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Thermal and field-induced transitions in ferroquadrupolar Kondo systems
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Recent experiments have examined the impact of a magnetic field on ferroquadrupolar orders in the
intermetallic Kondo material PrTi2Al20. Motivated by this, we use extensive Monte Carlo simulations to study
a diamond lattice XY model of non-Kramers pseudospin-1/2 Pr3+ moments which crucially incorporates
three-spin interactions. This model supports a thermal Z3 Potts ordering transition upon cooling from the
paramagnetic phase into the ferroquadrupolar phase. An applied magnetic field along the [110] direction leads to
a thermal Ising transition out of the quadrupolar ordered phase. A magnetic field along the [001] direction leads
to only thermal crossovers, but supports a spinodal transition out of metastable domains which could be strongly
pinned by coupling to elastic lattice deformations. We propose noise measurements as a potential probe to “hear”
the spinodal transition. Our work highlights the importance of multispin interactions in Kondo materials near the
small-to-large Fermi surface transition.
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I. INTRODUCTION

The famous Doniach picture of Kondo lattice compounds
suggests a scenario for the small-to-large Fermi surface (FS)
transition in Kondo lattice materials. In this framework, weak
Kondo coupling leads to two-spin Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions which drive rare-earth local mo-
ment ordering and a small FS, while strong Kondo coupling
leads to the local moments hybridizing with the conduction
electrons resulting in a heavy Fermi liquid with a large FS
[1–6]. While there has been important work in understand-
ing this physics for materials with local dipole moments
[4,5,7–10], there is considerably less understanding of higher
multipolar orders [11–18].

Recently, there has been significant experimental progress
in unveiling the rich phase diagram of the cubic rare-earth
intermetallics Pr(T )2Al20 (T = Ti, V) and PrIr2Zn20 [19–36]
which feature Pr3+ local moments coupled to conduction
electrons [2–6]. The complex multipolar orderings and su-
perconductivity in these compounds may be tuned by the
choice of transition metal ion or pressure. Understanding
the broken-symmetry states and phase transitions in such
multipolar Kondo materials remains a largely open issue.

One basic question which arises when one confronts the
plethora of broken-symmetry states in Kondo materials is
whether one needs to go beyond the simple two-spin RKKY
model in modeling the effective interaction between local
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moments. Indeed, as the Kondo coupling in heavy fermion
materials increases, we expect that multispin interactions can
arise from higher-order perturbation theory beyond the simple
RKKY limit. One setting in which such multispin interac-
tions have been investigated extensively is in the vicinity of
Mott transitions in quasi-two-dimensional organic materials
[37–41], where it has been shown to potentially stabilize
exotic quantum spin liquids. From this viewpoint, we expect
multispin interactions to also emerge naturally in Kondo
materials if we view the large-to-small FS transition as an
orbital-selective Mott transition of the f electrons [42,43].
The impact of such couplings has only recently been in-
vestigated in multipolar Kondo systems [44–47], although
there has been some suggestive previous work in dipolar
Kondo materials [48,49]. Given this, we ask the following
questions. Are there any heavy fermion multipolar systems
where multispin couplings play a role? Can such interactions
lead to observable signatures?

We address these questions in the context of recent ex-
periments on the Pr(T )2X20 family of materials, where the
Pr3+ ions feature a non-Kramers ground-state doublet, which
acts as a pseudospin-1/2 degree of freedom on the diamond
lattice [22,23]. As discussed in the literature, two compo-
nents of this pseudospin carry a quadrupolar moment while
the third component describes an octupolar moment [23,50].
In this paper we focus on PrTi2Al20, which has been pro-
posed to host a ferroquadrupolar (FQ) ordered ground state
[19,20,22,28,33] below TQ ≈ 2 K, well before the system
enters a low-temperature superconducting state with transition
temperature TSC ≈ 0.2 K.

Recent experiments have studied the nontrivial impact
of a magnetic field on this ferroquadrupolar ordered state,
discovering a strong dependence of the response on the field
direction [33,51,52]. For a magnetic field along the [111] di-
rection, the quadrupolar transition appears nearly unaffected,
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while there appear to be distinct field-induced transitions for
fields along the [001] and [110] directions. We argue here
that an appropriate low-energy microscopic model for this
material must necessarily include three-spin interactions and
that it reveals itself via the impact of a magnetic field.

Our key results are the following. We show that the model
pseudospin-1/2 Hamiltonian for local Pr3+ moments must in-
clude crucial symmetry-allowed three-spin couplings. We use
classical Monte Carlo (MC) simulations to study the ordered
states, thermal fluctuations, and the impact of a magnetic field
in this model. We uncover thermal and field-induced phase
transitions and crossovers which are qualitatively consistent
with experimental observations. However, our model does not
display a subset of field-induced transitions which have been
inferred from certain experiments [51]. We argue here that
such experiments could potentially probe spinodal transitions
out of metastable ground states; such metastable states do
exist in the model and may be rendered visible by the strong
coupling between the quadrupolar order and elastic lattice
deformations. We propose that noise measurements could be
used to “hear” such spinodal transitions. While our work here
focuses on PrTi2Al20, our main results are broadly applicable
to ferroquadrupolar orders in diverse materials.

II. MODEL

We consider a simple low-energy diamond lattice model
for the pseudospin-1/2 non-Kramers doublets, ignoring
higher crystal field levels which are split off by a relatively
big energy scale ∼50 K, which is much larger than the
observed ferroquadrupolar transition temperature. The pseu-
dospin Hamiltonian we propose takes the form

H0 = −J1

∑
〈i j〉

�τ⊥
i · �τ⊥

j − i
�

2
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)
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]
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where �τ⊥ ≡ (τx, τy) defines pseudospin-1/2 Pauli matrices
and H.c. refers to the Hermitian conjugate. We denote nearest-
neighbor pairs by 〈i j〉, while the notation 〈i jk〉 refers to short-
est site triplets on the diamond lattice as illustrated in Fig. 1.
Our notation for the spin operators follows Refs. [44,45] and
differs from that used in some of the literature [51–53]. In
our convention, 〈τ x〉 corresponds to O22 order, while 〈τ y〉
refers to O20 order, where O22 ∝ √

3(J 2
x − J 2

y ) and O20 ∝
(3J 2

z − J 2) are the standard Steven’s operators written in
terms of the total angular momentum �J of the Pr3+ ion.

An easy-plane interaction with J > 0 is appropriate to
describe ferroquadrupolar XY order in PrTi2Al20. The mag-
netic field B = (Bx, By, Bz ) couples to the pseudospin at
O(B2). This arises within second-order perturbation theory
[53,54] via intermediate states involving higher crystal field
multiplets, with α > 0. Most importantly, the term � > 0 is
the simplest symmetry-allowed three-spin interaction which
breaks the XY symmetry and leads to a Z3 clock anisotropy.
While such clock terms have been previously discussed within
Landau theory [45,53,54], there can be no such single-site
clock anisotropy term for pseudospin-1/2 models. Hence, the

FIG. 1. Cutout of a diamond lattice with nearest-neighbor bonds
(J1) drawn in white. The three-site triplets of the � term are con-
structed by two adjacent nearest-neighbor bonds as exemplified by
the black line.

clocklike anisotropy for pseudospin-1/2 cases must necessar-
ily arise from multisite couplings at the lattice scale. We note
that this multispin interaction allows for the τz eigenvalue to
change in steps of ±3, which cannot arise in any RKKY-type
two-spin exchange model.

Our motivation here is to understand the ordered phases
and thermal transitions of such quadrupolar spin models. We
will thus focus on a mean-field theory and large-scale classical
MC simulations of this model replacing �τ⊥ by a classical XY
vector spin. It would be interesting in the future to examine
the impact of quantum spin fluctuations in this model.

III. MEAN-FIELD THEORY

At zero temperature and at the mean-field level, we replace
uniformly τ+

i = eiθ , which leads to an energy per spin

emf = −2J1 + 6� sin 3θ

−α
[√

3
(
B2

x − B2
y

)
cos θ + (

3B2
z − B2

)
sin θ

]
. (2)

The magnetic field thus competes with the � term, allowing us
to probe the impact of the reduction of symmetry from U(1) to
Z3. We see that applying a field in the [111] direction will not
couple at all to the quadrupolar field. A magnetic field along
the [110] direction gives αB2 sin θ , while a field along the
[001] direction gives −2αB2 sin θ . Figure 2 plots the energy
landscape as a function of θ and B for the latter two field
directions.

As can be seen from Fig. 2(a), a magnetic field along
[001] favors θ = π/2, while the two other zero-field min-
ima become metastable minima at θ = (7π/6 − δ, 11π/6 +
δ), where δ ≈ √

3αB2/(54� − αB2) for weak fields. These
metastable minima lie at an energy approximately 3αB2 above
the ground state, vanishing at a field Bsp = √

9�/α which
marks a field-induced spinodal transition.

For a [110] field, as can be seen from Fig. 2(b), there are
two energy minima which lie at θ = (7π/6 + δ′, 11π/6 −
δ′), where we find that δ′ ≈ √

3αB2/(108� + αB2) for small
B. The third zero-field minimum becomes a metastable
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FIG. 2. Sketch of the mean-field free energy per spin (2) for
J1 = 1 and � = 0.01J1, plotted versus θ for increasing magnetic field
along the (a) [001] and (b) [110] directions.

minimum at θ = π/2, which lies at an energy approximately
3αB2/2 above the global minima. This will convert the ther-
mal Z3 clock transition into an Ising transition since the three
ground states of the Z3 clock model have been reduced to
just two degenerate ground states. Eventually, the two minima
merge at B�, which marks the end point of the Ising transition,
where B� = √

54�/α. The metastable minimum at θ = π/2
persists until B�.

We thus expect that for the [001] field direction, the field
should immediately round off the Z3 thermal transition into a
crossover by selecting one of the three ground states. For the
[110] direction, on the other hand, we expect the Z3 thermal
transition to convert into an Ising transition for arbitrarily
weak fields, with the Ising transition vanishing above a critical
field B�.

IV. METASTABLE MINIMA

The reason why the metastable minima in Fig. 2 may
be important to explore in this system is the following.
Imagine we consider starting from a paramagnetic state at
high temperature. When we cool below the ferroquadrupolar
transition TQ at zero field, we would end up having different
Z3 domains of a typical size L(T ) at some temperature T <

Tc. Ferroquadrupolar order in this system induces a lattice
distortion, which arises from coupling an elastic distortion

field �ϕ to the quadrupolar degree of freedom, which can be
understood via a coarse-grained Hamiltonian

H = H0 + 1

2
κ

∫
d3r �ϕ(r) · �ϕ(r) − λ

∫
d3r �ϕ(r) · �τ⊥(r),

(3)

where �τ⊥(r) is the coarse-grained quadrupolar order param-
eter and λ denotes the magnetoelastic coupling. The two-
component elastic distortion field �ϕ may be written in terms of
the elastic strain tensor ε as ϕx = εxx − εyy and ϕy = (2εzz −
εxx − εyy)/

√
3. The impact of quadrupolar order will thus be

to produce a small nonzero lattice distortion �ϕ. This elastic de-
formation along different directions in the different domains
will tend to collectively pin the local order. Thus, we see
that while an applied [001] field will favor a single domain,
we have to thermally excite the system out of the metastable
domains in order to get to the true equilibrium state. If thermal
fluctuations are not significant at low temperature, then such
domains might get stuck until we reach a threshold field
corresponding to a mean-field spinodal transition; this effect
may reveal itself in certain experiments.

V. MONTE CARLO SIMULATIONS

We have carried out extensive classical MC simulations of
the Hamiltonian H0 from Eq. (1). While standard MC updates
sufficed to explore the equilibrium phase diagram via mea-
surements of the specific heat and ferroquadrupolar XY order
parameter �MFQ = ∑

i �τ⊥
i , exploring the metastable transitions

required us to choose a special update engineered to probe
the free energy as a function of the angle θ of �MFQ. The
update involves a local update conserving the direction of �MFQ

and a global update jumping between two angles. Combining
multiple such simulations at slowly varying angles (typically

θ = 2π/1080), we recover the relative weights between
them and ultimately estimate the free-energy landscape. Fur-
ther details on this procedure are provided in the Appendix.
Simulations were typically done with 2 × 106 thermalization
and 8 × 106 measurement sweeps for a linear system size of
L = 9 (corresponding to 2L3 = 1458 spins) when mapping
out the phase diagram, and for a linear system size L = 6
when studying the metastable regions. The numerical sim-
ulations were performed on the CHEOPS cluster at RRZK
Cologne.

A. Zero-field phase diagram

The phase diagram of the model with J1 = 1 in the absence
of any magnetic field is shown in Fig. 3(a). Based on a finite-
size scaling analysis of specific heat data (for L = 6, . . . , 24),
we find a sharp thermodynamic phase transition at T = TQ as
illustrated in Fig. 4 and indicated by the solid transition line
in Fig. 3.

For � = 0 we expect this transition to be in the universality
class of the three-dimensional XY model, and the correspond-
ing ferroquadrupolar order parameter mFQ = 〈| �MFQ|〉/N in-
deed continuously vanishes when we heat above the transition
temperature TQ ≈ 1.3J1 as seen from Fig. 3(b). When we turn
on � �= 0, the clock anisotropy suppresses fluctuations and
enhances TQ; furthermore, the transition becomes first order,
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FIG. 3. (a) Zero-field phase diagram of the Hamiltonian H0, with
J1 = 1, as a function of temperature T and varying clock anisotropy
�. (b) Ferroquadrupolar order parameter mFQ = 〈| �MFQ|〉/N as a func-
tion of T for horizontal cuts through the phase diagram in (a). Here
mFQ vanishes continuously for � = 0, but becomes discontinuous for
� �= 0; this discontinuity becomes more pronounced for large �.

as is confirmed by the increasingly sharp and discontinuous
drop of mFQ across TQ. The formation of the three clock states
below this transition is nicely visible in our Monte Carlo
simulations, as illustrated in Fig. 5.

B. Impact of a nonzero magnetic field

Figure 6 shows the impact of a magnetic field on the phase
diagram for fixed J1 = 1 and � = 0.01J1 (see also Fig. 7).
The top and bottom halves in this diagram correspond to
fields along the [001] and [110] directions, respectively. In the
following section, we argue that �/J1 ∼ 10−3 for experiments
on PrTi2Al20; however, the numerical simulations are more
challenging for such small �. We thus choose to work with a
larger � in the MC simulations. The magnetic field required
to induce the relevant transitions or crossovers scales as
proportional to

√
� as indicated by mean-field theory. We can

thus use our MC results, with suitable scaling, to make useful
comparisons with experiment.

As expected, a sufficiently large magnetic field leads to a
crossover temperature scale since it favors a single free-energy
minimum as seen from the free-energy plots for I and IV
in the left panel, where the color at the bottom depicts the
favored angle θ . This crossover temperature T ∗, indicated
by the dotted line, is detected in our MC simulations as a
broad hump in the specific heat which does not scale with
system size (based on simulations done for linear system sizes
L = 6, 9, 12, 18, 24).

FIG. 4. Finite-size scaling of the zero-field specific heat cV and
ferroquadrupolar order parameter mFQ at � = 0.01.
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FIG. 5. Probability of different magnetization angles for � =
0.01 and L = 12 in the zero-field system as a function of temperature
(in units of J1). At high temperature T > TQ, the distribution is broad,
while the locking to the Z3 clock order becomes increasingly visible
as we go below TQ ∼ 1.3J1.

At low field, the [110] direction leads to an Ising transition,
denoted by the solid black line, into a phase where there are
two degenerate minima as seen from the free-energy plot III
in the left panel. Different MC runs (initialized with a random
state) in this regime lead to the system ending up in one or the
other minimum, which is depicted by the colors in phase III
with corresponding θ values shown in the left panel.

For the [001] field direction, even at low field, a single
free-energy minimum is selected as seen from the left panel II.
The dashed line indicates the crossover field beyond which the
metastable free-energy minima in the left panel II disappear;
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FIG. 6. Phase diagram for B �= 0 along the [001] direction (upper
half) and [110] direction (lower half) for fixed J1 = 1 and � =
0.01J1. The left panel indicates the free energy in the different
low-temperature regimes shown in the phase diagram. The colors
in the phase diagram indicate the (dominant) angle θ as depicted at
the bottom of the left panel. The solid line shows the Ising phase
transition TC for the [110] field direction which is extracted from
specific heat cV and order parameter M, dotted lines depict thermal
crossovers T ∗ obtained from the specific heat cV , and the dashed line
shows the field where the metastable (ms) minima in regime II vanish
(see left panel), which we extract from free-energy ( f ) calculations
as explained in the text and Appendix.
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FIG. 7. Finite-size scaling of specific heat cV and site-averaged
magnetization �mFQ = (〈τx〉, 〈τy〉) versus temperature for fixed mag-
netic fields, corresponding to horizontal cuts through the phase
diagram in Fig. 6: (a)

√
αB[110] = 0.9, which accesses regime

IV going through a thermal crossover; (b)
√

αB[110] = 0.5, which
enters the broken-symmetry phase in regime III via a higher-
temperature crossover and a lower-temperature true phase transition;
and (c)

√
αB[001] = 0.4, which passes through regime I via a thermal

crossover.

this corresponds to the spinodal transition discussed above
from the perspective of mean-field theory.

The results from our extensive MC simulations are thus
broadly consistent with expectations based on mean-field
theory, but with thermal fluctuations suppressing the magnetic
field scale required to induce the observed phase transitions
and crossovers. We next turn to the experimental implications
of this phase diagram.

VI. EXPERIMENTAL IMPLICATIONS

Our classical MC simulations show that the zero-field
ferroquadrupolar transition for � = 0 occurs at TQ ≈ 1.3J1.
As � increases, TQ increases and the transition becomes
more visibly first order, consistent with the behavior of the
three-dimensional Z3 clock (or equivalently three-state Potts)
model. Since the experiments [19,22] detect what appears
to be a nearly continuous thermal transition at TQ ≈ 2.2 K,
we assume � � J1. We thus use the value of TQ at � =
0 to roughly estimate J1 ∼ 1.7 K. Microscopic calculations
[53] using the measured crystal field levels [19,22] yield
α = (gμB)2(7/3E4 − 1/E5), where g = 4/5. For PrTi2Al20,
the relevant excited crystal field levels [22] lie at E4 ≈ 65 K
and E5 ≈ 107 K. This yields α ≈ 0.008 K/T2. Assuming the
Ising transition for the [110] field direction [51,52] disappears
at B� ∼ 3 T, we are led to estimate � = αB�2/54 ≈ 10−3 K
so that indeed � � J1. The spinodal transition for the [001]
field direction is then expected to occur around Bsp ∼ 1.2 T.

Recently, transport, magnetization, and 27Al nuclear mag-
netic resonance (NMR) experiments [51,52] have been used to
further explore the phase diagram of PrTi2Al20. At high fields
B � 4 T for both the [001] and [110] directions, there is a sig-
nificant enhancement of the magnetization [52] upon cooling
below T � 3 K. However, for low fields B � 2 T, this strong
enhancement is absent. The bulk magnetization is given by
the field derivative of the free energy, �m = −∂F/∂ �B (note that
this is not mFQ). For both field directions, this is given (up to

a sign) by | �m| ∝ B〈τy〉. For sufficiently high fields, we expect
the system to evolve from 〈τy〉 ∼ 0 for high temperature to a
nearly polarized value |〈τy〉| ∼ 1 at low temperature so that
there would be a significant increase in | �m| below a crossover
temperature. By contrast, in the presence of metastable do-
mains which we expect at low fields, 〈τy〉 would be greatly
reduced via averaging over the domains, since 〈τx〉 will also
be nonzero in some domains. This leads to the suppression
of the bulk magnetization in low fields so that the sharp
increase upon cooling seen at higher fields will now be absent,
in qualitative agreement with the data. Furthermore, NMR
measurements of the Knight shift [52] are consistent with the
bulk susceptibility from the magnetization measurements at
high field, but in disagreement at low fields; this disagreement
might also indirectly signal the presence of an inhomogeneous
domain structure at low fields. The presence of domains is
predicted to lead to NMR line splittings, or to inhomogeneous
line broadening if the splitting is weak. This expectation is
qualitatively borne out from the experimental data [52], but a
detailed theoretical understanding needs further analysis using
the microscopic hyperfine couplings. Scattering from such an
inhomogeneous domain structure could partially contribute to
the experimentally observed resistivity anomalies [51].

In order to estimate the typical linear dimension LD of
Z3 domains, we ask when the system with an average order
parameter pointing along an XY angle θ would rather break up
into domains of the discrete Z3 order to save bulk anisotropy
energy, governed by �, at the expense of a domain wall cost
arising from J1. Assuming a lattice constant a, we thus equate
6�(LD/a)3 ∼ J1(LD/a)2 which, for �/J1 ∼ 10−3, leads to
LD ∼ 160a. This might be the size of typical domains we
expect to get pinned by elastic lattice deformations.

One possible experimental route to further explore such a
spinodal origin of the magnetization and transport anomalies
could be noise spectroscopy. For instance, resistivity measure-
ments in nanowires of high-temperature cuprate superconduc-
tors exhibit a telegraph noise, which has been attributed to
fluctuating Ising nematic domains or charge stripe domains
[55,56]. Similar field- and temperature-dependent resistivity
noise measurements might be valuable to probe Z3 domains
in PrTi2Al20. Another possible experiment might be to detect
the actual sound associated with the avalanche of domain
rotations one expects near these metamagnetic transitions.
Such experiments would be particularly useful in the low-field
regime which is inaccessible for NMR.

Our proposal of strong spin-lattice coupling leading to
field-induced anomalies is distinct from, but not entirely at
odds with, a previously proposed explanation [52], which
has considered the impact of additional field-dependent
quadrupolar exchange couplings within an effective Landau
theory. While the microscopic origin of this effect has been
attributed to field-induced changes in the Fermi surface [52],
and thereby the RKKY Kondo couplings, such terms may also
occur if we incorporate field-dependent spin-phonon coupling
and integrate out the phonons. The microscopic details of such
a mechanism, as well as its connection with the metastable
domain picture discussed here, remains a topic for future
study.

In summary, understanding the nature of the field-
dependent phase transitions and anomalies in PrTi2Al20 may
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help deepen our understanding of multipolar orders in heavy
fermion materials. Finally, our work suggests that multispin
interactions must play a broadly important role in Kondo
materials.
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APPENDIX: ALGORITHMS

Equilibrium states of classical many-body systems can
be probed by standard Monte Carlo simulations. For system
which do not allow for efficient nonlocal (cluster) update, ex-
tended ensemble approaches such as simulated annealing and
parallel tempering are often used to find the equilibrium state
more efficiently and accurately. If, however, one is primarily
interested in metastable states, then nonstandard procedures
are often called for. In the following sections, we describe our
problem-specific approach of resolving metastable states for
model (1). Notably, our approach also allows us to probe the
free energy as a function of angle θ .

1. Pair sampling

We start by discussing a tailor-made update procedure for
our model, which allows us to simultaneously sample two
dominant angles of the XY order parameter and, by recording
the number of sweeps spent on each, the relative probability
between them. The procedure is split into two parts, a local
update which preserves the XY order parameter angle θ and
a global update which perform jumps between the two angles
of interest. The latter is simply a global update rotating the
whole spin configuration back and forth. The former is more
complex and requires a more thorough discussion. As the
local update is explicitly biased (by forcing θ to be constant),
we present two algorithms and briefly discuss the effect of
different biases on the derived free energy.

Just for the purpose of this Appendix, we introduce slightly
convenient notation, defining the unit vector �Si ≡ �τ⊥

i . The
XY order parameter in a given configuration is then �MFQ =∑

i
�Si, êM = �MFQ/| �MFQ| will be the direction of the XY order

parameter, and ê⊥ = êz × êM is the direction perpendicular
to it. If we want to sample configurations with fixed êM ,
i.e., a fixed angle in which the global XY order parameter
points, we must use configuration updates {�Si } → {S′

i} such
that

∑
i(�S′

i − �Si ) · ê⊥ = 0. The first algorithm proceeds to do
this in following steps.

1. Pick a random site i and a new random spin �S′
i . Compute

x = (�S′
i − �Si ) · ê⊥, which is the component in the ê⊥ direction

that must be compensated.

FIG. 8. Comparison between pair-sampling algorithms. The dif-
ferent algorithms are shown in rows, with the top row being the
first algorithm and the bottom row being the second; in this plot,
the temperature T = 1 (in units of J1). The left column shows a
histogram of the proposed spins, where êM = (cos(π ), sin(π )) is set
for both. The right column shows the free-energy curves resulting
from the respective updates for magnetic fields

√
αB ≈ 0, 0.28, 0.49

in the [110] direction and
√

αB ≈ 0.2, 0.32 in the [001] direction.

2. Pick a random site j which has not yet been chosen.
Compute 
x = (�S′

j − �S j ) · ê⊥ = ∓1 − �S j · ê⊥, which is the

maximum compensation that can be achieved by setting �S j →
∓ê⊥ (for x ≷ 0, respectively).

3. If x′ = x − 
x = 0 or changes sign, the random spin
flip can be fully compensated. Compute the necessary �S′

j and
return every changed spin as a proposed update.

4. If x′ has the same sign as x the random spin flip cannot
be compensated. Set �S j → ∓ê⊥, x → x′, and go to step 2,
picking an additional (unique) site for the update.

We note that this algorithm comes with a strong localized
bias because updates frequently include setting one or more
spins �S → ±ê⊥. Figure 8(a) shows a histogram of the pro-
posed spins, making the bias obvious as two sharp peaks. The
second algorithm is designed to avoid this bias. It includes the
following steps.

1. Pick spins at two distinct random sites {i1, i2} and two
new random spin vectors {�S′

1, �S′
2}.

2. Compute combined vector length a = |�S′
1 + �S′

2| and
combined component b = (�Si1 + �Si2 ) · ê⊥ that must be com-
pensated.

3. If a > b a rotation R can be found such that
{R�S′

1, R�S′
2, . . . } keeps the XY order parameter direction êM

unchanged. Compute this rotation and return the rotated spins
as a proposed update.

4. If a < b we cannot find such a rotation. Add a new
random spin �S′

3 and a new (unique) random site i3 to the
collection of updated spins and sites and repeat from step 2.

This update is weakly biased in the ±êM direction. As
evident in Fig. 8(b), the distribution of proposed spins is much
smoother.

2. Computation of free energy

The pair-sampling method allows us to fix two angles of
the XY order parameter {θ, θ + 
θ}. By counting the number
of sweeps spent at each angle we can determine the relative

033176-6
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weight between them

Z (θ + 
θ )

Z (θ )
= N (θ + 
θ )

N (θ )
. (A1)

By setting an initial value for Z (0) we can compute succes-
sive Z (θ > 0). From this we can derive the angle-resolved
free energy F (θ ) = − ln[Z (θ )]/β. Note that this process be-
comes increasing expensive at low temperatures, requiring
small 
θ and a large number of sweeps to get finite counts
N (θ ) > 0. The free energy per site F (θ )/Nsite from the two
algorithms is compared in Figs. 8(c) and 8(d); they show

a very similar angle dependence, although there is some
difference in the amplitude of the free-energy variation for a
field applied along the [001] direction. The second algorithm
with a smoother distribution of proposed updates is likely
to be a better representation of the true free-energy curve.
Comparing the computed result to the mean-field free energy,
we find that the angle dependence is nearly identical; the
Monte Carlo and mean-field curves match closely up to an
overall ∼2.4 scale factor, which reflects a renormalization
of � due to thermal fluctuation effects beyond mean-field
theory.
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