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Three-dimensional (3D) variants of the Kitaev model can harbor gapless spin liquids with a Majorana
Fermi surface on certain tricoordinated lattice structures such as the recently introduced hyperoctagon
lattice. Here, we investigate Fermi surface instabilities arising from additional spin exchange terms (such as
a Heisenberg coupling) which introduce interactions between the emergent Majorana fermion degrees of
freedom. We show that independent of the sign and structure of the interactions, the Majorana surface is
always unstable. Generically, the system spontaneously doubles its unit cell at exponentially small
temperatures and forms a spin liquid with line nodes. Depending on the microscopics, further symmetries
of the system can be broken at this transition. These spin-Peierls instabilities of a 3D spin liquid are closely
related to BCS instabilities of fermions.
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The interplay of frustration and correlations in quantum
magnets engenders a rich variety of quantum states with
fractional excitations that are collectively referred to as
quantum spin liquids (QSLs) [1]. Archetypal instances of
such states include gapped topological QSLs with anyonic
quasiparticle excitations, as well as gapless QSLs where
emergent spinon excitations form nodal structures such as
Dirac points, Fermi lines, and Fermi surfaces reminiscent
of metallic states. A family of such gapless QSLs is realized
in two- and three-dimensional variants of the Kitaev model
[2] in which a high level of exchange frustration is induced
by competing bond-directional interactions of the form

HKitaev ¼ J
X
γlinks

Sγi S
γ
j: ð1Þ

Here spin-1=2 moments S on sites i and j are coupled via
an Ising-like exchange whose easy axis aligns with the γ ¼
x; y; z orientation of the bonds of the underlying tricoordi-
nated lattices. Kitaev’s seminal solution [2] of this model
for the honeycomb lattice allows us to analytically track the
fractionalization of the original spin-1=2 moments into
emergent massless Majorana fermions (spinons) and mas-
sive Z2 gauge excitations (visons). The collective QSL
ground state is a (semi-)metallic state formed by the
itinerant Majorana fermions. The qualitative nature of this
Majorana metal turns out to depend on the underlying
lattice: for the two-dimensional honeycomb lattice, the
itinerant Majorana fermions form two Dirac cones [2] (akin
to the well-known electronic band structure of graphene),
while for the three-dimensional hyperhoneycomb and
hyperoctagon lattices, the gapless Majorana modes form
a Fermi line [3] and an entire Fermi surface [4], respec-
tively. In the presence of additional time-reversal symmetry
breaking terms, the Majorana fermions (on the hyper-
honeycomb lattice) can even form a topological semimetal

with Weyl nodes [5]. Interest in such three-dimensional
Kitaev models has been sparked by the recent experimental
observation of spin-orbit entangled j ¼ 1=2Mott insulators
with strong bond-directional interactions of the form (1) in
the iridates ðβ; γÞ − Li2IrO3 [6–9], where the iridium sites
form three-dimensional, tricoordinated lattice structures.
The synthesis of such three-dimensional Kitaev structures
expands an intense ongoing search for solid-state realiza-
tions of the original two-dimensional Kitaev model,
which—following the early theoretical guidance of
Khaliullin and co-workers [10]—has put materials such
as the layered iridates Na2IrO3, α − Li2IrO3 [11] and, more
recently, α − RuCl3 [12] into focus.
In this Letter, we concentrate on three-dimensional

Kitaev spin liquids characterized by Majorana Fermi
surfaces and show that they generically dimerize, i.e.,
double their unit cell at low temperature. This instability
can be viewed as a generalization of the spin-Peierls
transition in one-dimensional systems [13,14] or, more
generally, of the tendency of frustrated low-dimensional
spin systems to form valence-bond solids [15]. The spin-
Peierls instability of (quasi-)one-dimensional spin systems
describes that an arbitrarily small coupling of a spin chain
to classical lattice degrees of freedom leads at low temper-
ature to a dimerization and a gap in the spin system [13,14]:
the energy gain by opening the gap is larger than the energy
needed to distort the lattice. When the phonon mode is,
however, treated quantum mechanically, a dimerization
occurs only when a critical coupling strength is reached
[16]. As we show, for the 3D Kitaev spin liquid, a variant of
the spin-Peierls transition occurs at low T even in the
absence of lattice degrees of freedom and for arbitrarily
weak perturbations. Notably, the result of this instability is
not a short-range valence-bond ordered state, but still a
QSL—yet one, in which the original Majorana Fermi
surface has collapsed into a line of gapless modes.
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Model system.—For concreteness, we focus our analysis
on a specific 3D Kitaev model and return to a more general
discussion later. We look at the Kitaev model defined on the
so-called hyperoctagon lattice depicted in Fig. 1. For this
system a gapless QSL ground state with a Majorana Fermi
surface was established in Ref. [4], to which we also refer
the reader for technical details of the analytical solution of
this model. In brief, the spin degrees of freedom fraction-
alize to itinerant Majorana fermions interacting with static
Z2 gauge fields [2]. In the (flux-free) ground state sector of
the Z2 gauge field, the original spin model (1) reduces to a
free hopping model of Majorana fermions

H0 ¼ −iJ
X
R

c1ðRÞc3ðR − a2Þ þ c2ðRÞc4ðR − a3Þ

þ c1ðRÞc2ðRÞ − c3ðRÞc4ðRÞ − c2ðRÞc3ðRÞ
þ c1ðRÞc4ðR − a1Þ: ð2Þ

Here, R is the position of the unit cells within the bcc
Bravais lattice (see Fig. 1), each containing four sites
labeled by i ¼ 1; 2; 3; 4; aj are the lattice vectors defined in
Fig. 1 and the Majorana operators obey the usual algebra
fciðRÞ; cjðR0Þg ¼ 2δijδR;R0 .
Diagonalizing the Hamiltonian (2), one finds that two of

the four bands have a gap of order J; the other two bands
become gapless on two two-dimensional surfaces in
momentum space defined by the equation cos kx þ
cos ky þ cos kz ¼ −ð3=2Þ [4]. The two closed Majorana
surfaces are centered around the momenta �k0=2, with
k0 ¼ 2πð1; 1; 1Þ, as illustrated in Fig. 2(a). Note that only
2k0 is a unit vector of the reciprocal lattice, not k0 itself.
Most importantly, there is a perfect nesting condition
between the two Majorana surfaces,

ϵk ¼ ϵkþk0
; ð3Þ

which is not specific to the microscopic Hamiltonian (1) but
arises from the peculiar form of time-reversal symmetry T
of the underlying spin model realized by [2,4]

cjðRÞ→T ð−1Þjeik0·RcjðRÞ: ð4Þ

For the following discussion it is convenient to combine
the two low-energy Majorana bands into a single band of a
(complex) fermion, which allows us to use the more
familiar language of superconductors to describe the
system. To do so, we denote the low-energy Majorana
excitations with momentum k by γ1=2k with ϵ1k ≤ ϵ2k. Note
that the particle-hole symmetry of Majorana fermions
readily implies γ1k ¼ ðγ2−kÞ†, which requires us to either
restrict the discussion to half the Brillouin zone or,
alternatively, to the upper energy band. Doing the latter,
we introduce the Fermion operator fk by fk ¼ ð1= ffiffiffi

2
p Þγ2k.

This reformulation combines the two Majorana surfaces in
Fig. 2(a) into a single Fermi surface of a complex fermion
centered around k0=2; see Fig. 2(b). In terms of the
complex fermion, time-reversal symmetry (4) becomes

f†k0=2þk→
T
f†k0=2−k

; ð5Þ

constraining the fermionic energy spectrum to be symmet-
ric relative to k0=2:

Ek0=2þk ¼ Ek0=2−k: ð6Þ
This energy relation naturally leads us to consider pairing
terms of the form f†k0=2þkf

†
k0=2−k. However, such pairs

carry a finite momentum k0 [17] and can therefore only
arise in a phase in which translational symmetry is
spontaneously broken. Here, we show that such a sponta-
neous symmetry breaking occurs in the presence of addi-
tional spin exchange terms.
Interactions.—Any deviation from the ideal Kitaev

model, e.g., by introducing spin-spin interactions of the
Heisenberg form, Dzyaloshinskii Moriya interactions,
three-spin interactions, etc., will induce interactions of
the Majorana fermions. As long as the size of these
perturbations is sufficiently small (compared to the

FIG. 1 (color online). The hyperoctagon lattice is a tricoordi-
nated bcc lattice without inversion symmetry (space group I4132)
and a four-site unit cell (with atom positions 1;…; 4 and unit-cell
vectors a1, a2, and a3 indicated in the figure). For the definition
of the Kitaev model on this lattice, we define nearest-neighbor
spin interactions of the SxSx, SySy, and SzSz type assigned to the
green, red, and blue bonds, respectively. The vectors a1,
a02 ¼ a2 − a3, and a03 ¼ −a1 þ a2 þ a3 are the lattice translation
vectors of each of the two sublattices (denoted by white and grey
lattice sites).

FIG. 2 (color online). (a) Sketch of the two Majorana Fermi
surfaces in the Brillouin zone. In the Majorana language, the
Peierls instability is due to perfect nesting between the two
surfaces. (b) The two Majorana surfaces combine to a single
Fermi surface of a (complex) fermion. In the fermionic language,
the Peierls instability is the usual BCS instability.
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Kitaev interaction J, which, in particular, sets the energy
scale for the flux gap), the interaction can be written in
terms of the Majorana fermions only (without any con-
tributions from the fluxes) and will remain short ranged.
For the hyperoctagon lattice, two types of Majorana
interactions turn out to be the most local ones, which
are therefore also expected to be the most important ones in
an expansion around the Kitaev model [18]. We para-
metrize them by their overall strength U and an angle α as

Hint ¼ −U
�
cos α

X
R

c1ðRÞc2ðRÞc3ðRÞc1ðRþ a2Þ

þ sin α
X
R

c1ðRÞc2ðRÞc3ðRÞc4ðRÞ þ sym

�
: ð7Þ

Note that each term in the above expression is only a single
representative of 24 distinct terms obtained by the 48
symmetry transformations of the I4132 symmetry group
of the hyperoctagon lattice [19]. When adding, e.g., a
nearest-neighbor Heisenberg coupling JH to the Kitaev
model, one expects U ∼ J4H=J

3 [2]. In general, the sizes
of U and α will depend on all types of microscopic details
and are difficult to predict quantitatively. We therefore
analyze the effect of the interactions (7) for varying values
of α (and fixed, small U).
To analyze H0 þHint for small U, we first project the

interaction (7) onto the low-energy degrees of freedom
described by the complex f fermions introduced above and
obtain

Heff ¼
X
k

ϵkf
†
kfk þ

X
k1;k2;k3

V1
k1;k2;k3

f†k1
f†k2

fk3
fk1þk2−k3

þ
X

k1;k2;k3

V2
k1;k2;k3

f†k1
f†k2

f†k3
f†−k1−k2−k3

þ H:c: ð8Þ

The momentum dependence of V1;2 can easily be obtained
numerically using Eq. (7), the eigenmodes of H0, and the
definition f†k given above. Note that symmetry-allowed
terms of the form f†kf

†
−k or f†k1

f†k2
f†k3

fk1þk2þk3
do not

contribute to the low-energy sector, as at least one of the
momenta is far away from the Fermi surface.
Pairing instability.—As H0 can be written as noninter-

acting spinless fermions, it is not surprising that the pairing
instability due to terms such as f†k0=2þkf

†
k0=2−k is governed

by the same type of logarithms which are responsible for p-
wave superconductivity [22]. For small U, one can there-
fore expect that dimerization sets in below a transition
temperature

Tc ¼ E0;αe−cαJ=U for U ≪ J; ð9Þ
where E0;α is an energy scale of order J. The dimensionless
constant cα can be computed exactly from a one-loop
renormalization group calculation or, alternatively, from a

BCS mean-field calculation. In the following we use BCS
theory to compute Tc and the structure of the order
parameter. Our approach allows us to calculate cα exactly,
but, unfortunately, not the prefactor E0;α [23]. Because of
the absence of further nesting effects, only the pairing
channel is divergent for U → 0, and therefore this is the
only instability for sufficiently weak perturbations around
the Kitaev point.
To describe the dimerized phase, we consider the

BCS-style Hamiltonian

HBCS ¼
X
k

ϵkf
†
kfk þ

X
kx>0

Δkf
†
k0=2þkf

†
k0=2−k þ H:c:; ð10Þ

where the odd order parameter, Δk ¼ −Δ−k, is computed
from the mean-field equation

Δk ¼ 2
X
q

V1
k0=2þk;k0=2−k;k0=2þqhfk0=2þqfk0=2−qi

þ 12V2
k0=2þk;k0=2−k;k0=2þqhf†k0=2þqf

†
k0=2−q

i; ð11Þ

where we assumed that the interactions in Eq. (8) have been
completely antisymmetrized with respect to the fermionic
operators. All expectation values are computed with HBCS.
Note that, in contrast to the standard BCS theory, there is no
Uð1Þ symmetry. It turns out that time-reversal symmetry (5)
is not spontaneously broken, which leads to a purely
imaginary Δk, Δ�

k ¼ −Δk. The latter, together with
Δk ¼ −Δ−k, already implies that pairing cannot gap the
Fermi surface completely, but only reduce it to an odd
number of lines.
To simplify Eq. (11) and to solve it with high

numerical precision to leading logarithmic order, we
rewrite the q integration into an integral on the Fermi
surface and an energy integration perpendicular to it,R
d3q ¼ R

FS d
2kF

R
NkF

ðϵÞdϵ. We furthermore approxi-
mate the directional dependent density of state by its
value of the Fermi surface, NkF

ð0Þ ¼ ½1=ð2πÞ3vFðkFÞ�
for −2J < ϵ < 2J. Similarly, we approximate both
Δk and the matrix elements of V1 and V2 by their
values on the Fermi surface. This allows for an accurate
evaluation of the ϵ integration,

R
dϵhfk0=2þqfk0=2−qi≈

ΔqF

R
2J
0 dϵf½tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2þjΔqF j2

q
=ð2TÞ�=½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2þjΔqF

j2
q

�g. The
last term is evaluated numerically, but it is also well

described by ΔqF ln ½4J=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔqF j2 þ ð1.762TÞ2

q
�. For the

plots of this Letter, we discretize the Fermi surface using
a total of 1344 patches.
Phase diagram.—Using the largest eigenvalue of the

linearized BCS equation (11), one can directly determine cα
in Eq. (9) with E0;α ≈ 2.27J within our cutoff scheme (for a
plot of cα, see the Supplemental Material [20]). For
0 < α < 4.65 the eigenvalue is threefold degenerate. The
three eigenvectors form an irreducible representation of the
point group O and transform like kx, ky, and kz (the T1
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representation; see the Supplemental Material [20]). For
4.65 < α < 2π, in contrast, the eigenvalue is unique and
the eigenvector transforms like kxkykz (the A2 representa-
tion). Analyzing the BCS equation beyond the linear
approximation, one obtains the phase diagram shown for
U ¼ 0.4J in the middle panel of Fig. 3 as a function of
temperature T and α. For other values ofU one obtains very
similar phase diagrams, but all transition temperatures and
the ratio of the largest and smallest Tc change exponentially
according to Eq. (9).
We find five different phases, denoted A − E in Fig. 3,

which are distinguished by symmetry and/or the number of
line nodes; the corresponding distribution of order param-
eters is shown in the lower panel of Fig. 3. In Table I an
overview of the properties of the symmetry-broken phases
is given. In all phases the unit cell has doubled. In phase E
this is the only broken symmetry. In phases A −D other
lattice symmetries are broken besides the translational
symmetry. As at Tc the eigenvalue cα is threefold degen-
erate, the phase diagram can be understood best in terms of
a three-component order parameter, Φ ¼ ðΦ1;Φ2;Φ3Þ,
where Φi corresponds to an eigenvector transforming like
ki. Close to Tc, one can use a Landau description of the free
energy of the form

F ≈ ðT − TcÞΦ2 þ gðΦ2Þ2 þ g0ðΦ4
1 þ Φ4

2 þ Φ4
3Þ þOðΦ6Þ:

ð12Þ

It predicts that just below Tc the order parameter points for
g0 > 0 in one of the (111) directions (phases A, A0, and B,
colored in red in Fig. 3). The order parameter therefore has
a 120°-rotation symmetry around this axis; see also the
lower panel in Fig. 3. In the crystal structure this (111)

direction will be shortened or elongated (depending on the
sign of the coupling to the lattice), allowing for eight
possible domains in total. For g0 < 0, in contrast, the order
parameter points along a (100) direction (phase C with six
domains) and the lattice will shrink or expand along that
direction. Interestingly, it turns out that all phases besides
the phase A are characterized by three line nodes instead of
a single one; see Fig. 3. The simple Landau theory (12) can
fail at low T and, indeed, phase D cannot be described by
terms up to order Φ4. Here, further symmetries are broken
(see Table I), Φ points in a low-symmetry direction, e.g.,
ðc1; c2; 0Þ, and the ordered phase is characterized by 24
different domains. In this case the only remaining sym-
metry of the order parameter is that it changes sign by a
180° rotation around the (001) axis.
Experimental signatures.—The spin-Peierls instability

gives rise to a distinct experimental fingerprint, which could
facilitate the ongoing search for Kitaev spin liquids. In
thermodynamics, one expects to observe (i) the absence of
magnetic order breaking time-reversal symmetry, (ii) an
approximately constant specific heat coefficient cv=T over a
wide intermediate temperature range (indicative of the
Majorana Fermi surface), (iii) a structural phase transition
with unit-cell doubling at small temperatures Tc, and (iv) a
low-temperature specific heat with cv=T ≈ T (indicative of
the nodal lines) with possible logarithmic corrections (aris-
ing from the crossing points of the nodal lines for phase E).
Besides the structural phase transition discussed here, three-
dimensional Z2 gauge theories also show a finite-T phase
transition [24–26] of (inverted) Ising universality class. Note
that we have implicitly assumed in our calculation that the Tc
of the structural transition is well below this transition
temperature where flux lines proliferate.
The doubling of the unit cell will generically be reflected

both in valence-bond correlations and also shifts of the
position of atoms [20]. Consider, for example, spins located
on one of the threefold rotation axes, r0 þ nv, of the system
with, e.g., v ¼ ð1=2; 1=2; 1=2Þ. They obtain a staggered
expectation value proportional to the order parameter Δ,

hSðr0 þ nvÞSðr0 þ ðnþ 1ÞvÞi ∼ ð−1ÞnΔ: ð13Þ

FIG. 3 (color online). (Upper panel) Phase diagram for
U ¼ 0.4J as a function of the angle α. There are four different
phases distinguished by symmetry (see Table I). (Lower panel)
For the five phases A − E, the angular distribution of the order
parameter Δq on the Majorana surface is shown (α ¼ 0.5π, 0.7π,
π, 1.35π, 1.48π, 1.75π). The coordinate systems have been
rotated around the z axis for better visibility.

TABLE I. Overview of the symmetry-broken phases; see Fig. 3.
In all phases the unit cell is doubled. The first column shows
schematically the symmetry of the order parameter (momenta
measured from k0=2). Furthermore, the point group of the
symmetry-broken phase, the number of domains, and the number
of line nodes are tabulated.

Order parameter Point group Domains Line nodes

A, A0 kx þ ky þ kz D3 (32) 8 1
B kx þ ky þ kz D3 (32) 8 3
C kx D4 (422) 6 3
D c1kx þ c2ky C2 (2) 24 3
E kxkykz O (432) 2 3 (crossing)
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Summary.—We have shown that a time-reversal sym-
metric spin liquid with a Majorana surface is always
unstable and spontaneously undergoes a spin-Peierls tran-
sition to a nodal QSL at low temperatures. We expect that
this is a generic property of Majorana surfaces. To show
this, it is useful to classify time-reversal invariant Majorana
systems by the value of the vector k0 characterizing the
time-reversal operation in Eq. (4) or, equivalently, Eq. (5).
If k0 vanishes, terms of the form f†k0=2þkf

†
k0=2−k

occur even
in the absence of symmetry breaking and—instead of a
Fermi surface—only a state with nodal line forms [3,26].
Fermi surfaces therefore exist only for a finite k0. In this
case, however, time-reversal invariance guarantees the
existence of a BCS-type instability. As any interaction of
Majorana excitations always involves four different sites,
the momentum-dependent interaction will always have an
attractive channel leading to a transition where Majorana
pairs condensate at finite momentum k0. We therefore
expect that Majorana surfaces can only survive for T → 0
in cases where time-reversal symmetry is broken either
spontaneously or explicitly, e.g., by an external magnetic
field—a scenario which we plan to investigate in the future.

M. H. acknowledges partial support through the Emmy-
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