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We study spectral properties of quasiparticles in the Kondo lattice model in one and two dimensions
including the coherent quasiparticle dispersions, their spectral weights, and the full two-quasiparticle spectrum
using a cluster expansion scheme. We investigate the evolution of the quasiparticle band as antiferromagnetic
correlations are enhanced towards the RKKY limit of the model. In both the one- and two-dimensional models
we find that a repulsive interaction between quasiparticles results in a distinct antibound state above the
two-quasiparticle continuum. The repulsive interaction is correlated with the emerging antiferromagnetic cor-
relations and can therefore be associated with spin fluctuations. On the square lattice, the antibound state has
an extended s-wave symmetry.
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I. INTRODUCTION

The Kondo lattice is one of the fundamental microscopic
models for the description of heavy fermion materials. The
basic ingredients are nearly localized f-electrons on every
lattice site and itinerant conduction electrons which are non-
interacting apart from a local coupling to the f-electrons. In
the Kondo lattice model the f-electrons form localized spin
degrees of freedom and the coupling is represented as an
onsite exchange interaction between this spin and the con-
duction electron spin density. This rather simple model gives
rise to complex many body physics whose detailed under-
standing is still far from complete. Generally it is believed
that many of the properties of heavy fermion systems origi-
nate from the interplay between magnetic RKKY interaction
among the localized spins and the Kondo effect screening
these spins.1–3 The former leads to a long-range ordered an-
tiferromagnetic phase in two and three dimensions and the
latter to a phase with short-ranged spin correlations due to
the formation of coherent Kondo spin singlets. There is a
quantum phase transition between the two limiting phases
upon changing the parameters of the model.1–3

For the metallic heavy fermion systems4,2 this quantum
phase transition has recently become one of the high-priority
issues. In particular, the behavior of the charge carriers at the
quantum phase transition has gained special interest and
questions have been raised on the character of the Fermi
surface, whether it is “large” or “small.”3 In the case of a
large Fermi surface both the conduction electrons and the
f-electrons forming the localized spins are included in the
Fermi volume. The small Fermi surface, in contrast, consists
only of the conduction electrons. It seems obvious that in the
case of magnetic long-range order the f-electrons tend to
loose their mobility and drop out in the Fermi volume count.
On the other hand, the generally accepted picture of the
heavy fermion phase is that the electrons at the Fermi level
have strong f-character such that the f-electrons are in the
Fermi volume. Consequently a swift change of the Fermi
surface topology is expected at the magnetic quantum phase
transition.2 In a recent experiment Paschen et al. have indeed

observed a characteristic feature in the evolution of the Hall
effect of YbRh2Si2 through the quantum phase transition,
consistent with this picture.5

The Kondo insulator which corresponds to the half-filled
Kondo lattice with one conduction electron per localized
spin is a special phase where the quantum phase transition
can be more easily discussed, since there are no low-lying
quasiparticle degrees of freedom. In the so-called strong cou-
pling regime the Kondo effect dominates which gives rise to
a spin liquid phase with a spin and a charge gap in the exci-
tation spectrum. On the other hand the antiferromagnetically
ordered phase in the weak coupling regime has only a charge
gap while the spin sector possesses gapless spin wave
modes.

While under these circumstances the issue of the Fermi
surfaces is not of immediate relevance, examining the behav-
ior of the quasiparticle and charge excitations will still give
much insight into the fate of the quasiparticle spectrum for
the system in the vicinity of the quantum phase transition. In
particular, the approach from the quantum disordered side
allows us to investigate the modification of the quasiparticle
spectrum which reflects the gradually extending magnetic
correlations in the approach of the quantum phase transition.
It is of special interest to analyze how the enhancement of
spin fluctuations affects the two-particle excitations. One of
the important questions concerns the nature of the spin fluc-
tuation mediated interaction between two particles, and
whether these particles can form bound pairs. This would
give insight into the possibility of unconventional supercon-
ductivity in weakly doped Kondo lattice systems.

Some of these issues have been addressed recently by
Assaad and co-workers based on quantum Monte Carlo
simulations as we will discuss later.6–8 Recent discussions of
the behavior of the half-filled Kondo lattice model and the
related periodic Anderson model in a magnetic field have
examined the behavior of the quasiparticle spectrum at quan-
tum phase transitions from a different point of view.9,10 In
these latter studies the quantum phase transition to magnetic
long-range order has been induced by a magnetic field which
lowers the spin triplet excitations and gives rise to modifica-
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tions of the quasiparticle spectrum. Both studies have shown
that the system always remains in an insulating phase.9,10

The Hamiltonian of the Kondo lattice model �KLM� is
given by

HKLM = − t �
�ij�,�

�ci�
† cj� + H.c.� + J�

i

SiSi
c, �1�

where Si
c= 1

2��,����,��ci�
† ci�� are the spin density operators of

conduction electrons and Si are localized f-spins at site i with
��,�� being the Pauli matrices. The magnetic exchange cou-
pling J derived from the periodic Anderson model is antifer-
romagnetic �J�0�.11 Furthermore, t denotes the hopping-
matrix element which we restrict to nearest-neighbor
hopping only. The Kondo insulating phase is realized for
t /J�1 where t /J will be our small expansion parameter.

The strong-coupling limit �t /J→0� represents a good
starting point for a well-controlled perturbative approach
based on a systematic cluster expansion.12 Such an expan-
sion allows one to systematically track the evolution of the
quasiparticle spectrum in view of the emerging longer ranged
antiferromagnetic correlations as t /J is gradually increased.
In the following sections we will discuss the one- and two-
dimensional bipartite Kondo lattice model. Although the
former does not have a quantum phase transition, the antifer-
romagnetic correlations increase strongly for growing t /J. In
two dimensions, however, a quantum phase transition is ex-
pected for t /J�0.68.6

II. THE ONE-DIMENSIONAL MODEL

A. The quasiparticle spectrum

We first discuss spectral properties of quasiparticle �hole�
excitations for the one-dimensional KLM at half-filling.
Starting from the limit of decoupled singlets on the lattice
sites for the Kondo insulator �t /J=0� we have calculated
high-order strong-coupling expansions in the hopping
strength t /J. This allows us to block-diagonalize the Hamil-
tonian by integrating out spin and charge fluctuations up to a
given order and calculate effective Hamiltonians for the
ground-state at half-filling, and the degenerate manifolds
with a single or two quasiparticle �hole� excitations.12–14

Complementary to previous approaches using bond operator
techniques7,15 our strong-coupling expansion treats charge
and spin fluctuations on the same footing without the need
for any mean field approximations. Previous numerical
works have studied the nature of the ground state of the
one-dimensional �1D� model as well as the elementary spin,
quasiparticle, and charge gaps, such as an extensive density
matrix renormalization group �DMRG� study16 and strong
coupling analysis.17,18 Here we present results of a strong
coupling analysis for the single and two-particle properties.

The dispersion of a single quasiparticle excitation shown
in Fig. 1 is obtained by a Fourier transformation of the re-
spective effective Hamiltonian which we have calculated up
to 11th order in t /J. The minimum of the quasiparticle �hole�
dispersion is found at momentum K=�. With increasing
hopping strength the band flattens around its minimum ex-
hibiting a continuous enhancement of the effective mass.

This effect is connected with the growing “coherence”
among the f-electrons as the localized spins start to be cor-
related. This behavior very much resembles what is seen in
theories discussing the heavy fermion physics in the periodic
Anderson model in terms of a renormalized hybridization of
conduction and f-electrons which leads to a minimum of the
hole excitations at K=� with nearly localized �f�
character.19,20 Interestingly our calculations show even a di-
vergent effective mass at K=� at a critical value of t /J be-
yond which a continuous shift of the band minimum away
from K=� occurs. In the inset of Fig. 1 we plot the recipro-
cal effective mass m0 /m* which we have computed from the
series for the quasiparticle dispersion. For various extrapola-
tion schemes including Padé/Dlog-Padé approximants21 and
optimized perturbation theory �OPT�22 the effective mass is
found to diverge around t /J�0.50±0.02 independent of the
order of the expansion �8th to 11th order�. Thus the diver-
gence of the effective mass is obviously not an artifact of the
strong coupling expansion. Simultaneously for large hopping
strength quasi-long-range AF order builds up in the one-
dimensional system and the spin gap �S remains finite.16,23

The shift of the energy minimum is connected with the
appearance of effective hopping processes �obtained through
integrating out higher energy configurations� which are non-
bipartite, i.e., connected points on the A �or B� sublattice. To
lowest order the dispersion is given by

��K� = t cos K +
t2

3J
cos 2K �2�

which yields an effective mass

m0

m* = 1 +
4t

3J
�3�

with m0=2/ t. The second term involves the next-nearest-
neighbor hopping process. Such hoppings become increas-

FIG. 1. �Color online� Dispersion of quasiparticles in the 1D
Kondo lattice model for various hopping amplitudes t /J obtained
by an 11th order strong coupling expansion around the Kondo in-
sulator. The series were extrapolated using optimized perturbation
theory. The inset shows the reciprocal effective mass. Several Padé
and Dlog Padé approximant are shown, as well as parabolic fits to
the dispersion obtained by optimized perturbation theory.
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ingly facilitated compared to the hopping between different
sublattices, as the antiferromagnetic correlation grows. This
gives a preference to hole transfers between sites of the same
sublattice whose localized spins tend to be parallel. Indeed
we observe that the appearance of this behavior is correlated
by the decrease of the spin gap below the quasiparticle gap,
see Fig. 2. As a consequence, the time scale for spin fluctua-
tions increases and the quasiparticle excitation is dressed by
a slowly fluctuating AF spin background.

B. The two-quasiparticle spectrum

We now turn to the spectrum of two-quasiparticle excita-
tions and explicitly address the question whether two quasi-
particles attract or repel each other, thereby forming a dis-
tinct bound or antibound state separated from the two-
quasiparticle scattering continuum. By means of a strong-
coupling expansion the two-quasiparticle spectrum is
computed by calculating effective Hamiltonians in the two-
particle sector integrating out order by order spin and charge
fluctuations. The cluster expansion then allows us to deter-
mine the exact Schrödinger equation for two quasiparticles
in the thermodynamical limit �up to the order calculated�
which we then solve numerically.13,14

Here we present results from an expansion up to eighth
order in the hopping strength t /J. The obtained series for the
matrix elements of the effective Hamiltonian have been ex-
trapolated by applying the OPT approach.22 The full spec-
trum of two quasiparticles is shown in Fig. 3. In addition to

the single quasiparticle band �dashed line� there is a con-
tinuum of scattering states. While we do not find any bound
states, a singlet antibound state emerges on top of the con-
tinuum for sufficiently large hopping strength t /J�0.4 as
illustrated by the solid line in Fig. 3. This antibound state
starts to split off from a kink in the upper continuum edge
around K�0.65�. This kink arises for t /J�0.45 as the
minimum of the single quasiparticle band starts to wander
away from K=�. The singlet antibound state definitely
emerges strongly with the enhanced antiferromagnetic corre-
lations. We find no evidence for a �anti-�bound state in the
S=1 spin sector.

III. THE TWO-DIMENSIONAL MODEL

For the two-dimensional Kondo lattice model antiferro-
magnetic spin correlation develops with increasing hopping
strength much more strongly than in the one-dimensional
model and for a finite critical value of �t /J�c the system
undergoes a quantum phase transition from the Kondo insu-
lator, a phase with gapped charge and spin excitations and
short ranged correlations to an antiferromagnetic state with
gapless spin excitations and long ranged correlations. The
critical point was best determined by a quantum Monte Carlo
study6 to be �t /J�c=0.68±0.02. Alternative numerical ap-
proaches included bond-operator mean field calculations7,15

and series expansions,17,18 which yield similar estimates.
Here we present results of a strong coupling analysis for the
single and two-particle properties.

A. The quasiparticle spectrum

We first discuss spectral properties of single quasiparticle
�hole� excitations at half filling. The dispersion of the quasi-
particle illustrated in Fig. 4 has been calculated from a
strong-coupling expansion around the Kondo insulator up to
11th order in the hopping strength t /J summing up some

FIG. 2. �Color online� Spin and quasiparticle gap for the Kondo
lattice model. In one dimension �upper panel� the spin gap stays
finite for increasing hopping strength. In two dimensions �lower
panel� the spin gap vanishes for finite hopping strength, the gray
shaded area indicates the variation of the various Padé approxi-
mants. The quasiparticle gap �QP becomes nearly constant for
t /J�0.5 in both dimensions. In 1D �2D� the spin gap crosses the
quasiparticle gap �S��QP around t /J�0.43�0.36� as indicated by
the dotted lines.

FIG. 3. �Color online� Spectrum of quasiparticles in the 1D
Kondo lattice model. For t /J�0.4 an antibound singlet state �solid
line� emerges above the continuum �shaded area�. The single qua-
siparticle dispersion is given by the dashed line. The inset shows the
antibinding energy of the singlet antibound state at K=�. Note the
logarithmic scale.
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1691 cluster diagrams. Similar to the one-dimensional
model, we find the minimum of the dispersion at K= �� ,��.
For small t /J	0.3 our results agree well with a recent series
expansion study18 and bond operator mean field
calculations7,15 which did not take into account spin fluctua-
tions. With increasing hopping amplitude we again observe
an increasing bandwidth accompanied by an increase of the
effective quasiparticle mass. The inset in Fig. 4 shows the
reciprocal effective mass m0 /m* of the quasiparticle. Analo-
gous to the one-dimensional case we encounter the formation
of a weakly dispersive part of the band close to K= �� ,��
which also here is consistent with the heavy fermion picture
obtained by means of other methods, but is in contrast to
results from a recent quantum Monte Carlo study.8

For t /J�0.40±0.05 we find that the effective quasiparti-
cle mass diverges, and the minimum of the quasiparticle
band starts to shift toward the zone center at
K= �� /2 ,� /2� as illustrated in Fig. 5. Similar to the one-
dimensional model this shift occurs around the hopping
strength where the time scales of spin and charge fluctuations
become comparable, see the lower panel in Fig. 2. In the
same way as for the one-dimensional Kondo lattice we can
attribute this behavior to an increased hopping of quasiparti-
cles on the same sublattice. The quasiparticle dispersion
thereby reveals the onset of antiferromagnetic spin order well
below the transition to the long range ordered state. A similar
migration of the band minimum has been found in recent
studies of the magnetically driven transition.9,10

B. The two-quasiparticle spectrum

The singlet antibound state found for the one-dimensional
model is the result of growing spin fluctuations. In two di-
mensions the formation of bound or antibound states due to
the effective interaction among the quasiparticles has large
freedom as we discuss in the Appendix. To study this aspect
for the two-dimensional model we have calculated the effec-

tive two-quasiparticle Hamiltonian, integrating out spin and
charge fluctuations up to eighth order in the hopping strength
t /J.

Figure 6 illustrates the full spectrum of quasiparticles in
the 2D Kondo lattice model close to the transition to the AF
phase. Above the quasiparticle continuum a singlet anti-
bound state �solid line� is found with a dispersion bearing
some resemblance to the single quasiparticle band �dashed

FIG. 4. �Color online� Dispersion of quasiparticles in the 2D
Kondo lattice model for various hopping amplitudes t /J obtained
by an 11th order strong coupling expansion around the Kondo in-
sulator. The series were extrapolated using optimized perturbation
theory �OPT�. The inset shows the reciprocal effective mass. Sev-
eral Padé and Dlog Padé approximants are shown, as well as para-
bolic fits to the OPT dispersion.

FIG. 5. Minimum of the quasiparticle band for the two-
dimensional Kondo lattice model, where the gray shading/contour
lines reflect the distance from the overall minimum �black�. The
panels describe the path from strong Kondo coupling �t /J=0.2, up-
per left panel� to the antiferromagnetically ordered phase �t /J=0.7,
lower right panel�. The shift of the band minimum towards the zone
center at K= �� /2 ,� /2� for t /J�0.375 indicates the onset of anti-
ferromagnetic order before the system undergoes a phase transition
at �t /J�c=0.68.

FIG. 6. �Color online� Spectrum of quasiparticles in the 2D
Kondo lattice model. Close to the parameter regime where the ef-
fective quasiparticle mass diverges and the time scales of spin and
charge fluctuations become comparable, a singlet antibound state
with extended s-wave symmetry emerges above the continuum. The
inset shows the antibinding energy of the singlet antibound state at
K= �� ,0�. Note the logarithmic scale.
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line�. The antibound state only slowly separates from the
continuum starting to emerge around t /J
0.4. The antibind-
ing energy at K= �� ,0� is plotted in the inset of Fig. 6. The
circumstance that the singlet antibound state occurs only at
finite hopping strength t /J close to the phase transition to the
antiferromagnetically ordered state provides further evidence
that the repulsive interaction originates from antiferromag-
netic spin correlations.

Performing a symmetry analysis as detailed in the Appen-
dix we find that the singlet antibound state has an extended
s-wave symmetry, since the state can be mapped onto the
irreducible representation A1 of the C4v point symmetry
group of the two-dimensional square lattice.

IV. CONDUCTION ELECTRONS AND HEAVY
QUASIPARTICLES

We now consider in more detail the quasiparticle spec-
trum and relate our result with other theories of the heavy
fermion state, which we mentioned already previously. For
this purpose we turn to the spectral weight ZQP�K� of the
quasiparticle excitation by expanding the coherent part of the
dynamic structure factor

S�q,�� =� dt

2�
e−i�t�

r,s
eiqr�cs

†�0,0�cs�r,t��

= ZQP�K���� − 
QP�K�	 + incoherent. �4�

In the strong coupling limit the weight is constant for all K.
With growing t /J a weight redistribution is observed giving
a larger weight on the dispersing part for small K and a
pronounced reduction of weight in the nearly flatband region
towards K=� and K= �� ,�� in one or two dimensions as
shown in Figs. 7 and 8, respectively. The same trend has
been observed also in Refs. 7, 8, and 24 using quantum
Monte Carlo techniques. These calculations suggest that the

lost weight is absorbed into a “shadow band” being formed
due to the enhanced antiferromagnetic correlations. Within
the strong coupling expansion the incoherent part is under-
stood as a continuum of the single quasiparticle combined
with an independent spin-1 excitation. Out of this continuum
the “shadow band” is emerging. We omit a more detailed
consideration of the shadow band here and concentrate on
the coherent part.

The integrated weight under the coherent quasiparticle
peak in S�q ,�� provides nK

c = �cKs
† cKs�. In Fig. 9 we show

nc�K� for the one-dimensional system. Obviously the large-K
part is depleted of the conduction electron contribution and a
relative increase of the density appears in the part of small K
where the energy scale is given by the hopping matrix ele-
ment of the conduction electrons. The same feature occurs in
two dimensions as shown in Fig. 10. The parts with high
weight are bound to eventually become the genuine conduc-

FIG. 7. �Color online� Spectral weight of a quasiparticle �hole�
excitation for the one-dimensional Kondo lattice model. The
�-peaks are broadened by a Gaussian. The dashed lines indicate the
dispersion of the quasiparticle. As the hopping amplitude increases
a major part of the spectral weight shifts towards the band maxi-
mum at K=0.

FIG. 8. �Color online� Spectral weight of a single quasiparticle
in the two-dimensional Kondo lattice model. The �-peaks are
broadened by a Gaussian. Already for small hopping strength
t /J=0.25 the spectral weight concentrates at the maximum of the
quasiparticle band �dashed line� at K= �0,0�.

FIG. 9. �Color online� Integrated weight nc�K� for varying hop-
ping strength t /J in the one-dimensional Kondo lattice model. The
inflection points which are marked by the solid bars indicate the
position of the conduction electron Fermi surface. The inset shows
the particle density at K=0 and K=� vs the hopping strength.
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tion electron bands. Note that there is an overall drop of
quasiparticle weight due to many body effects.

It is interesting to compare our finding with the numerical
DMRG results by Ueda and co-workers for the one-
dimensional Kondo lattice with a finite doping.25 Their data
for nc�K� show a large value for small momenta and a pro-
nounced drop at K corresponding to Fermi momentum of the
conduction electrons. For higher momenta nc�K� is much
smaller. For finite small doping into this band the real Fermi
level lies in the weakly dispersing part, yielding the “heavy”
quasiparticles corresponding to a large Fermi surface in the
sense of quasiparticle count.

We can also follow the mean field and Gutzwiller-type of
discussion of the periodic Anderson or Coqblin-Schrieffer
model which give for half-filling:

nc�K� =
1

2
1 +
��K�

���K�2 + �2� , �5�

with ��K�=2t cos K �1D� and ��K�=2t�cos Kx

+cos Ky�.19,20,26 The parameter � is a measure for the effec-
tive hybridization between the conduction and f-electrons,
which has different renormalizations depending on the cor-
responding mean field treatment and the model. This form
closely resembles our cluster expansion form. We may read
out the position of the conduction electron “Fermi surface”
defined roughly as the inflection points of nc�K�. This yields
the point close to K=� /2 in one dimension �Fig. 9� and
essentially the square-shaped form in two dimensions �Fig.
11�. These are the “small” Fermi surfaces which are the rel-
evant ones in the RKKY-picture, where the f-electrons are
considered as entirely localized spins.

The suppression of nc�K� occurs in the region of the Bril-
louin zone where the band is getting more and more disper-
sionless, i.e., this heavy quasiparticle part which may be con-
sidered as having “nearly localized f-electron” character of
the quasiparticles. This aspect looks surprising in view of the
fact the Kondo lattice model in a rigorous manner does not
allow for f-electron charge fluctuations. Thus this behavior is
here entirely mediated via the entanglement of conduction

and f-electron spin. From this viewpoint we may ask when
these quasiparticles cease to exist. While our cluster expan-
sion method is definitely unable to give any information be-
yond the quantum phase transition inside the antiferromag-
netic phase, one may still guess on the fate of the heavy
quasiparticles. While the antiferromagnetic order will sup-
press the fluctuations of the localized spins, still there are
strong quantum fluctuations leaving space for the entangle-
ment of the f- and conduction electrons. Thus, although it is
difficult to show rigorously within our perturbative scheme,
we may speculate that the heavy quasiparticles remain in
their place even in the magnetically ordered phase for a cer-
tain range beyond the quantum phase transition. The heigher
weight conduction electronlike quasiparticles together with
the shadow band form the gapped quasiparticle band in the
reduced Brillouin zone. This would rather suggest a gradual
disappearing of the heavy quasiparticles even in the ordered
phase.

V. CONCLUSIONS

In conclusion, we have studied the dynamics of quasipar-
ticles in the one- and two-dimensional Kondo lattice model
at half filling. In the regime of strong Kondo coupling we
find typical heavy fermion behavior. The effective quasipar-
ticle mass gets larger as the mobility of the quasiparticle
increases and spectral weight is shifted towards the quasipar-
ticle band gap. As the system is driven towards �quasi�long-
ranged antiferromagnetic order the shift of quasipartical
weights signals qualitatively the same effects as suggested
for the metallic system, the change of the Fermi surface to-
pology. Based on our results we may pose the question
whether this change be really abrupt.

Furthermore it is interesting to discuss the effect of the
growing spin fluctuation on the two-quasiparticle spectrum.
Would there be a tendency towards bound pair formation as
we expect from RVB-like systems? Although both the Kondo
insulator as well as the RVB system possess short-ranged
spin singlet correlations, the Kondo insulator does not show
any sign of pair formation. On the opposite, antibound states
appear in the two-quasiparticle spectrum.
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APPENDIX: SYMMETRY PROJECTION OF TWO-
PARTICLE (ANTI)BOUND STATES

To compute the two-quasiparticle spectrum we consider
the symmetric two-quasiparticle Schrödinger equation13

�E − E0 − E1�K,q�	f�K,q�

=
1

N
�
q�

f�K,q��
�
a,a�

V�a,a�� − E1�K,q�� , �A1�

where E0 is the ground state energy, E1�K ,q� the combined

energy of two scattering quasiparticles, and V�a ,a�� are the
irreducible matrix elements of the calculated two-
quasiparticle effective Hamiltonian. The scattering amplitude
is denoted as f�K ,q�. The numerical solution of Eq. �A1�
allows one to compute the two-quasiparticle continuum and
all bound and antibound states.

To determine the symmetry of the antibound state we
project the irreducible matrix elements of the effective two-
quasiparticle Hamiltonian, V�a ,a��, onto the irreducible rep-
resentations � of the point group C4v

V�a,a�� → Fa
����q�V�a,a��Fa�

����q�� , �A2�

where the projection Fa
����q� is given by

Fa
����q� =

1


C4v
 �
g�C4v

�g
��� cos�qga� . �A3�

We subsequently solve the projected two-quasiparticle
Schrödinger equation �A1� and thereby identify onto which
representation the antibound state can be mapped �see
Table I�.
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