematic difference in all other critical exponents
found by hyperscaling relations or FSS which involves ν.8 To
reconcile this apparent discrepancy, we have simulated two
alternative circuit/lattice geometries, including the L-lattice
studied in Ref. [39], which has allowed us to track down its
source: In our approach we have expanded the FSS ansatz by
nonlinear terms, which we find to give superior data collapses
over wider parameter ranges and system sizes. As discussed
in Appendix C, this also allows us to smoothly interpolate
between our estimates and the ones found in Ref. [39] as a
function of (i) the range of included system sizes, (ii) the
choice of scaling variable, and (iii) the density of spline points.
This leads to conclude that an improved FSS ansatz for the
numerical finite-size data of Ref. [39] would give a somewhat
higher estimate of the critical exponent ν, perfectly consistent
with what we report here.

Despite the discrepancy with earlier works, there is strong
reason to believe that the critical exponent values we report
here represent the most accurate and precise determination
for this symmetry class to date. Our numerical simulations
reach system sizes which are much larger than previously
studied, enabling greater control over subleading corrections
in the FSS analysis. This is further bolstered by the in-
ternal consistency between the two independent approaches
for estimating ν. In Appendix C we further demonstrate the
universality of ν ≈ 0.94 by examining two additional lat-
tice geometries, namely the measurement-only Yao-Kivelson
model and Cardy’s 3D L-lattice.

C. Simulation setup

Let us close this section by highlighting the benefits of the
loop model representation in numerical simulations. In short,
the loop model representation allows for a substantially more
efficient numerical simulation of Majorana circuits [26,40]
reaching system sizes of up to 108 qubits far exceeding those
accessible via standard Clifford circuit methods (employed
and discussed in the next section). To understand this effi-
ciency gain of about two orders of magnitude in number of
simulated qubits remember that, in the tableau representation
of conventional Clifford simulations, an N qubit stabilizer
state requires O(N2) memory, and each Clifford operation
(e.g., a measurement) requires O(N2) time. By contrast, in the
loop model representation, the loop connectivity compactly

8For instance, consider the anomalous dimension η as found by
FSS of M. From the RG flow [99], one expects that ν−1 − 2 + η is
a constant. Thus, a small error in the fitted value of ν is compensated
by a corresponding shift in η. For �(ν−1) = (0.9403−1 − 0.918−1),
one finds �η = 0.026, almost precisely matching the difference in
reported values of η. Since the fractal dimension was determined in
Ref. [39] via the scaling relation df = (5 − η)/2, we find that the
discrepancy in df can also be accounted for using a similar reasoning.
Finally, the assumption that ν−1 + η is constant in tandem with the
scaling relation β = ν(1 + η) allows one to show that �β = �ν =
0.0223, consistent with the values reported in Table II.
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encodes the state in only O(N ) space and can be updated after
a measurement in O(1) time.

This substantial computational advantage of the loop
model representation is further enhanced by noting that a
circuit of depth t acts as a transfer matrix on the loop connec-
tivity. Two such depth t circuits can be efficiently composed
in time O(N ), yielding a new circuit of depth 2t . The loop
model simulations are then carried out as follows: We begin
by preparing a “pool” of Np shallow circuits of depth t = 1.
In particular, we measure N bonds from the Majorana honey-
comb lattice chosen at random with relative probabilities Kα

for nearest-neighbor bonds and J for next-nearest-neighbor
bonds. Then all trajectories are evolved to depth T by log2(T )
rounds of concatenation. When concatenating, the circuits are
randomly translated with respect to one another in order to
enlarge the accessible configuration space as well as to reduce
spurious correlations arising from finite Np. From this pool, Ns

independent sample trajectories are drawn by choosing two
random elements, translating them with respect to one an-
other, and concatenating. Due to self-averaging of the random
measurement patterns in each layer for large system sizes,
random translations before concatenation allow one to take
Ns 	 Np.9

For each such sample, quantities such as the entanglement
entropy and the spanning number may be directly computed
from the loop connectivity after imposing appropriate bound-
ary conditions at the temporal boundaries. Moreover, for PBC,
the entanglement entropy averaged over all cuts can be effi-
ciently computed in one O(N ) shot. By contrast, computing
entanglement entropy in the tableau (Clifford) representation
requires O(N3) time for each subsystem, making it far more
costly. To probe bulk loop statistics, we track not only the loop
connectivity but also the total length of each loop, storing the
lengths of closed loops in a histogram during the evolution.

Our simulations are completely based on self-implemented
loop model codes (as opposed to codes using highly op-
timized open-source community packages as in the case
of the Clifford simulations; see next section). These codes
are run on national high-performance computing resources,
specifically the AMD EPYC (v3 Milan)-based Noctua2 clus-
ter at the Paderborn Center for Parallel Computing (PC2),
the AMD EPYC (v4 Genoa)-based RAMSES cluster at
RRZK/University of Cologne, and the Intel XEON Platinum
8168-based JUWELS cluster at FZ Julich. Limited by the
amount of system memory available, we initialize pool sizes
between 120 (L = 128) and 20 (L = 4096) and generate 105

samples from a given configuration pool. Depending on the
system size, we generate between 50 and 100 independent
pools. Let us provide an example of the resulting computa-
tional cost: At each set of parameters in Fig. 15, generating
106 samples consumes 3 core-hours at L = 128 and 1000
core-hours at L = 4096. For both systems, across all system
sizes and 100 different parameters, a budget of less than
200 000 core-hours was sufficient to generate the data shown

9Each transfer matrix layer corresponds to a random spatial ar-
rangement of measured and unmeasured XX , YY , and ZZ bonds.
These are sampled independently and randomly for each layer, and
their statistics become self-averaging in the large-L limit.

in Fig. 15. Using a budget of about 2000 core-hours per data
point, this has allowed us to simulate system sizes up to
N ∼ 108 qubits in the loop representation (versus N ∼ 104 in
the Clifford tableau representation). An important technical
detail is that our loop model code is highly parallelizable
and limited in performance primarily by memory bandwidth,
inviting GPU acceleration in future simulations.

V. CLIFFORD SIMULATIONS

In this final section, we provide numerical results from
conventional Clifford simulations relying on stabilizer tableau
algebra. Such simulations often serve as a starting point for
a quick exploration of entanglement phase diagrams before
indulging in more complex numerical simulations (such as
the loop model numerics discussed in the previous section)
or analytical considerations. It is the purpose of this sec-
tion to demonstrate what kind of qualitative and quantitative
insight can already be afforded when performing such Clif-
ford simulations using state-of-the-art codes [32,33], with
which one can readily simulate systems of the order of 104

qubits. While critical exponents extracted in this framework
exhibit systematic deviations from loop model results that
cannot be attributed to statistical error alone—likely due to
unresolved subleading corrections and limitations of standard
finite-size scaling ansätze—Clifford simulations nonetheless
provide valuable information: They reliably reproduce quali-
tative features of entanglement phase diagrams (including the
location of critical points), offer a practical bridge to experi-
mentally relevant architectures, and serve as a diagnostic for
the magnitude of finite-size effects that may arise in near-term
quantum simulations.

A. Phase diagrams from tripartite mutual information

One particularly powerful observable to quickly map out
the entanglement phase diagram of a given Clifford circuit is
the tripartite mutual information

I3(A : B : C) = I2(A : B) + I2(A : C) − I2(A : BC)

= SA + SB + SC − SAB − SBC − SAC + SABC,

where the subregions A, . . . , D are equal partitions of the
torus on which the lattice is defined. Already for a fixed,
finite linear system size, this observable allows to distinguish
the entanglement structure of the localized and liquid phases,
for which is assumes values [16–18] of I3(A : B : C) = +1
(localized) and I3(A : B : C) = −1 (liquid), respectively. As
we show in Fig. 19 for the original honeycomb Kitaev circuit
and its Kekulé variant, a heat map-style visualization of I3

readily maps out the entanglement phase diagram already with
reasonable accuracy (even though the critical point does not
necessarily coincide with I3 = 0)—compare, e.g., with the
phase diagrams in the overview of Fig. 2.

A more precise quantitative estimate of the phase bound-
aries can be obtained via a finite-size scaling analysis of the
tripartite mutual information, which exhibits an easy-to-locate
crossing point for different system sizes at the phase transition
K = Kc. Performing a finite-size data collapse as shown in
Fig. 20 one can further extract the correlation length exponent,
though with far less accuracy as what is achievable with the
loop model framework discussed in the previous section. The
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FIG. 19. Tripartite mutual information heat maps. The tripartite
mutual information I3 for (a) the Kitaev and (b) Kekule circuits at
linear system size L = 48 is shown as a contour plot. The location
of critical points extracted from scaling collapses overlay as black
crosses (same as Fig. 13). The data are averaged over 96 disorder
realizations with 100 samples each and was obtained for 211 points
in parameter space Kx � Ky � Kz, with the rest obtained via π/6
rotations. The critical points align well with the visually apparent
phase boundaries, establishing this kind of visual analysis as a viable
method when exploring new circuits.

numerical results for the critical point and the correlation
length exponent are summarized in Table VIII.

We take considerable care to eliminate any biases when
determining the exponent ν, e.g., by varying fitting procedures
and parameters. Furthermore, for the results shown, we keep
both the simulation parameters (such as sample size) and
fitting procedure identical between the orientable and nonori-
entable system. This allows us to conclude—from the Clifford
data alone—that the values of the correlation length exponent
ν are clearly distinct between the two symmetry classes, even
at these small system sizes. However, the specific values do
not agree with our previous results from the loop simulations,
even within margin of error. In the Clifford simulations, there
are several limitations at play which affect the accuracy of the
extracted correlation length exponents and which are likely to
lead to this disagreement. This includes (i) strong finite-size
effects arising from the limited system sizes available in the
Clifford simulations (which are hard to overcome with the
current algorithms/numerical platforms) and (ii) a necessity
to extend the first-order scaling ansatz x = (K − Kc)L1/ν to

FIG. 20. Correlation length exponents. Scaling collapse of the
tripartite mutual information I3 calculated with the Clifford frame-
work for (a) the orientable and (b) nonorientable circuit showing data
for linear system sizes L = 24, 32, 40, 48, 56, 64, 72, 80, 96 in the
vicinity of the critical point at Kc. The fitted exponents are (a) ν =
0.96 ± 0.01 with χ 2

r = 1.39, x ∈ (0, 1) and (b) ν = 0.91 ± 0.02 with
χ 2

r = 1.46, x ∈ (0, 1), where x = (K − Kc )L1/ν . Dashed gray lines
mark x = 0 and y = 0, showing that I3 ≈ 0 at or very near to the
critical point, corroborating Fig. 19.

TABLE VIII. Critical point and correlation length exponent from
the tripartite mutual information in Fig. 20. Reported uncertainties
include the statistical error only.

Symmetry BDI (orientable) D (nonorientable)

Kc 0.6520 ± 0.0002 0.7315 ± 0.0002
ν 0.96 ± 0.01 0.91 ± 0.02

higher orders (which is not straightforward). One manifesta-
tion of these limitations is a system-size dependent drift of the
tripartite mutual information within the liquid phase, making
it impossible to properly collapse the data. The origin of this
drift can be rationalized as follows: Even deep in the liquid
phase, there is always a nonzero probability that the system
will not be long-range entangled at a given time. In essence,
a series of measurements on the K bonds can localize the
Majorana pairs and temporarily destroy long-range entangle-
ment. Alternatively, this can be phrased as a random walk in
configuration space with a small fraction of area-law states,
which vanishes in the thermodynamic limit. In taking the
average over a large number of samples, this small fraction of
localized (area-law) states then manifests itself as a small, fi-
nite offset in the tripartite information and is most pronounced
for small system sizes and more so for the orientable circuit
(due to the reduced number of paths for long-range strings).
This is indeed visible in Fig. 20, where I3 never actually
saturates to −1 (in the liquid phase). In our finite-size scal-
ing analysis we have worked around this by performing the
optimization of the fitting cost function only for data points
at K > Kc.

B. Entanglement entropy and Lifshitz criticality

Another way to explore the entanglement phase diagram of
a Kitaev circuit and to zoom in on the phase transitions is, of
course, to directly explore the entanglement structure of the
ensemble of stationary states. To this end, one might want to
look at “entanglement arcs,” i.e., the bipartite entanglement
entropy for subsystem cuts of varying size 0 � l/L � 1. This
is shown in Fig. 21 for parameter scans through the phase
diagram of the honeycomb Kitaev circuit as an example of
an orientable circuit as well as the nonorientable version with
next-nearest-neighbor parity checks. One can clearly distin-
guish the liquid region where the entanglement entropy S/L
spans an arc akin to the well-known Calabrese-Cardy result
[67,102]

S(l/L)/L = a log sin(π l/L) + b , (14)

for conformally invariant systems (red traces), versus the lo-
calized phase whose area-law scaling reveals itself as a wide
plateau of constant entanglement entropy (blue traces).

When moving towards the phase boundary within the en-
tanglement phase diagram, a close inspection of the scaling
of the bipartite entanglement entropy reveals the character-
istic shape of Lifshitz critical scaling, marked by the pink
trace in Fig. 21, which shows a clearly distinct behavior from
the “entanglement arcs” in the liquid regime and the almost
constant behavior in the localized phase. This deviation from
the liquidlike scaling is also reflected in an enlarged χ2 value
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FIG. 21. Subsystem entanglement entropy. For L = 72, we take
cuts through the phase diagrams of the orientable (top panels) and
nonorientable circuit models (bottom panels). In the former case,
we take K = Kx , Ky = Kz = (1 − K/2), while in the latter case we
take K = Kx , Ky = Kz = J = (1 − K/3). Panels (a) and (c) show the
resulting bipartite entanglement entropy S(l/L)/L, excluding con-
stant contributions. The colormap represents the value of K , with the
data corresponding to the previously determined critical point Kc (see
Table III) highlighted in purple. For each curve, we fit the data to the
entanglement arc of Eq. (14) and show the resulting fit coefficient a in
panels (b) and (d). Gray line shows the fit residual (not to scale), with
the peak indicating the qualitatively different entanglement scaling
close to the critical point. The data shown are averaged over 192
disorder realizations with 150 samples each.

of the respective fit, as shown in the right panels of Fig. 21.
Zooming in on the critical behavior and plotting the entan-
glement entropy for different system sizes in Fig. 22, we
find already for the system sizes achievable in our Clifford
simulations an indisputable signature of the Lifshitz scaling,
consistent with our discussion in the context of the loop model
simulations in Sec. IV B above.

These findings support the utility of Clifford simulations
for efficiently mapping out the entanglement phase diagram
of a given monitored circuit using relatively modest
numerical resources (e.g., through scans of the tripartite
mutual information). They also enable the extraction of qual-
itative features of phase transitions—such as distinguishing
∼L log L from Lifshitz scaling—and provide rough estimates
of critical exponents, sufficient to suggest the existence of
distinct universality classes in the models studied. A key
finding here, however, is that such critical exponents exhibit
significant finite-size effects in Clifford simulations, which,
up to system sizes of ∼20 000 qubits are not captured by
standard scaling ansätze and lead to systematic deviations
from exact universal values. This limitation, not previously
appreciated, highlights the need for caution when interpret-
ing critical behavior from Clifford data alone. At the same
time, Clifford simulations provide a crucial bridge to experi-
ments, where stabilizer circuits are readily implemented and
explored. Taken together, these aspects motivate the develop-
ment and use of more advanced numerical schemes, such as
the loop model framework, that can overcome the finite-size
limitations and yield quantitatively reliable insights.

FIG. 22. Lifshitz scaling at the phase transition. Collapse of
the entanglement entropy S(l/L) at the critical point calculated
with the Clifford framework for the nonorientable circuit model
for varying subsystem sizes l and overall linear system sizes L =
24, 32, 40, 48, 56, 64, 72. The dashed lines correspond to fits of the
data to the CFT scaling form S(l/L) = a log sin(π l/L) + b (red) and
the Lifshitz scaling form Eq. (12) (white), with the latter clearly be-
ing the better fit. The data are averaged over 384 disorder realizations
with 100 samples each. This figure is the Clifford analog to what is
shown (for much larger system sizes) in Fig. 14 for data obtained
from loop model simulations.

C. Simulation setup

Let us close also this section on Clifford simulations with
a detailed review of our numerical approach. To obtain the
stationary state as efficiently as possible, we stabilize all con-
served quantities at initial time. Depending on system size,
we take between 5 × 102 and 4 × 104 samples for each set
of parameters Kx,y,z, J , which determine the probability to
projectively measure a bond (see Fig. 2). We use a highly
efficient implementation [33] of stabilizer tableau algebra.
While it is not possible to improve on either the O(N2) scal-
ing for performing a single measurement [and thus O(N3)
per circuit layer] or the O(N3) scaling for canonicalization,
we perform several HPC optimizations to reduce memory
access, since tableau-based simulations are always bound by
memory bandwidth. This includes a hybrid parallelization
strategy based on the physical layout of the hardware used,
which in this case is a 50 × 2× AMD EPYC 9654 cluster.
Furthermore, we disregard phase information and measure-
ment outcomes—ensuring that measurements always scale
∼O(N2)—and make use of the fact that there are 3L

4 possible
partitions of the honeycomb lattice, allowing us to perform
self-averaging. Even though computing the entanglement en-
tropy of a stabilizer state always requires to canonicalize
the tableau [O(N3)], it is possible to get a slight advantage
when the only quantity of interest is the scaling of S(l/L) by
converting to the clipped gauge. While this also requires an
O(N3) operation, it allows one to extract the entanglement
entropy for all subsystem sizes in one shot. This trick, how-
ever, is of little use for the tripartite mutual information, since
it requires tracing out noncontiguous regions—which is not
possible in the clipped gauge representation. In the end, we are
able to generate high-quality data for up to 2 × 962 = 18 432
qubits, albeit at exploding computational cost. As an example,
for a sweep of 100 different parameters, generating 192 tra-
jectories with 150 samples each consumes close to 2000 core
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hours at L = 32 while generating only 96 trajectories with
5 samples each takes slightly more than half a million core
hours at L = 96—the majority of which is, however, spent on
performing canonicalization.

VI. DISCUSSION

Summarizing our main results in brief, we have investi-
gated measurement-only circuit variants of the Kitaev and
Yao-Kivelson models to elucidate that (i) such monitored
quantum circuits give rise to robust entanglement phases, i.e.,
dynamic phases of matter stable under local variations of
circuit parameters (such as measurement probabilities), (ii)
symmetry and dimensionality play a defining role in shaping
universal behavior and criticality of these phases, and (iii)
particle-hole symmetric Majorana circuits relevant to moni-
tored Kitaev models can be recast in terms of loop models
with emergent orientability constraints.

These directions build on important prior works—for ex-
ample, on the existence and robustness of entanglement
phases in monitored Kitaev circuits [16–18], on symmetry
classification in nonunitary quantum dynamics [19], and on
the connection between monitored Majorana circuits and loop
models [25,26]. Our work takes these ideas a step further
by putting them on a more quantitative and unified foot-
ing: We compare different symmetry classes within a single
framework, determine critical exponents with high precision,
and implement an explicit, scalable mapping from monitored
Clifford circuits to loop models—thus enabling large-scale
simulations and a direct identification of universality classes.
This mapping relies crucially on the emergence of free-
fermion structure in the monitored Kitaev circuits, a point we
emphasize and clarify in Sec. II.

These Majorana loop models not only provide a phys-
ical and conceptual handle on the entanglement phases,
including an interpretation in terms of loop localization
and mappings to nonlinear sigma models but also sup-
port efficient numerical simulations involving up to 108

qubits. This has allowed us to distinguish the universality
classes of orientable versus nonorientable loop models in
(2 + 1) dimensions—corresponding to symmetry classes BDI
and D—and to extract their critical exponents with high
precision.

Furthermore, our work suggests a broader perspective on
the 10-fold way classification of free fermionic wave func-
tions. The connection between orientable and nonorientable
loop models offers a unified framework for embedding both
free Majorana circuits (fugacity n = 1) and ground states of
free Majorana Hamiltonians (fugacity n = √

2) within sym-
metry classes BDI and D. This raises intriguing possibilities
for future research, such as exploring whether other symmetry
classes allow similar embeddings or investigating higher loop
fugacities, potentially realized in quantum circuits coupled to
classical dynamical agents [86]. This approach could expand
on earlier works [19] to refine the 10-fold way classification
by distinguishing universality not only by symmetry classes
but also by Hamiltonian dynamics versus monitored circuits.
Moreover, this offers a tractable handle on broader emerging

questions regarding symmetry as an organizing principle in
open quantum systems [103–106].

One unexpected discovery in our study is the pres-
ence of quantum Lifshitz scaling at the phase transition of
monitored Majorana circuits—a feature previously associated
only with interacting circuits. This finding suggests a new and
unexplored connection between loop models in (2 + 1) di-
mensions, monitored free fermions, and (2 + 1)-dimensional
conformal field theories, warranting further investigation.

There are many future directions one might pursue in
studying universal behavior in monitored quantum circuits
and measurement-only Kitaev models. This includes vari-
ations of dimensionality, such as going to higher spatial
dimensions and studying three-dimensional monitored Ki-
taev models [59,107] and, closely related, three-dimensional
Floquet codes [108], or exploring quantum systems with
arbitrary qudit dimension [109]. One might also think of gen-
eralizations of monitored Majorana systems to more general
monitored non-Abelian anyon systems, such as a monitored
Fibonacci anyons in a measurement-only variant of the golden
chain [110].

This work also raises a number of questions regard-
ing the relation between the universality of entanglement
transitions in Majorana circuits and those in more generic
(2 + 1)-dimensional Clifford circuits. Moving away from the
Gaussian limit, we obtain random quantum circuits which can
be related to a broad class of interacting loop or dimer models
and for which new strong-coupling fixed-points may emerge.
Clifford operations which are even (odd) under fermionic-
parity will preserve (break) the orientability of the loop model
[26]. Exploration of the parity-symmetric case has been ini-
tiated already in Ref. [18], where the one finds volume-law
entanglement and a correlation length exponent consistent
with the loop model in class BDI. Far from the Gaussian
limit, large-scale numerical simulation of generic (2 + 1)-
dimensional Clifford circuits give compelling evidence that
the measurement-induced transition is in the same univer-
sality class as 3D percolation [111]. However, the exponent
ν = 0.876 ± 0.004 [112–115] for 3D percolation is markedly
smaller than what we find here for nonorientable Majorana
circuits via loop simulations. As is apparent from our own
Clifford simulations in class D, finite-size effects lead to an
underestimation of ν even for the largest system sizes. It
would be of interest to better resolve whether this apparent
difference is due to finite-size effects or if perturbing away
from the Gaussian Majorana limit leads to a genuine renor-
malization of the critical exponents.

Let us close this outlook by pointing to some of the physics
awaiting us when going beyond the (random) Clifford regime
of strong, project measurements. To do so, one can con-
sider nonrandom but weak, nonprojective measurements—as
realized by moving the rotation t ∈ [0, π/4] in the unitary
entangling gates, drawn as CNOT gates in Fig. 4, away from
a perfect π/4 rotation. One crucial implication here is that
moving away from a perfect t = π/4 rotation is akin to reduc-
ing τ , the effective inverse temperature in the Kraus operator
(3) above, to a finite value. This connection between weak
measurements and finite temperature physics has been demon-
strated [116] in rigorous terms for commuting two-qubit
checks, resulting in Nishimori physics that subsequently has
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FIG. 23. Hamiltonian phase diagrams. Schematic phase dia-
grams for the Kitaev model in its (a) regular and (b) Kekulé variants,
adapted from Refs. [12] and [14].

been probed in experimental devices [117]. In the context of
the Hastings-Haah code it allows one to explore the physics of
qubit fractionalization (and intermediate phases) as one goes
out of the Clifford limit of projective measurements to weak
measurements [48]. It will be interesting to investigate such
weakly monitored Kitaev circuits in more depth in the future.
For instance, note that analogous to cooling a Hamiltonian
in equilibrium, tuning the measurement strength from weak
to strong can purify all the time-reversal-invariant plaquettes
or the product of plaquette operators, leaving a Kramers dou-
blet as a time-reversal-symmetric mixed state. Applied to the
nonorientable circuits of interest in this paper this poses an
interesting question for future research—is the spontaneous
breaking of time-reversal symmetry in such nonorientable
circuits captured by a hitherto unexplored chiral Nishimori
critical point?
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APPENDIX A: HAMILTONIAN PHASE DIAGRAMS

Here for completeness we show, in Fig. 23, a comparison
of the Hamiltonian phase diagrams of the original honeycomb
Kitaev model and the Kekulé-Kitaev model. For the isotropic
honeycomb Kitaev model, a unit-cell consists of two spin
sites, and in the momentum space it hosts two linearly dis-
persive Majorana Dirac cones at the Brillouin zone corners
[12]. The Dirac cones are stable in the presence of translation
and C2T symmetry (a combination of lattice inversion and
time-reversal transformation). The perturbation away from the
isotropic point gradually shifts the location of the two Dirac
cones, which merge and annihilate and gap out at the phase
boundary between the gapped and gapless phase. In contrast,
the Kekulé variant of the model tricolors the bonds and triples
the size of the unit-cell into six spin sites, which induces a
periodic potential with large wave vector that can scatter one
Dirac cone to the other, which immediately gaps out the Dirac
cones when perturbed away from the isotropic point [14]. As
a result, the gapless phase shrinks to a singular point in the
phase diagram.

The distinct topology of the phase diagram of the Kekulé-
Kitaev model allows for an adiabatic path connecting the three
gapped phases. This feature is exploited in the Floquet code
[45,46], which measures all the plaquette operators by four
rounds of bond measurements without collapsing the global
Wilson loops as logical qubits, and inducing an effective
Hadamard transformation for the logical qubit due to the
winding around the gapless point.

APPENDIX B: FRUSTRATION GRAPHS

For generic protocols involving only Majorana parity
checks, we can generate the frustration graph by a duality
transformation. The original matter Majorana fermion spans a
graph where each node hosts a matter Majorana fermion and
each edge corresponds to a parity check. To dualize the graph,
we turn every edge to a node, and every Majorana site into a
all-to-all connected cluster; see Fig. 24. In the dual graph, the
node refers to the measured operators, and the edge connects
two operators that anticommutate each other, due to the fact
that they overlap with a Majorana fermion.

If the original graph has uniform coordinate number, say,
every matter Majorana fermion has z neighbors, then in the
dual graph, each node as an operator has 2(z − 1) neighbors.
For example, in the (decorated) honeycomb lattice z = 3 and
the frustration graph has 4 neighbors. For the special case
of next-nearest-neighbor measurement only, the Majorana
fermions form two disconnected triangle lattice with z = 6,
and thus the coordinate number of the dual graph is 10.

APPENDIX C: UNIVERSALITY AND LATTICE
GEOMETRY IN NONORIENTABLE SYMMETRY CLASS D

Here we provide additional evidence for the universality
of the critical exponents reported in Table II for the nonori-
entable symmetry class. We consider two additional lattice
geometries: (i) the measurement-only Yao-Kivelson model
and (ii) Cardy’s L-lattice, as studied in Ref. [39]. Results
are summarized in Table IX, showing a striking agreement
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TABLE IX. Effect of circuit geometry on critical exponents. Shown are the critical exponents of the localization transition comparing
different circuit geometries.

Critical exponent ν η df β Reference

Nonorientable loop models 108 qubits
Honeycomb 0.9403 ± 0.0006 −0.0660 ± 0.0070 2.5263 ± 0.0011 0.4400 ± 0.0040 Figss. 15–18
Yao-Kivelson 0.9401 ± 0.0015 −0.0612 ± 0.0036 2.5306 ± 0.0018 0.4413 ± 0.0019 Figs. 25 and 26
Cardy’s L-lattice 0.9390 ± 0.0013 −0.0580 ± 0.0037 2.5290 ± 0.0018 0.4423 ± 0.0018 Figs. 30 and 32

between the three geometries as expected for universal critical
behavior.

1. Measurement-only Yao-Kivelson model

Let us now consider the decorated honeycomb lattice of the
measurement-only Yao-Kivelson model depicted in Fig. 2(d).
We take a lattice of L × L large (dodecagonal) plaquettes
such that the corresponding squashed brickwall geometry has
dimensions Lx = 6L and Ly = L. Moreover, we fix parameters
Kα = K and Jα = J = (1 − K ) for simplicity such that for
0 < K < 1 the loop model is nonorientable. Then varying
K allows one to tune the system through the localization
transition for symmetry class D.

FIG. 24. Frustration graphs. The two columns show the (mea-
surement) frustration graphs associated to the circuits on the
(a) honeycomb lattice and (b) dodecagonal lattice. In the top row,
we overlay the original lattice (black edges) and the frustration graph
(red dashed edges and vertices). In the bottom row, we show only the
frustration graph and deform it better highlight the structure.

a. Correlation length exponent ν

In Fig. 25 we show the data collapse for the measurement-
only Yao-Kivelson circuit in the vicinity of the critical point.
From this FSS analysis we find correlation length exponent
ν = 0.9401 ± 0.0015, which is in close agreement with the
value found both on the honeycomb lattice with NNN cou-
plings and on Cardy’s L-lattice. This result further bolsters
the reliability of our reported value of ν and demonstrates
universality of the transition independent of the underlying
lattice geometry.

b. Fisher exponent τ

In order to find the remaining critical exponents, we de-
termine the Fisher exponent τ from the bulk loop length
distribution Pbulk(�) at the transition. Fitting the power-law
scaling Pbulk(�) ∼ �−τ shown in Fig. 26 yields an estimate of τ

which is consistent with the corresponding result on the other
two lattice geometries. As for Cardy’s L-lattice, we report
the critical exponents η, d f , and β as found by hyperscaling
relations in Table IX.

c. Bulk loop statistics

Finally, we highlight universal aspects of bulk loop statis-
tics in the metallic phase. In Fig. 27 we show the distribution
of bulk loop lengths Pbulk(�) at the isotropic point K = J deep
in the critical (metallic) phase. These results mirror those
presented in Fig. 11 for the honeycomb lattice, revealing

FIG. 25. Correlation length exponent from the Yao-Kivelson
circuit. Finite-size scaling analysis of the transition in the Yao-
Kivelson circuit, with data shown for linear system sizes L =
32, 64, 128, 256, 512, 1024, 2048, 4096. (a) Scaling collapse of the
data with respect to scaling variable K̃ = L1/ν (K − Kc )[1 + α(K −
Kc )]. (b) A heatmap of the normalized cost function χ2/χ 2

∗ for the
FSS analysis. The optimal parameters lie at the minimum (K∗

c , ν∗)
marked by a star. The colormap has been truncated to give a visual
estimate of the uncertainty in K∗

c and ν∗.
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FIG. 26. Fisher exponent for the measurement-only Yao-
Kivelson model. We show the bulk length distribution of closed
loops Pbulk(�) at the critical point of the nonorientable loop model
defined by the measurement-only Yao-Kivelson circuit with Kα =
Kc and Jα = Jc = (1 − Kc ). Data are shown for linear dimensions
L = 32, 64, 128, 256, 512. The black dashed line corresponds to the
power law Pbulk(�) ∼ �−τ fit on the data in the interval 105/2 � � �
L3/50.

Brownian and Poisson-Dirichlet scaling regimes. Moreover,
the asymptotic scaling in the Poisson-Dirichlet regime is con-
sistent with Eq. (7) for both symmetry classes. We further
validate the universality of the metallic phase by examining
ratios of the long-distance loop connectivities. In Fig. 28, we
show that these ratios rapidly approach the values predicted
from the universal quantity θ , consistent with the result in
Fig. 12 for the honeycomb lattice.

FIG. 27. Bulk loop statistics for the measurement-only Yao-
Kivelson model. Analogous to Fig. 11, we show the distribution of
bulk loop lengths Pbulk(�) in the measurement-only Yao-Kivelson
circuit with PBC in both time and space. The nonorientable limit
�J = �K = {1, 1, 1} (blue) is contrasted with the orientable limit
�J = {1, 1, 0}, �K = {1, 1, 1} (red).

FIG. 28. Universal ratios of long-distance loop connectivities.
Analogous to Fig. 12 of the main text we show, for the measurement-
only Yao-Kivelson model, the ratios (a) P2

2 /P4 and (b) P3
2 /P2

3 . Data
shown here are for the isotropic point Kα = Jα .

2. Cardy’s L-lattice

As noted in the main text, the value of the critical exponent
ν reported here differs notably from that reported previously
in Ref. [39], which employed loop simulations on Cardy’s
L-lattice [119]. Here we re-examine the nonorientable loop
model on the L-lattice in order to validate our results from the
honeycomb lattice with NNN couplings.

The lattice geometry and loop model parametrization are
defined in Fig. 29. Taking a time slice through the unit cell, we
see that only four of the loops may contribute to the spanning
number. We thus define the cross-sectional area of the unit
cell to be 2 × 2 rather than 4 × 4 as was used by Ref. [39].
For linear dimension L, we take the 3D lattice to have unit
aspect ratio, corresponding to size L × L × L. Here we focus
on the line p = q, along which the loop model is always
nonorientable.

a. Correlation length exponent ν

We compute the spanning number ns for a set of 100 points
in close proximity to the transition for linear dimensions
L = {64, 128, 256, 512, 1024, 2048, 4096}. For each parame-
ter p = q, we average over 100 independent “pools,” drawing
104 circuit trajectories from each such pool. In order to fit
the scaling function f (x) we again employ a cubic B spline.
Here we find it useful to take the spline points more densely
clustered near x = 0 where the curvature of f (x) is greatest.
In particular, we follow Ref. [38], taking spline points at spac-
ing �x = 0.1 for x ∈ [−0.5, 1.5] and �x = 1 for x ∈ [2, 5].
While this choice of spline points gives a more robust fit,
taking uniformly distributed spline points yields consistent
results. In Fig. 30, we show the scaling collapse resulting from
two different ansatze. For scaling variable x = L1/ν (p − pc),
we obtain a good collapse with ν = 0.9318 ± 0.004 when
restricting to a narrow window about x = 0 and system sizes
L � Lmin = 256. When allowing for a nonlinear correction
to the scaling variable x = L1/ν (p − pc)(1 + A(p − pc)), we
find a nearly perfect collapse with ν = 0.939 ± 0.001 for all
system sizes and a much wider interval around the transi-
tion point. Note that this value of ν also nicely matches the
one found for the nonorientable circuit on the honeycomb
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FIG. 29. Loop model on Cardy’s L-lattice. (a) Unit cell of the
loop model on Cardy’s 3D L-lattice, with four-leg vertices living on
the faces and edges of a cubic lattice. Coordinates are defined for
the edge vertices on the top and bottom slices of the unit cell, which
may contribute to the spanning number. (b) The parametrization of
the loop model given in terms of the probabilities of the three ways
to resolve the four-leg vertices. For p = 0, the loops are oriented in
the manner depicted in (a). Coloring of the loops in (a) identifies the
elementary loops of length 6 which form for p = q = 0.

FIG. 30. Scaling collapse of spanning number on the L-lattice.
Scaling collapse of the spanning number (top) near the transition and
a heatmap of the corresponding normalized cost function (bottom),
with optimal parameters marked with a star. Data are shown for
linear system sizes L ∈ {64, 128, 256, 512, 1024, 2048, 4096}. We
compare two forms of the scaling function ns(p, L) = f (x) with
(left) x = L1/νδp and (right) x = L1/νδp(1 + Aδp), for δp = p − pc.

FIG. 31. Quality of scaling collapse for the L-lattice. We mea-
sure the quality of the fit by the reduced χ 2 value, χ̃ 2

r , with χ̃ 2
r ≈ 1

indicating good collapse. (a) Fitted value of ν and the fit quality for
the two ansatzes shown in Fig. 30 on varying the minimum linear
system size Lmin included in the fit. The nonlinear ansatz shows a
stable fitted exponent and high-quality fit when excluding L = 64.
(b) Quality of fit for the nonlinear ansatz when varying number of
points used in constructing the spline. For very large spacing ε (as
defined in the text), the spline fails to capture the scaling function.
Elsewhere, the fit is robust with respect to the number of spline
points, converging toward χ̃ 2

r = 1.

lattice with NNN couplings. Moreover, this FSS analysis
is consistent with the earlier observation that a nonlinear
term in the scaling variable is necessary for robust scaling
collapse.

To further validate the reported value of ν, we carry out
a careful examination of the fitting procedure. In Fig. 31, we
show the quality of fit and optimal value of ν as a function
of (i) the minimum system size Lmin, (ii) the choice of scal-
ing variable, and (iii) the density of spline points. We find
that the simpler (linear) ansatz consistently underestimates
the exponent ν relative to the nonlinear ansatz except in the
limit of very large system sizes. Moreover, we see that the
nonlinear ansatz consistently results in a robust scaling col-
lapse which is largely independent of the density of spline
points. This analysis provides strong support for the univer-
sality of critical exponent ν = 0.9403 ± 0.0006 in nonori-
entable loop models, independent of the underlying lattice
geometry.

b. Fisher exponent τ

As an additional check, we determine the Fisher exponent
τ at the critical point from the power-law scaling of the bulk
loop length distribution Pbulk(�) ∼ �−τ . Fixing the critical
point from the FSS of the spanning number, we plot the distri-
bution Pbulk(�) in Fig. 32. The results here may be compared
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FIG. 32. Fisher exponent for Cardy’s L-lattice. We show the bulk
length distribution of closed loops Pbulk(�) at the critical point of the
nonorientable loop model on Cardy’s L-lattice along the line p = q
in parameter space. The critical point is fixed by the result of the
FSS of the spanning number in Fig. 30. Data are shown for linear
dimensions L = 32, 64, 128, 256, 512, 1024. The black dashed line
corresponds to the power law Pbulk(�) ∼ �−τ fit on the data in the
interval 105/2 � � � L3/20.

FIG. 33. Steady-state entanglement entropy and loop length
distribution in the liquid phase. We show data for both sym-
metry classes at the isotropic point for linear system sizes L =
32, 64, 128, 256, 512, 1024. (a) The distribution Px

surf(�) of surface
loop lengths along the x̂ direction, plotted against the arc-length
R(�) = Lx

π
sin( π�

Lx
) appropriate for PBC. The distribution exhibits

the expected critical �−2 scaling (black dashed line) in both the
orientable (red) and nonorientable (blue) symmetry classes. Nor-
malizing Psurf(�) by a factor of the universal quantity θ brings the
magnitude in the two classes into agreement. (b) Entanglement
entropy density S(�x )/Ly for a cylindrical subsystem of length �x

and circumference Ly. Plotting against the arc length R(�) yields a
data collapse which highlights the logarithmic entanglement scaling
S(�x )/Ly ∼ c̃x log[R(�)] observed throughout the metallic phase. The
ratio of c̃2 in the two symmetry classes is comparable to the ratio of
mean-squared displacement of a random walker on the two lattices
after two steps.

FIG. 34. Distribution of bulk loop lengths for open boundaries.
Pbulk(�) for open loops in the critical phase when taking a pure initial
state but not projecting out the final state produced by the circuit.
Data are shown for L = 32, 64, 128, 256, 512, 1024 at the isotropic
point. In both the orientable (red) and nonorientable (blue) symme-
try classes, we observe a power-law scaling regime Pbulk(�) ∼ �−3/2

followed by an exponential cutoff.

with those for the honeycomb lattice shown in Fig. 16(b),
showing comparable values of the exponent τ . Taken together,
the values of ν and τ determined here allow for the remaining
critical exponents to be determined by hyperscaling rela-
tions. In particular, we report the values of critical exponents
η = 5 − 6

τ−1 , d f = 3/(τ − 1), and β = 3ν(τ − 2)/(τ − 1) in
Table IX. All such exponents are in close agreement with
the values found for the honeycomb lattice in the main
text.

APPENDIX D: SUPPLEMENTAL NUMERICAL DATA

1. Entanglement scaling in the metallic phase

Throughout the metallic phase of both the orientable
and nonorientable models, we observe logarithmic entangle-
ment scaling S(L, Ly) Ly log(L) for a cylindrical subsystem of
length L along the x̂ direction and circumference Ly. This
is accompanied by a power-law scaling of the surface loop
length distribution Pα

surf(�) ∼ �−2. In Fig. 33, we verify the
expected scaling of Pα

surf(�) and S(L, Ly) at the isotropic point.
Notably, the prefactor of the logarithmic entanglement scaling
is larger in the nonorientable symmetry class as alleviating the
orientability constraint yields greater mobility for the random
walk undergone by loop end points. Moreover, the relative
magnitudes of the logarithmic term in the symmetry classes is
comparable to that predicted by the ratio of the mean-squared
displacement 〈|�r|2〉 of the random walk.

2. Bulk length of open arcs

As noted in Sec. IV A, an open boundary is absorbing for
the random walk undergone by loop end points. Thus in the
metallic phase, the bulk length of open arcs is dictated by the
first passage time distribution PFP(�) ∝ �−3/2 of the random
walk along the temporal direction. This is shown clearly in
Fig. 34 for both symmetry classes. For finite system size L, the
first passage time distribution acquires an exponential cutoff
which is reflected in Fig. 34 for loop length � comparable to
the cross-sectional area A.
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