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A promising route towards the realization of chiral spin liquids is the quantum melting of classically non-
coplanar spin states via quantum fluctuations. In the classical realm, such noncoplanar orders can effectively
be stabilized by interactions beyond nearest neighbors. Motivated by the recent synthesis of materials with a
maple-leaf lattice geometry, we study the effect of cross-plaquette couplings on elementary Heisenberg anti-
ferromagnets for this geometry. We find a rich spectrum of noncoplanar states, including a novel icosahedral
order as well as incommensurate spin spirals, using large-scale Monte Carlo simulations in combination with
a semi-analytical analysis. To inspect the potential quantum melting of these states, we analyze the quantum
S = 1/2 variant of these models using pseudo-fermion functional renormalization group (pf-FRG) simulations.
Notably, we indeed find extended parameter regimes lacking long-range magnetic order – in regions classically
occupied by noncoplanar orders – which we putatively identify with the possible formation of chiral quantum
spin liquids.

I. INTRODUCTION

Magnetic interactions on geometrically frustrated lattices
offer the possibility of realizing exotic spin textures such as
topologically non-trivial skyrmion [1, 2] and hedgehog crys-
tals [3], or regular magnetic orders with spins oriented towards
the vertices of platonic solids [4]. Owing to the noncoplanar
character of the underlying spin configurations, these textures
feature long-range order of scalar spin chirality S1 · (S2×S3)
defined by three localized spins [5]. Interest in models with
such ground states stems from the expectation that for small
values of spin, such as S = 1/2, the spin ordering could un-
dergo quantum melting, while the long-range order in chirality
persists in the resulting nonmagnetic ground state, giving rise
to a chiral spin liquid [6–10]. Traditionally, realization of such
textures has required coupling with itinerant electrons [11–
16] or magnetic fields [17–20], and invoked Dzyaloshinksii-
Moriya [21, 22] or multi-spin [23–25] interactions. Progres-
sively, it has been shown that this plethora of noncoplanar
magnetic orders can be stabilized in simple Heisenberg mod-
els with competing long-range interactions even in the ab-
sence of a magnetic field [4, 26–32].

The exemplary textbook example of frustration is a tri-
angular motif with antiferromagnetically interacting spins at
its vertices [33]. Their edge-shared tessellation forms a tri-
angular lattice which has been fertile ground for skyrmion
physics [20, 29, 34–37]. For an S = 1/2 Heisenberg model
with first J1, second J2 and third J3 neighbor antiferromag-
netic couplings on the triangular lattice there was an early
proposal for a chiral spin liquid [38], which has lately been
challenged [39], and its existence remains debatable. Addi-
tional scalar spin chiral interactions need to be invoked to re-
alize a stable chiral spin liquid phase which emerges out of

∗ These authors contributed equally to this work.

quantum melting of noncoplanar tetrahedral order in the cor-
responding classical model [7, 40, 41]. On the other hand,
a corner-sharing tessellation of triangles, which leads to only
a marginal alleviation of frustration, forms the kagome lattice
—alternatively viewed as a 1/4 site-depletion of the triangular
lattice. Here, for antiferromagnetic J1 and J2, the inclusion of
antiferromagnetic J3 interactions across hexagons alone suf-
fices to trigger a robust chiral spin liquid of the Kalmeyer-
Laughlin type, possibly descending from quantum melting of
parent cuboc orders [42–46], while for ferromagnetic J1, a
similar scenario has been argued for in Refs. [10, 47, 48].
An analogous situation could potentially be realized on the
square-kagome lattice where a multitude of noncoplanar or-
ders, including novel cuboc states, have recently been reported
in the classical Heisenberg model with competing long-range
cross-plaquette interactions [32]. Very recently, geometrical
frustration inherent to various fullerene molecules has been
shown to induce noncoplanar textures and chiral spin states in
Heisenberg models [49].

FIG. 1. Maple-leaf lattice with nearest-neighbor coupling J1 and
further-neighbor cross-plaquette couplings J2 and J3. The unit cell
consists of the six sites that make up a hexagonal plaquette.
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In this work, we consider a comparatively sparse 1/7 site-
depletion of the triangular lattice that leads to the five-fold
coordinated maple-leaf lattice [50–61] — a uniform tiling of
triangles and hexagons, as shown in Fig. 1 below. Hence,
both in terms of the depletion density and coordination num-
ber, the maple-leaf lattice is intermediate between the trian-
gular and kagome lattices, and one may wonder about the po-
tential existence of a robust chiral spin liquid. As a guiding
light in search of this phase on the maple-leaf lattice, it is im-
portant to first identify regions in parameter space of classi-
cal Heisenberg models which are host to noncoplanar mag-
netic orders. To this end, we consider a spatially isotropic
Heisenberg model with antiferromagnetic J1 and J2 interac-
tions, and, motivated by the kagome, include J3 interactions
across hexagonal plaquettes. Our study reveals a rich land-
scape comprised of four noncoplanar classical orders, together
with two coplanar orders. In particular, this includes a pre-
viously unreported novel configuration where the spins point
to the vertices of an icosahedron, which we dub icosahedral
order, inspired by the cuboctohedral orders reported on the
kagome lattice [4]. Employing a state-of-the-art implementa-
tion of the pseudo-fermion functional renormalization group
approach [62], we assess the impact of quantum fluctuations
for S = 1/2 and find an extended region in the J2-J3 plane
which lacks long-range magnetic order. Importantly, the span
of this nonmagnetic region encompasses regions classically
occupied by noncoplanar orders, and could thus tentatively
be associated with a putative chiral spin liquid. Furthermore,
since the maple-leaf lattice lacks reflection symmetry about
any straight line, the putative chiral spin liquid could lie out-
side the realm of the standard Kalmeyer-Laughlin paradigm
which involves breaking of reflection symmetry up to time-
reversal.

This paper is structured as follows. We first introduce the
model in Section II. The classical phase diagram is discussed
in Section III, before we turn to the effects of quantum fluctu-
ations in Section IV.

II. MODEL

The maple-leaf lattice [50] is an Archimedean lattice that is
obtained by a periodic depletion of 1/7 of the sites of the trian-
gular lattice, as visualized in Fig. 1. Its coordination number
is z = 5 and, therefore, it is intermediately frustrated between
the kagome (z = 4) lattice and the triangular (z = 6) lattice.
It can be described by the lattice vectors

a1 =

(
3
√
3

2
,−1

2

)
, a2 =

(√
3, 2
)
,

and a unit cell comprising six sites with relative coordinates

δ1 = (0, 0) , δ2 =

(√
3

2
,−1

2

)
,

δ3 =
(√

3, 0
)
, δ4 =

(√
3, 1
)
,

δ5 =

(√
3

2
,
3

2

)
, δ6 = (0, 1) .

With the three different couplings J1 (nearest-neighbor), as
well as J2 and J3 (cross-plaquette), as indicated in Fig. 1,
the Heisenberg Hamiltonian on the maple-leaf lattice can be
written as

H =
∑

⟨i,j⟩∈a

Ja Si · Sj , (1)

where a = {1, 2, 3} runs over the three different types of
bonds.

III. CLASSICAL PHASE DIAGRAM

To study the classical ground-state phase diagram of the
Heisenberg model on the maple-leaf lattice, Eq. (1), we em-
ploy large-scale classical Monte Carlo simulations, which we
combine with a semi-analytical method that allows us to deter-
mine the exact phase boundaries (for details see Appendix A).

Upon varying the cross-plaquette interactions J2 and J3
(where J1 = 1 is fixed to be antiferromagnetic), we in-
deed find a number of different ground-state phases, including
coplanar and noncoplanar magnetic orders, as summarized in
the classical phase diagram of Fig. 2. From the representa-
tive common origin plots of the ground-state real-space spin
configurations (and also the static spin structure factors) next
to the phase diagram, one can see at first glance that the six
phases found (labeled I to VI) are clearly distinct from one
another.

The coplanar phases I and III appear in the form of two
different six-sublattice ordered states, the first of which has
already been described in the context of the quantum model
on the maple-leaf lattice without cross-plaquette interactions.
The remaining four phases come in different noncoplanar or-
ders, including commensurate variants (phases II and VI) as
well as incommensurate ones (phases IV and V). We will pro-
vide details about each phase in the remainder of this section.
It is noteworthy that the ground states of all phases, with the
exception of phases IV and V, can also be calculated analyti-
cally using the Luttinger-Tisza (LT) approach, see Appendix
C. For phases IV and V, however, the LT approach yields un-
physical ground states with a spin dimension greater than 3.

A. Coplanar Orders

We start with the coplanar ground states of phase I and
phase III, which make up large parts of the lower half and
the upper right corner of the classical phase diagram of Fig. 2
respectively.



3

FIG. 2. Classical phase diagram of the maple-leaf lattice with six different phases (labeled I-VI) as a function of J2 and J3 (and fixed
nearest-neighbor coupling J1 = 1). Besides indicating the phase boundaries (solid lines), the phases are described by symmetry (with Dn

referring to the dihedral group of order n and T to tetrahedral symmetry), and coplanarity. Also, we show common origin plots and spin
structure factors from Monte Carlo simulations (T/J1 = 10−4, N = 864) for each phase to the right of the phase diagram.

1. Coplanar phase I with D3 symmetry

This order has already been described as the ground state
in the classical limit of the quantum maple-leaf Heisenberg
model in Refs. [52–54, 58] in the special case J2 = J3 =
0 and is in full agreement with our numerical and analytical
results. It consists of six sublattices of spins and a three times
larger magnetic unit cell, as indicated in Fig. 3(a). Within one
geometrical unit cell, neighboring spins form an angle

α = arctan

( √
3

3 + 2J3

)
+ π (2)

while next-nearest neighbors are parallel. Equivalent spins in
two neighboring geometric unit cells are rotated by 2π/3. Its
energy can be given explicitly as

EI = −1

2

(
1− 2J2 +

√
3 + 3J3 + J2

3

)
. (3)

The symmetry of this ground state is given by the dihedral
group of order 3, D3. For the special case J3 = −2, the six

different spin vectors form a regular hexagon with D6 sym-
metry. In the case J3 = −1, on the other hand, the ground
state becomes a 120◦ state which still has D3 symmetry.

2. Coplanar phase III with D6 symmetry

The rigid coplanar order of phase III, found in the upper
right corner of the phase diagram, also has six sublattices of
spins, but the magnetic unit cell coincides with the geomet-
rical unit cell. Within each unit cell, each spin points to a
different corner of a regular hexagon (see Fig. 3(b)) and near-
est neighbors (within a unit cell) form an angle of π/3. The
corresponding ground-state energy is

EIII = −1

2
(1 + J2 + J3) . (4)

and the symmetry group of the ground state is the dihedral
group of order 6, D6.
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(a)                                                      (b)

        phase I                                                 phase III

FIG. 3. Coplanar orders. (a) The ground state of phase I has six
sublattices of spins and a 18-site magnetic unit cell (outlined in red).
Within one geometrical unit cell, neighboring spins form an angle α
(for example, yellow and green spins) while next-nearest neighbors
are parallel. Equivalent spins in two neighboring geometric unit cells
are rotated by 2π/3 (for example, yellow and light blue spins). (b)
In phase III, the ground state has six sublattices as well, but the mag-
netic unit cell coincides with the geometrical unit cell. Within each
unit cell, each spin points to a different corner of a regular hexagon
and nearest neighbors (within a unit cell) form an angle of π/3.

B. Noncoplanar Orders

We now come to a discussion of the various noncoplanar
magnetic orders, starting with the two commensurate struc-
tures found in phases II and VI of the phase diagram. The
starting point for all semi-analytical descriptions are numeri-
cal Monte Carlo ground states at T = 10−4 with fixed J1 = 1.

1. Noncoplanar phase II with T × Z2 symmetry

The ground state of phase II consists of 24 sublattices of
spins and the magnetic unit cell spans the same amount of
sites, as shown exemplarily in Fig. 4(a) for J2 = 1.0 and J3 =
0.5. A symmetry analysis of the ground state reveals that it is
described by the symmetry group T × Z2, the direct product
of the tetrahedral group without reflections T and the group
{id,−id} ∼= Z2. The energy of this state can be expressed as
a function of two parameters λ and α as

EII =
1

6

[
− 7 + 12λ2 − 9J2λ

2 + 6J2 − 3J3

+ 2λ
√

6− 6λ2 cosα+ 4λ2 cos 2α

+ 2λ
√
2− λ2 sinα+ 2

√
3λ2 sin 2α

]
. (5)

Minimizing this expression for J2 = 1.0 and J3 = 0.5 yields
EII,semi-analytical = −1.41782 which fits well with the Monte
Carlo result for the same parameters EII,MC = −1.417(5).

2. Noncoplanar phase VI with T symmetry

The magnetic order of phase VI also has a 24-site mag-
netic unit cell, but only 12 sublattices of spins. In general,
these point to the corners of a deformed icosahedron, which
becomes regular in the special case J2 = 0.0, J3 = −1.0
shown in Fig. 4(b). Its symmetry is described by the tetra-
hedral symmetry group without reflections T (for the afore-
mentioned special case it becomes the icosahedral symmetry

(a)                                                       (b)

         phase II                                                phase VI

FIG. 4. Noncoplanar orders II and VI. (a) The ground state of
phase II has 24 sublattices of spins and a magnetic unit cell with
as many sites (outlined in red in the realspace arrangement on the
left). Right: common origin plot of the 24 spin directions. (b) The
ground state of phase VI has a 24-site magnetic unit cell as well, but
only 12 sublattices of spins. In general, these point to the corners of
a deformed icosahedron which becomes regular in the special case
J2 = 0.0, J3 = −1.0 (shown here).

group Ih). The general expression for the ground-state energy
as a function of two parameters λ and α is

EVI =
1

6

[
3 + 6J2 − 9J2λ

2 + 3J3 + 4λ
√

6− 6λ2 cosα

+ 3λ2 cos 2α−
√
3λ2 sin 2α− 6λ2

]
. (6)

Minimizing this term for, e.g., J2 = 0.5 and J3 = −0.5, leads
to EVI,semi-analytical = −1.60183 in line with the corresponding
Monte Carlo result EVI,MC = −1.601(4).

In the following, we conclude this report on the various
noncoplanar orders on the maple-leaf lattice with the two in-
commensurate spiral structures of phases IV and V.

3. Noncoplanar phase IV with D12 symmetry

In the spiral phase IV, as depicted in the common origin
plot on the left of Fig. 5(a) for J2 = 1.0 and J3 = 0.7, we
are left with M = 72 unique spin vectors after grouping those
spins that point into the same direction (cf. the corresponding
plot on the right of the very same figure). This state is sym-
metric under actions of the dihedral group of order 12, D12,
as well as under mirroring z 7→ −z. The ground-state energy
EIV can explicitly be expressed analytically as a function of
eight parameters (which is too long to be specified here). Its

(a)                                                      (b)

phase IV                                                phase V

FIG. 5. Noncoplanar spiral orders IV and V. (a) Left: common
origin plot of the Monte Carlo ground state of spiral phase IV (for
J2 = 1.0 and J3 = 0.7) with N = 864 spins. Right: These can be
grouped into M = 72 unique directions and described analytically
(see text). The resulting order has D12 symmetry. (b) The same
applies in the case of the spiral ground state of phase V, here shown
for J2 = 1.0 and J3 = 0.6.
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minimization yields EIV,semi-analytical = −1.35069, consistent
with the Monte Carlo result EIV,MC = −1.350(5).

4. Noncoplanar phase V with D12 symmetry

For the spiral phase V, we consider the numerical Monte
Carlo ground state for J2 = 1.0 and J3 = 0.6, as shown in
the common origin plot on the left of Fig. 5(b). After group-
ing the N = 864 spin vectors according to their unique di-
rections, we are left with M = 72 unique spin vectors, which
can be divided into six groups with constant z-component, as
visualized on the right of Fig. 5(b). Taking into account D12

symmetry and invariance under z 7→ −z, the state can be de-
scribed by three z-components z1, z2, and z3, and the differ-
ence angle δϕ between the azimuth angles of the spins on the
two lower circles on the one hand, and the upper circle on the
other. With these parameters, the ground-state energy takes
the form

EV =
1

12

[
− 1− 4z21 − z22 − 2

√
3− 3z22

√
1− z23

− J3
(
1 + z21 + 2z22 + 2z23

)
− 4J2

(
− z2z3 + z1(z2z3)

+
√
1− z22

√
1− z23

)
+
√
1− z21

((
2
√
1− z22

− (2 +
√
3)J2

(√
1− z22 −

√
1− z23

))
cos δϕ

+
(
(−4 + 2

√
3)
√

1− z22

+ J2
(√

1− z22 −
√
1− z23

))
sin δϕ

)]
. (7)

Minimization of this energy yields EV,semi-analytical =
−1.32311 in good agreement with and slightly smaller than
the Monte Carlo result EV,MC = −1.322(7) for the same pa-
rameters.

A compact summary that characterizes all six phases of the
phase diagram of Fig. 2 by the ground-state symmetry, and
corresponding q vectors, if any, is given in Table I.

IV. QUANTUM PHASE DIAGRAM

In the previous section we unveiled the existence of a
plethora of classically ordered phases in the maple-leaf model
defined in Fig. 1. Most notably, we identified four phases
(II, IV, V and VI) with a noncoplanar ground state. Now, we
turn to the question of how these phases are affected by quan-
tum fluctuations. Particular interest lies in finding parameter
regimes where fluctuations melt the classical noncoplanar or-
der into a ground state with restored spin rotational symme-
try. Such a state would then be a strong candidate for a chiral
quantum spin liquid [6, 7, 10]. To achieve this, we replace the

Phase Symmetry q vectors Semi-analytical
N M K # parms

I D3

(
2π
3
,− 2π

3

)
– – – –

II T × Z2 (0, π), (π, 0), (π, π) – – – –
III D6 (0,0) – – – –
IV D12 – 864 72 6 6
V D12 – 864 72 3 4
VI T (0, π), (π, 0), (π, π) – – – –

TABLE I. Symmetry characterization of the six ground-state
phases of the phase diagram Fig. 2. Given are the ground-state
symmetry (second column), and the q vectors of each phase (if any,
third column). For the two semi-analytically described phases (IV
and V), the compression of the parametrization of the spin spirals
via clustering and symmetrization is given in the four columns on
the right. Technically, the semi-analytical description is obtained by
starting with a common origin plot with N = 864 spins sampled at
T = 10−4 for a linear system size L = 12, and is then given in
terms of M , K, and the number of needed parameters (last column)
to describe the phase (see Appendix A for details).

classical spins in the original model by S = 1/2 spin opera-
tors. We then calculate the ground-state phase diagram of the
resulting quantum model using the pseudo-fermion functional
renormalization group (pf-FRG), a by now well-established
method for distinguishing between magnetically ordered and
disordered regimes at zero temperature [62].

To probe for magnetic order in the ground state of a given
spin Hamiltonian, we use the pf-FRG to calculate the flow of
the (static) spin-spin correlation defined as1

χΛ
ij =

∫ ∞

0

dτeiωτ
〈
T̂τ Ŝ

z
i (τ)Ŝ

z
j (0)

〉 ∣∣∣Λ
ω=0

(8)

where T̂τ is the time-ordering operator in imaginary time τ
and Λ is an infrared cutoff, or RG scale, artificially introduced
into the theory. A Fourier transformation then leads to the
flow of the magnetic structure factor. If the ground state of
the Hamiltonian under consideration exhibits magnetic order,
this flow will exhibit a divergence, or flow breakdown, at a
finite critical scale Λc for the Bragg momenta characterizing
the incipient order. Conversely, in the absence of a flow break-
down, the ground state is anticipated to be a disordered state,
indicative of a potential quantum spin liquid. More details on
the pf-FRG and the criteria used to distinguish ordered from
disordered states are provided in Appendix B.

In practice, we calculate the flow using the
PFFRGSolver.jl Julia package, featuring state-of-
the-art, adaptive integration schemes [63] for solving the
pf-FRG flow equations. To discretize the continuous Matsub-
ara frequency dependence of the four-point correlators, we
choose an adaptive grid of nΩ = 40 bosonic and nν = 35×35
fermionic Matsubara frequencies. We use lattice truncations
of up to L = 15, i.e., correlations are set to zero beyond

1 The spin-rotational symmetry of the Hamiltonian is preserved in the FRG
flow. The xx, yy and zz-correlations are therefore equivalent and it suf-
fices to study just one of them.
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J3/J1
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1

Ordering vector |qmax −K|

ordered

disordered
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0.1
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0.3
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0 (I)

π
4

(II)

π
2

(III-V)

2π
3

(VI)
(a) (b)

I II III IV V VI QSL
(c)

FIG. 6. Quantum phase diagram as obtained from the pf-FRG. (a) Critical scale Λc where the renormalization group flow exhibits an
instability, signaling the formation of long-range order. In the black regions the flow shows no instablility (Λc = 0), indicating a disordered
ground state. The gray dots indicate the couplings for which calculations were performed. (b) Distance of the momentum where the structure
factor is maximal qmax to the K-point of the extended Brillouin zone. Quantum disordered points that show no flow breakdown (Λc = 0) are
colored black. The gray lines are the classical phase boundaries. (c) Structure factors at the same parameters as shown for the classical case in
Fig. 2. The dashed and solid gray lines show the first and extended Brillouin zones, respectively.

0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0

FIG. 7. Quantum structure factor evolving from phase III to VI for fixed J2/J1 = 1 and varying J3/J1 (indicated in the bottom left
corners). We observe a seemingly continuous evolution with no clearly distinct signatures of phases V and VI.

a bond distance of 15. Using this setup, we calculate the
quantum analog to the classical phase diagram in Fig. 2,
with a focus on identifying quantum disordered parameter
regimes. The result for the critical scale is shown in Fig. 6(a),
while Fig. 6(b) shows the ordering vectors (i.e. the momenta
where the structure factor is maximal) and Fig.6(c) illustrates
instances of the complete structure factor within the various
phases we have identified.

A. Quantum structure factors

Before discussing the possibility of quantum disordered
phases, let us first compare the indication of order visible in
the pf-FRG structure factors with our classical analysis. Not
surprisingly, the ground-state structure factors agree well with
the classical case deep in the phases I, II, III and VI [compare
Fig. 2 with Fig. 6(c)]. Nonetheless, in the proximity to certain

phase boundaries, notable deviations emerge.
Most prominently, within the region between phases III and

VI, we don’t observe two distinct phases IV and V, as identi-
fied in the classical model. Instead, as depicted in Fig. 7, the
structure factor continuously evolves from phase III to phase
VI, showing peaks at incommensurate momenta in between.
A similar situation arises in proximity to the triple point where
phases I, II and VI converge. Here, the pf-FRG again reveals
an extended region with a structure factor maximum at an in-
commensurate momentum.

Incommensurate spin configurations can not be faithfully
captured with periodic boundary conditions on a finite lattice,
as utilized by our Monte Carlo calculations. This limitation
is likely why, in the classical analysis, we identified only dis-
tinct phases with finite magnetic unit cells. In contrast, the
pf-FRG employs open boundary conditions and thus avoids
this issue. We note that, in both incommensurate regimes, the
ordering vectors from pf-FRG align remarkably well with the
momenta qmin that minimize the energy in an unconstrained
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Luttinger-Tisza (LT) approach [64, 65]. In this LT approach,
the constraint of constant spin length is softened enabling a
straight-forward diagonalization of the Hamiltonian in mo-
mentum space (see Appendix C for details). It has been ar-
gued that this approach provides an improved approximation
to the quantum problem compared to a purely classical analy-
sis [66]. More importantly, it takes into account the full infi-
nite lattice, allowing for the description of both commensurate
and incommensurate ground-state orders.

B. Disordered phases

Returning to the discussion of disordered, putative quan-
tum spin liquid phases, they exactly seem to appear in the
parameter regions where the classical and quantum structure
factors disagree. In the pf-FRG, these phases manifest them-
selves by the absence of a flow breakdown (Λc = 0), illus-
trated by the black colored regions in Fig. 6(a). Most promi-
nently, we observe an extended quantum disordered regime
close to the triple point where the phases I, II and VI converge,
which extends further into the classical noncoplanar phase
II with T × Z2 symmetry. Here, the interplay of quantum
fluctuations and the competition of three neighboring phases
seems to suppress the magnetic order, making the regime a
promising candidate for an extended chiral quantum spin liq-
uid phase.

Furthermore, the incommensurate regime between phases
III and VI also exhibits a vanishing critical scale. However, in
this case the continuous evolution of the structure factor, and
the resulting proximity to a spectrum of many different orders
at any given point along the evolution, may pose a challenge
for the pf-FRG to correctly identify a flow breakdown at a spe-
cific ordering vector. Incommensurate states also tend to have
a flow breakdown at lower critical scales, further complicating
the numerical identification. We can, therefore, not clearly de-
termine whether this region is genuinely quantum disordered
or if it is an artifact of our calculation.

V. CONCLUSIONS AND OUTLOOK

We explore the classical and quantum phase diagram of the
spatially isotropic Heisenberg antiferromagnet on the maple-
leaf lattice in the presence of long-range interactions. In
search of noncoplanar magnetic orders, we show that the min-
imal set of couplings that need to be invoked to stabilize these
orders are cross-hexagonal third neighbor antiferromagnetic
interactions on top of the nearest-neighbor antiferromagnetic
Heisenberg model –similar to the kagome lattice where such
couplings are known to trigger cuboc orders. A comprehen-
sive classical Monte Carlo study finds a rich variety of non-
coplanar states, including a new type of order wherein the
spins point to the vertices of an icosahedron (dubbed icosa-
hedral order), as well as complex incommensurate noncopla-
nar spirals. These states feature large magnetic unit cells with
a highly intricate structure, but with the salient feature that
they lend themselves to a semianalytical construction. We

provide an optimal parameterization of the spin configuration
of these states based on a careful symmetry analysis. This
allows for obtaining explicit expressions (depending on only
a few parameters) for their ground-state energy as a func-
tion of the interactions, which in turn permits us to accu-
rately establish the phase boundaries between these complex
phases. It is highly plausible that considering a more gen-
eralized symmetry-allowed model with all three couplings at
first, second, and third neighbors being different with possible
ferro- and antiferromagnetic combinations, would give us ac-
cess to a comparatively richer landscape of exotic noncoplanar
orders.

In addition to the ground state, we study the thermodynam-
ics of noncoplanar states using classical Monte Carlo simu-
lations. The behavior of the specific heat points to a finite-
temperature phase transition in this classical two-dimensional
model, as expected due to the chiral nature of the noncopla-
nar ground states [4]. In the limit of low spin values, e.g.,
S = 1/2, one may expect that strong quantum fluctuations
preclude the formation of long-range magnetic order while
the long-range order in chirality survives, thus possibly sta-
bilizing a chiral spin liquid. Given that the maple-leaf lattice
lacks reflection symmetry about any straight line, the issue
concerning which lattice symmetries could be broken up to
time-reversal (i.e., allowed chiral classes) in order to respect
“PT ” theorem (for U(1) QSLs) is worth examining. Identify-
ing the allowed symmetry patterns and microscopic nature of
this putative QSL phase would involve a systematic projective
symmetry group classification of chiral mean-field Ansätze
with U(1) and Z2 low-energy gauge groups [10]. The ground-
state energies and correlation functions of the corresponding
Gutzwiller projected states could then be obtained within a
variational Monte Carlo scheme [67, 68], and compared to the
structure factors obtained from pf-FRG in the current work.
Alternatively, these Ansätze could be analyzed within a pf-
FRG framework itself by performing a self-consistent Fock-
like renormalized mean-field scheme to compute low-energy
theories for emergent spinon excitations but using effective
vertex functions instead of the bare couplings [69]. Indeed,
(gapless) U(1) chiral spin liquids displaying cuboc type mag-
netic correlation profiles have been reported to be energeti-
cally competitive variational ground states in the S = 1/2 J1-
J2-Jd Heisenberg model [10, 47]. In a similar vein, it would
be interesting to identify the QSL whose structure factor pro-
file resembles that of the novel icosahedral order, and obtain
a knowledge of its low-energy gauge structure, U(1) or Z2,
gapped vs gapless, etc. It would also be worthwhile to study
the propensity towards dimerized states [70–73], since such
J3 couplings on the kagome lattice are known to induce va-
lence bond crystals in the vicinity of chiral spin liquids [43].

From a materials perspective, a number of experimentally
studied natural minerals [74–77] and synthetic crystals [78–
81] have come into the limelight. Subsequent theoretical
analysis of the complex frustration mechanism at play in
these compounds is in a nascent stage, both as regards the
nature of magnetic interactions and the consequences of their
interplay [82, 83]. It can be envisaged that, either in synthesis
of polymorphs, or in naturally occuring minerals, a scenario
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similar to that in the kagome materials kapellasite [84] and
haydeite [85] plays out, whereby the nonmagnetic ions (in
these cases Zn and Mg, respectively), occupy the centers
of the hexagons, thus spanning the pairs of magnetic ions
connected by J3. The synthesis of compounds with such
superexchange paths is likely to trigger a sizeable J3 inter-
action, and depending on its strength could induce magnetic
fluctuations displaying profiles of noncoplanar orders, as
have been observed in kapellasite which displays cuboc-2
type magnetic fluctuations [86].

Data availability.– The numerical data shown in the fig-
ures is available on Zenodo [87].
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Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chi-
ral Spin Liquid, Phys. Rev. Lett. 116, 137202 (2016).

[7] C. Hickey, L. Cincio, Z. Papić, and A. Paramekanti, Emergence
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kagomé lattice, Phys. Rev. B 72, 024433 (2005).

[27] O. Janson, J. Richter, and H. Rosner, Modified Kagome Physics
in the Natural Spin-1/2 Kagome Lattice Systems: Kapella-
site Cu3Zn(OH)6Cl2 and Haydeeite Cu3Mg(OH)6Cl2, Phys.
Rev. Lett. 101, 106403 (2008).

[28] J.-C. Domenge, C. Lhuillier, L. Messio, L. Pierre, and P. Viot,
Chirality and Z2 vortices in a Heisenberg spin model on the
kagome lattice, Phys. Rev. B 77, 172413 (2008).

[29] T. Okubo, S. Chung, and H. Kawamura, Multiple-q States and
the Skyrmion Lattice of the Triangular-Lattice Heisenberg An-
tiferromagnet under Magnetic Fields, Phys. Rev. Lett. 108,
017206 (2012).

[30] K. Aoyama and H. Kawamura, Hedgehog-lattice spin texture
in classical Heisenberg antiferromagnets on the breathing py-
rochlore lattice, Phys. Rev. B 103, 014406 (2021).

[31] K. Aoyama and H. Kawamura, Emergent skyrmion-based chi-
ral order in zero-field Heisenberg antiferromagnets on the
breathing kagome lattice, Phys. Rev. B 105, L100407 (2022).
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[86] B. Fåk, E. Kermarrec, L. Messio, B. Bernu, C. Lhuillier, F. Bert,

P. Mendels, B. Koteswararao, F. Bouquet, J. Ollivier, A. D.
Hillier, A. Amato, R. H. Colman, and A. S. Wills, Kapellasite:
A Kagome Quantum Spin Liquid with Competing Interactions,
Phys. Rev. Lett. 109, 037208 (2012).
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Appendix A: Supplementary material on the classical Monte
Carlo simulations

For the analysis of the classical phase diagram and the
different ground states, we use a combination of classi-
cal Monte Carlo simulations in conjunction with a semi-
analytical method, which we briefly explain in this appendix.

1. Monte Carlo simulations

All Monte Carlo simulations are performed on finite lat-
tices of L × L unit cells with periodic boundary conditions,
that is, N = 6L2 spins (L = 12 unless stated otherwise).
Local updates are performed with the Metropolis-Hastings al-
gorithm. To resolve the thermal selection of ground states
by thermal order-by-disorder effects at very low temperatures,
we employ a parallel tempering/replica exchange Monte Carlo
scheme [88, 89] with 192 logarithmically spaced temperature
points between Tmin = 10−4 and Tmax = 10. These repli-
cas are simulated simultaneously such that after every sweep,
spin configurations of neighboring replicas are attempted to be
exchanged according to some probability. As a result, the in-
dividual replicas perform a random walk in temperature space
and can thus easily escape from local minima at low temper-
atures. We have taken care to check the thermalization of our
parallel tempering scheme against feedback-optimized tem-
peratures. [90]. For the specific heat data, a conventional
Monte Carlo scheme without parallel tempering and 192 lin-
early spaced temperature points between Tmin = 0.02 and
Tmax = 0.5 is employed. In all cases, measurements are per-
formed over 5 · 108 sweeps after a thermalization period of
108 sweeps. The static spin structure factors shown in the
classical phase diagram (Fig. 2) are obtained from the Fourier
transform of the Monte Carlo equal-time real space spin-spin
correlations, that is,

S(q) =
1

N

N∑
i,j=1

⟨Si · Sj⟩eiq·(ri−rj) , (A1)

where q is a momentum inside the extended Brillouin zone,
and ri denotes the position of site i.

2. Semi-analytical method

We also use a semi-analytical approach presented in [32],
which works as follows: Starting from a ground state for
a system of N classical spins Si, which we obtain numeri-
cally from a Monte Carlo simulation, we first transform onto
the eigenbasis of the corresponding tensor of inertia. Then
we form groups of spin vectors that point approximately in
the same direction, i.e. that fulfill, e. g., Si · Sj ≥ 0.995.
This results in a set of M different spin directions, which
is further reduced by guessing their symmetry group. In the
end, we have K different spin directions for the ground state,
from which we obtain all others by applying symmetry opera-
tions. Next, we calculate the energy of the spin configuration

H(α1, . . . , αn) as a function of some parameters α1, . . . , αn

that describe the position of the remaining K spin vectors.
These parameters have different meanings for the different
phases, e. g., they could be some z− values that are con-
stant for groups of spin vectors or certain difference angles
between configurations of groups of spins. We need at most
n = 2K − 1 parameters to characterize the spin configura-
tion, but often less, see Table I. The energy H(α1, . . . , αn) is
then numerically minimized starting with the initial numerical

(a)                      

(b)

FIG. 8. Ground-state energies from Monte Carlo simulations at low
temperatures (T = 10−4) for (a) fixed J3 = 0.0, 1.0, and (b) fixed
J2 = 0.0, 1.0, respectively. The insets show the corresponding sec-
ond derivatives, E′′/N . These show clearly visible features exactly
at the semi-analytically determined phase boundaries (indicated as
vertical dashed lines).
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values of the parameters corresponding to the K spin vectors.
It should have become clear that the semi-analytical method
cannot be applied schematically, but requires a certain amount
of intuition. Incorrect identifications of closely neighboring
spins are usually reflected in ground-state energies that are
too high. Conversely, a slight lowering of the numerical ini-
tial energy is an indication of a successful application of the
method.

3. Supplemental numerical data

Let us supplement the results for the classical phase dia-
gram discussed in the main text with additional data sets for
(i) cuts of the ground-state energy and (ii) for the thermody-
namic signatures of the classical phases in specific heat traces.

a. Ground-state energy

Cuts of the Monte Carlo ground-state energy as a function
of J2 and J3 are presented in Fig. 8. These underline the good
interplay of Monte Carlo numerics on the one side, and semi-
analytical method on the other side: The insets in Fig. 8 dis-
play the second derivatives of the Monte Carlo ground-state
energy where the peaks indicate phase transitions along with
the semi-analytically determined phase boundaries. Note that
it is precisely at these boundaries that the Monte Carlo en-
ergies have clearly visible features, which is a confirmation
of the accuracy of the (semi-analytically) determined phase
boundaries.

b. Specific heat

Specific heat traces for the six phases are shown in Fig. 9.
The spiral phases IV and V show complicated behavior; due
to their incommensurability, these phases depend very sensi-
tively on finite-size effects. In contrast, the four phases I, II,
III, and VI, display single peaks at some finite temperature
that scale with the system size—a scaling behavior that is ex-
pected for a thermal ordering phase transition.

Appendix B: Supplementary material on the Pseudo-Fermion
Functional Renormalization Group

To calculate the quantum phase diagram in Fig. 6 we em-
ploy pseudo-fermion functional renormalization group (pf-
FRG) calculations. In this appendix, we shortly state the idea
of the pf-FRG approach, and give references for readers inter-
ested in more details. We then describe our precise criterion
for distinguishing disordered from ordered ground states used
in analyzing the pf-FRG flow. Finally, we provide additional
cuts through the quantum phase diagram for a better illustra-
tion of the transitions between the observed phases.

FIG. 9. Specific heat traces from Monte Carlo simulations for all
six phases, color-coded the same way as in the phase diagram Fig. 2.
The spiral phases IV and V (green and red, respectively) show com-
plicated behavior indicating a sensitive dependence on finite-size ef-
fects. The four commensurate phases I (dark gray), II (yellow), III
(light gray), and VI (blue), display a scaling behavior that is expected
for a thermal phase transition with a single peak that grows with
system size. Note, that for phase I, the simulated system sizes are
L = 9, 12, 15 to ensure commensurability of the underlying order
with the lattice.

1. Method

The core concept of the pf-FRG involves avoiding the si-
multaneous treatment of all energy scales in the quantum
problem at once. Instead, the approach starts at a known
high-energy limit and subsequently incorporates lower energy
scales in an iterative manner. To this end, an infrared cut-
off, or RG Scale, Λ is inserted into the model, so that in
the high-energy limit (Λ → ∞) all correlation functions are
completely determined by the bare couplings in the Hamil-
tonian, and in the low-energy limit (Λ = 0) the full the-
ory is recovered. In our case, the cutoff is implemented in
Matsubara frequency space by multiplying the bare propa-
gator with a continuous regulator function. The interpola-
tion between high and low energies is governed by an in-
finite hierarchy of differential equations, called flow equa-
tions. Employing the Katanin truncation [91], we approxi-
mate this infinite hierarchy by a finite number of flow equa-
tions for the two- and four-point correlations, which we can—
under certain approximations—solve numerically using the
the PFFRGSolver.jl Julia package [63]. From the flow
of these correlations we can then determine if the ground state
of a given spin model is likely ordered or disordered. Details
on this are given in the appendix below. For readers interested
in more details on the pf-FRG approach we refer to the review
[62], and for more details on our specific implementation, we
refer to [92].
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FIG. 10. Renormalization group flow of the structure factor in
ordered (I and II) and disordered (QSL) phases. The top row shows
the structure factor flow at the momentum where it is maximal. The
bottom row shows the second derivative of the flow with respect to
the cutoff Λ, in which non-monotonic features signal the develop-
ment of a flow breakdown. The position of the flow breakdown, the
critical scale Λc, is depicted by the dashed gray lines. In the quantum
disordered regime (right column), no flow breakdown occurs.

2. Flow breakdown criterion

To probe for magnetic order in the ground state of a given
spin Hamiltonian, we calculate the (static) spin-spin correla-
tion χΛ

ij defined in Eq. (8) from the two- and four-point cor-
relations. We then Fourier transform χΛ

ij to obtain the flow of
the (static) structure factor. If the ground state of the Hamil-
tonian under consideration exhibits magnetic order, this flow
will show a divergence, or flow breakdown, at a finite critical
scale Λc for the Bragg momenta characterizing the incipient
order. If, on the other hand, there is no flow breakdown, the
ground state is expected to be a disordered, putative quantum
spin liquid state. In practice, the lattice truncation L and the
truncation of the flow equations will usually soften the diver-
gence indicating a flow breakdown to a cusp or a peak, which
becomes more prominent with increasing L. The flow of a
disordered state, on the other hand, is expected to stay smooth
and convex down to the lowest considered RG scale (in our
case Λmin = 0.01|J |, with |J |2 = J2

1 + J2
2 + J2

3 as normal-
ization). We, therefore, identify any non-monotonicity in the
second derivative of the structure factor flow as a flow break-
down, under the condition that it becomes more pronounced
with increasing lattice size. For this comparison, we use up

to three different truncation lengths L = 9, 12, 15. Examples
of structure factor flows and their second derivative are shown
in Fig 10. In the ordered regime, the second derivative shows
a clear non-monotonicity, resulting in a cusp in the structure
factor flow, and a clear lattice size dependence. In the disor-
dered case, both the flow and its second derivative are smooth,
monotonous, and essentially lattice size independent, signal-
ing the absence of long-range order.

3. Cuts through the quantum phase diagram

For better interpretation of the full quantum phase diagram
shown in Fig. 6, we depict the evolution of the critical scale Λc

and the ordering vector qmax along vertical (horizontal) cuts
through parameter space with fixed J3/J1 (J2/J1) in Fig. 11.

This better illustrates the regions in parameter space with
incommensurate order (IC), where the ordering vector neither
lies on a symmetry point of the first nor the extended Bril-
louin zone of the maple-leaf lattice. We also clearly see the
continuous evolution of the ordering vector between phase III
and VI, instead of the two distinct phases IV and V observed
in the classical analysis (as visible in the upper left panel for
fixed J2/J1 = 0.8).

Additionally, we observe dips in the critical scale at the
phase boundaries between phases I and VI, and phases II and
III (or the nearby IC phase), indicating a phase transitions. In-
terestingly, the critical scale shows no notable feature at the
boundary between phases I and II, suggesting a crossover in-
stead of a phase transition. This would be contradictory to
the different symmetries of the corresponding ground states
identified in the classical analysis (D3 vs. T × Z2). How-
ever, a similar cut showing the classical ground-state energy
in Fig. 8 also shows only a very soft kink, indicating a very
weak first-order transition that might not be captured well by
just considering the critical scale of the pf-FRG. The pf-FRG
ordering vectors, on the other hand, do show a sharp jump at
the phase boundary, although this boundary is slightly shifted
compared to the classical phase diagram.

Appendix C: Unconstrained Luttinger-Tisza

In order to substantiate the structure factors derived from
our pf-FRG calculations, especially within the incommensu-
rate regimes where they disagree with the classical analysis,
we employ the unconstrained Luttinger-Tisza (LT) approach
[64, 65]. This approach studies the classical model, but re-
laxes the hard constraint of constant spin length on each spin
to a constraint on the total spin length. Enforcing only this
weak constraint enables a straight-forward Fourier transfor-
mation of the interaction matrix, and a subsequent diagonal-
ization of the Hamiltonian in momentum space. The momenta
qmin with eigenvectors of minimal energy then characterize
the LT ground state—a semi-classical approximation to the
true ground state with an energy that serves as a lower bound
on the exact ground-state energy. The fact that the LT ap-
proach works on an infinite lattice and that, as in the quantum
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FIG. 11. Cuts through the quantum phase diagram shown in Fig. 6. Gray circles depict the critical scale Λc and white circles the evolution
of the ordering vectors qmax for (a) vertical cuts (J3/J1 = const.) and (b) horizontal cuts (J2/J1 = const.). In addition to the ordered
phases identifed in our classical analysis, we observe large regions with ordering vectors at incommensurate (IC) momenta.

model, spin length is not conserved, makes it a suitable tool
to compare it to and corroborate the results from our pf-FRG
calculation.

Figure 12 does just that, depicting the LT q-vector with
minimal eigenvalue qmin (a) next to the pf-FRG ordering
vectors qmax of maximal structure factor intensity (b), and
shows examples of the full LT ground-state q-vectors (c) in
the different phases. The most notable difference is that the
LT q-vectors are periodic with the reciprocal lattice vectors
of the triangular Bravais lattice of the maple-leaf lattice,
and thus fully specified by points in the first Brillouin zone
(depicted by the dashed lines in Fig. 12(c)). Conversely,
the pf-FRG ordering vectors are periodic on the reciprocal
lattice of the smaller triangular lattice that, when depleted
by 1/7, transforms into the maple-leaf lattice, and are thus
fully specified by points in the extended Brillouin zone (solid
gray lines). The resulting additional q-vectors found by
the LT approach are likely due to states not fulfilling the
hard spin-constraint, which are therefore absent also in the
structure factors from classical Monte Carlo (depicted in
Fig. 2 on the right). Due to these extra momenta, phase II and
phase VI are equivalent in the unconstrained LT approach,

where both the pf-FRG and the classical analysis only select
a subset of the LT q-values and reveal that the phases differ
even in their respective ground-state symmetry (T vs D3).

Comparing only the LT q-vectors also present in the pf-
FRG structure factor, however, the two methods agree remark-
ably well, both showing incommensurate q-values in the pro-
posed QSL regime and in between phases III and VI. Our LT
calculation also predicts the smooth evolution of the structure
factor from phase III to VI, as depicted in Fig. 13, resem-
bling the pf-FRG structure factors in Fig. 7. This supports the
incommensurate nature of the ground state in this parameter
regime, which was not captured by our initial classical analy-
sis.
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FIG. 13. Ground-state qmin-vectors from Luttinger-Tisza evolving from phase VI to III for fixed J2/J1 = 1 and increasing J3/J1

(indicated in the bottom left corners). Similar to the pf-FRG results (c.f. Fig. 7), we observe a seemingly continuous evolution with no clearly
distinct phases V and VI that were identified in our classical analysis.
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