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Structured volume-law entanglement in an interacting, monitored Majorana spin liquid
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Monitored quantum circuits allow for unprecedented dynamical control of many-body entanglement. Here we
show that random, measurement-only circuits, implementing the competition of bond and plaquette couplings of
the Kitaev honeycomb model, give rise to a structured volume-law entangled phase with subleading L ln L liquid
scaling behavior. This interacting Majorana liquid takes up a highly symmetric, spherical parameter space within
the entanglement phase diagram obtained when varying the relative coupling probabilities. The sphere itself is
a critical boundary with quantum Lifshitz scaling separating the volume-law phase from proximate area-law
phases, a color code or a toric code. An exception is a set of tricritical, self-dual points exhibiting effective
(1+1)d conformal scaling at which the volume-law phase and both area-law phases meet. From a quantum
information perspective, our results define error thresholds for the color code in the presence of projective error
and stochastic syndrome measurements.
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With the advent of digital quantum computing platforms,
quantum researchers can now do pioneering work in shaping
entanglement in quantum many-body systems at will through
the implementation of quantum circuits. In addition to con-
ventional unitary gates, a decisive element turns out to be the
inclusion of nonunitary measurements that have been realized
to provide an alternative route to the creation of long-range
entanglement, either in combination with unitaries [1–19] or
even in measurement-only circuits [20–33], without any uni-
tary gate evolution. Instead it is the noncommutativity of the
measurement operators that induces entanglement, which can
even exhibit volume-law scaling.

In this manuscript we provide an explicit example of
random, measurement-only quantum circuits that induce
structured volume-law phases in two-dimensional (2D) qubit
arrays where in addition to an extensive scaling form there
is an L ln L scaling, reminiscent of the conformal scaling
of quantum liquids with a nodal Fermi surface [36,37]. Our
model circuit, schematically illustrated in Fig. 1(a), randomly
samples the bond and plaquette couplings of the Kitaev hon-
eycomb model, which can be either represented as two- or
six-qubit Clifford gates or, alternatively, thought of as Majo-
rana bilinears and a six-Majorana interaction term. Crucially,
the two types of couplings are not only noncommuting but
also stabilize different topological states of matter—a toric
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code stabilized by the bilinear interactions [38] versus a color
code induced by the plaquette interaction [39,40]. Some of
this competition has been previously explored [34,35] con-
centrating on the bilinear couplings only, i.e., a monitored
circuit analog of the Kitaev honeycomb model [38]. There it
was shown that the frustration of the noncommuting bilinear
couplings induce a gapless spin liquid with L ln L Fermi-
surface-like entanglement entropy [34,35], contrasting the
Majorana Dirac cones of the Kitaev spin liquid. The time-
reversal symmetry breaking was later discussed in Ref. [41]
with a map to the nonorientable statistical loop model in
space-time. Here, we depart the free Majorana fermion sce-
nario by including the additional plaquette coupling and show
that this has a dramatic effect on the entanglement structure
of the many-qubit system. The entanglement phase diagram,
illustrated using barycentric coordinates of the probabilities of
the four competing terms, is dominated by the emergence of
an interacting Majorana liquid. Inside a spherically bounded
phase towards the center of the tetrahedron [Fig. 1(b)] we find
volume-law scaling of the entanglement entropy with an ad-
ditional L ln L contribution, inherited from the noninteracting
Majorana liquid phase [34,35] inside the circular cut of this
sphere with the (noninteracting) base plane of our tetrahe-
dron (marked in yellow in the phase diagram). Such a state
withstands a structureless thermalized state [42,43] but rather
implies the existence of an extensive number of conserved
gapless modes like in a Fermi liquid [44,45]. We therefore
identify this phase with an interacting Majorana liquid, akin
to an interacting Landau-Fermi liquid versus a free-fermion
metallic state.

The phase boundary of this interacting Majorana liquid,
numerically determined in Fig. 2, approximates a perfect
sphere tangent to the edges of the tetrahedron. On this
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FIG. 1. Schematics of model and phase diagram. (a) (2+1)d
random measurement-only circuit on the honeycomb lattice with
physical qubits on the sites. Measurements are performed over ran-
domly chosen local bond or plaquette operators, as schematically
shown. (b) Schematic quaternary phase diagram drawn as a tetra-
hedron. A sphere tangent to the edges of the tetrahedron cuts the
tetrahedron (inset) into four gapped phases separated by a bulk
gapless phase. The top corner of the tetrahedron stands for the
topological color code, while the three bottom corners correspond
to the toric code. The bottom plane of the tetrahedron corresponds to
the monitored Kitaev honeycomb model [34,35], i.e., a free-fermion
limit. Entanglement structure: The gapless bulk phase enclosed by
the sphere is an interacting Majorana liquid with coexisting volume-
law and L ln L entanglement scaling. At its boundary (red sphere) it
exhibits quantum Lifshitz scaling. The yellow disk at the bottom as
well as the yellow (self-dual) dots at the edge centers indicate L ln L
scaling entanglement beyond a pure area-law.

spherical boundary we find quantum Lifshitz scaling of the
entanglement entropy. At the six tangent points we find a di-
mensional reduction into stacked (1+1)d percolation models
and a rigorous duality that can flip each edge of the tetra-
hedron, and thus the six edge centers are self-dual critical
points. Upon perturbation along the edges, they immediately
flow to the gapped corner phases of the tetrahedron, while
perturbation perpendicular to the edges flow them into the
volume-law gapless liquid. The six solvable edges with their

px = 1pz = 1px = py = 1/2

p = 1 p = 1
color code

toric code

duality

Majorana
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interacting volume law
+ L ln L

(a) (b)

FIG. 2. Cuts through the tetrahedral phase diagram. Panel
(a) shows a middle cut plane, described by px = py. (b) The side
face of the tetrahedron described by py = 0. The location of phase
transitions (pink dots) have been deduced from the finite-size scaling
of the tripartite entanglement [see, e.g., Fig. 4(a) below] by sweeping
p and pz. The solid line is a sphere tangent to the edge of the
tetrahedron. The yellow dots indicate self-dual points at the edge
centers of the tetrahedron, with the inset on the right illustrating
the dualities. The bottom orange line indicates the noninteracting
Majorana liquid.

self-dual points pin the global topology of the phase diagram.
Nevertheless, the almost perfect spherical geometry of the
phase boundary indicates an additional hidden rotation sym-
metry.

Model. We consider a random, measurement-only circuit
on a honeycomb lattice of size N = 2L2, see Fig. 1(a). In
each microstep we measure a single, randomly chosen Kitaev-
type bond-dependent interaction K = ZAZB, (XAXB), (YAYB)
with probability px(y)(z), or alternatively, measure the six-
spin interaction V = Z1Z2X3X4Y5Y6 with probability p. One
sweep (which we denote as one time unit) consists of L2

such random measurements. The noncommuting nature of
the measured operators (also within a sweep) is the crucial
ingredient to frustration physics and dynamics [22,34,35].
Note that V is distinct from the conserved Wilson plaquette
operator W = X1Y2Z3X4Y5Z6 and does not commute with all
the bond checks. In a rotated qubit representation, W and
V together stabilize a topological color code [39]. In the
fermion representation [38], where each spin is factorized into
a Majorana fermion c j and a gauge field ul = ±1, K = iucAcB

is the Majorana fermion hopping, W = ∏
l∈� ul stabilizes

the gauge flux, while V = −iu12u34u56(c1c2c3c4c5c6) is the
gauged six-Majorana stabilizer of the Majorana surface code
[40].

In executing our circuit, we start from an initial flux-free
state |ψ〉 = (

∏
q

1+Wq

2 ) |↑〉⊗N [46]. This initial state we evolve
until it reaches its steady state, i.e., for sufficiently long times
of order O(L). Since the gauge flux is frozen in our circuit
model, the ensuing dynamics is solely carried by the Majorana
fermions subject to a competition of hopping and plaquette
interactions. Our model is thus a Clifford stabilizer circuit
[47] analog to the ground state of an interacting Majorana
Hamiltonian H ∼ (1 − p)K + pV , interpolating between the
Kitaev honeycomb model and the Majorana surface code
model [40]. While this interacting (2+1)d lattice Hamilto-
nian is in general hard to solve, the Clifford stabilizer circuit
allows for efficient numerical calculation with polynomial
scaling by keeping track of the N generators of the stabilizer
group rather than the 2N -dimensional quantum many-body
wave function.

Entanglement phase diagram. The key feature character-
izing the dynamically generated, steady-state phases of our
monitored quantum circuit is the von Neumann entanglement
entropy. To set the stage, let us first consider the nonin-
teracting setup corresponding to the bottom plane of our
tetrahedron. Here the random bond checks measure the local
Majorana fermion parity and effectively teleport single Ma-
jorana fermions [48]. The final state is a Gaussian fermionic
state, a product of long-range Majorana pairs, that exhibits
L ln L Fermi-surface-like entanglement entropy [34,35] (see
also the Supplemental Material [49]). By viewing each Majo-
rana pair as a dimer and upon disorder average that crucially
restores translation symmetry, one can view this noninteract-
ing Majorana liquid as a dynamically generated density matrix
analog of the long-range resonating-valence-bond (RVB) state
[50]. If we depart the free-fermion setting, an onset of six-
Majorana interaction measurements glues the Majorana pairs
beyond the Gaussian fermion state. A priori, it is not clear
whether the paired free Majoranas and their consequent L ln L
entanglement can survive this interaction effect.
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FIG. 3. Entanglement structure of three forms of gapless matter characterized by their entanglement entropy scaling. (a) Self-dual point
p = pz = 1/2, px = py = 0 with dimensional reduction. We subtract the area-law background to exhibit data collapse for the universal
super-area-law correction �SvN ≡ [SvN (l ) − SvN (L/2)]/L = c

3 ln sin π l
L . We fit c = 0.829(2) ln 2. (b) Interacting Majorana liquid with weak

volume-law scaling plus strong L ln L correction, at the centroid of the tetrahedron px = py = pz = 1/4. The red lines illustrate the fitting
scaling function, for a = 1.615(4) ln 2, v = 0.00951(7) ln 2, c = 0.642(7) ln 2, c′ = 2.2(2) ln 2, γ = 1.4(1) ln 2. See SM for a view of each
decomposed fractions. (c) Entanglement entropy at the critical point between interacting Majorana liquid and Majorana surface code
pc = 0.683, px = py = pz. The solid red line denotes the scaling function with best-fit coefficients β = 3.67(3) ln 2, λ = 3.8(2) ln 2. The
dashed line shows the best fit of scaling function ln sin(π l/L) for comparison. The insets show data collapses for rescaled horizontal axes.

To explore this, we analyze the von Neumann entangle-
ment entropy [51] for a bipartition of the torus (of length
L-by-L) into two cylinders with smooth boundary of fixed
length L but varying subsystem bulk length l , see the inset
of Fig. 3. We consider a most general scaling ansatz of the
form

SvN (l, L)=v · vol(l, L)+ cL + c′

3
ln

(
L

π
sin

π l

L

)
+aL − γ .

(1)

Here vol(l, L)=2Ll ln 2−24Ll−N−1 (l�L/2) is the volume-
law contribution with a leading-order Page correction [53],
the second term is a subleading contribution [54,55] that can
account for gapless modes akin to a Fermi surface (when
viewed as slices of (1+1)d conformal field theories (CFTs)
[44,56]). The O(1) correction γ is known as the topological
entanglement entropy (TEE) [57,58]. The prefactors v, c, a
are nonuniversal and fitted in our numerics, though c is remi-
niscent of the central charge in a (1+1)d CFT.

Let us first consider the case p = pz = 1/2, px = py = 0,
which is one of the exactly solvable, self-dual points. Coming
from the Majorana surface code, the six-Majorana plaque-
tte interactions stabilize anyon excitations on the plaquettes,
while the ZZ-bond Majorana bilinear fluctuates these anyons
only along the z direction [40]. Thus the model is effectively
decoupled into stacks of anyon chains and a duality can swap
the plaquette interaction and the Majorana bilinear, akin to the
Kramers-Wannier duality of the quantum Ising chain [59]. For
further discussion, see the underlying frustration graph given
in the SM [60]. Each chain can be mapped to a classical 2D
bond percolation problem [62,63], where the prefactor c is
exactly calculated employing CFT to be c = 3

√
3 ln 2/(2π ),

perfectly consistent with our numerical results in Fig. 3(a).
Except the self-dual points, the effect of a nonvanishing

Majorana interaction is the immediate formation of a volume-
law contribution. As an example we show, in Fig. 3(b), the
entanglement entropy for the centroid of the tetrahedral phase
diagram, px(y)(z) = p = 1/4. The growth of the entanglement
entropy with increasing l clearly goes beyond the arclike
ln(sin π l

L ) scaling of the free-fermion limit, but instead an
almost linear increase is found for lengths l ∼ L/2, resulting

in a cusplike feature known from Page scaling [53]. Note that
even though a volume law is the leading contribution in the
L → ∞ (thermodynamic) limit, its prefactor turns out to be
two orders of magnitude smaller than the coefficient of the
subleading L ln L correction, which for small system sizes
quantitatively dominates. The existence of such an L ln L cor-
rection implies that the volume-law phase is not structureless,
which we further comment on in the Discussion section be-
low. When one moves along the bond-isotropic line px(y)(z) =
(1 − p)/3 and increases p from 0, the volume-law prefactor
rapidly but smoothly grows to a peak value around p ∼ 0.15
before decreasing again and fading away around p ∼ 0.5, as
shown explicitly in the SM. To diagnose the precise critical
point of the transition out of the volume-law phase, we resort
to the tripartite mutual information [64].

At these interacting critical points, the entanglement
entropy is found to significantly deviate from the L ln L cor-
rection [65] in Eq. (1) and instead exhibits quantum Lifshitz
scaling [66,67], originally derived for the gapless dimer RVB
state (quantum Lifshitz field theory [68]),

SvN = aL + βJ (l/L) + · · · ,

where J (x) = − ln θ3(iλx)θ3[iλ(1−x)]
η(2ix)η[2i(1−x)] , with θ3 the Jacobi-θ func-

tion and η the Dedekind-η function [66,67,69]. An example
of such quantum Lifshitz scaling is shown in Fig. 3(c). On
a speculative note, this Lifshitz scaling might be a harbinger
of space-time anisotropy with a dynamical critical exponent
z = 2 (though counterexamples [67] indicate that no such
stringent connection can be made), which would possibly
allow us to connect this scaling form to the Lifshitz transition
of Fermi surface topologies [70]—an appealing completion to
our scenario of a sequence of transitions from noninteracting
to interacting to vanishing Fermi liquid as one ascends the
vertical direction in our tetrahedral phase diagram.

Topological codes and phase transitions. Let us round off
our discussion of the entanglement phase diagram by looking
at the four corner phases, which are gapped area-law phases
realizing either a toric code (for the three bottom corners) or
a color code (near the top of our tetrahedron). Starting from
one of these gapped phases, we can discuss the entanglement
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FIG. 4. Topological and entanglement phase transition along the
bond-isotropic line px(y)(z) = (1 − p)/3. (a) Tripartite mutual infor-
mation (TMI) between three cylinders (see inset). Finite-size scaling
gives pc = 0.682(4), very close to the exact boundary of the sphere
pc = (1 + √

3)/4 = 0.683 01 . . ., and 1/ν = 1.01(6). For the phase
region between p ∈ (0, pc ), the TMI diverges I ∝ −L2 with system
size, as shown in the inset for the window p � 0.15. (b) Topologi-
cal entanglement entropy. Inset shows the distribution of γ among
the disorder ensemble for p = 0.25. Data is averaged over 10 000
disorder realizations for L < 30 and 5000 samples for L � 30.

transition into the interacting Majorana liquid. Mapping out
the phase boundary can be done, as before, by computing the
tripartite mutual information (TMI),

I (A : B : C) = SA + SB + SC − SAB − SBC − SAC + SABC,

for a partition of the torus into four cylinders [inset of
Fig. 4(a)]. As shown in Fig. 4(a), away from the free-fermion
limit p = 0 where I = −1 [34,35], the TMI is extensive for the
interacting liquid phase, i.e., I (A : B : C) ∝ −L2, as shown in
the inset. Such an indicator of information scrambling [71]
is consistent with the volume-law entanglement entropy we
found earlier. In the color code limit p → 1, I (A : B : C) =
+3 due to three independent effective Bell pairs between A
and C, formed by the product of plaquettes of the color code
(its plaquettes being three colorable when L mod 3 = 0). In
between, the crossing point indicates an entanglement phase
transition from the interacting Majorana liquid to the Majo-
rana surface code, which we used to quantitatively map out
the phase diagram of Fig. 2.

From a quantum information perspective, we can interpret
the area- to volume-law transition out of the color code as
an error threshold for the color code subject to projective
bond errors and stochastic syndrome measurements. This is
best revealed in the TEE [57,58], calculated for the tripartite
geometry in the inset of Fig. 4(b). In the color code phase, it

shows a plateau at 2 ln 2, reflecting the two bits of information
contributed from the gauge and Majorana sector (versus one
bit in the toric code where only the gauge sector contributes).
At the threshold pc of the color code, the TEE drops from its
plateau value, signaling the breakdown of topological order.
This transition gives a fundamental upper bound of the decod-
ing threshold for the color code under such noise. The TEE
is nonquantized in the interacting liquid regime (while still
showing a system size dependence, growing with increasing
L). We note that the volume-law phase can still be used as
a code space with quantum error correction [72,73], but (in
light of the small volume-law prefactor) it might be much less
effective in storing logical quantum information; see SM [49]
for purification dynamics indicating a corruption of the code
space.

Outlook. Our highly symmetric phase diagram calls for an
analytical understanding. One step in this direction is to pur-
sue a coupled-wire approach: Start from a bottom edge, which
corresponds to stacked monitored Majorana chains, and turn
on either the Majorana hopping or Majorana interactions. The
former coupling leads to the free-fermion liquid within the
bottom plane, while the latter sets off a flow to the volume-law
liquid in the side plane of the tetrahedron. Despite this dis-
tinction, both directions show surprisingly similar geometrical
phase boundaries: a circle, see Fig. 2. This might be related
to the similarity of their frustration graph structure, which
can both be viewed as a stack of bipartite horizontal chains,
with interchain degree-4 nodes relating the two sublattices
(see SM [49]). We note that our circuit model can alternatively
be implemented by a unitary circuit with two-qubit gates and
single-qubit measurements only (see SM [49]).

Discussion. A hallmark of equilibrium quantum states of
matter is their boundary-law entanglement scaling [74], which
for Fermi liquids experiences a mild violation in an L ln L
“super-area-law” contribution [36,37,44,45]. In contrast, the
nonequilibrium Fermi liquid discussed in our work exhibits
an extensive (volume-law scaling) entanglement entropy, with
a subleading L ln L contribution in (2+1) dimensions. The
existence of this subleading term not only distinguishes our
state from a thermal steady state, but it might prove to be
essential: In its (1+1)d analogs, the subleading ln L correction
indicates a protection mechanism of the volume-law entangle-
ment structure as it originates from a power-law distribution of
stabilizers [75] that counteract the detrimental effects of local
projective measurements on long-range stabilizers. One might
argue that a similar mechanism plays out in (2+1)d quantum
liquids, indicating an essential role for the L ln L term to allow
for a stable volume-law phase [76].

The coexistence of volume-law and L ln L scaling we re-
port here might bear some resemblance with the observation
of quantum many-body scars [77,78] in (1+1)d models. There
one observes a weak ergodicity breaking that manifests it-
self in a tower of ln L entangled nonthermal eigenstates [79]
coexisting with the otherwise volume-law entangled thermal
states [42,43]. Instead of starting from an ergodic phase, our
model arrives at a similar entanglement structure, in a (2+1)d
generalization, from a proximate (super) area-law phase, i.e.,
it exhibits weak information scrambling.

A characteristic of our model is its randomness, manifest
in the space-time disorder of the circuit, in addition to
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measurement outcomes, which results in an ensemble of
disordered pure states. This randomness spoils translation
symmetries for each individual disorder realization (of the
circuit), which makes it possible to have a stable Majorana
Fermi surface, even in the presence of time-reversal symmetry
[80–82]. The disorder average restores the symmetries on
a statistical level. The disorder-averaged entanglement
represents typical pure wave functions in the ensemble, but
not the average density matrix, which may be also interpreted
as a translationally invariant state in the double Hilbert space
[83]. An interesting future direction is to further explore
the essential role of randomness, e.g., by imposing space
or time translation symmetry into the protocol [84], such as
a spatially random Floquet circuit [85] or a quasiperiodic
protocol [86].

Let us close with a comment on computational complexity.
Nontrivial entanglement structures can arise from the com-
petition of local interactions—either in the steady state of
the long-time evolution of a random measurement circuit,
as discussed in this manuscript, or in the quantum ground
state of a quantum many-body system cooled down under
Hamiltonian dynamics. Despite their similar ingredients, the

two approaches come with very different simulation costs on a
classical computer—an interacting ground state with a Fermi
surface is known to create a sign problem [87] in quantum
Monte Carlo simulations [88], while we have shown that a
similarly entangled state can be simulated with Clifford sta-
bilizer circuits in polynomial time [89]. This leaves us in the
fascinating situation that going to the Clifford circuit analog
state has reduced the computational complexity of simulating
an interacting Fermi liquid, a route that should be further
explored, for other quantum states of interest, in the future.
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