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Quantum antiferromagnets on geometrically frustrated lattices have long attracted interest for the formation of
quantum disordered states and the possible emergence of quantum spin liquid (QSL) ground states. Here we turn
to the nearest-neighbor spin-1/2 Heisenberg antiferromagnet on the maple-leaf lattice, which is known to relieve
frustration by the formation of canted 120◦ magnetic order or valence bond crystal order when varying the bond
anisotropy. Employing a pseudofermion functional renormalization group approach to assess its ground state
phase diagram in detail, we present evidence for a QSL regime sandwiched between these two limiting phases.
The formation of such a QSL might signal proximity to a possible deconfined quantum critical point from which
it emerges, and that is potentially accessible by tuning the exchange couplings. Our conclusions are based on
large-scale simulations involving a careful finite-size scaling analysis of the behavior of magnetic susceptibility
and spin-spin correlation functions under renormalization group flow.
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Introduction. The search for quantum spin liquid (QSL) [1]
ground states in spin models on two-dimensional geometri-
cally frustrated lattices is a highly pursued endeavor. The spin
S = 1/2 Heisenberg model with antiferromagnetic couplings
on the kagome [2,3] and triangular [4,5] lattices serve as
classic examples where QSL behavior is well established.
Here, a QSL emerges when quantum order-by-disorder fails
to select a unique ground state out of a degenerate mani-
fold typically located at transition points between classical
magnetic orders. Much less explored are potential QSLs in
models with proximate antiferromagnetic and valence bond
crystal (VBC) orders. Such an occurrence of an intermediate
QSL phase could potentially signal vicinity to a deconfined
quantum critical point (DQCP) [6,7] out of which the QSL
develops, with the DQCP approachable by tuning exchange
couplings. This scenario is currently being debated for the S =
1/2 Heisenberg antiferromagnet on the Shastry-Sutherland
lattice [8] where a QSL phase occupying a narrow region be-
tween the plaquette singlet and antiferromagnetic orders has
been reported in Ref. [9]. It has also recently been proposed
that a gapless QSL develops out of a DQCP in the S = 1/2
J1–J2–J3 Heisenberg model on the square lattice [10,11].

For the S = 1/2 Heisenberg antiferromagnet on the maple-
leaf lattice (MLL), it has been reported in Ref. [12] that upon
tuning the nearest-neighbor bond anisotropy, one can traverse
a phase diagram comprising canted 120◦ (c120◦) antiferro-
magnetic [13] and VBC orders—with the latter shown to be
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an exact dimer ground state (a product state of singlets on iso-
lated bonds) beyond a critical value of bond anisotropy [12].
However, it remains to be established whether the transition
between these two phases is continuous via a DQCP, first
order, or whether an intermediate QSL can develop gradually,
emerging out of an underlying DQCP which is proximate in
parameter space. In this Letter, we probe for the existence
of an intermediate QSL by mapping the quantum phase dia-
gram via large-scale state-of-the-art pseudofermion functional
renormalization group (pf-FRG) calculations [14,15] com-
bined with systematic finite-size and finite RG scale analysis
of the behavior of magnetic susceptibility and spin correla-
tion functions. We present evidence for a QSL ground state
sandwiched between the c120◦ magnetic and VBC orders. Al-
though we do not provide any direct evidence for a proximate
DQCP, the noticeable similarity to the Shastry Sutherland
case [8] may suggest an analogous transition, setting the stage
for further investigations in this direction.

Model. The MLL (see Fig. 1) has a coordination number of
z = 5 and, by virtue of translation-rotation invariance between
any pair of nearest-neighbor sites, is a uniform tiling [16]. It
belongs to the family of two-dimensional (2D) Archimedean
lattices (i.e., with all lattice sites being symmetry equivalent)
constructed by a periodic tessellation of regular polygons—
triangles and hexagons. It can be obtained by a 1/7 site
depletion of the triangular lattice. This results in a loss of
reflection symmetry about any straight line through the lattice,
and thus the point group of the MLL features only sixfold
rotational symmetry about the center of the hexagons, i.e., it
has a p6 (No. 168) space group. Experimental realizations of
the MLL are known to occur both in natural minerals [17–19]
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FIG. 1. The maple-leaf lattice admits three inequivalent nearest-
neighbor bonds colored green, red, and blue. Increasing the coupling
anisotropy α on the green bonds induces a transition from a mag-
netically ordered phase (left) to a dimer phase (right), with an
intermediate quantum disordered, putative spin liquid phase in be-
tween. The ordered phase exhibits canted 120◦ order (c120◦), where
spins on red triangles show local 120◦ order, while spins on neigh-
boring triangles are canted by an α-dependent pitch angle �(α).

as well as synthetic crystals [20–23]. It has a six-site crystallo-
graphic unit cell, and there exist three symmetry-inequivalent
nearest-neighbor bonds, which we color green, blue, and red,
as shown in Fig. 1. A generic nearest-neighbor Heisenberg
model on the MLL may therefore be defined as

Ĥ =
∑
〈i j〉G

JGŜi · Ŝ j +
∑
〈i j〉R

JRŜi · Ŝ j +
∑
〈i j〉B

JBŜi · Ŝ j, (1)

where Ŝi are S = 1/2 operators at site i, 〈i j〉G denotes a
sum over all green (G) nearest-neighbor bonds, and JG is the
corresponding coupling. The same holds for red (R) and blue
(B) bonds. Here, we consider the special case JR = JB, and
only investigate the effect of a coupling anisotropy α defined
via

JG = 2αJR = 2αJB. (2)

As already shown in Ref. [12], in this case the model is
exactly solvable for α > αb1 = 1.0, where it exhibits an exact
dimer ground state—a tensor product state of singlets cov-
ering the green bonds. Density matrix renormalization group
(DMRG) calculations suggest that this state is stable down to
α > αDMRG

c ≈ 0.675. Additionally, below α < αb2 ≈ 0.46, it
was shown that a magnetically ordered ground state exhibiting
a canted 120◦ order (c120◦) provides a better energy bound
than the exact dimer singlet state. More importantly, since
the DMRG analysis of Ref. [12] only estimated the critical
value of α where the dimer state terminates, the possibility
of the system subsequently entering a more exotic quantum
paramagnetic ground state, such as a quantum spin liquid, for
αDMRG

c � 0.675 remains unexplored.
Methods and results. To probe for the possible exis-

tence of such a quantum paramagnetic regime, we analyze
model (1) employing the pseudofermion functional renormal-
ization group (pf-FRG) approach at zero temperature [15].
The pf-FRG is, by now, an established method to distinguish
between long-range magnetically ordered and quantum para-
magnetic phases, and has additionally been used to determine
dimerization or nematic tendencies in paramagnetic regimes
lacking conventional dipolar magnetic order [14,24–31]. The

main idea of the the pf-FRG is to introduce an infrared cutoff
�, also called RG scale, such that all correlation functions
in the limit � → ∞ are purely determined by the bare cou-
plings in the spin Hamiltonian, and the physical correlation
functions of the quantum theory are recovered for � = 0.
The interpolation from high to low RG scales is described
by a hierarchy of coupled integro-differential equations called
flow equations. These can, under certain approximations, be
integrated numerically, starting from the large � limit, which
yields the flow of the two- and four-point correlation func-
tions. We perform the integration by implementing the MLL
into the PFFRGSolver Julia package [32], featuring state-
of-the-art, adaptive integration schemes for the pf-FRG flow
equations [33]. In the integration, four-point correlations are
parametrized by n� = 35 bosonic, nν = 40 × 40 fermionic
Matsubara frequencies. We use lattice truncations of up to L =
18, i.e., correlations are set to zero beyond a bond distance
of 18. This necessitates the solution of roughly 5.5 × 108

coupled differential equations, which we are able to reduce
by a factor of six by utilizing the point group symmetry of the
MLL.

In order to differentiate between magnetically ordered and
paramagnetic states, we calculate the flow of the (static) spin-
spin correlations,

χ�
i j =

∫ ∞

0
dτeiωτ

〈
T̂τ Ŝz

i (τ )Ŝz
j (0)

〉∣∣�
ω=0, (3)

from the two- and four-point correlations, where T̂τ is the
time-ordering operator in imaginary time τ (due to the spin
rotational symmetry of the Hamiltonian, the xx, yy, and zz
correlations are equivalent so it suffices to study just one
of them). A straightforward Fourier transformation of χ�

i j
yields the flow of the magnetic structure factor, i.e., static
susceptibility. Onset of magnetic order manifests itself in
the divergence of the structure factor flow (evaluated at the
Bragg peak wave vectors of the incipient order) at some finite
critical scale �c—in 2D, this divergence is an artifact of the
truncation of the flow equations, in contrast to 3D where it
reflects a phase transition. Due to finite numerical resolution,
however, the divergence—or flow breakdown—is often con-
siderably softened to a cusp or a kink, which sharpens with
increasing lattice truncations L. The structure factor flow of
a paramagnetic state, in contrast, is expected to be smooth
and convex down to the smallest RG scales, independent
of the lattice truncation. We consequently identify any non-
monotonicity in the second derivative of the flow ∂2

�χ that
becomes more pronounced with increasing lattice truncation
as indicative of a flow breakdown. Examples of the corre-
sponding structure factor flows and their second derivatives
are shown in Fig. 2 (with |J|2 = J2

G + J2
R + J2

B as an energy
scale for normalization). Using this criterion, we calculate the
evolution of the critical scale �c as a function of α. As shown
in Fig. 3(a), for α < αc1 ≈ 0.66, we find a magnetically or-
dered c120◦ phase. In this state, the 120◦-ordered triangles
spiral with an α-dependent pitch, reminiscent of block-spiral
magnetism [34]. For α > αc1, the flow shows no instability,
indicating a quantum paramagnetic phase. This is supported
by a broadening of the maxima in the structure factor when
entering the paramagnetic regime, as shown in Fig. 4.
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FIG. 2. Renormalization group flow of the structure factor at maximal intensity χmax (top) and its second derivative ∂2
�χmax (bottom), at

different values of α. We identify a flow breakdown, indicated by the dashed gray lines, by a clear, lattice-size-dependent nonmonotonicity in
the second derivative.

To quantify this effect, we calculate the correlation ratio
R [36–38], defined as

R = 1 − χ (K + δ)/χ (K), (4)

where K is the K point of the extended Brillouin zone and
δ = 2π/L̃ (1/

√
3,−1)	 is the first reciprocal lattice vector

of the triangular lattice underlying the MLL, scaled with the
maximally allowed correlation length L̃ (in terms of real-space
distance) for a given bond truncation length L. The result is
shown in Fig. 3(b). The correlation ratio tends to R = 1 in the
ordered phase, as the Bragg peak becomes increasingly sharp
in the thermodynamic limit, and to R → 0 in the disordered
phase. The first decrease of R coincides reasonably well with
the critical αc1 determined by the flow breakdown analysis.
We do not observe a clear crossing point for curves of different
L, as might be expected at a phase transition [36–38]. We note,
however, that the correlation ratio is calculated for constant
�/|J| = 0.015, which lies below the flow breakdown in the
ordered phase (α < αc1) for which the numerical data may
not be reliable, possibly impeding the formation of a clear
crossing point.

Our estimate of αc1 ≈ 0.66 places the isotropic model
[α = 0.5 in Eq. (2), i.e., JG = JR = JB in Eq. (1)] inside
the magnetically ordered regime, with the spin configuration
being a translationally invariant coplanar 120◦ order with a
six-sublattice structure [39]. Previous studies based on exact
diagonalization, coupled cluster approximation, spin-wave,
and variational approaches have highlighted the precarious
nature of the isotropic point, finding either a quantum para-
magnet or a weakly ordered state [13,39–43]. This is, in some

sense, reflective of the fact that among nonbipartite lattices,
the coordination number z = 5 of the MLL lies in between
that of the triangular lattice (z = 6), which has 120◦ magnetic
order [44], and the kagome lattice (z = 4), which has a quan-
tum paramagnetic ground state for the S = 1/2 Heisenberg
antiferromagnetic model.

To further characterize the nature of the putative quantum
paramagnetic phase on the MLL, we calculate the nearest-
neighbor spin-spin correlations on the green, red, and blue
bonds χG/R/B in the small-� limit (see Fig. 5). For large values
of α, the correlations on the green bonds χG rise sharply in
a linear fashion and saturate to a constant value, while χB

and χR rapidly go to zero. This RG flow fixed point indicates
the onset of a robust phase with constant spin correlations
on the green bonds. This indicates a progressively enhanced
propensity towards the formation of a dimer-product state [13]
where all the green bonds host a dimer singlet [45], and
which ultimately evolves to being the exact ground state [12].
Such a behavior of the spin-spin correlation functions is akin
to what has previously been observed in a pf-FRG analysis
of the Shastry-Sutherland model [29], which is also host to
an exact dimer ground state. Additionally, the momentum-
resolved structure factor shows no sharp peaks compared to
the magnetically ordered phase (see Fig. 4). The rise of χG

to its saturation value becomes more rapid when decreasing
�. Following Ref. [29], we assume that in the thermodynamic
limit, on crossing the phase transition into the dimer phase,
the ground state immediately transitions into a product state
and is thus accompanied by an immediate saturation of the
spin-spin correlations on the green bonds. In that case, we
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FIG. 3. Melting of magnetic order. (a) Critical scale �c at which
the pf-FRG flow shows an instability, for different lattice truncation
lengths L. Below α < αc1 ≈ 0.66, finite values of �c imply the
formation of c120◦ magnetic order. Above α > αc1, the absence of
a flow breakdown (�c = 0) implies a quantum paramagnetic ground
state, where for α > αc2 ≈ 0.80, the nature of correlations implies a
dimer phase. Between the c120◦ and dimer phase at αc1 < α < αc2,
a putative QSL phase emerges. (b) Correlation ratio R as defined in
Eq. (4) calculated at � = 0.015/|J|. The first decrease of R coincides
reasonably well with αc1, supporting the existence of a paramagnetic
ground state for α > αc1.

can determine the transition point αc2 to the dimer phase, as a
function of �, by the intersection of two linear regressions
[black lines in Fig. 6(a)] and then extrapolate the result to
� = 0, obtaining an estimate of αc2 ≈ 0.80, as is illustrated in
Fig. 6(b). This analysis implies that our estimate of the dimer
crystal to be the ground state is for α > αc2, slightly higher
than the estimate of DMRG calculations [12], which—as a
variational approach targeting low-entanglement states [46]—

FIG. 4. Static structure factor in the c120◦ (α = 0.0), QSL (α =
0.73), and dimer (α = 2.0) phase [35]. The dashed (solid) gray line
indicates the first (extended) Brillouin zone of the MLL.

FIG. 5. Nearest-neighbor spin-spin correlations on green χG, red
χR, and blue χB bonds (defined in Fig. 1) at �/|J| = 0.01 for differ-
ent lattice truncations L. Above αc2 ≈ 0.8, the correlations χG tend
towards a constant value, while χR and χB tend to zero, indicating
a dimer ground state covering the green bonds. Correlations only
show a lattice-size dependence in the long-range ordered c120◦ state
(dashed lines), where the RG flow shows a breakdown at finite �c.

might have a tendency to overestimate the stability of the
dimer crystal phase. Conversely, for αc1 � α � αc2, we find
a quantum paramagnetic ground state (inferred from an ab-
sence of flow breakdown) whose correlations resemble that of
the c120◦ state. Indeed, as one passes from the c120◦ state to
the intermediate paramagnetic state and even into the dimer
state, the structure factor features soft maxima at the location
of the Bragg peaks of the c120◦ magnetically ordered state,
which smoothly soften as α increases.

Discussion. We have presented evidence pointing to a
QSL phase in the S = 1/2 Heisenberg antiferromagnet on the
MLL. Given that the QSL occupies an intermediate region
in parameter space separating the c120◦ antiferromagnetic
and VBC orders, further investigation is warranted concern-
ing its possible origin from a proximate DQCP which can
be accessed by tuning exchange couplings. Indeed, such an
emergence of a gapless QSL from a DQCP has lately been
discussed in the context of the S = 1/2 J1–J2–J3 Heisenberg
model on the square lattice [10]. The MLL model could poten-
tially serve as a second rare example of a frustrated model host
to both a QSL and DQCP, with the former originating from
the latter, thereby highlighting their intrinsically intertwined
nature. This would involve a mapping of the global phase
diagram upon varying all symmetry inequivalent nearest-
neighbor couplings and/or possibly including longer-range
ones to establish whether the QSL terminates at a point and
beyond which there is a direct c120◦-VBC transition. To this
end, it would be worthwhile to employ other state-of-the-art
numerical quantum many-body approaches such as variational
Monte Carlo, tensor-network approaches beyond DMRG,
or the recently developed pseudo-Majorana functional
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FIG. 6. Transition into the dimer ground state. (a) Spin-spin cor-
relations on the green bonds χG for different RG scales �. In the
dimer state, the correlations tend to a constant value. The transition
point into the dimer state is determined by the intersection of two
linear regressions (solid black lines) for each �. Extrapolating the
resulting αc2(�) to � = 0, as shown in (b), leads to a critical value
of αc2 ≈ 0.8. The data presented correspond to L = 15, but the
simulation outcomes are largely independent of the lattice truncation
length within the disordered regime (see Fig. 5).

renormalization group [47], which could shed light on the
nature of the c120◦-QSL and QSL-VBC transitions from com-
plementary numerical perspectives.

Furthermore, the problem of the microscopic characteriza-
tion of the nature of the QSL can be addressed by a projective

symmetry group classification [48] of fermionic mean-field
Ansätze with U(1) and Z2 low-energy gauge groups. These
Ansätze could be analyzed within the pf-FRG framework itself
by using the low-energy effective vertex functions (instead of
the bare couplings) within a self-consistent Fock-like mean-
field scheme to compute low-energy theories for emergent
spinon excitations [49,50]. An alternate treatment would be
to perform Gutzwiller projections yielding variational wave
functions whose relative energetic competitiveness and spec-
trum of excitations could be assessed within a Monte Carlo
framework [2,4,51].

The numerical data shown in the figures are available on
Zenodo [52].
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