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Abstract
Moiré systems provide a highly tunable platform for engineering band structures and exotic
correlated phases. Here, we theoretically study a model for a single layer of graphene subject to a
smooth moiré electrostatic potential, induced by an insulating substrate layer. For sufficiently large
moiré unit cells, we find that ultra-flat bands coexist with a triangular network of chiral
one-dimensional (1D) channels. These channels mediate an effective interaction between localized
modes with spin-, orbital- and valley degrees of freedom emerging from the flat bands. The form
of the interaction reflects the chirality and 1D nature of the network. We study this interacting
model within an SU(4) mean-field theory, semi-classical Monte-Carlo simulations, and an SU(4)
spin-wave theory, focusing on commensurate order stabilized by local two-site and chiral three-site
interactions. By tuning a gate voltage, one can trigger a non-coplanar phase characterized by a
peculiar coexistence of three different types of order: ferromagnetic spin order in one valley,
non-coplanar chiral spin order in the other valley, and 120◦ order in the remaining spin and
valley-mixed degrees of freedom. Quantum and classical fluctuations have qualitatively different
effects on the observed phases and can, for example, create a finite spin-chirality purely via
fluctuation effects.

1. Introduction

Stacking a two-dimensional van der Waals material
on top of other van der Waals materials (with or
without a relative twist) defines a class of quantum
material known as moiré materials [1, 2]. Due to
their highly tunable experimental knobs for engin-
eering band structures, thereby facilitating the emer-
gence of correlated phases [3–7], such moiré mater-
ials have recently met with tremendous interest.
A prototypical example is twisted bilayer graphene
(TBG) [8–10], where two sheets of graphene are
stacked with a relative twist. At twist angles ∼1.1◦,
the so-called ‘magic angle’, flat bands emerge near
the charge neutrality point [8–11], which amp-
lifies the effect of interaction to exhibit various
correlated phases [12–28]. Besides TBG, a wealth
of different types of exotic bands and interaction
effects have been discovered in multilayer moiré
systems [1, 2, 29–35].

In this manuscript, we address one of the simplest
models of a moiré system: a single layer of graphene
subject to a moiré potential induced by a substrate
layer. Despite its simplicity, it shows—even without
fine tuning—remarkably rich physics. For sufficiently
large moiré unit cells two kinds of moiré bands
emerge: one-dimensional chiral channels (1DCCs)
and ultra-flat bands. Along lines where the gap arising
from the moiré potential changes sign, a network of
topologically protected 1DCCs is developed, as depic-
ted in figure 1. At the same time, an extra set of local-
ized modes emerges at the junction where six 1DCCs
join (red dots in figure 1). Thesemodes only hybridize
weakly with the 1DCCs andwith the neighboring loc-
alizedmodes giving rise to ultra-flat bands. This coex-
istence of localized modes and propagating 1DCCs
and the resulting peculiar interaction physics are the
main results of this paper.

The emergence of a network of 1D chiral chan-
nels in moiré systems has been previously discussed
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Figure 1. Network model consisting of one-dimensional
chiral channels (blue arrows for the K valley, black for the
K′ valley) and localized states (red circles). Upper (Lower)
right: the diagram for the two (three)-spin interaction.

[36–46]. In an early study, San-Jose and Prada [36]
pointed out that a network of topologically pro-
tected 1D helical channels forms in TBG subject
to an out-of-plane electric field, see also [37, 45].
Experimentally, signatures of these 1D channels have
been observed in transport [39, 41, 42] and scan-
ning tunneling spectroscopy [40]. In contrast to our
model, such systems do not exhibit the coexistence
of flat bands and 1D channels. Moreover, a coexist-
ence of propagating two-dimensional Dirac dispers-
ing bands and flat bands has been reported in mir-
ror symmetric twisted trilayer graphene [30, 31]. In
this setting, Ramires and Lado discussed heavy fer-
mion physics, emerging from the interaction of loc-
alized and propagating modes [34]. From a more
general point of view, the emergence of localized
and propagating bands in moiré systems has been
investigated in [47] using concepts of quantum chaos.
Generic bands tend not to be flat due to localization
in momentum space, but these arguments cannot be
applied to the bands discussed in our paper arising
from the specific real-space structure of the moiré
potential.

2. Model

We consider a single layer of graphene on top of some
insulating substrate which shares the hexagonal struc-
ture with graphene but has either a slightly different
lattice constant or is rotated by a small twist angle. As
the substrate is gapped, it mainly affects graphene via
electrostatic potential terms. Thus, at low-energies,
the spinless single-particle Hamiltonian is approxim-
ated by

Heff =−iv(∂xs
xτ z + ∂ys

yτ 0)+V0(r)1+Vs(r)s
z.
(1)

Here the Pauli matrices τ i and si act on the valley and
sublattice space, respectively, and v is the graphene
Fermi velocity. The staggered termVs = (VA −VB)/2

describes the potential difference between the A and
B sublattice, VA and VB, and a constant Vs opens a
mass gap in the Dirac spectrum. The magnitude of
Vs has a maximum in regions of the moiré lattice
where the atoms of different sublattices stack on the
top of each other, i.e. AB or BA stacking as shown
in figure 2(a). The uniform potential V0 is given by
V0 = (VA +VB)/2. Due to the smoothness of moiré
structures, we can focus on the lowest Fourier com-
ponents of the potentials. Denoting the six smallest
reciprocal lattice vectors of the moiré structure by Gi,
i = 1, . . . ,6, with |Gi|≡ G= 4π√

3L
, we obtain

Vβ(r) =
∑

β ′=A,B

6∑

i=1

uββ ′eiGi ·(r−rββ ′ ) (2)

with sublattice β = A,B, the size of moiré unit cell
L, and rAA = rBB = 0, rAB =−rBA, see figure 2(a).
Here, we neglect the effect of a possible quasi-periodic
structure of the moiré potentials assuming L is suffi-
ciently larger than the atomic distance [10]. We con-
sider a hexagonal substrate with equivalent A and
B sublattices such that uAA = uBB and uAB = uBA. In
this case, the amplitudes of Vs and V0 are given by
us = uAB and u0 =−2uAA + uAB. The Hamiltonian
(equations (1) and (2)) relies on the presence of an
insulating 2D or 3D substrate with a honeycomb
(surface) structure and a lattice constant similar to
graphene. In appendix C we discuss that the same
type of physics can also approximately be realized for
different types of substrates with lower symmetry like
hexagonal boron nitrite (h-BN) as long as moiré cor-
rugation effects do not become too large. As a con-
crete model, we investigate in appendix C a twis-
ted monolayer bilayer graphene (TMBG), which has
recently been realized experimentally [48], and show
that this material is an excellent candidate for an
approximate realization of our model.

As shown in figure 2(b),Vs vanishes along straight
lines and thus changes its sign across those lines. At
the same time, V0 has minima at high-symmetry
points (red dots) in the center of the moiré unit cell
where the lines cross. These two regions lead to two
very different types of bands: 1Ddispersing bands and
ultra-flat bands, see figure 2(c), computed by diagon-
alizing equation (1) in momentum space.

2.1. 1DCCs
The sign change of the mass term Vs(r) induces
a 1DCC, propagating along the straight lines in
figure 2(b) with the full speed of the graphene Fermi
velocity. 1DCCs emerging from the K and K′ valley
move in opposite directions, as depicted by black and
blue arrows in figures 1 and 2(f) shows the Blochwave
function of the propagating bands which perfectly
tracks the straight lines in figure 2(b). Surprisingly,
the wave functions show almost no modulation at
their crossing points.
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Figure 2.Moiré potential model. (a) Moiré pattern from a layer of the hexagonal lattice (blue dots) stacked on top of another layer
of an hexagonal lattice (red). Due to a relative rotation of the layers, different local stacking patterns (AA, AB, BA) occur (circles).

The vectors rAB =−rBA = (
√

3L
6

, L
2
) connect regions of AA and AB stacking. (b) The uniform and staggered potential, V0(r) and

Vs(r), in real space. (c) Band structure for the effective Hamiltonian equation (1) in the moiré Brillouin zone. Flat bands are
classified by different representations (red: ρ3, green: ρ4, orange: ρ6) of the symmetry group Dic3. (d) Density plot of the energy
for one of the one-dimensional (1D) dispersing bands and the Fermi surfaces at three different chemical potentials (red 0 meV,
blue 20 meV, green 40 meV). The arrows indicate the three different propagating directions. (e) Bloch wave functions |Ψn,k(r)|2
of the green flat band at the Γ point. (f) Bloch wave functions of 1D propagating bands at momenta indicated by the arrows in
(d). Parameters: uAA = uBB = 0 and uAB = uBA = 8π v√

3L
.

The 1DCCs get more stable when us is suffi-
ciently strong. Expanding Vs around a Vs = 0 line,
Vs ∼ 8πus∆x/L, and employing a scaling analysis for
equation (1), one finds that the width of these 1DCCs
is given by d1D ∼ (vL/(8πus))1/2. For sufficiently
large moiré sizes, L$ d1D, or equivalently, L$
v/(8πus), 1DCCs and localized modes are realized
with an exponential suppression of, e.g. the hybridiz-
ation of neighboring 1D channels. For the parameters
of figure 2 these estimates give d1D ≈ 0.05L consistent
with our numerical results.

2.2. Localized states
The flat bands in figure 2(c) have their origins in states
localized close to the red dots in figure 2(b), where
V0 has a minimum whereas Vs is highly suppressed.
A sufficiently strong moiré potential (more precisely,
u0 $ v/(8π2L), see section 2.1) renders the states loc-
alized in real space as shown in figure 2(e). These loc-
alized modes hybridize only weakly with the 1DCCs
and neighboring localized modes, leading to ultra-
flat bands. The localized states with fixed valley index
can be classified by the dicyclic symmetry groupDic3.
From Dic3, one obtains three different types of local-
ized states, labeled by two 1D representations ρ3, ρ4
and a two-dimensional irreducible representation ρ6,
see appendix A.

2.3. Network model
Combining localized and propagating states, we
obtain the network model depicted in figure 1. The
kinetic Hamiltonian for the 1DCCs is given by

Hkin =−i v
∑

α,n,i,σ

α

ˆ
dρΨ†

n,i,α,σ(ρ)∂ρΨn,i,α,σ(ρ).

(3)

The operator Ψ†
n,i,α,σ(ρ) creates an electron with

spin σ =↑ / ↓ and valley α=±= K/K ′ in a 1DCC
propagating along the lattice vector ai with i = 1,2,3;
the center of the corresponding wave packet is loc-
ated at Rn,i,ρ = nai+1 + ρai with integer n. We denote
the location of crossing points of 1DCCs by Rm and
define ρn,i,m as the solution ofRm = Rn,i,ρn,i,m . In these
notations, the inter-channel tunneling Hw and the
coupling of 1DCCs to localized states, Hλ, are given
by

Hw =
∑

crossing at Rm

ŵi i ′Ψ
†
n,i,α,σ(ρn,i,m)Ψn ′,i ′,α,σ(ρn ′,i ′,m),

Hλ =
∑

crossing at Rm

λ̂ij d
†
m,α,σ,jΨn,i,α,σ(ρn,i,m)+ h.c. . (4)

We sum over all channels which cross at Rm. d
†
m,α,σ,j

creates localized electronic states where j denotes an
extra orbital index if the localized states belong to the
ρ6 representation. The form of the matrices ŵi i ′ and
λ̂ij is entirely determined by the symmetries of the sys-
tem and the representation of Dic3 of the localized
states. Equations (3) and (4) describe the bandstruc-
ture with high precision after fitting the amplitude
of ŵ and λ̂ and the energy of the localized states, see
appendix B.

2.4. Local interaction
Since the flat bands are highly localized, there will be
a Coulomb blockade for adding electrons to the loc-
alized sites, described by

HU = U
∑

Rm

∑

ξ %=ξ ′

nm,ξnm,ξ ′ , (5)

where ξ = {α,σ} includes all local quantum num-
bers, i.e. valley α and spin σ (and an extra orbital
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quantum number for the ρ6 representation). Since
for large moiré unit cells the dominant contribution
comes from the long-ranged part of the Coulomb
interaction which is only sensitive to charge, HU is
approximately SU(4) (or SU(8) for ρ6) invariant.

Using U∼ e2

4πε0dloc
with dloc ≈ 6.3 nm, we estimate

U ≈ 230 meV for the parameters of figure 2(e) which
is more than an order of magnitude larger than the
hybridization of impurity levels, λ.

As U$ λ, the system maps to a (generalized)
Kondo lattice model, where local degrees of freedom
couple only via the network of 1DCCs. For a localized
state in the ρ4 representation, one obtains an effective
SU(4) symmetric coupling

HJ ≈ JL
∑

crossing at Rm

Γ)(Rm) · Ψ̃†
ξ(Rm)γ

)
ξ ξ ′Ψ̃ξ ′(Rm).

(6)

Here γ), += 1, . . . ,15, are the 4× 4 generat-
ors of SU(4) acting on a linear combination
of the three 1DCCs resulting from the hybrid-
ization matrix λ̂ (see appendix A), Ψ̃ξ(Rm) =
1√
3

∑
i=1,2,3(−1)iΨni,i,ξ(ρni,i,m), and Γ)(Rm) =

∑
ξ,ξ ′ d

†
m,ξγ

)
ξ ξ ′dm,ξ ′ describes the local SU(4) degree

of freedom. J∼ λ2/U is the Kondo coupling that ori-
ginates from the hybridization of the 1DCCs with the
localized states.

The interaction between the localized states is
mediated by the network of 1DCCs. The resulting
RKKY interaction is obtained from a perturbation
theory both in J and the inter-channel tunneling w.
From a standard RKKY diagram (see figure 1) to
order J2w0, we obtain the two-spin interaction term

H2s =− J2L2

12π v

∑

(m1→m2)c

(
e2ik

i
F·ρm1m2

|ρm1m2
|

× (1+σm1 ·σm2)τ
−
m1
τ+m2

+ h.c.

)
. (7)

σm ≡ σ(Rm) and τm ≡ τ (Rm) are Paulimatrices act-
ing on spin and valley at Rm, and τ± ≡ τ x ± iτ y.
The summation (m1 →m2)c runs only over local-
ized states connected by the same 1DCC, separated
by ρm1m2

≡ Rm2 −Rm1 parallel to the Fermi velocity
of the+ valley channels. Importantly, the RKKY term
necessarily requires two valley flip processes, τ−m1

τ+m2
:

both a valley + and − channel running in oppos-
ite directions are needed to form a closed loop con-
necting two sites, see figure 1. This process breaks the
SU(4) symmetry.

Closed loops can also be formed by triangles in
figure 1, remarkably, inducing a chiral interaction to
order J3. From the diagram depicted in figure 1, we
obtain

H3s =
8J3L3

27
√
3π v2

∑

p=*/+,(m1,m2,m3)p

cos(3kF|ρm1,m2
|)

|ρm1,m2
|

× p σm1 · (σm2×σm3)

(
3∏

i=1

P+mi
−

3∏

i=1

P−mi

)
.

(8)

The summation runs over the right- and left-
oriented triangles, p= ,/-=±1, in figure 1, where
(m1,m2,m3)p denotes the three sites of each triangle
(in anti-clockwise order). kF is the Fermi momentum

of 1DCCs. We defined the projector P±m ≡ (τ 0
m±τ z

m)
2

on valley ± at Rm. The chiral spin-interaction, σm1 ·
(σm2×σm3), is induced by the chiral motion of the
1DCCs within each triangle (even in the absence of
spin-orbit interaction). The direction of the chiral
currents determines the sign of the chiral interaction
which changes when moving from , to - or from val-
ley+ to−.

There is also a non-chiral contribution from the
same diagram and from a similar diagram to order
J2w,

H ′
2s =

J2L3

27
√
3π v2

∑

p=*/+,(m1,m2,m3)p

sin(3kF|ρm1,m2
|)

|ρm1,m2
|

× (1+σm1 ·σm2)
(
Jτ zm3

(τ zm1
+ τ zm2

)

+w(1+ τ zm1
τ zm2

)
)
+ permutations. (9)

We sum over the 6 permutations for renamingm1,m2

andm3.

3. Mean-field phase diagram

To study the interplay of equations (7)–(9), we con-
sider a simplified Hamiltonian which contains only
nearest neighbor interactions, Hsv =H2 +H3 +H2 ′ ,
with

H2 = J2
∑

〈m1→m2〉c

(1+σm1 ·σm2)(e
iϕτ+m1

τ−m2
+ h.c.)

H3 = J3
∑

p=*/+,(m1,m2,m3)p

p

(
3∏

i=1

P+mi
−

3∏

i=1

P−mi

)

×σm1 · (σm2×σm3)

H2 ′ = J ′2
∑

〈m1→m2〉c

(1+σm1 ·σm2)(1+ τ zm1
τ zm2

) .

(10)

Here J2 > 0 is the largest coupling constant with ϕ =
2kFL+π, while J ′2 ∼ sin(3kFL) and J3 ∼ cos(3kFL).
Equation (10) contains only nearest neighbor inter-
actions, neglecting the further long-range tails in
equations (7)–(9). While the nearest neighbor inter-
actions dominantly determine the phase diagram
in most electron fillings of the 1DCCs, the long-
range contributions may stabilize incommensurate
spin or valley orders in some incommensurate fillings
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Figure 3.Mean-field phase diagrams with the order parameter, χ+ −χ−, for small J3, J ′2 , and ϕ, defined modulo 2π/3 (cf
equation (10)). All phases shown in the figure show a 120◦ order in the µ valley degrees of freedom. They differ by their spin
order which are distinguished by χ± ≡ 〈σP±〉A · 〈σP±〉B×〈σP±〉C, the valley-projected chirality, defined on a triangle (cf the
inset). Three different types of spin-order occur: spin-ferromagnetic order (green regions), a chiral spin-order (red or blue
regions) in one of the two valleys, and an in-plane 120◦ spin order in one of the two valleys (white dotted line). J2 is set to 1. Panel
(a): (ϕ, J3) space with J ′2 = 0, panel (b): (ϕ, J ′2) with J3 = 0, panel (c): (J3, J ′2) with ϕ= 0. The yellow line in panel (b) shows
schematically how parameters change as a function of a gate voltage for kFL close to−π

2
. While the solid white lines represent

second order transitions, the dashed white line a first order transition where the type of 120◦ order changes from left- to right
circulating on a triangle % (opening angle θ = 0,π, respectively, see appendix D).

of the 1DCCs. But, in this paper, we focus on the
effect of the nearest neighbor interactions. From
H ′

2s, equation (9), we take, for simplicity, only the
term ∼J2w into account (assuming w> J) but we
checked that the J3 contribution to H ′

2s does not lead
to qualitative changes. The continuous symmetries
of Hsv are U(1)× SU(2)× SU(2) generated by τ z,
P+σ and P−σ. Remarkably, one can rotate the spin-
orientation of the two valleys independently.

Assuming that the localized states are filled
with one electron, the states on the SU(4) space
are spanned by a 4-component complex vector. In
this basis, we solve the self-consistent mean-field
equations at T= 0 iteratively. We find that either
a one- or a three-sublattice solution has the lowest
energy. As J2 is the largest term, we first analyze the
case J3 = J ′2 = 0. The parameter ϕ in equation (10)
can be viewed as an Aharonov–Bohm phase arising
from a staggered magnetic flux. As 3ϕ is the total
phase along a triangular loop, one can always ‘gauge
away’ changes of ϕ by 2π

3 using τ z rotations by
0, 2π/3, 4π/3 on the A, B, C sublattices. For
ϕ= 0, we obtain a variant of the Kugel–Khomskii
model [49]

H0 = 2J2
∑

〈m1→m2〉c

(1+σm1 ·σm2)(τ
x
m1
τ xm2

+ τ ym1
τ ym2

)

= 2J2
∑

〈m1→m2〉c

µ1
m1

·µ1
m2

+µ2
m1

·µ2
m2

(11)

with four component vectors given by µ1
m =

(τ xm,τ
y
mσx

m,τ
y
mσ

y
m,τ

y
mσz

m) and µ2
m = (τ ym,τ xmσ

x
m,

τ xmσ
y
m,τ xmσ

z
m). The ground states have a three-

site unit-cell where the vectors 〈µn
m〉, n= 1,2,

have the norm 1, and show 120◦ order such that
〈µn

m1
〉 · 〈µn

m2
〉= cos(2π/3) =− 1

2 for neighboring
sites. Note that this specific type of 120◦ order is
realized with 4-component vectors. Surprisingly, the

above described 120◦ order has an extra degree of
freedom that is revealed by the magnetization vectors
〈P±σ〉 in the two valleys. These vectors have length
1/2 in the ground-state manifold. In one of the two
valleys, the magnetization is always ferromagnetic,
but in the other valley a non-coplanar spin configur-
ation is possible, leading to a finite staggered chiral-
ity χ± with χ± = 〈σm1P

±
m1

· (σm2P
±
m2
×σm3P

±
m3
)〉. In

appendix D, we describe how the mean-field solution
can be parameterized by a continuous angle θ and
a discrete variable ±, describing the opening angle
of non-coplanar valley-projected spins on the three
sublattices and also which of the valley sector exhibits
ferromagnetic order.

States with an arbitrary chirality, − 1
8 ! χ± ! 1

8 ,
are degenerate (within mean-field theory) if onlyH0,
equation (11), is considered, see appendix D. Thus,
H0 defines a highly singular point in the phase dia-
gram and even small perturbations can select one
of the states in the ground-state manifold of H0.
For example, for an infinitesimal J3 > 0 perturbation,
states are selectedwhich have either theminimal value
χ+ =− 1

8 with χ
− = 0 or the maximal value of χ− =

1
8 with χ+ = 0. Such a staggered (or uniform) chiral
order has, e.g. been extensively studied in the spin-
1/2 [50, 51] or the half-filledHubbardmodel [52–55]
on the triangular lattice.

In contrast, the perturbation by a finite ϕ stabil-
izes a phase where 〈P±σ〉 orders ferromagnetically
for both valleys, χ+ = χ− = 0, while 〈µn〉 displays a
coplanar 120◦ ordered phase. The presence of both
ϕ and J3 leads to the phase diagram of figure 3(a).
A finite J ′2 > 0, however, suppresses such ferromag-
netic configuration, selecting a state where 〈P±σ〉
is non-collinear but coplanar, forming a 120◦ order
in either 〈P+σ〉 or 〈P−σ〉 on top of the 120◦ order
in 〈µn〉. The resulting phase diagrams are shown in
figures 3(b) and (c).

5
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4. Classical fluctuations

The mean-field theory discussed above, ignores the
effect of both quantum and classical fluctuations. To
capture fluctuation effects, we have (i) performed
an SU(4) spin-wave calculation (or, more precisely,
spin-valley-wave calculation) both in the classical and
quantum regime. Details of the SU(4) spin-wave the-
ory are given in the appendix E. Furthermore, we
have (ii) calculated finite temperature properties of
the semi-classical version of our SU(4) model using
Monte Carlo calculations.

A semi-classical variant of our SU(4) model can
formally be obtained by making a product ansatz
for the wavefunction, |Ψ〉=

∏
m |Ψm〉, where |Ψm〉

is a single-site 4-component normalized wave func-
tion with an arbitrary phase per site. A semi-classical
state for a system of sizeN ×N is thus parameterized
by (4 · 2− 2)N2 real numbers. At T= 0, this semi-
classical model reproduces the mean-field results dis-
cussed in section 3. Thermal expectation values at a
finite temperature T= 1/β can be approximately cal-
culated by sampling the space of product-state wave-
functions according to the Boltzmann distribution
∼exp(−β〈ψ|H|ψ〉) [56, 57] using a standardMarkov
chain Monte Carlo algorithm [58]. Employing local
Metropolis updates, a typical Monte Carlo run
consists of Nm = 1 · 106 thermalization sweeps fol-
lowed by Nm = 4 · 106 measurement sweeps, or up to
Nm = 107 sweeps close to the transition temperature.
We use linear lattice sizes of up to N = 72 with peri-
odic boundary conditions. Additional details on the
simulations are provided in appendix F.

As the mean-field ground state of the J2-only
model H0, equation (11), is degenerate, we focus
our discussions on fluctuation effects around this
state. The specific heat of the semi-classical model,
figure 4(a), shows a sharp peak indicating a finite-
temperature phase transition. The numerical data
is both consistent with a weak first-order and a
second-order transition, see appendix F which also
discusses energy distributions at criticality. We ana-
lyze two types of order parameters, the spin-chirality,
figure 4(b), and the valley-projected ferromagnetic
order, figure 4(c), which show very different finite-
size and temperature behavior as discussed below.

For T→ 0, the spin-chirality, figure 4(b), van-
ishes while the ferromagnetic magnetization in both
valley sectors takes the value 1/2, figure 4(c). This
shows that thermal fluctuations select the spin-
ferromagnetic states, θ = 0,π from the ground-state
manifold. At the same time, the valley, more precisely
µ1,2, exhibits 120◦ order (not shown). This ‘order-
by-disorder’ selection [60] of the classical ground
state in the limit T→ 0 is also found within our
SU(4) spin wave calculation, see figure 6(b) below
and appendix E: a fluctuation correction to the free
energy linear in T selects the ferromagnetic state.

Figure 4. Thermodynamics and thermal order-by-disorder
transition. Shown are Monte Carlo results for the J2 model,
equation (11), in the semi-classical approximation for
different linear system sizes N= 12,24,36 and 72.
Numerical errors are smaller than the size of the symbols.
Panel (a): The specific heat shows a pronounced peak
indicating a thermal phase transition which gets sharper
upon increasing N. Panel (b): At finite temperature T and
inside the ordered phase a finite spin-chirality develops.
The T-dependence at low temperature is singular and
approximately proportional to T log1/

√
T, see inset. Inset:

Fit to the analytical result (12) at low T (dashed orange
line). Panel (c): By an order-by-disorder mechanism, the
system selects a state with ferromagnetic spin order at low
T. At finite T the order parameter is suppressed by thermal
fluctuations linear in T. The prefactor of the linear
correction increases with system size, reflecting the
suppression of long-ranged order by thermal fluctuations,
consistent with the Mermin–Wagner theorem [59].

At finite T, the ferromagnetic order parameter
shown in figure 4(c) is suppressed linearly in T. The
prefactor of this suppression increases with system
size N. This is explained by an order-parameter sup-
pression ∝ T lnN, well known from the Mermin–
Wagner theorem [59] in two spatial dimensions.
Thus, there is nominally no long-ranged spin-order
in the thermodynamic limit.

A remarkable result is that in the spin-
ferromagnetic state the spin-chirality becomes finite
at finite T, figure 4(b), showing a highly singular
T dependence which is almost independent on sys-
tem size N. In appendix E, we use an SU(4) spin-
wave calculation to compute 〈χ̂+ − χ̂−〉. The SU(4)
spin wave theory is formally derived using a 1/M
expansion, where M are the number of local bosons,∑4

ξ=1 b
†
m,ξbm,ξ =M, used to describe the local SU(4)

degree of freedom, see appendix E. For M→∞ one
recovers mean-field and spin-waves are computed to
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Figure 5. Phase diagram from semi-classical Monte Carlo calculations. Shown is Monte Carlo data for the specific heat
(a), spin-chirality (b), and valley-magnetization (c), obtained from simulations of a model with ϕ = J3 = 0 as function of
temperature and J ′2 for a fixed linear system size N= 36. Panel (a): Specific heat. At high temperatures one obtains a
paramagnetic phase while at low T one finds two ordered phases. All phase transitions appear to be of first-order type. For J ′2 < 0
one obtains 120◦ valley order coexisting with spin-ferromagnetic order, while for J ′2 > 0 a state with 120◦ valley order and
coplanar 120◦ spin order in one of the two valleys is realized. The transition temperature between the two phases follows the
analytically estimated slope Tc ≈ 8.21J ′2 (white dashed line in panel (b)). Panel (b): The spin-ferromagnetic order supports a
finite spin-chirality |χ+ −χ−| at finite T. Panel (c): As the spins order coplanar in one valley but remain ferromagnetic in the
other, τ z develops a finite expectation value.

leading order in 1/M, where M is set to its physical
value, M= 1 at the end of the calculation, corres-
ponding to one localized electron per site. In the clas-
sical limit, at low-T deviations from mean-field are
small, which allows to make quantitative predictions
based on spin wave theory.

The naive spin-wave calculation in the classical
limit predicts a divergent result reflecting the ground-
state degeneracy of the T= 0 state. This degener-
acy is lifted by the order-by-disorder mechanism dis-
cussed above which provides a mass linear in T to
the chirality-mode. Taking this higher-order (in 1/M)
effect into account we obtain

〈χ̂+ − χ̂−〉 ≈±0.22
T

J2
ln
[√

T0/T
]
, (12)

in perfect agreement with the numerical data, see
inset of figure 4(b). The prefactor is fixed by our
analytical results, see appendix E, and the only fit-
ting parameter is T0. We expect that such a non-
analytic T dependence is generic for classical sys-
tems with a degenerate ground-state manifold where
a ground state of the manifold is selected by thermal
fluctuations. Thus some ‘pseudo Goldstone modes’
obtain masses linear in T, leading to non-analytic
T log1/T corrections in spatial dimension d= 2 or a
c1T+ c2T3/2 correction in spatial dimension d= 3 for
observables coupling to the mode, see appendix E.

The sign in equation (12) is related to the spon-
taneous breaking of the Z2 symmetry, eiπτx/2 = iτx,
which maps χ+ to χ−. Therefore, 〈χ̂+ − χ̂−〉 can be
used, at T> 0, as an Ising order parameter of this
symmetry. The extremely sharp rise of 〈χ̂+ − χ̂−〉 at
the phase transition, see figure 4(b), is both consistent
with an Ising phase transition, 〈χ̂+ − χ̂−〉 ∼ (Tc −
T)1/8, or a first-order transition, see appendix F.

In figure 5 we show the phase diagram of the J2 −
J ′2 model as a function of temperature T and coupling
J ′2. At T= 0, this simply reproduces the mean-field
result. While for J ′2 < 0 a ferromagnetic spin-order
coexists with a 120◦ valley order, one obtains a

coplanar spin order in one of the two valley sectors
for J ′2 > 0. Thus the valley symmetry is spontaneously
broken in this phase, leading to a finite expectation
value for τ z, see figure 5(c). Numerically, we find
that the phase transition into the spin-coplanar phase
at J ′2 > 0 both as a function of T or J ′2 is always of
first order; an analysis of the energy distribution is
given in appendix F. At low T, the first-order phase
transition separating the two ordered phases has a
linear slope, Tc ∝ J ′2. This arises because at J ′2 = 0
the spin-ferromagnetic state gains energy linear in T
due to the order-by-disorder mechanism described
above. This linear-in-T energy gain competes with a
linear-in-J ′2 energy gain of the spin-coplanar phase,
figure 6(b), which arises because J ′2 selects at T= 0
one of the states from the ground-state manifold of
H0. Analytically, we obtain from this argument Tc ≈
8.21J ′2, which quantitatively explains the numerically
observed slope, as shown in figure 5(b). As discussed
above, the finite-T transition from the paramagnetic
into spin ferromagnetic phase is accompanied by aZ2

symmetry breaking.
For all considered values of J ′2 the specific heat

shows a low temperature saturation of cv(T→ 0) = 3,
indicating that both ordered states in figure 5 feature
six harmonic modes [61] per site as expected for an
SU(4)model locally described by 6 parameters as dis-
cussed above.

5. Quantum fluctuations

Above, we discussed the effect of thermal fluctu-
ations and showed that at low T an SU(4) spin-
wave calculation in the classical regime reproduces
the main numerical findings qualitatively and quant-
itatively including the order-by-disorder mechanism
and non-analytic T dependences arising from pseudo
Goldstone modes. While the SU(4) spin-wave theory
becomes exact in the classical case for T→ 0, this is
not the case in the quantum model, where quantum
fluctuations in the ground state can be large. SU(4)

7
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Figure 6. Order-by-disorder mechanisms. (a) Ground-state
energy per site computed from SU(4) spin-wave theory as
function of θ, parameterizing the opening angle of
valley-projected spins in the three sublattices. By the
quantum order-by-disorder mechanism, a state with the an
opening angle θ = π/2 (i.e. the spin-coplanar 120◦ order
in one of the two valleys) is selected from the mean-field
ground-state manifold. (b) In the classical model, the free
energy obtains at low T a correction linear in T from
thermal fluctuations. In contrast with the quantum
order-by-disorder mechanism, the thermal
order-by-disorder leads to the selection of the spin
ferromagnetic order in both of the valley sectors
(θ= 0 or π).

spin wave theory only becomes exact in a large M
limit, see appendix E but we expect that qualitative
features of ordered phases (in contrast to spin-liquid
phases) are well captured by this approach.

In figure 6(a), we show the corrections due to
quantum fluctuations to the ground-state energy of
H0, equation (11), as a function of the spin-opening
angle θ. The state with θ = π/2, i.e. a coplanar 120◦

order of the spins in one of the valley sectors, is selec-
ted by quantum fluctuations. In contrast, as discussed
above, thermal fluctuations select spin-ferromagnetic
order (θ= 0 or π). Thus, our system is one of the rare
cases where quantum and classical fluctuations select
very different types of ground states. As we show in
appendix E, this arises, technically, because classic-
ally a state is selected where the geometric average of
the excitation energies Ek,n is lowest, while quantum
fluctuations select the state with the lowest arithmetic
average of allEk,n.While inmost systems the two aver-
ages show the same qualitative behavior, this is not the
case in our system.

How will the quantum fluctuations modify the
ground-state phase diagrams shown in figure 3? The

main effect of quantum fluctuations is that they break
the degeneracy of mean-field ground state of H0. As
shown in figure 6(a), the ground-state energy obtains
a θ dependence. An almost identical θ dependence
can be obtained in the purely classical model by
adding a J ′2 to the Hamiltonian with J ′2 ≈ 0.45 J2.
Thus, we speculate that the quantum fluctuations
have a similar effect on the phase diagram as increas-
ing J ′2 within mean-field theory. This procedure is
well-controlled in an 1/M expansion, see appendix E:
for largeM, quantum corrections of order 1/M can be
fully compensated by a shift of J ′2 by −0.45 J2/M (up
to corrections of order 1/M2).

Thus, we expect that the main effect of quantum
fluctuations will be that in figures 3(b) and (c) the
phase boundaries are shifted along the y direction,
most likely accompanied by a rounding of the sharp
kink where the phases meet. This extra rounding
would be a 1/M2 effect, which is more difficult to
calculate.

6. Summary: phases and the impact of
fluctuations

We briefly summarize the obtained phases and the
impact of quantum and thermal fluctuations on
them. The peculiar and diverse phase diagrams of
figure 3 originate a variant of the Kugel–Khomskii
model, H0 (equation (11)), where the mean-field
ground states are highly degenerate. The mean-field
ground states of H0 are parameterized by two dif-
ferent order parameters: a discrete order parameter
〈µn=1,2〉 and a continuous order parameter, the
valley-projected magnetization 〈P±σ〉. The ground
states have a three-site unit-cell where 〈µn

m〉 have
the norm 1, and show 120◦ order such that 〈µn

m1
〉 ·

〈µn
m2
〉= cos(2π/3) for neighboring sites. There coex-

ist two different types of 120◦ order, which have the
opposite circulation direction of 〈µn〉 on a triangle.
The transition between the two of them is of first-
order, indicated by the dashed lines of figure 3.

A more interesting property of the ground states
of H0 is defined on 〈P±σ〉. In one of the two valleys,
〈P±σ〉 is always ferromagnetic, but in the other val-
ley, 〈P±mσm〉 on the three sublattices form arbitrary
opening angle θ with 0! θ ! π; ferromagnetic spin-
order (θ= 0 or π), 120◦ coplanar spin order (θ =
π/2), and non-coplanar spin order (θ /= 0,π/2,π)
with a finite spin chirality, see appendix D for more
details. Those highly rich ground state manifold
allows to possess a wealth of phase diagrams as shown
in figure 3. When small perturbations are added on
H0, a ground state is selected from the ground state
manifold ofH0 to minimize the energy. For example,
the positive J ′2 term in equation (10) favors the ferro-
magnetic spin order while the negative J ′2 term favors
the coplanar spin order, see figures 3(b) and (c).

The degeneracy of the mean-field ground state
of H0 is, however, lifted by quantum and thermal
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fluctuations. By the order-by-disorder mechanism,
quantum fluctuations favor the coplanar spin order,
while thermal fluctuations favor the ferromagnetic
spin order. Furthermore, the effect of the fluctuations
on the spin chirality differs by the spin order of the
ground state.While the coplanar spin order has a van-
ishing chirality against the fluctuations, the ferromag-
netic order easily obtains a finite chirality from the
fluctuations (e.g. see figure 5(b) for a finite chirality
induced by the thermal fluctuations when J ′2 < 0). In
the classical limit, this fluctuation effect on the fer-
romagnetic order is enhanced due to the coupling to
a pseudo Goldstone mode associated with opening
angle θ.

7. Conclusions

Our study reveals that one of the simplest feasible
moiré systems, a single layer of graphene on an insu-
lating substrate, can exhibit surprisingly rich physics.
Ultra-flat bands generating localized modes coexist
with a network of chiral 1D channels where electrons
move very fast with a speed set by the Fermi velocity
of graphene. A main advantage of such large-unit-
cell system is that one can tune the electron density
by external gates. Insulating substrates with a hon-
eycomb structure provide an ideal realization of our
model but as discussed in appendix C, a wide range of
different substrate with triangular symmetry, includ-
ing AB stacked graphene, can also be used.

Different types of localized modes with spin-,
valley- and orbital degrees of freedom can be realized
depending on howmany electrons are loaded into the
local level and the quantum numbers of the local-
ized states, fixed by the representation of the relev-
ant dicyclic group. The chiral nature of the channels
connecting the localized modes gives rise to charac-
teristic chiral- and non-chiral interactions. We expect
that a wealth of different phases with commensurate
and incommensurate spin-, valley- and orbital order
can be realized.

As an example, we studied one suchmodel, focus-
ing on commensurate order stabilized by two- and
three spin interactions. We use mean-field theory,
an SU(4) spin-wave theory both in the classical and
quantum regime, and Monte Carlo simulations of a
semi-classical model. By tuning gate voltages one can
control kF and thus the effective interactions. One
can, for example, tune parameters along the yellow
line shown in figure 3(b). This triggers a transition
from a coplanar phase with ferromagnetic spin and
120◦ valley order into a non-coplanar phase char-
acterized by a peculiar coexistence of three different
types of order: ferromagnetic spin order in one val-
ley, non-coplanar chiral spin order in the other valley,
and 120◦ order in remaining spin and valley-mixed
degrees of freedom. Such a transition between differ-
ent orders can be observed in experiments by tuning
gate voltage. The most direct way to probe different

types of order experimentally, is probably to use a
magnetic scanning tunnelingmicroscopywhich is not
only sensitive to the magnetic order but also to val-
ley order as has been, e.g. discussed in [62]. Another
exciting possibility is to probe spin chirality using
optical means (e.g. [63]).

The peculiar form of the mean-field phase dia-
grams, where tiny perturbations can profoundly
change the ground state, is governed by the proxim-
ity to a variant of the Kugel–Khomskii model, H0,
where the mean-field ground state is highly degener-
ate. For example, the tiniest chiral interactions arising
from 3-spin interactions mediated by the chiral elec-
tronic channels, induce a state with a huge spin-
chirality in one of the valleys. The degeneracy of
the mean-field ground state of H0 is, however, lif-
ted by quantum and thermal fluctuations. While in
most systems, quantum and thermal fluctuations sta-
bilize the same type of order by such an order-by-
disorder mechanism, this is not the case in our model
where quantum fluctuations prefer coplanar spin-
order, while classical fluctuations favor ferromagnetic
spin order on top of a 120◦ valley order. The ferro-
magnetic spin order is, however, highly unconven-
tional. Due to the coupling of spin- and valley degrees
of freedom, quantum or thermal fluctuations around
the spin-ferromagnetic state are always chiral with a
finite spin-chirality. In the classical limit, this fluc-
tuation effect is enhanced, equation (12), due to the
coupling to a pseudo Goldstone mode characteristic
for the classical order-by-disorder mechanism.

Our results on quantum fluctuations are based
on a spin-wave calculation, which formally becomes
exact in a largeM limit. AsM= 1, this result remains
speculative. An alternative scenario is that for M= 1
quantum fluctuations around the highly degener-
ate mean-field state induce a spin-valley entangled
quantum liquid. It would be interesting to test these
very different scenarios in future numerical stud-
ies. Furthermore, we expect that the system will
host many more commensurate and incommensur-
ate phases and, potentially, quantum liquids, when
other localized modes and different electronic fillings
are considered.
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files).
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Appendix A. Symmetry analysis for the
network model

In this appendix, we discuss the symmetry of
the moiré system considered in the main text,
and identify the form of the coupling ŵ and λ̂
(equation (4)) using a symmetry analysis.

A.1. Symmetry
The underlying lattice or discrete symmetries of our
moiré model are the moiré translation, the 120◦ rota-
tion (C3), the mirror (My) with respect to the y axis,
the inversion (I), and the time reversal symmetry (T )
and combinations thereof. Since the moiré poten-
tial varies smoothly so that the large-momentum
transfer is highly suppressed, it is a good approxim-
ation to consider the two valley sectors separately.
Therefore, we only consider the valley-conserving
symmetries generated by C3, My, and T I , in the
following.

The underlying lattice symmetry group is the
dehedral group D3 with C3 and My. More precisely,
in order to deal with the spinor wave function prop-
erly, one has to take into account a minus sign under
2π rotation, and therefore consider the dicyclic group
Dic3, which extendsD3. The character table of Dic3 is
as follows:

Dic3 A B C D E F

ρ1 1 1 1 1 1 1
ρ2 1 1 1 −1 −1 1
ρ3 1 −1 −1 i −i 1
ρ4 1 −1 −1 −i i 1
ρ5 2 2 −1 0 0 −1
ρ6 2 −2 1 0 0 −1

with the 6 irreducible representations ρj=1,...,6 and
the equivalent classes A,B,C,D,E,F which are
given by

A≡ {1}, B≡ {C3
3}, C≡ {C3,C

5
3},

D≡ {MyC3,MyC
3
3,MyC

5
3}, E≡ {My,MyC

2
3,MyC

4
3},

F≡ {C2
3,C

4
3}.

For states with one electron per mode, only three
of the representations, ρ3, ρ4, ρ6, are relevant
since the condition C3

3 =−1 should be fulfilled
for the spinor wave functions. While ρ3 and ρ4
are 1D representations, ρ6 is a two-dimensional
representation.

As shown in figure 1, the moiré system is effect-
ively described by the network model where local-
ized states form at the junction of three 1D chan-
nels (for each valley) and are weakly coupled to the
channels. Below, employing a symmetry analysis, we
shall find the form of the inter-channel coupling ŵ
and the coupling of 1D channels to localized states λ̂
(equation (4)).

A.2. Localized modes
Localized states can be labeled by representa-
tion ρj=3,4,6 of the group Dic3. From the charac-
ter table, one can find relevant matrices for the
transformation C3 and My in each of the repres-
entations: Cρ3

3 =−1,Cρ4
3 =−1,Cρ6

3 = eiπσz/3 and
Mρ3

y =−i, Mρ4
y = i,Mρ6

y = eiπσy/2, respectively. A
simple way to identify the symmetry of a given loc-
alized state from the band-structure calculation is to
analyze the symmetry properties of the eigenfunction
of flat bands at the Γ point. For each of the three rep-
resentations we find examples in our band structure
calculations, see figure 2(c) of the main text.

A.3. 1D channels
From scaling, one finds that the width of the 1D
channels is given by d1D ∼ (vL/us)1/2 with d1D 0 L
for us $ vG. d1D 0 L renders that the coupling of
1D channels being far apart is highly suppressed,
and thus it is a good approximation to only con-
sider the coupling of the neighboring channels at
the junction. The symmetry properties are determ-
ined by the spinor structure of the eigenfunctions.
The three channels at the junction are related to each
other by a 120◦ rotation matrix, C1D

3 , and the mir-
ror transformation matrix,M1D

y , e.g. for the K valley,
written by

C1D
3 =




0 0 −1
1 0 0
0 1 0



 , M1D
y =




−i 0 0
0 0 i
0 i 0



 .

(A1)
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For the K′ valley, the mirror transformation matrix
has an extra overall minus sign asK andK′ are related
by time-reversal and thus by complex conjugation.
The relative minus sign in one of the matrix ele-
ments of C3 andMy reflects the fact that the 2π rota-
tion preinor wave function gets a minus sign. Also
(IT )1D = C13, where C is the complex conjugation
and 13 is the 3×3 unit matrix. The inter-channel tun-
neling Hw is written as

Hw =
∑

crossing at Rm

ŵi i ′Ψ
†
n,i,α,σ(ρn,i,m)Ψn ′,i ′,α,σ(ρn ′,i ′,m).

(A2)

By imposing the symmetry constraints, ŵ=
(C1D

3 )†ŵC1D
3 , ŵ= (M1D

y )†ŵM1D
y , and ŵ=

((IT )1D)†ŵ(IT )1D, one can obtain ŵ, parameter-
ized by a single real parameter w as

ŵ= wL




0 1 −1
1 0 1
−1 1 0



 . (A3)

The size of moiré unit cell, L, is used such that w has
units of energy.

A.4. Coupling between localized and propagating
modes
The coupling of 1D channels to localized modes,
equation (4), depends on to which representation
of Dic3 the localized mode belongs. Similarly to the
ŵ matrix, this coupling matrix λ̂ can be obtained
by the symmetry constraints, λ̂= (C

ρj

3 )
†λ̂C1D

3 , λ̂=
(M

ρj
y )†λ̂M1D

y , and λ̂= ((IT )ρj)†λ̂(IT )1D, for each
of the representation j = 3,4,6. For the K valley, it is
given by

Hλ =
∑

crossing at Rm

λ̂ij d
†
m,α,σ,jΨn,i,α,σ(ρn,i,m)+ h.c.,

λ̂= λ

√
L√
3






(1,−1,1) ρ3 rep

(0,0,0) ρ4 rep(
1 eiπ/3 e2iπ/3

−i −i e−iπ/3 −i e−2iπ/3

)
ρ6 rep.

(A4)

Interestingly, the localized modes in the ρ4 rep-
resentation do not couple to the closest 1D chan-
nels at all. This vanishing coupling can be understood
by the symmetry of the system. For example, let us
consider the coupling of a localized mode in the ρ4

representation to the neighboring channel propagat-
ing in the y direction. While the localized mode has
the eigenvalue i under the mirror transformationMy,
the channel has the eigenvalue −i. It implies that the
coupling matrix λ̂ has to have an extra minus sign
under My, and therefore has to vanish. The same
argument can be applied to the two other neighboring
channels with the symmetry transformation MyC3,
and MyC2

3. Nevertheless, tunneling to channels fur-
ther away are still possible but exponentially sup-
pressed in the ratio of potential and vG as e−L/d1D ∼
e−(usL/v)

1/2
.

The coupling matrices for the K′ valley can be
obtained by time reversal, which implies that the
time-reversed partner of ρ3 and ρ4 have an identical
coupling matrix λ̂. Formally, under time-reversal ρ3
maps to ρ4 but this effect is compensated because
also in equation (A4) the entries for ρ3 and ρ4 are
exchanged when one switches fromK toK′. Themat-
rix λ̂ for ρ6 in the K′ valley is obtained by complex
conjugation of λ̂.

Appendix B. Effective Hamiltonian in
momentum space

In this appendix, we construct an effective
Hamiltonian for the network model in momentum
space and show that the band structure obtained from
the diagonalization of the moiré potential model,
equation (1), is nicely fitted by the band structure
obtained from this effective model.

As shown in figure 2(c) for the band struc-
ture in the main text (also the blue solid curves in
figure 7), the inter-channel coupling and the coup-
ling of 1D channels to localized states are very weak.
For example, a blowup of the band structure near
the Γ point (indicated by the black circle) in figure 7
shows that a level-repulsion of the three 1D chan-
nels is an order of hundreds of µeV. Such weak
couplings (i.e. w,λ0 vG) allow us to construct an
effective Hamiltonian from equations (3) and (4).
Depending on the number of localized modes, Nloc,
within the energy window of ε ∈ [−vG/2,vG/2] near
the chemical potential, this effective Hamiltonian
Heff(kx,ky) for a given valley can be described by a
(3+Nloc)× (3+Nloc) matrix for each momentum.
For example, the band structure for the K val-
ley shown in figure 2(c) can be reproduced with
high precision by the 7× 7 matrix, given by
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Figure 7. Comparison of two band structures. Left: The band structure (blue solid curves) obtained from diagonalizing the
original moiré potential model, equation (1), and the band structure (red dashed curves) using the effective Hamiltonian,
equation (B1). The parameters of equation (B1) can be obtained by fitting the blue solid curves; w= 0.2 meV, λ6 = 4.3 meV,
λ3 = 11.3 meV, ε1D = 63.4 meV, ε6 = 114 meV, ε4 = 154 meV, and ε3 = 162 meV. Those band structures match remarkably,
confirming the validity of our network model. For the blue curves, we have used the parameters, uAA = uBB = 0 and
uAB = uBA = 8π v√

3L
. Right: a blowup of the band structures near the Γ point (indicated by the black circle) where the three

propagating bands meet. Weak level repulsion between the three bands is clearly shown, not visible in the left band structure.

Heff(kx,ky) =





−vky+ε1D w −w λ6√
3

i λ6√
3

λ3√
3

0

w − v
2

(√
3kx − ky

)
+ε1D w λ6√

3
e−iπ3 i λ6√

3
ei

π
3 − λ3√

3
0

−w w v
2

(√
3kx+ky

)
+ ε1D

λ6√
3
e−2iπ3 i λ6√

3
e2i

π
3 λ3√

3
0

λ6√
3

λ6√
3
ei

π
3 λ6√

3
e2i

π
3 ε6 0 0 0

−i λ6√
3

−i λ6√
3
ei

π
3 −i λ6√

3
e2i

π
3 0 ε6 0 0

λ3√
3

− λ3√
3

λ3√
3

0 0 ε3 0

0 0 0 0 0 0 ε4





.

(B1)

The first three rows and columns of this effect-
ive Hamiltonian describe the 1D channels propagat-
ing along the three directions, the 4- and 5th rows
and columns describe degenerate localized states that
belong to the ρ6 representation with energy ε6, and
the 6 and 7th row and column correspond to local-
ized states that belongs to the ρ3 and ρ4 represent-
ation with energy ε3 and ε4, respectively. As shown
in equations (A2) and (A4), the form of the coupling
terms is determined by the symmetry of the system
and the representation of the localized states.

Figure 7 compares band structures obtained
from two different Hamiltonians. The band struc-
ture plotted in blue dashed curves is numerically
obtained from the diagonalization of the moiré
model, equation (1). On the other hand, the band
structure plotted in blue solid line is obtained from
the 7× 7 effective Hamiltonian in equation (B1)
with the parameters of w= 0.2 meV, λ6 = 4.3 meV,
λ3 = 11.3 meV, ε1D = 63.4 meV, ε6 = 114 meV, ε4 =
154 meV, and ε3 = 162 meV, which can be found by

fitting to the blue dashed curves. Those band struc-
tures remarkably match well, including silent fea-
tures. It confirms the validity of our network model.

Appendix C. Material
realization—triangular substrates and
TMBG

In the main text we considered an insulating sub-
strate with a honeycomb structure like graphene. But
main features of our model, the existence of regions
where mass gap with alternating signs are induced
into graphene, can also be generated with substrates
of triangular symmetry for which many examples
exist like hexagonal boron nitrite (h-BN). Also cut-
ting a 3D cubic insulator at an (111) surface produces
a substrate with triangular symmetry.

Within our effective model, equation (1), we can
model such a substrate simply by removing the B-
sublattice atoms from the lower layer by setting uAB =
uBB = 0 in equation (2). This automatically leads to
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an opening of the gap in the upper layer of oppos-
ite signs in the AA and BA regions. This has to be
compared to the case of an hexagonal substrate where
the gaps open in the AB and BA regions, see figure 2.
Thus, to compare the two models directly, we should
perform a shift by rAB, the vector connecting AA and
AB regions. After such a shift, we obtain new para-
meters,

ũAA = ũAB =−uAA, ũBB = ũBA =−uBA. (C1)

Here the difference uAA − uBA can be expected to be
small in many systems. It describes the effect of cor-
rugation: the distance of the two layers in the AA and
BA regions are different, leading to different poten-
tials. In the no-corrugation limit uAA = uBA, however,
a perfect realization of our effectivemodel is obtained
with

ũAA = ũAB = ũBB = ũBA (C2)

even for a substrate of with triangular symmetry.
To show that this idea also works in practice, we

consider below a specific material, a twisted mono-
layer bilayer graphene (TMBG) subject to a perpen-
dicular electric field. The TMBG is a van der Waals
material where a monolayer graphene is stacked with
relative twist on the top of a (non-twisted)AB-stacked

bilayer graphene. Thismaterial has been recently real-
ized in [32, 48]. While this system has a lower sym-
metry than the moiré potential model considered in
themain part of the paper, equation (1), we show that
it nevertheless approximately realizes key features of
our model.

To investigate the system of TMBG with a small
twist angle, we use a continuum model following the
approach developed in [10].We consider amonolayer
graphene on the top of a AB-stacked bilayer graphene
with relative twist angle φ. In the presence of a per-
pendicular electric field to the graphene layers, the
monolayer graphene is subject to electrostatic poten-
tial U/2, while each layer of the bilayer graphene is
subject to potential 0 and −U/2, respectively. In the
sublattice basis, the low-energy physics for themono-
layer graphene near the K point is captured by the
Hamiltonian

H0
MG = vkφ/2 · s+

U

2
1 (C3)

with the rotated momenta kθ ≡ R(φ)k by twist angle
φ. Here R(φ) is the rotation matrix with angle φ, and
s= (sx, sy) are the Pauli matrices acting on the sub-
lattice space. The AB-stacked bilayer graphene can be
described by the tight-binding Hamiltonian in basis
of (A1,B1,A2,B2) with four atomic sites in the unit
cell (1, 2 for the upper and lower layer, respectively),

HBG =





0 vπ∗
−φ/2 −v4π∗

−φ/2 −v3π−φ/2

vπ−φ/2 ∆ γ1 −v4π∗
−φ/2

−v4π−φ/2 γ1 −U
2 +∆ vπ∗

−φ/2

−v3π∗
−φ/2 −v4π−φ/2 vπ−φ/2 −U

2




. (C4)

Here we linearize the tight-binding Hamiltonian
expanding around K point to the linear order in
momentum, and πφ ≡ kφ,x + i kφ,y. The intrinsic
parameters of the bilayer graphene can be
extracted from the density functional theory as
v= 8.45× 105 m s−1, v3 = 9.16× 104 m s−1, v4 =
4.47× 104 m s−1, ∆= 15 meV, and γ1 = 361 meV
in [65]. The perpendicular electric field opens up a
gap at K and K′ points by∼|U|/2.

The monolayer graphene is coupled with the
upper layer of the bilayer graphene by the three 2× 4
tunneling matrices

T(r) =
3∑

j=1

e−iqj·rTj (C5)

with

Tj =

(
wAA e−i( j−1) 2π

3 wAB 0 0
ei( j−1) 2π

3 wAB wAA 0 0

)
(C6)

with j = 1,2,3. Here we only take into account the
three dominant interlayer tunneling processes [10]. qj
are the three dominantmomentum transfers that cor-
respond to the three interlayer tunneling processes;

q1 = Kφ(0,−1), q2 = Kφ(
√
3
2 , 12 ), q3 = Kφ(−

√
3
2 , 12 )

with Kφ = 8π sin(φ/2)/(3a) and the graphene lat-
tice constant a. The interlayer tunneling strengths
wAA,wAB > 0 generically differ from each other due
to the spatial modulation of the vertical distance
between the monolayer and bilayer graphene (i.e. the
corrugation effect). We neglect the coupling between
the two valleys as the interlayer tunneling varies
smoothly so that such a large momentum transfer
between the valleys is exponentially suppressed.

The band structure of the Hamiltonian
(equations (C3)–(C5)) can easily be obtained by exact
diagonalization in momentum space. In figure 8 we
show the resulting band structure for a realistic set of
parameters and a small twist angle in comparison to
the model discussed in the main text, equation (1).
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Figure 8. Comparison between a model for a twisted monolayer bilayer graphene with our potential model: Panel (a): Band
structure of a twisted monolayer bilayer graphene in the presence of a weak corrugation with wAA = 88 meV, wAB = 110 meV.
These band structures are obtained by numerically diagonalizing the Hamiltonian of equations (C3)–(C5) in momentum space.
Although a degree of level repulsion and the magnitude of bandwidths are quite different, the band structure in panel
(a) remarkably shows similarity to panel (b), a band structure of the potential model equation (1). Note that for panel (b) we have
used different parameters of uAA = uBB =− 4π v

3L
and uAB = uBA =− 4π v

3L
from figure 2(c). Thus, the shape of panel (b) looks

distinct from figure 2(c), but the band structure in panel (b) also exhibits 1D dispersing bands and flat bands. For panel (a) we
have used the parameters v= 8.45× 105 m s−1, v3 = 9.16× 104 m s−1, v4 = 4.47× 104 m s−1,∆= 15 meV, γ1 = 361 meV,
obtained from the density functional theory in [65]. We also have used the parameters of U=−200 meV and φ = 0.181◦.

The two results show a striking similarity. Also in
TMBG for the chosen twist angle one can clearly
identify the flat and the propagating bands. When
comparing the two figures, one also sees directly, that
the symmetry of TMBG is lower than in the moiré
potential model (mirror symmetries are lacking).
Symmetry-protected level crossings at the Γ and K
points are absent in TMBG.

To obtain analytical insight why the two band
structures are so similar, we have to map the TMBG
model to our moiré potential model, equation (1).
Analytically, this can be done assuming that the
inter-layer tunneling is smaller than the bilayer gap
|U|/2 (they are of similar size in the numerical
example). Let us consider a state with energy E
in the monolayer graphene. When E is inside the
gap of the bilayer graphene, i.e. min(−U/2,0)<
E<max(−U/2,0) and wAA,wAB < |U|/2, the dir-
ect hybridization with bilayer graphene states is
not allowed. Then, the leading correction on H0

MG

(equation (C3)) comes from the second-order pro-
cess in tunneling, resulting in the following effective
Hamiltonian of the monolayer graphene

H eff
MG =H0

MG +
∑

j=1,2,3

Tj
1

E−HBG
T†
j . (C7)

Upon applying the Fourier transformation to the real
space, the second term in equation (C9) becomes

∆HMG(r,r
′) = T(r)gBG(r,r

′)T†(r ′), (C8)

with the real space Green function gBG(r,r ′) =
( 1
E−HBG

)(r,r ′) for the bilayer graphene. Due to the
gap of the bilayer graphene, gBG(r,r ′) exponentially
decays in distance |r− r ′| over +∼ 2v/|U|. For suffi-
ciently small twist angles, + is much smaller than the
size of themoiré unit cell L, and thus non-local effects
are exponentially suppressed.

Under the assumption of +0 L, we can focus on
the local part H eff

MG(r,r) of the effective Hamiltonian,
which is written in a form

H eff
MG = v(−i∇r− eA(r)) · s+Veff

0 (r)1+Veff
s (r)sz,

(C9)

where Veff
0 (r)≈ 1

2 tr[HMG(r,r)], Veff
s (r)≈ 1

2 tr[σz ·
HMG(r,r)] and an effective vector potential is
obtained by setting −evA= 1

2 tr[(σx,σy)HMG(r,r)].
Here we assumed that φ is small, neglecting the
φ-dependence in the first term of equation (C3).
We have checked that the effective magnetic field
B=∇×A vanishes in every r, and hence the vec-
tor potential A in equation (C9) can be gauged
away. Veff

0 = (VA +VB)/2 and Veff
s = (VA −VB)/2

represent the effective uniform and staggered moiré
potential onto the monolayer graphene, which is
induced by the second-order process in the inter-
layer tunneling. From the straightforward calculation
of equation (C9) using equation (C5), one can show
that VA and VB take the form

VA(r) =
V0 +Vs

2
+
∑

β=A,B

6∑

i=1

uAβe
iGi ·(r−rAβ)

VB(r) =
V0 −Vs

2
+
∑

β=A,B

6∑

i=1

uBβe
iGi ·(r−rBβ) ,

(C10)

with the six smallest moiré reciprocal lattice vec-

tors Gi and rAA = rBB = 0, rAB =−rBA = (
√
3L
6 , L2 ),

see figure 2(a). V0 and Vs denote the constant
part of the effective uniform and stagger potentials,
respectively. The parameters uββ ′ , V0, and Vs in
equation (C10) are written in terms of the parameters
of the TMBG as
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Figure 9. The effect of the inversion symmetry breaking: Lines along which the mass gap vanishes, i.e. Vs(r) =
(VA +VB)/2= 0, see equation (C10). The blue lines are drawn for the case to preserve the inversion symmetry, i.e.
γ1 =∆= 0 and wAA = wAB to share the same symmetries discussed in the main text. The orange lines are drawn for the case
with γ1 →∞ to strongly break the inversion symmetry. Compared with the inversion symmetric case (blue lines), the
straight lines are shifted by r→ r+ rAB in which the symmetries discussed in appendix A are fully restored. The green lines
are drawn with the experimental parameters of γ1 = 361 meV,∆= 15 meV, U=−200 meV, wAA = 88 meV, and
wAB = 110 meV. Apart from the bending near the crossing points, the lines remain straight. For those plots, E is set to−U/4,
the middle of the gap of the bilayer graphene.

uAA =−4w2
AA

U
, uBA =−4w2

AB

U
,

uAB =− 4w2
AB(U− 4∆)

16(γ21 −∆2)+U2
,

uBB =− 4w2
AA(U− 4∆)

16(γ21 −∆2)+U2
,

Vs =
24(w2

AB −w2
AA)(4γ

2
1 +(U− 4∆)∆)

U(16(γ21 −∆2)+U2)
,

V0 =−12(w2
AB +w2

AA)(8(γ
2
1 −∆2)+U2 − 2U∆)

U(16(γ21 −∆2)+U2)
.

(C11)

Here E is set to −U/4, deep in the gap of the bilayer
graphene. As γ1 is relatively large, we find that uAB ≈
3.8 meV, uBA ≈ 5.9 meV can be neglected compared
to uAA ≈ 155 meV and uAB ≈ 242 meV as anticip-
ated above. The difference of uAA, uAB is, however,
substantial as in this system corrugation effects are
enhanced as the tunnel coupling of the layers enters
quadratically in equation (C11). Nevertheless, the
model approximately realizes the physics discussed
in the main text which largely relies on the fact that

Veff
s (r) (and thus the local mass gap) vanishes along

lines in real-space which lead both to propagating 1D
modes running parallel to them and localized modes
at their crossing point. Therefore, we plot in figure 9
the contours of Vs(r) = 0 for realistic parameters of
TMBG (green lines). These contours deviate strongly
from the contours of our original model drawn in
bluewhich are obtained for uAA = uBB and uAB = uBA.
As discussed above, the models are only expected to
match after a shift of the potential by rAB, which leads
to the orange lines in figure 9 which are remarkably
close to the ones derived from the realistic model of
TMBG. This provides an analytical justification of the
numerical results of figure 8 and corroborates our
argument that approximate realizations of our effect-
ive model can be expected even for lower-symmetry
substrates with triangular lattices.

Appendix D. Mean-field phase diagram

In this appendix, we discuss the mean-field phase
diagram of the Hamiltonian, equation (10), given by

Hsv = J2
∑

〈m1→m2〉c

(1+σm1 ·σm2)(e
iϕτ+m1τ

−
m2 + h.c.)+ J3

∑

p=*/+,(m1,m2,m3)p

(−1)pσm1 · (σm2×σm3)

(
3∏

i=1

P+mi −
3∏

i=1

P−mi

)

+ J ′2
∑

〈m1,m2〉c

(1+σm1 ·σm2)(1+ τ zm1τ
z
m2) . (D1)

Comparedwith theHamiltonians (equations (7)–(9))
obtained from a perturbation theory in J and w,
the Hamiltonian contains only the nearest neighbor

interactions. The continuous symmetries of Hsv are
U(1)× SU(2)× SU(2) generated by τ z, P+σ and
P−σ. Assuming that the filling of the localized states
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is unity, the states on the SU(4) space are spanned
by a 4-component complex vector. In this basis, we
solve the self-consistent mean-field equations iterat-
ively with the fixed unit cell. We use 4 different unit
cells with one-, two-, three-, four-sublattices. We find
that either a one-sublattice or a three-sublattice solu-
tion has the lowest energy. Therefore we consider
only these cases in the following.

The model is parametrized by 3 dimensionless
parameters J3/J2, J ′2/J2 and ϕ. Experimentally, we
expect |J3/J2|, |J ′2/J2|0 1 while ϕ can take arbitrar-
ily large values. The parameter ϕ can be viewed as
an Aharonov–Bohmphase acquired by a particle with
charge τ z moving along a side of the triangular loop.
As 3ϕ is the total phase accumulated along the trian-
gular loop, it is possible to use a transformation to
change the total phase by 2π which is equivalent to
a change of ϕ by n2π/3, n ∈ Z. This is achieved by
doing τ z rotations of the spins on the A, B, C (see the
inset of figure 3) by 0, 2π/3, 4π/3

ϕ→ ϕ+
2π

3
, τA → τA, τ B → eiτ

z
B
2π
3 τ Be

−iτ z
B
2π
3 ,

τC → eiτ
z
C
4π
3 τCe

−iτ z
C
4π
3 . (D2)

If one uses the Aharonov–Bohm analogy described
above, this would be a gauge transformation. In our
system, however, a rotation by τ z changes the physical
state. The transformation maps, for example, a ferro-
magnetic state obtained forϕ = π to a state with 120◦

order for ϕ =±π/3, see below.
As J2 > 0 is the largest term, we first analyze

the case J3 = J ′2 = 0. For ϕ= 0, the Hamiltonian,
equation (D1), becomes a variant of the Kugel–
Khomskii model [49]

H0 = 2J2
∑

〈m1→m2〉c

(1+σm1 ·σm2)(τ
x
m1
τ xm2

+ τ ym1
τ ym2

)

= 2J2
∑

〈m1→m2〉c

µ1
m1

·µ1
m2

+µ2
m1

·µ2
m2
, (D3)

with the 4-component vectors given by µ1
m =

(τ xm,τ
y
mσx

m,τ
y
mσ

y
m,τ

y
mσz

m) and µ2
m = (τ ym,τ xmσ

x
m,

τ xmσ
y
m,τ xmσ

z
m). Numerically, we find from our mean-

field analysis that the ground state has the proper-
ties that the vectors 〈µn

m〉, n= 1,2, have the norm
1, and show 120◦ order, such that 〈µn

m1
〉 · 〈µn

m2
〉=

cos(2π/3) =− 1
2 for neighboring sites. Thus, this spe-

cific type of 120◦ order is realized with 4-component
vectors. More precisely, two different types of the
120◦ order are realized in the ground-state manifold
of H0: a right-handed and left-handed 120◦ order.
The states of the right (left)-handed 120◦ order rotate
in anti-clockwise (clockwise) order around the τ z ori-
entation along the triangular loop (A→ B→ C) as

ψB = e∓iτ z 2π
3 ψA, ψC = e∓iτ z 4π

3 ψA. (D4)

Those 120◦ orders are staggered such that the states
in the neighboring triangles circulate in the opposite
direction.

Surprisingly, the above described 120◦ orders
have an extra degree of freedom. This degree of free-
dom can be revealed by analyzing the valley-projected
magnetization vectors, 〈σP±〉, which are length 1/2
in the ground-state manifold. In one of the two val-
ley, the magnetization is always ferromagnetic, but in
the other valley a non-coplanar spin configuration is
possible. This non-coplanar spin configuration can
be fully characterized by the opening angle 0! θ ! π
of the magnetization vectors of the three neighboring
sites. While the opening angle 0 and π correspond to
two distinct spin ferromagnetic states, see below, π/2
corresponds to the coplanar 120◦ states.

It is possible to write down analytically the spinor
wavefunctions in the A, B andC sublattices within the
ground-statemanifold. Up to rotations using the con-
tinuous symmetriesU(1)× SU(2)× SU(2), they take
the form

ψ+
A =

1√
2





1
1
0
0



 , ψ+
B =

1√
2





1

− 1
2 + i

√
3
2 cosθ
0

i
√
3
2 sinθ




,

ψ+
C =

1√
2





1

− 1
2 − i

√
3
2 cosθ
0

−i
√
3
2 sinθ




(D5)

if the spins in the + valley order ferromagnetically.
If the spins in the − valley order ferromagnetically,
one finds instead (again up to transformations by the
continuous symmetries U(1)× SU(2)× SU(2))

ψ−
A =

1√
2





1
1
0
0



 , ψ−
B =

1√
2





− 1
2 − i

√
3
2 cosθ
1

−i
√
3
2 sinθ
0




,

ψ−
C =

1√
2





− 1
2 + i

√
3
2 cosθ
1

i
√
3
2 sinθ
0




. (D6)

In both cases, θ is the opening angle characteriz-
ing the chiral spin order. An opening angle θ /=
0,π,π/2 leads to a finite valley-projected chirality
χ± = 〈σP±〉A · (〈σP±〉B×〈σP±〉C). Using the Ψ+

solutions above, we obtain

χ+ = 0, χ− =
3

16

√
3cosθ sin2 θ, (D7)

while for theΨ− solution we find

χ+ =− 3

16

√
3cosθ sin2 θ, χ− = 0. (D8)

Ground states have an arbitrary θ, and thus an arbit-
rary− 1

8 ! χ− ! 1
8 for theψ

+ states or− 1
8 ! χ+ ! 1

8
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Figure 10.Mean-field phase diagram with the order
parameter (χ+ −χ−) in (ϕ, J3) parameter space. J ′2 = 0
and J2 = 1. This diagram extends figure 3(a), which only
covers small ϕ (defined modulo 2π/3) and weak J3 near
the highly singular points. While three different types of
coplanar phase (two 120◦ orders and a ferromagnetic
order) are realized in weak J3, the chiral order achieves the
maximal values of chirality χ+ −χ− =−1 for sufficiently
strong J3 > 0 (purple region).

for the ψ− states. For θ= 0 or θ = π, the ψ+ and
ψ− solutions coincide (up to trivial phases). The
states with θ= 0 or π in equation (D5) are spin-
ferromagnet in both of the valleys, but have the dis-
tinct 120◦ order with the left or right handedness,
respectively.

ExpandingH0, at a energy minimum, in terms of
three 4-component complex states, |ψ0

m〉 → |ψ0
m〉+

|δψm〉 with m= A,B,C, up to the second order,
we obtain seven zero-modes among 3× (8− 2) =
18 degrees of freedom. Those seven zero-modes
show explicitly that the ground-state manifold is 7-
dimensional. Six of this seven modes arise from the
spontaneously broken continuous symmetries, the
7th mode, in contrast, is related to a change of θ,
thus links states which are not related by symmetry.
An exception of this counting argument are the fer-
romagnetic states at θ= 0 or θ = π, which have a
higher symmetry. They have nine zero modes, from
which five arise from spontaneously broken symmet-
ries while two each describe changes of the opening
angle θ either in the valley + or the − sector. Note
that there are two suchmodes per sector as magnetiz-
ation vectors can tilt in two different directions start-
ing from the ferromagnetic configuration.

In the main text, we discuss the mean-field phase
diagram arising from small perturbations around the
ϕ= 0 point, see figure 3. In figure 10we show the ana-
log of figure 3(a) but for an extended parameter range
where ϕ varies from −π to π and we also allow for
large values of J3. We find three types of non-chiral
phases (red) which show either ferromagnetic or a
120◦ order in the vectors 〈µn〉 with n= 1,2.

Importantly, the phase diagram shows singular
points not only at ϕ= 0 but also at ϕ =± 2π

3 . Those
singular points can be understood by the enhanced
symmetry of the ϕ= 0 state discussed above and the
transformation of equation (D2) which can be used
to map the states at ϕ =± 2π

3 to ϕ= 0. Due to the
τ z rotation, equation (D2), as adding ϕ by 2π/3 suc-
cessively, the phase changes from a left-handed 120◦

ordered phase→ a right-handed 120◦ phase→ a fer-
romagnetic phase (more precisely, in the vectors 〈µn〉
with n= 1,2), and back to the left-handed 120◦ phase
again. Such a transition between different types of
120◦ order was recently studied in themoiréHubbard
model [66].

Since the ϕ= 0 and ϕ =±2π/3 points with J3 =
J ′2 = 0 have a large, degenerate ground-state mani-
fold, even small perturbations which lift this degen-
eracy can lead to a giant effect close to all three points
as shown in figure 10. Note that the state with finite
chiral order in either the+ or− sector, also breaks the
discrete valley symmetry leading to a finite 〈τ z〉 /= 0.
For sufficiently large J3 (cf figure 10), the τ z symmetry
is maximally broken with |〈τ z〉|= 1 and also the chir-
ality takes its maximal value, χ+ −χ− =−1 (purple
region).

Appendix E. Spin-wave theory

In this appendix, we perform a spin wave calculation
in J ′2 = J3 = 0 and ϕ = 2πn/3, n ∈ Z, where ground
states are highly degenerate. The motivation of this
spin wave calculation is to investigate the effect of
thermal and quantum fluctuation in such a highly
degenerate ground-state manifold. We show that by
the thermal order-by-disorder mechanism, the sys-
tem selects spin ferromagnetic states in both of the
valley sectors from the ground-state manifold. This is
contrasted with that the quantum order-by-disorder
mechanism favors 120◦ spin order in one valley and
ferromagnetic order in the other valley. The thermal
order-by-disordermechanism leads to amass gap lin-
ear in temperature for the soft modes related with
the opening angle θ. Expanding around the classical
ground states (i.e. spin-ferromagnet in both of the
valleys), we show that a finite chirality χ± is induced
at finite temperatures by the θ-related softmodes. The
non-analytic temperature dependence of the chiral-
ity arises from the linear mass gap of the soft modes
in temperatures. These results remarkablymatchwith
results of the classical Monte-Carlo simulation.

We first start by developing a spin wave theory for
SU(4) operators. Spin wave theories become exact in
certain large M limits, where M parametrize repres-
entations of the group. In the SU(2) case one uses the
size of the spin s (with M= 2s) and performs a 1/s
expansion. In the SU(4) case, we choose a totally sym-
metric representation of the SU(4) operators by (i)
writing the operators with bosonic creation and anni-
hilation operators, a†i ,ai (i = 1, . . . ,4 andwe suppress
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an extra site index here), and (ii) fix the number of
bosons (per site) to beM using

Γ̂) =
∑

i,i ′=1,...,4

â†i γ
)
i i ′ âi ′ , M=

4∑

i=1

â†i âi. (E1)

Furthermore, we add an extra factor 1/M in front
of the Hamiltonian, H→H/M, to make the large M

limit well defined, see below. The M= 1 case corres-
ponds to the fundamental representation of SU(4),
realized if a single electron is localized on each site.
While we are interested in this limit, the largeM the-
ory to useful to derive a spin-wave theory in a con-
trolled way.

Within the functional integral formalism, the
partition function of our system is expressed as

Z =

ˆ
D[ā,a]Dλe−

´
dτ(

∑
i,s,n āi,s,n∂τ ai,s,n+ 1

MH(ā,a)+i
∑

s,nλs,n(M−
∑4

i=1 āi,s,nai,s,n)), (E2)

where ai,s,n are complex fields and the Lagrange
multipliers λs,n are used to implement the

constraint on each site. Rescaling the boson
fields as ai,s,n =

√
Mãi,s,n and using that H

is quartic in these operators, we arrive

Z =

ˆ
D[¯̃a, ã]Dλe−MSeff , Seff =

ˆ β

0
dτ




∑

i,s,n

¯̃ai,s,n∂τ ãi,s,n+H(¯̃a, ã)− i
∑

s,n

λs,n

(
4∑

i=1

¯̃ai,s,nãi,s,n− 1

)

 .

(E3)

Due to the factor M in front of Seff, the functional
integral in the largeM limit is dominated by its saddle
point and fluctuations around the saddle point, which
are controlled by 1/M. Saddle point solutions can
be obtained by solving ∂Seff

∂ãi,s,n
|ãsp,λsp =

∂Seff
∂¯̃ai,s,n

|ãsp,λsp =
∂Seff
∂λs,n

|ãsp,λsp = 0. Static saddle point solutions exactly

correspond to the zero-temperature mean-field solu-
tions with λs,n = λsp being the mean-field energy per
site. Expanding Seff up to second order around the
saddle point solutions, the resulting action captures
physics of spin wave excitations. Although this saddle
point approximation becomes more accurate with
large M, it also provides a good approximation even
to theM= 1 case. HereafterM is set to 1, unless oth-
erwise stated.

To understand the effect of quantum or thermal
fluctuation on the degenerate ground-state mani-
fold of H0 (equation (D3)), we use the approach
explained above for J ′2 = J3 = 0 and ϕ = 2πn/3, n ∈
Z where the mean-field solution is highly degener-
ate. As a reference state around which the action
(equation (E3)) is expanded, we take the spinor wave-
functions ψ0

s (α=±,θ) = ψα
s (θ) (equations (D5)

and (D6)) that depend on the opening angle θ and α.
α represents the valley sector in which the spin has the
ferromagnetic order. Then, low-energy states associ-
ated with the spin wave excitation can be generally
written, up to normalization, as

ψs(α,θ)∼ ψ0
s (α,θ)+

1√
M

3∑

i=1

âs,iδψs,i(α,θ). (E4)

Here δψs,i are three 4-component unit vectors per-
pendicular to the reference state ψ0

s (±,θ). At this
point, we find it useful to switch back from the func-
tional integral formalism to the operator formalism,
where it is more easy to keep track of commuta-
tion relation. Expanding to the second order in âs,i
and performing the Fourier transform tomomentum
space, the Hamiltonian has a Bogoliubov-de Gennes
(BdG) form

HBdG =
1
2

∑

k

(
â†k â−k

)( A(k) B(k)
B∗(−k) A∗(−k)

)(
âk
â†−k

)

− 1
2

∑

k

TrA(k). (E5)

Here A(k) and B(k) are 9× 9 matrices in the basis
of sublattice s= A,B,C and i = 1,2,3 representing
three directions perpendicular to ψ0

s (α,θ), and ful-
fill the condition A(k) = A†(k) and B(k) = BT(−k),
respectively. The diagonalization of the bosonic
BdG Hamiltonian, equation (E5), should be taken
with special care. To fulfill the bosonic commut-
ation relation for the eigenmodes, the transform-
ation matrix T(k) for the diagonalization has to
satisfy the paraunitarity condition T†(k)ΣzT(k) =
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T(k)ΣzT†(k) = Σz with the third Pauli matrixΣz act-
ing on the Nambu space. As a consequence, T(k) and
the corresponding eigen energies are obtained from
diagonalizing the matrix ΣzH(k) instead [67]. Using
this diagonalization scheme, one obtains

HBdG =
1

2

∑

k

(
γ̂†k γ̂−k

)(E(k) 0
0 E(−k)

)(
γ̂k
γ̂†−k

)

− 1

2

∑

k

TrA(k)

=
∑

k

9∑

n=1

Ek,n(α,θ)

(
γ̂†k,nγ̂k,n +

1

2

)

− 1

2

∑

k

TrA(k). (E6)

Here E(k) is a diagonal matrix with positive ele-
ments Ek,n > 0. In the ground state the occupation
of the finite-energy states vanishes and therefore the
ground-state energy is given by

E0 ≈ EMF +
1

2

∑

k,n

Ek,n(α,θ)−
1

2

∑

k

TrA(k) (E7)

where EMF is the mean-field energy. It turns out that
TrA(k) is independent on the expansion point (α,θ).
E0 also includes corrections arising from quantum
fluctuations, computed to leading order in 1/M.
Similarly, the free energy at low temperatures can be
approximated by

F≈ EMF +
1

2

∑

k,n

Ek,n(α,θ)−
1

2

∑

k

TrA(k)

+
1

β

∑

k,n

log(1− e−βEk,n(α,θ)). (E8)

The spectrum of excitation Ek,n(α,θ) depends on
the chosen mean-field state ψ0

s (α,θ) even in cases
where the mean-field energy is exactly the same. This
is shown in figure 11 where the excitation spectrum
is shown for an expansion around (i) a state with fer-
romagnetic spin-order (θ= 0), (ii) a state with chiral
spin chirality (θ = π/4) and (iii) a coplanar spin-
state (θ = π/2). The excitation spectrum differs in
the number of Goldstone modes and also in its high-
energy spectrum. Thus both E0 and F will depend
on the chosen ground state within the mean-field
ground-state manifold. Nature will select the state
with the lowest (free-) energy. This is an example of
the ‘order by disorder’ mechanism, where quantum
or thermal fluctuations select one specific ordered
state out of a larger manifold.

To be able to compare with the result of classical
Monte Carlo calculations, it is useful to evaluate the
free energy (E8) in the classical limit, Ek,n 0 T, where
we obtain

F cl ≈ EMF +T
∑

k,n

log(βEk,n(α,θ)). (E9)

Figures 12(a) and (b) shows the free energy with
different ground states, characterized by the open-
ing angle θ. As shown in figure 12(a), the free
energy at zero temperature has a minimum at the
state with the opening angle θ = π/2, i.e. the spin-
coplanar 120◦ order in one valley (keeping the fer-
romagnetic order in the other valley). The selection
of the states are achieved by the quantum order-by-
disorder mechanism. In contrast, the thermal fluctu-
ations select distinct states from the quantum fluc-
tuations as shown from the classical free energy in
figure 12(b). The thermal order-by-disorder mech-
anism leads to a selection of the spin ferromagnetic
order in both of the valley sectors (θ= 0 or π). Thus,
our system is one of the rare cases where quantum
and classical fluctuations select very different types
of ground states. Technically this arises, because the
classical fluctuations select the statewhere the geomet-
ric average (sum of logarithms) of the energies Ek,n
is lowest, while quantum fluctuations select the state
with the lowest arithmetic average.

In figure 12(c), we show the free energy,
equation (E8), as function of temperature for the
states with θ = π/2 and θ = 0,π. Formally, the calcu-
lation predicts a first order transition from the spin-
coplanar state to the spin-ferromagnetic state upon
increasing T. The transition temperature, T≈ 3.8 J2,
is, however, so high that the expansion around the
T= 0 mean-field, which underlies equation (E8),
is not expected to be valid any more. Our classical
Monte-Carlo simulations (see main text) show that
there is no long-ranged order at this temperature.

The discussion of the free energy given above
explains that the classical Monte Carlo calculations
reported in themain text obtain a spin-ferromagnetic
ground state (θ = 0,π) in the limit T→ 0. For the
classical model, the spin-wave theory should become
exact for low T, as it captures Gaussian fluctuations
around the classical ground state. We can therefore
use it to explain two numerical results shown in
figures 4(b) and (c). The spin-chirality, χ+ −χ−,
obtains a finite expectation value at T> 0, which
rises in a singular way as function of temperat-
ure. Furthermore, the ferromagnetic order parameter
obtains a correction linear inT with a prefactor which
increases for increasing system size. Remarkably, such
a system-size dependence is largely absent for the
spin-chirality and only visible at the lowest temper-
atures, see inset of figure 4(b).

The suppression of the order parameter is a
well-known consequence of the Mermin–Wagner
theorem: the thermal occupation of the Goldstone
modes gives rise to a correction of order −T log1/N
to the order parameter, where N is the linear system
size. This effect is clearly visible in the numerics. In an
infinite system,N→∞, long-range order is expected

19



2D Mater. 10 (2023) 035033 J Park et al

Figure 11. Spin-valley excitation spectra for an expansion around (a) a state with ferromagnetic spin order (θ= 0), (b) a state with
chiral spin chirality (θ = π/4) and (c) a coplanar spin-state (θ = π/2). The spectra are drawn along the red line (M−Γ−M) in
the Brillouin zone shown in the inset of panel (a). The excitation spectra differ in the number of Goldstone modes. Panel (a): four
quadratic modes, (more precisely, for each valley, a Goldstone mode corresponding to the ferromagnetic order and a θ-related soft
mode) and a linear mode, Panel (b): three quadratic modes and a linear mode, Panel (c): two quadratic and three linear modes.

Figure 12. Order-by-disorder mechanisms. (a) The ground-state energy per site (equation (E7)) as function of θ, parameterizing
the opening angle of valley-projected spins on the three sublattices. By the quantum order-by-disorder mechanism, the state with
the opening angle θ = π/2 (i.e. the spin-coplanar 120◦ order) is selected from the ground-state manifold. (b) In the classical
model, the free energy Fcl, equation (E9), obtains at low T a correction linear in T from thermal fluctuations. In contrast with the
quantum order-by-disorder mechanism, the thermal order-by-disorder leads to the selection of the spin ferromagnetic order in
both of the valley sectors (θ= 0 or π). (c) Free energy as function of temperature. As the thermal order-by-disorder mechanism
selects the distinct ground states from the quantum order-by-disorder mechanism, a first-order phase transition occurs at an
intermediate temperature, kBT∼ 3.8J2.

to be absent at any finite T with a correlation length
which is exponentially large in 1/T.

More surprising is the finite chirality and its
unusual temperature dependence. It is straight-
forward to expand the valley-projected chirality
operators

χ± = 〈σm1P
±
m1

· (σm2P
±
m2
×σm3P

±
m3
)〉

≈ χ±
cl +

1

V

∑

k,n

χ±
k,n(〈γ̂

†
k,nγ̂k,n〉+ 1/2) (E10)

where V= N2 is the number of sites in the system,
χ±
cl is the chirality of the mean-field ground state

and χ±
k,n is a numerically determined weight factor

which encodes howmuch chirality an excitation with
quantum numbers n and k carries.

To compare to our classical Monte Carlo sim-
ulation, we use this formula expanding around the
spin-ferromagnetic state, θ = 0,π, where χ±

cl = 0.
In the classical limit, T$ Ek,n, we have to replace

〈γ̂†k,nγ̂k,n〉+
1
2 by T/Ek,n and we obtain

〈χ̂±〉= 1

V

∑

k,n

χ±
k,n

T

Ek,n(α,θ)
. (E11)

Importantly, χ±
k,n turns out to be finite for k→

0 for one of the modes, which we label by n±,
with Ek,n± ≈ cθk2 for k→ 0. Numerically, we obtain
χ±
0,n± =∓2.60 (when expanding around θ= 0, signs

are opposite when expanding around θ = π) and
cθ ≈ 3.1. The n± modes describe fluctuations of θ
which naturally give rise to a finite spin chirality

(note thatχ± ≈∓ 3
√
3

16 θ
2 according to equations (D7)

and (D8)).
Thus, equation (E14) predicts for the θ= 0 state

a nominally divergent contribution to the chirality of
the form

〈χ̂±〉 ≈ 1

V

∑

k

χ±
0,n±

T

J2cθk2
≈∓0.11

T

J2
ln

[
k0
kmin

]
,

(E12)

where k0 denotes a UV cutoff to the k sum and we
introduced ad hoc an minimal momentum kmin as an
infrared cutoff. In three dimensions, the analog cal-
culation would give T(c1 − c2kmin).

Thus the question arises, what sets the value of
the infrared cutoff kmin. Importantly, it is not set by
the system size but by the fact that the θ-modes n±
are not true Goldstone modes. While within mean-
field changes of θ in the two valley-sectors do not cost
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Figure 13.Mass gap of θ-modes, n± modes (see the text), induced by the Hamiltonian equation (E15) to stabilize the
ferromagnetic spin order. The excitation spectra are obtained from an expansion of a ferromagnetic state (θ= 0), which is an
energy minimum of the mean-field theory. The two n± modes from two valleys acquire the mass gap as shown in near Γ point
(the red circle).

any energy. This is, however, not the correct result. As
shown in figure 12(b), the free energy near the clas-
sical minima (θ0 = 0, π) is approximately described
by

Fclα,θ ≈ F cl
α,θ0 +

1

2
c1T(θ− θ0)

2. (E13)

This term induces a finite mass ∼T to the n± modes
resulting in an effective IR cutoff kmin ∼

√
T,

〈χ̂+ − χ̂−〉 ≈±0.22
T

J2
ln
[√

T0/T
]
, (E14)

where the sign depends on whether we expand
around θ= 0 or θ = π and T0 is some UV cutoff
energy. Equation (E14) explains the singular tem-
perature dependence observed in the Monte Carlo
numerics, figure 4 and also the approximate absence
of finite-size effects in this quantity as long as kminN"
1. In three dimensions, the analog calculation would
give a correction of the form c1T− c2T3/2.

To see how the mass gap enters the dispersion of
the n± modes, we add a Hamiltonian, given by

Hmass = Jm
∑

〈m,m ′〉

((σP+)m · (σP+)m ′

+(σP−)m · (σP−)m ′). (E15)

Note that this Hamiltonian stabilizes the spin-
ferromagnetic state (θ = 0,π), but opens up a mass
gap in the n± modes. Expanding around the θ= 0
state, one of the classical minima withH0 +Hmass, we
obtain the excitation spectra shown in figure 13. Each
of the n± modes acquires a mass gap with disper-
sion Ek,n± ∼ k2 + J2m. Therefore, the mass gap nicely
provides an effective infrared cutoff kmin ∼ Jm, as dis-
cussed above.

The discussion given above applies to the clas-
sical model. In the quantum case, when we expand
around a ferromagnetic solution (stabilized, e.g. by

J ′2 < 0), |〈χ̂+ − χ̂−〉| is finite even for T= 0. In the
spin-planar phase, θ = π/2 (stabilized by quantum
fluctuations in the pure J2 model and also obtained
for J ′2 > 0), in contrast, χ± vanishes by symmetry, see
below.

Two symmetries are most important for the dis-
cussion of the spin chirality. First, a 180◦ rotation of
both spin and space around, e.g. the ŷ axis maps χ±

to −χ±. Second, the inversion symmetry maps χ±

to−χ∓.
The spin-ferromagnetic state (with a 120◦ valley

order) breaks 180◦ rotation symmetry but is inver-
sion symmetric. Thusχ+ +χ− = 0whileχ+ −χ− is
finite. The state with coplanar 120◦ spin-order (real-
ized in the quantum J2 model), in contrast, has both
symmetries and thus χ± = 0. This is also reflected in
figure 5 of the main text which shows that |χ+ −χ−|
is only finite in the spin-ferromagnetic phase.

Appendix F. Semi-classical Monte Carlo

In this appendix, we provide a more detailed descrip-
tion of the our semi-classical Monte Carlo imple-
mentation.Wenote that a very similar description (by
some of us) for a filling of two instead of one electron
per site can be found in [68]. We then conclude this
manuscript by presenting additional numerical data
elucidating the type of phase transitions separating
the disordered and the two ordered states found in the
J2 − J ′2 model (see figure 5).

F.1. Implementation
To calculate finite-temperature observables, we per-
form semi-classical Monte Carlo calculations using
the Metropolis algorithm [58] with local updates.
Instead of a classical spin configuration, however, we
need to update the product-state wavefunction |Ψ〉=∏

m |Ψm〉, where |Ψm〉 is a single-site, 4-component,
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normalized wave function. To this end, we paramet-
erize the single-site wave-function as

|ψm〉=
4∑

j=1

bjm|γ j〉 , (F1)

with normalized, 4-dimensional, complex-valued
vectors |bm|= 1. The states |γ j〉 constitute a basis
of the local Hilbert space, for which we simply choose

|γ j〉 ∈ {| ↑+〉, | ↓+〉, | ↑ −〉, | ↓ −〉} (F2)

where σ = (↑,↓) is the spin and α= (+,−) the val-
ley quantum number, labeling the eigenvalues of σz

and τ z, respectively. Subtracting the normalization
and a local arbitrary phase, a state can therefore be
parametrized by N2 · (8− 2) real numbers. In the
Monte Carlo calculation, however, it turns out bene-
ficial to simply include the redundancy of the phase,
which does not affect any of our observables, and
work with all components of bm. To perform a local
Metropolis update, we consequently need to be able
to uniformly sample the space of normalized, com-
plex valued, 4-dimensional vectors. Such vectors can
be understood to live on a 7-dimensional hypersphere
(7-sphere), parameterized by the real- and imaginary
part of each component. To uniformly sample on a 7-
sphere, one can simply draw 7+ 1 normally distrib-
uted numbers and then normalize the resulting vector
[69]. Sampling on the full sphere, however, leads to
very low acceptance rates for low temperatures, which
in turn results in a slow convergence of the results.
Instead, we adapt [70] and utilize the Gaussian trial
move, which generates a new local state in the ‘vicin-
ity’ of the original as

b ′
m =

bm +σgΓ

|bm +σgΓ|
, (F3)

where Γ is a 4-dimensional complex vector, with the
real and imaginary part of each component sampled
from a normal distribution. The value of σg con-
trols the ‘step-size’ of the update. Staring with a large
σg = 60 and then adjusting σg every ten Monte Carlo
sweeps according to

σg →
0.5

1−R
σg, (F4)

where R is the acceptance rate during the last ten
sweeps, this very quickly tunes the overall acceptance
rate to approximately 50% leading to significant spee-
dup in convergence at lower temperatures.

We begin each Monte Carlo run with a thermal-
ization phase, typically lasting for Nt = 1 × 106

sweeps, in which the temperature is continuously
lowered from a large initial value of TI = 3|J2| to the
desired temperature T. More precisely, for the first

3/4Nt sweeps the temperature is lowered by a multi-

plication with the factor (T/TI)
4

3Nt after each sweep.
For the remaining 1

4Nt sweeps the temperature is
kept constant. During the thermalization phase σg is
adjusted using the procedure described above. After
thermalization, we start the measurement phase, typ-
ically for Nm = 10 × 106 sweeps, where we keep T
and σg constant and perform measurements every
tenth sweep. The statistical evaluation of the meas-
urements is done using the BinningAnalysis Julia
Package [71].

F.2. Phase transitions
The finite-temperature phase diagram of the J2 − J ′2
model shown in figure 5 features three distinct phases:
A disordered phase at high temperature, a state with
120◦ order in µ1,2 and ferromagnetic order in σ,
and a similar state where the spin instead shows 120◦

order in one valley. Figure 14 showsMonte Carlo data
for all three of the corresponding phase transitions
separating the different phases.

The transition from the disordered state into the
state with ferromagnetic spin order (J ′2/J2 < 0.1) fea-
tures a seemingly continuous energy as a function
of temperature and the energy distribution at the
transitions shows only one Gaussian peak, indicat-
ing a continuous phase transition, a thermal crossover
or a weak first-order transition. As discussed in the
main text and shown in figure 10, the sharp rise of
the chirality |〈χ+ −χ−〉|, accompanied by the break-
ing of a discrete Z2 symmetry, is mostly independent
fromN, strongly suggesting a phase transition instead
of a crossover. Very close to Tc, however, |〈χ+ −
χ−〉| strongly fluctuates between different Monte
Carlo runs, even when repeating runs at fixed T,
leading to large statistical errors which prohibit us
from determining the precise nature of the phase
transition.

In contrast, the transition separating the two
ordered states (0< J ′2/J2 < 0.1), as well as the trans-
ition between the disordered phase and the phasewith
spin 120◦ order (J ′2/J2 > 0.1) show a discontinuity
in the energy and a bimodal energy distribution at
the critical temperature, both becoming more pro-
nounced for larger lattice sizes N. This suggests that
both phase transitions are of first-order. To measure
the strength of the first-order transitions, we obtain
the associated latent heat by fitting double Gaussians
to the energy distribution at the critical temperature
and calculating the distance between the two peaks.
The resulting latent heat for both first-order trans-
itions is shown in figure 15, which exhibit a sizable
latent heat of up to ∆ε/J2 ≈ 0.07 and ∆ε/J2 ≈ 0.08,
respectively, indicating strong first-order transitions.
When approaching the transition into the ferromag-
netic spin order, where the thermal phase trans-
ition appears continuous, the latent heat smoothly
vanishes.
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Figure 14. Thermal phase transitions in the J2 − J ′2 model. Monte Carlo data showing the specific heat cv, energy per site ε and
energy distribution p(ε) in the three principal phase transitions we observe, obtained for linear system sizes N= 24,36,48,72. At
J ′2/J2 =−0.4 (left column) a transition from the disordered state to the ordered state with 120◦ order in µ1,2 and ferromagnetic
order in σP± occurs. The continuous decrease in energy and the single peak structure of the energy distribution at the transition
temperature suggest a continuous or a weak first-order phase transition. At J ′2/J2 = 0.06 (middle column) the peak in cv at higher
temperature corresponds to the same transition as for J ′2/J2 =−0.4. The second peak, which is shown in the insets, corresponds
to the transition between the two ordered states, where the spin changes from ferromagnetic to 120◦ order in one valley. The kink
in the energy and the bimodal structure of the energy distribution, which become more pronounced with increasing N, imply a
first-order transition. For J ′2/J2 = 0.4 (right column) the system directly transitions from the disordered state into the ordered
state with 120◦ spin order, also showing signatures of a first-order transition.

Figure 15. Latent heat of the first-order phase transitions. The latent heat∆ε is obtained from the Monte Carlo data at lattice size
N= 72 by fitting double Gaussians to the energy distribution at the critical scale and calculating the distance between the two
peaks. For 0< J ′2/J2 < 0.1 a first-order phase transition between the two ordered states of figure 5 occurs, at which in one valley
the spin transitions from ferromagnetic to coplanar 120◦ order. At J ′2 > 0.1J2 the disordered state directly transitions into the
state with 120◦ spin order. Both transitions show a sizable latent heat, indicating a strong first-order transition.
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