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In circuit-based quantum state preparation, qubit loss and coherent errors are circuit imperfections that im-
peril the formation of long-range entanglement beyond a certain threshold. The critical theory at the threshold
is a continuous entanglement transition known to be described by a (2+0)-dimensional non-unitary conformal
field theory which, for the two types of imperfections of certain circuits, is described by either percolation or
Nishimori criticality, respectively. Here we study the threshold behavior when the two types of errors simultane-
ously occur and show that, when moving away from the Clifford-regime of projective stabilizer measurements,
the percolation critical point becomes unstable and the critical theory flows to Nishimori universality. We
track this critical renormalization group (RG) crossover flow by mapping out the entanglement phase diagrams,
parametrized by the probability and strength of random weak measurements, of two dual protocols preparing
surface code or GHZ-class cat states from a parent cluster state via constant-depth circuits. Extensive numerical
simulations, using hybrid Gaussian fermion and tensor network / Monte Carlo sampling techniques on systems
with more than a million qubits, demonstrate that an infinitesimal deviation from the Clifford regime leads to
a sudden, strongly non-monotonic entanglement growth at the incipient non-unitary RG flow. We argue that
spectra of scaling dimensions of both the percolation and Nishimori fixed points exhibit multifractality. For
percolation, we provide the exact (non-quadratic) multifractal spectrum of exponents, while for the Nishimori
fixed point we show high-precision numerical results for five leading exponents characterizing multifractality.

Despite the fragility of individual qubits to the effects of
leakage, measurement and decoherence, quantum information
stored in many physical qubits can be remarkably robust. The
surface code, in which long-range many-qubit entanglement
protects a single logical qubit, is the quintessential embodi-
ment of this idea and has become a principal design element
for fault-tolerant quantum computing architectures. In quan-
titative terms, the robustness is given by a threshold value
that often separates a “correctable” from an “incorrectable”
regime and which has been determined for various types of
incoherent [1] and coherent [2] noise channels as well as qubit
loss [3–6]. These thresholds, however, extend beyond the
realm of quantum error correction codes and, taking the ex-
ample of qubit loss (also known as erasure, leakage or her-
alded noise), can also be studied to discuss the stability of
measurement-based quantum computation [7], photonic quan-
tum computing [8], or open quantum dynamics [9]. But while
the numerical value of the threshold might vary for these var-
ious settings, they share the commonality that the underlying
noisy protocols often fall into the Clifford regime, which al-
lows for an efficient classical numerical computation of the
critical threshold. The critical theory at the threshold, how-
ever, will depend on the specifics of the noise channel. For
qubit loss, the fundamental phase transition is intrinsically
linked to the percolation problem, a staple of classical sta-
tistical mechanics [10]. From a field theoretical perspective,
the percolation transition is, in a sense, the simplest, best-
understood, and also analytically most tractable example of
disorder-induced criticality described by a non-unitary con-
formal field theory (CFT) [11–15].

∗ guoyizhu@hkust-gz.edu.cn

In recent times, with interest shifting to critical phenomena
in entangled states of matter subject to measurement-induced
randomness and non-equilibrium phase transitions in moni-
tored quantum systems [16, 17], percolation again serves not
only as the simplest instance of such phenomena [18–20], but
also describes [21, 22] the tractable limit (at infinite on-site
Hilbert space dimension) of a generic such transition. Perco-
lation belongs to the class of Clifford quantum systems [23],
and is special even in this class as it can be described [18–20]
as a quantum system of non-interacting fermions [24], moni-
tored by projective measurements. As such, it represents one
of the simplest examples in which to study the question of
effects of non-Clifford perturbations of monitored stabilizer
quantum systems. These questions have been the driving mo-
tivation for the study reported in this manuscript.

In a quantum circuit, non-Clifford perturbations of even the
smallest scale (such as, say, an imperfect π/4 qubit rotation)
drastically change the system – they immediately allow the
system’s wavefunction to spread into a broader Hilbert space,
while at the same time leading to an explicit violation of
the Gottesman-Knill condition for classical simulability [25].
Due to these fundamental changes caused by non-Clifford per-
turbations, the latter are clearly expected to induce a change
in critical behavior, a fact that is well established in the con-
text of generic quantum circuits in the above mentioned limit
of large on-site Hilbert space dimension [21]. While the lat-
ter example provides a ‘proof of concept’, in the present work
we are interested in more ‘practical’ manifestations of these
effects. In fact, all of the currently available quantum circuit
platforms do not implement pristine Clifford gates but exhibit
a (small) level of imperfections (lending to their classification
as noisy intermediate-scale quantum (NISQ) devices), mak-
ing it a pressing question whether the threshold behavior they
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exhibit is dominated by percolation or some other universality
class(es).

In this manuscript, we study the effect of non-Clifford per-
turbations on the percolation transition induced by qubit loss
by adding a second noise channel that is known to give rise
to distinct critical behavior – Nishimori physics, induced by
weak (stabilizer) measurements that give rise to a (tunable)
coherent error [2, 26–28]. Putting these two noise channels
into direct competition yields a two-dimensional phase dia-
gram where the two critical theories are connected via a line
of thresholds, as depicted in Fig. 1. Our key result is that, upon
moving away from the Clifford limit by introducing infinites-
imal coherent noise, an RG flow sets in and percolation flows
to Nishimori criticality, making the latter the universal fixed
point in the presence of both noise channels. We demonstrate
this flow by calculating a number of characteristic properties
of the critical theories along the threshold line, including cen-
tral charge estimates, critical exponents, along with various
cumulants.

Quantum circuit

Our principal circuit, illustrated in Fig. 1(b), is a shallow
(constant-depth) circuit that performs random, weak measure-
ments of either the bond or site qubits on a two-dimensional
Lieb lattice. For bond qubit measurements, we start from a
product of the Pauli X eigenstate ∣+⟩ of all N qubits on the
sites of the 2D Lieb lattice, for which the protocol then imple-
ments ZZ parity check measurements (of tunable strength)
resulting in GHZ-class cat states [29]. For site qubit mea-
surements, we start from a pristine toric code state ∣ψTC⟩, for
which the protocol then implements Z measurements (of tun-
able strength). These two processes are dual [30] to one an-
other which can be seen, for instance, when inspecting their
respective wave functions in a representation as (random) 2D
projected entangled pair states of the form

∣ψ(s)⟩cat ∝ exp
⎛

⎝

β

2
∑
ij∈C

sijZiZj

⎞

⎠
∣+⟩ ,

∣ψ(s)⟩code ∝ exp
⎛

⎝

β

2
∑
ij∈C

sijZij

⎞

⎠
∣ψTC⟩ ,

(1)

where j denotes sites of the square lattice, Zij specifies the
qubit on the bond center between site i and j, sij = ±1 is the
measurement outcome on a bond, s ∶= {sij} denotes the set of
all measurement outcomes, and C denotes the set of bonds that
are measured. Wegner’s duality maps the domain wall degree
of freedom ZiZj = ±1 on a bond ⟨ij⟩ to a spin residing on the
bond center Zij = ±1. Thus the paragmagnet ∣+⟩ with prolif-
erated domain walls is mapped to the toric code state ∣ψTC⟩ as
a loop condensate [31]. Each weak measurement is achieved
by projectively measuring an auxilliary qubit that is entangled
with the desired observable [26]. The measurement strength
β ∈ [0,+∞) can be tuned by a gate parameter t ∈ [0, π/4] for
the entangling gate between each system qubit and the aux-
iliary qubit through tanh(β) = sin(2t) [26]. N is the total
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FIG. 1. Entanglement phase diagram, protocols and tensor net-
work. (a) Long-range entanglement phase diagram of GHZ-class cat
state or topological surface code, driven by random and weak mea-
surements. (b) Protocol starting from a parent cluster state. Projec-
tively measuring out the bond qubits results in tunably weak parity
measurement: exp(−βsijZiZj/2) for the adjacent sites, that leads
to a cat state for the site qubits [26]. Projectively measuring out
the site qubits results in a surface code for the bond qubits, which
can be further subject to weak measurements exp(βsijZij/2) with
a probability [2], denoted by the white hollow arrow in the top right
“surface code” lattice of panel (b). (c) Tensor network, sliced into
a sequence of transfer matrix product operators. Each circle on the
bond denotes a matrix, which is chosen to capture the Ising interac-
tion or null interaction depending on the weak or null measurement.
Smooth boundary condition is shown, but rough boundary condition
for surface code can be implemented by sending the left and right
boundary white circles to be identity matrices.

number of sites, and NM = NB ⋅ pmeas is the total number of
measured bonds that are chosen randomly with measurement
probability pmeas. ∣ψTC⟩ is the perfect surface code state, dual
to the paramagnet state ∣+⟩⊗N . ∣ψ(s)⟩cat are cat states pre-
pared by weak parity measurements [26] over randomly cho-
sen bonds of a square lattice, where the nonuniform measure-
ment can be attributed to the loss of ancilla qubits. ∣ψ(s)⟩code
are surface code states subject to weak measurements for ran-
domly chosen physical qubits [2]. The finite probability of
weak measurements can arise from the auxiliary qubit loss or
erasure errors.

The two protocols remain dual to each other in the pres-
ence of errors and share the same phase transition. To see
this, let us expand the 2D wave function (1) in the computa-
tion basis: ∑σ exp (β/2∑⟨ij⟩∈C sijσiσj) ⋅ ∣{σi}⟩, where the
wave function amplitude can be interpreted as square root of
Bolztmann weight of a classical statistical model, akin to a
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Rokhsar-Kivelson (RK) type of state [32–34]. Consequently,
Born’s rule for measurement outcomes allows us to interpret
the probability distribution function of the state in one-to-one
correspondence to the partition function of the classical statis-
tical model,

P (s) = ⟨ψ(s)∣ψ(s)⟩∝∑
σ

exp
⎛

⎝
β ∑
⟨ij⟩∈C

sijσiσj
⎞

⎠
, (2)

where C denotes the set of measured bonds, i.e. the geometric
connected [35] cluster on which the effective statistical model
is supported – this is an incarnation of the random bond Ising
model (RBIM) with random bond dilution (see, e.g., Ref. 36).
For pmeas = 1 (i.e. when all bonds are being subject to mea-
surements) this model reduces to the standard RBIM on a
square lattice [26, 37], with P (s) capturing the partition func-
tion in the presence of disorder realizations s whose charac-
teristics are tuned by the measurement strength 0 ≤ t ≤ π/4,
with a Nishimori transition occurring at intermediate strength
tc ≈ 0.143π. In the projective measurement limit t = π/4,
where the circuit falls into the Clifford class [4, 19, 20, 38],
we can sweep 0 ≤ pmeas ≤ 1 to deplete the number of measured
bonds, which induces a percolation transition at pmeas = 1/2 on
the square lattice. Beyond these two limits, we obtain the nu-
merically computed global phase diagram for arbitrary combi-
nations (t, pmeas) of measurement strength and bond dilution
as shown in Fig. 1(a). Our focus will be on the critical line
connecting the two critical points introduced above.

Equivalent (1+1)D monitored circuit dynamics

One useful alternative perspective is to view the 2D quan-
tum problem as a (1+1)D quantum problem using the transfer
matrix. The transfer matrix for the evolution at a given time
slice t can be decomposed as M(t) =

√
MX ⋅MZ(t) ⋅

√
MX ,

where MZ(t) and MX are the Ising interaction evolution and
transverse field evolution gates

MZ(y) = exp(β
Lx

∑
x=1

sx(y)ZxZx+1) , MX = exp(β
′
Lx

∑
x=1

Xx) ,

(3)

where sx(y) = ±1 is the bond disorder at site x and time y,
after a gauge transformation that fixes the coupling sign of
the temporal links, see Appendix A 1. β′ = − 1

2
ln tanh(β) is

the Kramers-Wannier dual of β. This (1+1)D quantum model
is an imaginary-time evolving kicked Ising chain with bond
randomness in the Ising interaction that fluctuates in space and
time. The probability P (s), Eq. (2), which equals the partition
function of the classical 2D Ising model, reading

P (s) = ⟨+∣ϕ(s)⟩, where ∣ϕ(s)⟩ ∶=
Ly

∏
y=1

M(y) ∣+⟩, (4)

(assuming the same boundary conditions at y = 1 and y = Ly

in Eq. (2), which were left unspecified in the latter equation).
Since the physical qubits of the 2D bulk are traced out, such

a 1D quantum state ∣ϕ(s)⟩ describes the complexity of the
2D bulk [39], and is related to the diagonal elements of the
(mixed state) boundary density matrix [40]. In the Clifford
limit t = π/4 (projective measurement [38]), the effective
(1+1)D circuit with random bond dilution is equivalent to the
projective measurement-only Ising model, whose phase tran-
sition has been demonstrated to fall into the percolation uni-
versality class [18–20]. In the non-diluted limit pmeas = 1,
the resulting (1+1)D circuit is a 1D deep measurement-only
quantum circuit representation of the 2D RBIM (which was
discussed in the statistically space-time dual version of the
same transfer matrix description as above in Ref. [41]), which
undergoes a Nishimori transition at tc ≈ 0.143π (along the
Nishimori line).

Our model thus generalizes the projective Ising model to
weak measurements and beyond the Clifford regime. We will
show in the following that the percolation criticality of the
Clifford limit is a singular point and will be immediately over-
written by the Nishimori universality class upon introducing
non-Clifford elements.

Numerical simulations

At the core our our numerical approaches, we generate a
set of measurement outcomes s by uncorrelated sampling fol-
lowed by gauge symmetrization, as described in Ref. [26].
Compared with the relatively modest sizes L ∼ O(10) of
Ref. [26], here we can collect data of much bigger system
sizesL ∼ O(103) because the whole phase diagram of interest
has a gauge symmetry (see Appendix) that allows us to sim-
plify the sampling of the measurement outcomes by means of
gauge fixing. Using these sampled configurations, we employ
three numerical methods to analyze the entanglement proper-
ties and phase transitions in our model.

The most versatile of these is the tensor network contraction
method, which enables us to compute the coherent informa-
tion Ic and the entanglement entropy S across the full phase
diagram. This approach allows us to access system sizes up to
(L + 1) × L with linear system sizes as large as L = 512 for
Ic, and up to L × 2L with L = 1024 for S on long stripe ge-
ometries (open boundary conditions). For each fixed disorder
realization, the qubit-based tensor network can be fermionized
into a Gaussian fermion tensor network akin to the Chalker-
Coddington network model [24, 40, 42] which allows efficient
contraction in periodic boundary conditions without trunca-
tion, which we use for the multifractality calculations below.

To target specific critical points in periodic boundary con-
ditions, we also utilize Clifford circuit simulations at the per-
colation point and a Majorana fermion evolution technique at
the Nishimori point. Both methods are used to compute S on
long cylinder geometries: L × 4L with L = 1024 for the Clif-
ford simulations, and L×20L with L = 1024 for the Majorana
approach. In both cases, the system is thermalized for 4L time
steps prior to calculating the entanglement. For the Majorana
simulations, we compute S every L/2 time steps after ther-
malization, reducing computational cost while ensuring suffi-
cient decorrelation between samples.
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FIG. 2. Effective central charge on the critical line. Inset: The an-
gle θ describes the position on the critical line. The Nishimori point
corresponds to θ = 0, whereas the percolation point corresponds to
θ = π/2. The effective central charge governing the average en-
tanglement entropy at Nishimori criticality is numerically computed
to be cent = 0.41956(3) (orange diamond), see Fig. 4. For refer-
ence we also show the effective central charge determined by the
Casimir energy at the Nishimori point cCasimir = 0.464(4) [43] (or-
ange star). At the percolation critical point, our numerically deter-
mined effective central charge agrees with the analytically known
cent =

3
√

3 ln(2)
2π

= 0.573 . . . [19] (red diamond), distinct from the

Casimir energy estimate cCasimir =
5
√

3
4π

ln 2 = 0.478 . . . (red star).

Entanglement entropy of 1D quantum state

In discussing the global phase diagram of Fig. 1(a) our
interest lies on the critical theories describing the transition
along the line of thresholds, connecting the Nishimori point
in the limit of pmeas = 1 where all bonds are being subject
to measurements, and the percolation transition correspond-
ing to the Clifford limit of projective (i.e. “strong”) mea-
surements t = π/4. Since both critical points, the Nishimori
point at pmeas = 1 and the percolation point at pmeas = 1/2
are monitored quantum systems known to be described by
corresponding non-unitary CFTs, we now discuss two uni-
versal characteristics of the corresponding non-unitary, log-
arithmic CFTs [11–15, 40, 44, 45]. These are (i): the so-
called “effective central charge”, which is a universal critical
finite-size scaling amplitude quantifying the Casimir effect of
the monitored (i.e. random) CFT, which we here denote by
cCasimir, and (ii): the universal coefficient of the logarithm
of subsystem size of the von Neumann entanglement entropy,
which is (twice) the (typical) scaling dimension of a so-called
boundary condition changing “twist operator”, one located at
each end of the entanglement interval [22, 46–48], which we
parametrize here by cent. In a monitored (and, more gener-
ally, any random) system, the two universal characteristics are
in general not equal to each other, i.e. cCasimir /= cent. Often,
both are incorrectly referred to as “effective central charge”,
which easily leads to conceptual confusion. Such confusion
originates from the fact that for ground states of a completely
standard, non-random, i.e. entirely uniform and translation-

ally invariant unitary CFT, these two universal characteristics
coincide, and are equal to the central charge of the unitary
CFT. However, in the case of monitoring, or for that matter
any source of randomesss which by definition breaks transla-
tional invariance, the central charge of the non-unitary CFT
simply vanishes [49], and thus carries no information whatso-
ever which would be capable of distinguishing different crit-
ical points. The universal (non-equal) quantities cCasimir and
cent, on the other hand, are in general non-vanishing in those
latter cases, and are powerful universal charactistics distin-
guishing different monitored (or, in general, random) non-
unitary CFTs.

Let us start our discussion with the quantity cent: First let us
briefly review the case of the ground state of a standard, trans-
lationally invariant CFT. In our model, such a unitary CFT de-
scription is relevant to a post-selection scenario with uniform
(s = +1) which realizes a disorder-free (1+1)D critical Ising
chain with central charge 1/2 in lieu of the Nishimori criti-
cal point upon tuning the measurement strength in the limit of
pmeas = 1. In this case the von Neumann entanglement entropy
is well known [50, 51] to take the form (assuming periodic
boundary conditions)

SvN =
c

3
ln [

L

π
sin(

πl

L
)] , (5)

where c = 1/2 for the post-selected Ising case above. A sim-
ilar expression holds in the case of open boundary conditions
where the entanglement interval of size ℓ sits at the bound-
ary of the system, with a prefactor of the logarithm equal to
c/6 instead of c/3. This expression relies solely on the fact
that the entanglement entropy is related to the logarithm of
the two-point function of the twist-operator, which decays as
a power of the chord distance R = [L

π
sin(πl

L
)], indicated in

Eq. (5), due to periodic boundary conditions in spatial size L.
Now moving on to the case of monitoring of interest to us, the
expression for the Born-rule averaged entanglement entropy
is of the same form

∑
s

P (s)SvN(∣ϕ(s)⟩) =
cent

3
lnR , (6)

where the 1D quantum state ∣ϕ(s)⟩ was defined in Eq. (4).
The reason for this form is that again, the entropy is given by
the logarithm of the two-point function of the twist operator,
but now that twist operator correlation function is random as it
depends on the quantum trajectory (it is thus a more complex
object), and has to be averaged with the Born rule probabil-
ity P (s). The result turns out [52] to be the right hand side
of Eq. (6). Here the coefficient cent determines the average
entanglement entropy of the ensemble of 1D quantum states.
That is, for the Born average scenario, we compute the en-
tanglement entropy for each set of measurement outcomes s
yielding SvN(∣ϕ(s)⟩), and average it according to the Born
probability.

Let us now turn to a discussion of cCasmir. For disor-
dered systems, a quantity directly related to the central charge,
called the effective central charge, is instead given by the uni-
versal prefactor governing the Casimir energy [53–55]. Note
that here, the Casimir energy is random depending on the
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quantum trajectory. The correct quantity to consider turns out
to be the averaged Casimir energy, related to the fact that this
is a self-averaging quantity. In the language of replicas, the
effective central charge is given by the derivative of the cen-
tral charge of the replicated theory with respect to the number
of replicas in the replica limit (which precisely describes [53]
the average of the Casimir energy in the language of repli-
cas): although the central charge becomes zero in the replica
limit, its first derivative is in general non-zero [it is also uni-
versal since the central charge is universal for any (sufficiently
small) number of replicas]. For instance, in the case of perco-
lation, the following analytical results are known,

cent =
3
√
3

2π
ln 2 = 0.573, cCasimir =

5
√
3

4π
ln 2 = 0.478 ,

(7)

with cent first derived in Ref. [56] (see also Ref. 19 and 20 for
a later discussion), while cCasimir has been listed in Refs. 20,
36, and 54. Similarly, for the Nishimori critical point (in the
absence of bond dilution), those two universal numbers have
been obtained numerically to be

cent = 0.41956(3) , cCasimir = 0.464(4) , (8)

where the Casimir estimate, cCasimir, was obtained in classical
Monte Carlo simulations via scaling of the free energy of the
classical statistical mechanics model formulation in Ref. 43.
Our high-precision numerical estimate of cent reported in the
paper at hand is roughly consistent with the one previously
obtained by TEBD calculation (albeit only for system sizes
up to L ∼ 300) in Ref. [57].

Looking at the four estimates above, it is clear that they de-
scribe two distinct universality classes. But while the Casimir
central charge estimates cCasimir for the two critical theories
differ only by a few percent, there is a substantial (some 40%)
difference for the entanglement entropy prefactor cent between
the two universality classes, making the latter the go-to dis-
criminator between the two theories.

RG flow along the critical line

Let us now shift our attention towards the critical line con-
necting the percolation and Nishimori critical points in our
phase diagram in Fig. 1(a). Along this line we have numeri-
cally calculated cent as shown in Fig. 2 for systems of varying
size with up to N = 1024 × 2048 qubits. What we quali-
tatively find is that upon moving away from the Nishimori
critical point upon introducing dilute measurements, our nu-
merical cent estimate remains constant at first, indicating that
the critical theory remains within the Nishimori universality
class. But upon approaching the percolation point, a dramatic
shift sets in with cent strongly increasing, overshooting the
percolation estimate, which is ultimately approached as one
nears the Clifford limit of projective measurements. This non-
monotonous behavior of cent along the critical line of non-
unitary theories should be contrasted to the strict monotonic-
ity dictated by the c-theorem for uniform, translationally in-
variant unitary CFTs [58], but which generally not apply to
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FIG. 3. Critical exponent ν on the critical line. We calculate the
critical exponent ν for different angles θ on the critical line by finite-
size scaling for the coherent information of the surface code (with
code distance L = Lx − 1 = Ly up to L = 512 on the Nishimori line
and up to L = 256 elsewhere). At the Nishimori point we obtain a
value of ν = 1.532(4) (orange diamond). At the percolation point
we determine ν = 1.337(6), which is consistent with the analytical
value [61] ν = 4/3 (red diamond). Inset (a) shows the raw data for
different system sizes and inset (b) shows their data collapse for the
Nishimori point (θ = 0).

the non-unitary case. Indeed, it has been shown that entan-
glement does not decrease monotonically under renormaliza-
tion flows for certain models, see e.g. [59, 60]. One way to
rationalize this non-monotonous behavior in our model is to
realize that when moving away from the percolation transi-
tion, our system leaves the constrained Hilbert space available
to the Clifford circuit which allows the wavefunction to sud-
denly populate an extensive number of states in the full Hilbert
space – a situation that might well lead to a sharp increase in
the entanglement and therefore a larger cent estimate.

Beyond the non-monotonicity, the qualitative behavior of
cent along the critical line allows for the identification of a
renormalization group (RG) flow of the critical theory. With
all the action taking place in proximity of the percolation tran-
sition, this is where the RG flow happens – that is, upon mov-
ing away from the percolation critical point the system flows
to Nishimori universality. This direction of the flow can be es-
tablished analytically by demonstrating the irrelevance of ran-
dom bond dilution at the Nishimori critical point, using the
known numerical results for the correlation length exponents
(and a Harris-criterion type argument): Dilution couples to the
thermal/energy operators at the Nishimori point, which have
scaling dimensions [62] x1 = 1.345 and x2 = 1.75 respec-
tively. The scaling dimension of the operator coupling to the
strength of dilution is twice as large deduced from the replica
trick, i.e. xdilution = 2.69, which is larger than 2 and thus ir-
relevant (for the two dimensional scenario we are looking at).
This is the “Harris-type criterion” [63, 64] stating irrelevance
if the dimension of the energy operator is larger than one (or
the correlation length exponent associated with it ν > 1) – in
two dimensions. We also note that previous high-precision
calculations on the classical diluted RBIM [36] have studied
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the behavior of the cCasimir and through very careful simula-
tions (tuning three parameters in the classical model instead
of two parameters in our quantum model) have similarly con-
cluded that percolation must be unstable to a flow to Nishimori
criticality.

Moving away from the entanglement diagnostic, let us also
analyze the correlation length exponent ν which corroborates
the RG flow as shown in Fig. 3. We compute this exponent
via a coherent information estimate in the surface code pro-
tocol [2], an observable that shows a finite-size independent
crossing point (i.e. a zero scaling dimension) at the transition
and whose data collapse therefore allows for high-precision
estimates of the correlation length exponent.

Multifractality

To further analyze the universal properties of the perco-
lation and Nishimori critical points, we study their “multi-
fractal” spectra of scaling dimensions. Since measurement
outcomes are random, the monitored systems studied in this
paper are intrinsically disordered. The corresponding critical
points and conformal field theories are much richer than their
clean, unitary counterparts, as one can distinguish, for exam-
ple, mean and typical correlation functions. More generally,
different moments of correlations functions scale with distinct
non-trivial exponents [65], a phenomenon known as multi-
fractality (sometimes also referred to as ‘multiscaling’) in the
literature of disordered critical points. This leads to a contin-
uous spectrum of universal critical exponents (scaling dimen-
sions). We will focus on the scaling behavior of the boundary
condition changing (boundary) twist operators [21, 47] whose
typical scaling dimensions give rise to the universal prefactors
in the Rényi entropies, which we referred to as cent for the von
Neumann entropy and which we denote by c(n)ent for the nth
Rényi entropy. The multifractal scaling behavior quantifies
the universal scaling behavior of the statistical fluctuations of
these entropies. There is an infinite set of universal quantities
for each of the nth Rényi entropies characterizing these fluc-
tuations. Here we follow the discussion in Ref. [23] where
this is spelled out in detail for the n = 2nd Rényi entropy (the
discussion being analogous for general n), see Appendix A 4
for a self-contained summary. In the following we discuss and
numerically compute these statistical fluctuations for the von
Neumann entropy. In the previous section we have discussed
the Born average of the boundary von Neumann entanglement
entropies, which reveals only the first moment of the random
variable {SvN(s)} (here we abbreviate ∣ϕ(s)⟩ by ∣ϕ⟩ inside
the argument). It turns out that higher cumulants (with κm
denoting the mth cumulant) of this quantity also scale loga-
rithmically at criticality, with universal prefactors,

κ2 = µ2 − µ
2
1 = −2x

(2) lnR ,

κ3 = µ3 − 3µ2µ1 + 2µ
3
1 = 2x

(3) lnR ,
(9)

and more generally

κm = (−1)
m−12x(m) lnR , (10)

R
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FIG. 4. Multifractality of percolation and Nishimori criticality.
Shown are the first four cumulants, κ1, κ2, κ3 and κ4 of the von Neu-
mann entropy as a function of chord distance. Note that the fourth-
order cumulant κ4 shows a sign-flip with an inverted ‘entanglement
arc’ [cf. Eq. (5)] as shown in the inset.

with µm = ∑s P (s)[SvN(s)]
m being the m-th moment av-

erage and R the chord length. Here x(m) adopts the notation
from Ref. [23], which expresses the scaling of the cumulants
of the entanglment entropy (a random variable) with lnR, for
different cumulant ordersm, and x(1) = cent/6 in our notation.

As already mentioned above, different from Ref. [23] here
we mainly consider the von Neumann entropy in the main
text, while leaving a discussion of the higher-order Rényi en-
tropies for the Appendix. In Fig. 4, we show the scaling of
the cumulants with chord length which yields a spectrum of
universal numbers x(m) that are distinct between Nishimori
and percolation criticality as summarized in Table I. Remark-
ably, contrary to what was previously assumed, even perco-
lation exhibits a non-trivial multifractal spectrum with non-
trivial values for the set of universal numbers x(m). The mul-
tifractal behavior of entanglement in the percolation theory
can be understood as follows: entanglement in this theory is
related to the number of percolation clusters connecting the
entanglement interval to its complement. This quantity has a
non-trivial statistics, which was computed exactly in Ref. [56]
using Coulomb gas methods. The results can be conveniently
expressed in terms of the k-th moment average of the n-th or-
der generalized purity (defined in Eq. (11) below, the standard
purity corresponding to n = 2) in the Born ensemble

[tr(ρ(s))n]k = e−k(n−1)Sn(s) ∝ R−2Xn,k , (11)

where the overbar denotes the average with respect to the Born
rule probability distribution for the measurement outcomes
“(s)”. Eq. (11) describes the k-th moment of a boundary two-
point function of boundary-condition changing (bcc) “twist”
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−0.0045

x(1) = 0.069926(4) x(2) = − 0.014241(3)

x(3) = 0.001101(2) x(4) = 0.000729(2)

𝜅1 𝜅2

𝜅3 𝜅4

FIG. 5. Cumulant fits for Nishimori universality. Shown is a sub-
set of the data of Fig. 4(b), with the color-highlighted data used in
the fits indicated by the dashed lines over the remaining data (gray).
The data is fitted using Eq. (9) to obtain the numerical estimates in-
dicated in the figure (and listed in Table I) To minimize boundary
effects we fit only the data in an intermediate window of large cut
length Lx/8 < l < 7Lx/8, see Appendix B 3 for supplemental data
and a detailed discussion.

operators [21, 23, 47] separated by the chord-length R. For
percolation (which can be formulated as a particular Clifford
circuit [18–20]), this quantity does not depend on the Rényi
index n, and the scaling dimension Xn,k = Xk is the gener-
ating function Xk = ∑m

x(m)

m!
km of the universal coefficients

appearing in Eq. (9) [23]. In this case we may choose n = 2,
and Eq. (11) describes the k-th moment of the (standard) pu-
rity. Using the results of Ref. [56], we find that for percolation,
we have the exact multifractal spectrum of critical exponents

Xk =
3arccos2(

√
3/21+k/2)

2π2
−

1

24
. (12)

with

x(1) = cent/6 =

√
3

4π
ln 2 ≃ 0.09554 ,

x(2) = −0.022914 ,

x(3) = 0.0034922 ,

x(4) = 0.0002325 ,

x(5) = −0.0002561 . (13)

Note that with our conventions [Eq. (10)], x(2) is negative by
definition since the variance must be positive. Further note
that the positiveness of x(4) predicts that the 4th cumulant
κ4 = −2x

(4) lnR scales, following Eq. (5), as an inverted ‘en-
tanglement arc’ (see the inset of Fig. 4 for an example). Ex-
tracting numerically the asymptotic behavior of higher cumu-
lants is extremely challenging as it requires multiple cancel-
lations between powers (lnR)k where the chord length R is

large in the limit of interest in Eq. (9), and we need to ex-
tract the coefficient of the lowest, first-order power of this
large quantity lnR [see Eq. (9)]. Nevertheless, we find that
for our numerical results for critical percolation [Fig. 4(a)]
the first two significant digits generally agree well with the
exact results, see also the side-by-side comparison of Table I
above. For the percolation problem, fitting the fourth-order
cumulant remains a difficult endeavor and, to some extent, we
have ‘cherry-picked’ the fitting range to match the analytical
expectation (see Fig. 10 in the Appendix for further details).

Surprisingly, it turns out that the numerical estimates for
Nishimori criticality, shown in Fig. 4(b) and also summa-
rized in Table I, converge significantly faster – intuitively, this
makes sense since the Clifford/percolation data involves av-
eraging discrete quantities, and thus requires more samples.
Our analysis of the von Neumann entropy yields the follow-
ing values

x(1) = 0.069926(4) ,

x(2) = −0.014241(3) ,

x(3) = 0.001101(2) ,

x(4) = 0.000729(2) , (14)

which are also listed in Table I in the column denoted von
Neumann and compared to results from the second, third,
and n =∞Rényi entropies as indicated in the column headers.

To summarize these results, it is quite notable that the two
monitored (non-unitary) critical points studied here, percola-
tion and Nishimori criticality, both contain an infinite set of
scaling dimensions that constitute a continuous spectrum in
contrast to conventional (unitary) critical points. This rich-
ness of critical exponents originates from the random nature
of monitored criticality and reflects their multifractality. For
percolation, we have been able to compute the entire (non-
quadratic) multifractal spectrum exactly, while for Nishimori
criticality our numerical simulations allowed to access the
leading five cumulants.

Discussion

It is conceptually important to note the following two equiv-
alent roles that percolation plays in our work: While we have
so-far employed percolation as a means to simply describe the
geometrically and purely classical random dilution of bonds
of the 2D lattice on which the RBIM quantum mechanics
(viewed as a shallow quantum circuit on a 2D spatial lattice, in
an Rokhsar-Kivelson (RK) formulation as mentioned above)
is located, percolation itself can be viewed as a deep (1+1)D
random Clifford circuit of projective measurements on the 1D
lattice [18–20, 66, 67] whose spacetime is the above 2D lat-
tice. The 2D quantum states on the critical, geometric perco-
lation cluster, i.e. at pmeas = 1/2 and t = π/4 in our phase dia-
gram in Fig. 1, can be exactly mapped to such a deep (1+1)D
Clifford circuit with random projective measurements, which
represents the geometrical percolation problem in spacetime
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criticality percolation Nishimori

ν 4/3 1.532(4)

cvNent 0.573 . . . 0.41956(3)
cCasimir 0.478 . . . 0.464(4)

cumulants analytical numerical von Neumann Rényi-2 Rényi-3 Rényi-∞
x(1) 0.09554 0.09556(1) 0.069926(4) 0.054841(4) 0.049519(3) 0.038573(3)

x(2) −0.02291 −0.02289(1) −0.014241(3) −0.012317(2) −0.011287(2) −0.007834(1)

x(3) 0.00349 0.00348(1) 0.001101(2)) 0.001433(2) 0.001517(1) 0.001231(1)

x(4) 0.00023 0.00021(2)∗ 0.000729(2) 0.000644(1) 0.000557(1) 0.000200(1)

x(5) −0.00026 — 0.000050(2)† −0.000128(1) −0.000209(1) −0.000189(1)

TABLE I. Characterization of critical points. For percolation, we list analytical results for the critical exponents, effective and entanglement
central charge estimates, along with the five leading cumulants for the n = 1 von Neumann entanglement entropy, as defined in Eq. (10). We
also provide numerical estimate for these cumulants, extracted from fits like the ones shown in Fig. 4(a). The asterisk (∗) for the fourth-order
cumulant indicates that we needed to “cherry-pick” the fitting interval in order to reproduce a value close to the analytical estimate (see Fig. 10
of the Appendix). For Nishimori criticality, no analytical results are known and we list our numerical estimates. Note that for the cumulant
estimates we are able to obtain high-precision results for the leading four cumulants from the fits shown in Fig. 5 and even a rough estimate
for the fifth-order one (see Fig. 10(b) of the Appendix for the underlying fit). These Nishimori cumulants we have calculated not only from the
von Neumann entanglement entropy but also the second, third and n =∞ order Rényi entropies as indicated. The dagger (†) for the fifth-order
von Neumann cumulant of Nishimori criticality indicates that it is likely unreliable given that there is a “flip” in the entanglement arc that
might arise from boundary or finite-size effects, see Fig. 10 in the Appendix.

in a quantum mechanical (1+1)D deep circuit language. The
percolation criticality is well known to have a flat entangle-
ment spectrum because it can be thought of as a deep Clifford
circuit [18–20] and thus all Rényi entropies are trivially iden-
tical in every quantum trajectory. Nevertheless, here we show
analytically that the statistical ensemble of the entanglement
entropies over different quantum trajectories exhibits multi-
fractality, which is further evidenced by our numerical com-
putation of the cumulants of these entanglement entropies up
to 3rd, 4th, and 5th cumulants, that are elusive in the literature.

Moving away from the point of percolation criticality
(pmeas = 1/2, t = π/4) in our phase diagram along the crit-
ical RG crossover line, is a concrete way of “turning on” the
non-Clifford perturbations at the percolation critical point of
the (1+1)D deep Clifford circuits. These arise from the ad-
ditional quantum mechanics of the Nishimori measurements,
which can be induced by weakening the projective measure-
ments [26], or by injecting coherent error prior to measure-
ments [28, 68–70] in the Clifford circuit.

More generally, the measurement-induced phase transi-
tions we reveal here can also be viewed [40] as a mixed
state transition for the classical-quantum mixed state
ρ = ∑s ∣s⟩⟨s∣ ⊗ ∣ψ(s)⟩⟨ψ(s)∣, where ∣s⟩⟨s∣ denotes the state
of ancilla qubits that record the measurement outcomes,
and we take ∣ψ(s)⟩ to be the toric code state subjected to
diluted weak measurements, as written in Eq. (1). It can be
shown that the same universality class describes the mixed
state subjected to a diluted dephasing noise channel instead
of quantum measurement, see Fig. 6 for a schematic and
Appendix A for details. Here we outline the basic idea as
follows: When the measurement outcomes are erased (i.e.
traced over), the observer acts as a bath, and the ensemble
of the post-measurement states is no longer an ensemble of
pure states, but simply gives rise to a mixed state. Effectively,
the toric code is subjected to a diluted dephasing channel [2]

with noise probability sin2(t); see Appendix A for a detailed
discussion. In the non-dilute limit pmeas = 1 with uniform
dephasing noise (top line of our phase diagram Fig. 1), the
noisy toric code exhibits a Nishimori transition [1], albeit
at a smaller threshold tc ≈ 0.107π [2] – see the schematic
illustration of Fig. 6. In the maximally noisy limit t = π/4
with noise hitting only a fraction of the qubits, the state again
undergoes the same percolation transition at pmeas = 1/2.
Thus, for the noisy state after erasure (tracing out) of the
measurement record s, the phase boundary between toric code
and dephased toric code extends from the same percolation
critical point to a Nishimori critical point (at tc ≈ 0.107π),
which is described by the same RG flow as revealed in this
manuscript.

LRE surface code

SRE Higgs

m
e

eiπ

NN

0.107π 0.143π

measurement 
threshold

dephasing 
threshold

dilution of 
noise or 

measurement

0 π/4

50 %
P

FIG. 6. Schematic phase diagram of diluted noise channel in
comparison with diluted measurement of the topological toric
code or surface code. Both exhibit a critical line from percolation
to the Nishimori points, albeit at different threshold values.



9

Data availability.– The numerical data shown in the figures
and the data for sweeping the phase diagram is available on
Zenodo [71].
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[71] M. Pütz, R. Vasseur, A. W. W. Ludwig, S. Trebst, and G.-Y.
Zhu, Data for “Flow to Nishimori universality in weakly mon-
itored quantum circuits with qubit loss”, Zenodo 10.5281/zen-
odo.15530142 (2025).

https://doi.org/10.1088/0953-8984/16/11/045
https://doi.org/10.1088/0953-8984/16/11/045
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1103/PhysRevB.83.125114
https://doi.org/10.1088/1742-5468/2006/09/P09006
https://doi.org/10.1088/1742-5468/2006/09/P09006
https://doi.org/10.1088/1742-5468/2006/09/P09006
https://arxiv.org/abs/2208.11699
https://arxiv.org/abs/2402.00145
https://doi.org/10.1103/PhysRevX.12.021021
https://arxiv.org/abs/2502.14034
https://doi.org/10.1103/PhysRevB.63.104422
https://doi.org/10.1103/PhysRevB.65.054425
https://doi.org/10.1103/PhysRevB.65.054425
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.128.050602
https://doi.org/10.1103/PhysRevB.109.014303
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1103/PhysRevB.100.134203
https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/https://doi.org/10.1016/0550-3213(87)90362-2
https://doi.org/https://doi.org/10.1016/S0550-3213(98)00024-8
https://doi.org/https://doi.org/10.1016/S0550-3213(98)00024-8
https://doi.org/10.1103/PhysRevLett.128.050602
https://doi.org/10.1103/PhysRevLett.100.087205
https://doi.org/10.7566/JPSJ.89.114005
https://doi.org/10.7566/JPSJ.89.114005
https://ui.adsabs.harvard.edu/abs/1986JETPL..43..730Z
https://ui.adsabs.harvard.edu/abs/1986JETPL..43..730Z
https://doi.org/10.1103/PhysRevLett.112.106601
https://doi.org/10.1103/PhysRevLett.112.106601
https://doi.org/10.1088/1742-5468/2014/10/P10041
https://doi.org/10.1088/1742-5468/2014/10/P10041
https://doi.org/https://doi.org/10.1016/0370-1573(79)90060-7
https://doi.org/https://doi.org/10.1016/0370-1573(79)90060-7
https://doi.org/10.1088/1742-6596/145/1/012055
https://doi.org/10.1088/1742-6596/145/1/012055
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1103/PhysRevLett.57.2999
https://doi.org/https://doi.org/10.1016/0550-3213(90)90126-X
https://doi.org/https://doi.org/10.1016/0550-3213(90)90126-X
https://doi.org/10.1103/PhysRevResearch.3.023200
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1103/PhysRevResearch.6.013137
https://doi.org/10.1103/PhysRevResearch.6.013137
https://doi.org/10.1038/s41567-024-02637-3
https://arxiv.org/abs/2412.04414
https://doi.org/10.5281/zenodo.15530142
https://doi.org/10.5281/zenodo.15530142


11

Supplementary notes

Appendix A: Analytical supplements

1. Gauge transformation

Here we show the gauge symmetry of the 2D tensor net-
work allows us to relate different measurement outcomes s→
s′ with identical probability / partition function, see Fig. 7.
In this way, we can fix a temporal gauge and restrict our-
selves to the measurement outcomes that have straight vortex
strings stretching across the spatial links, such that the corre-
sponding (1+1)D deep circuit has a fixed X evolution gate,
while the randomness occurs only to the ZZ evolution gates.
Thus the (1+1)D deep circuit requires a post-selection of the
X measurement outcomes, or by coupling the system to a bath
with dissipation that leads to the imaginary time X evolution,
with mid-circuit measurement of the ZZ operators. Note that
our 2D quantum protocol does not need any (uniform) post-
selection.

=m

m

m

m
exp(+βZ1Z2)

exp(β′ X)

exp(−βZ1Z2)

FIG. 7. Gauge transformation. We denote the negative measure-
ment outcomes as a string (in red) passing by, along the dual lattice,
whose end points define the m vortices. The gauge transformation
can fluctuate the shape of the string, without altering the configu-
ration of the m vortices. It relates two distinct measurement out-
comes, with identical probability / partition function. The boundary
1+1D states are related by local Pauli X operators and thus share the
same entanglement. As a result, we can always turn the string to be
straight, such that the X evolution gate is fixed, while the random-
ness occurs only to the ZZ evolution gates.

2. Mixed state from measurement to noise channel

Here we provide more details on the last paragraph of the
discussion section in main text by giving a more detailed
derivation of the mixed state that arises after the measurement
record is erased. First recall that the toric code under diluted
weak measurement can be viewed [40] as a mixed state den-
sity matrix, by taking into account not only the system qubits
of the toric code but also the auxiliary qubits that record the
measurement outcome. This mixed state can be written as

ρ =∑
s

∣s⟩⟨s∣⊗ ∣ψ(s)⟩⟨ψ(s)∣ , (A1)

where ∣ψ(s)⟩ is the un-normalized post-measurement wave
function from Eq. (1) of the main text,

∣ψ(s)⟩ = e
β
2 ∑⟨ij⟩∈C sijZij ∣ψ0⟩ .

Here, ∣ψ0⟩ = ∣ψ⟩TC is the initial perfect (unmeasured
and undiluted) toric code state prior to the measurement,
as the ground state of the star stabilizer operator Av =

∏⟨ij⟩∣v∈∂⟨ij⟩Zij for any vertex v, and the plaquette stabilizer
operator Bp = ∏⟨ij⟩∈∂pXij for any plaquette p (where ∂

denotes the boundary). The post-measurement state ∣ψ(s)⟩,
Eq. (1), is not an eigenstate of the plaquette operator Bp. Its
norm yields the Born probability of each measurement out-
come,

P (s) = ⟨ψ(s)∣ψ(s)⟩ , (A2)

which is related to the partition function of a random bond
Ising model at inverse temperature β = tanh−1 sin(2t) as de-
fined in Eq. (2). From now on, we write more explicitly

P (s;β) ≡ P (s) (A3)

to emphasize the β dependence of the partition function. Here,
the quantity s plays in the mixed state ρ of Eq. (A1) a role sim-
ilar to a local “quantum number” that is conserved and speci-
fies a block of the density matrix. Note that gauge equivalent
configurations share the same probability: P (s;β) = P (s′;β)
if ∂s = ∂s′ = m, where we use ∂s to denote the end point
configuration of the strings defined by sij = −1, as with
the toric code convention, see Fig. 7 for an example. More
concretely, we use mp = 1 to label the existence of an ex-
cited m vortex on the plaquette p, and mp = 0 otherwise,
by defining (−1)mp = ∏⟨ij⟩∈p sij , the latter of which is usu-
ally called the Wilson loop operator in the gauge theory lan-
guage. Thus one might as well label the probability function
in Eq. (A3) by P (m;β), bearing in mind that s recides on
the bond center while m recides on the plaquette center. The
bulk von Neumann entropy of the mixed state ρ in Eq. (A1)
corresponds [40] to the Shannon entropy of the measurement
record, −∑s P (s;β) lnP (s;β), which is by Eq. (2) exactly
the quenched free energy of the RBIM, since P (s;β) can be
interpreted as the disordered partition function. This estab-
lishes the map to the statistical model and the Nishimori tran-
sition point tc ≈ 0.143π (Fig. 1 in the main text).

Now we show how the measurement problem can be related
to the noise problem. If the measurement record is erased
(i.e. traced out), the mixed state loses s as a good “quantum
number”, and is converted into

ρ̃ = trsρ =∑
s

∣ψ(s)⟩⟨ψ(s)∣ = ∏
⟨ij⟩∈C

Nij(∣ψ0⟩⟨ψ0∣) (A4)

where Nij denotes a standard dephasing noise channel act-
ing on a single bond qubit ⟨i, j⟩ as Nij(∣ψ0⟩⟨ψ0∣) = (1 −
p̃) ∣ψ0⟩⟨ψ0∣+p̃Zij ∣ψ0⟩⟨ψ0∣Zij . The effective noise probability
p̃ = sin2(t) is obtained because on each single bond-qubit

Nij(∣ψ0⟩⟨ψ0∣) = ∑
sij=±1

eβsijZij/2 ∣ψ0⟩⟨ψ0∣ e
−βsijZij/2

= cos2(t) ∣ψ0⟩⟨ψ0∣ + sin
2
(t)Zij ∣ψ0⟩⟨ψ0∣Zij .

(A5)
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In this way, the weak measurement limit t = 0 corresponds
to the noiseless and the projective measurement limit t = π/4
corresponds to the maximally noisy limit. Since the Kraus
operator Zij (at each bond ⟨i, j⟩) acts on both sides of the
density matrix, the m (anyon) vortex of the toric code is a
conserved quantity and serves as the local “quantum number”
that replaces the aforementioned quantity s. The mixed state
becomes, after tracing out the measurement record, a grand
canonical ensemble of the m vortices,

ρ̃ =∑
m

P (m; β̃) ∣ψ̃(m)⟩⟨ψ̃(m)∣ (A6)

where ∣ψ̃(m)⟩ now denotes a normalized random toric code
eigenstate with eigenvalue Bp = (−1)

mp and m labels an ar-
bitrary configuration of the m vortices distributed in space.
The probability distribution of each such m configuration is
given by Ref. [1]:

P (m; β̃)∝ ∑
s∣∂s=m

(
p

1 − p
)
∑ij

1−sij
2

∝∑
σ

eβ̃∑⟨ij⟩ sijσiσj .

(A7)
As a partition function, it collects the weights of all possible
error chains of Pauli Zij operators on bonds ⟨i, j⟩, supported
on the string path that ends at the m vortices, which is,
strictly along the Nishimori line p̃/(1 − p̃) = e−2β̃ , dual to
the partition function of the random bond Ising model. To
summarize, the noisy mixed state ρ̃ is mapped to the RBIM
along the Nishimori line described by the partition function
P (m; β̃), with disorder probability p̃ = sin2(t) and inverse
temperature β̃ = tanh−1 cos(2t).

For comparison, the measurement induced mixed
state (A1), thus containing the measurement record ∣s⟩⟨s∣, is
mapped to the RBIM along the Nishimori line described by
partition function P (s) with disorder probability p = cos2(t)
and temperature β = tanh−1 sin(2t) in Ref. [2]. Note
the crucial fact that β̃ is the Kramers-Wannier dual of β:
β̃ = − 1

2
ln tanhβ. Namely, erasing the measurement record

effectively induces a high temperature to low temperature
duality, reversing the temperature of the effective statistical
model along the Nishimori line. Besides, it also turns the
non-stabilizer state ∣ψ(s)⟩ into a stabilizer state ∣ψ̃(m)⟩.

In the absence of dilution, despite the microscopic differ-
ence, both the post-measurement states ρ and the noisy states
ρ̃ are described by Nishimori criticality. In the presence of
dilution, only a finite fraction of the qubits, supported on the
bonds ⟨ij⟩ ∈ C, are subjected to measurement in ρ and de-
phasing in ρ̃. Here the volume of the support ∣C∣ = pmeasNB

is a fraction of the total number of bonds NB under a fixed
probability pmeas. Note the crucial fact that this probabil-
ity pmeas plays a different role than p̃ in the dephasing case,
because the dilution is a so-called “heralded” or “flagged” er-
ror, which means the information C is known. In contrast,
in Eq. (A5), one does not have a “flag” when Zij is applied.
The global phase diagram for such a scenario is left for future
study. Nonetheless, at t = π/4, the percolation transition at
50% still holds. Therefore, in such noise phase diagram, there

is still a critical line between the exact Nishimori transition
at t = 0.107π and the exact percolation transition at 50%, see
Fig. 6. We expect the same RG flow between these two critical
points.

3. Coherent information / domain wall entropy

In technical terms, the coherent information for every post-
measurement pure state is given by the measurement (disor-
der) average of the domain-wall entropy

Is = −
1 +Cs

2
log2

1 +Cs

2
−
1 −Cs

2
log2

1 −Cs

2
, (A8)

where Cs the overlap between the two topologically degener-
ate states of the surface code conditioned upon a given mea-
surement record s. In the dual Ising representation, C is the
correlation between two test spins placed on the left and right
boundaries of the lattice [2]. The left (right) test spin interacts
with all qubits on the left (right) boundary with the same Ising
interaction strength, also subjected to the bond randomness.
Consequently, C can be viewed as the expectation value of a
“domain wall” operator (with eigenvalue ±1):

C = σ σ =

− ↑ ↓↑ ↓

+ ↑ ↓↑ ↓
,

(A9)
conditioned upon a given measurement record s. Using the
typical scaling dimension of the domain wall operator ∆m, we
should find the typical asymptotic behavior of C when Ly ≫

Lx for a fixed disorder realization:

Cs ∼
1 − e−2π∆m

Ly
Lx +⋯

1 + e−2π∆m
Ly
Lx +⋯

= tanh(π∆m
Ly

Lx
) +⋯ , (A10)

which gives a partial explanation why the domain wall entropy
at the critical point does not scale with the system size, once
the aspect ratio Ly/Lx is fixed. Note that this is analogous
to using the domain wall energy as scaling invariant probe for
the Nishimori critical point at the long cylinder limit [42, 43].

4. Multifractality

In this appendix, we briefly review the multifractal na-
ture of entanglement entropies at measurement-induced phase
transitions, following Refs. [23, 55] and the earlier work in
Ref. [65]. The key observation is that the quantity

Gn(x1, x2, s) = tr(ρ(s))n = e−(n−1)Sn(s), (A11)

with A = [x1, x2] parametrizing the entanglement interval,
defined for a fixed quantum trajectory “s”, behaves as a two-
point correlation function in a disordered medium (due to the
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method tensor networks Clifford simulations free-fermion network

Observable Ic Sn Sn Sn

largest system size Lx ×Ly 257 × 256 513 × 512 1024 × 2048 1024 × 4096 1024 × 20480∗

# of data points 300 20 15 1 1
# of samples / data point 100,000 100,000 50,000 14,400,000 18,000,000

# of total core hours 650,000 350,000 150,000 200,000 2,300,000
total file size 1.3 GB 15 MB 60 GB 220 GB 2 TB

TABLE II. Computational resources. To characterize the computational effort for our numerical simulations we provide, for the largest
system sizes that we have simulated, the number of data points sweeping the phase diagram, number of samples per data point, the total
number of core hours, and typical data storage requirements for simulations using the numerical techniques indicated at the top of every
column. The first column lists the numbers for the tensor network simulations of the coherent information Ic throughout the phase diagram.
This data is used to calculate the location of the critical line connecting the percolation point and the Nishimori point, as well as determining
the critical exponent ν along that critical line (see Fig. 3). Limited to the Nishimori line, we do the same simulation for larger system sizes
(second column). We use the tensor network method to calculate the entanglement entropies Sn at different points along the critical line in
open boundary conditions (third column). This data is used to determine the effective central charge cent along the critical line (see Fig. 2)
to see the crossover behavior between percolation and Nishimori criticality. In order to calculate the entanglement entropy in periodic (and
open) boundary conditions much more efficiently at the percolation point, we use Clifford simulations (fourth column). This data is used
to determine the cumulants shown in Fig. 4(a) and 10(a). Similarly, we use free-fermion network evolution to calculate the entanglement
entropies in periodic boundary conditions at the Nishimori point (fifth column). The asterisk (∗) indicates, that we calculate the entanglement
entropies multiple times while evolving the 1D quantum state, starting after a thermalization time of 4096 time steps. The data is used to
determine the cumulants for the Nishimori point, shown in Figs. 4(b), 5, 10(b) and 11.

random nature of the measurement outcomes). More pre-
cisely, this is the two-point function of a boundary-condition
changing (bcc) operator in the associated CFT [47, 48]. Upon
averaging over measurement outcomes, different powers of
this correlator can scale at criticality with exponents which are
entirely independent universal numbers for different values of
the moment order k [65],

(Gn(x1, x2, s))
k
= e−k(n−1)Sn(s) ∝ R−2Xn,k , (A12)

where we recall that the overbar denotes the average with re-
spect to the Born rule probability distribution for the measure-
ment outcomes “(s)”. If this happens the scaling is referred
to as “multifractal”, and in the present context such scaling
occurs for the quantity in Eq. (A12). Importantly, because the
origin of this infinite hierarchy of independent critical expo-
nents is a universal scaling form [65] of the entire probability
distribution of the random variable Gn(x1, x2, s), the scaling
dimensionsXn,k can be defined for general real indices n and
k, and thus define a continuum of scaling dimensions.

In practice, it is more convenient numerically to work with
self-averaging quantities such as the Rényi entropies Sn(s)
as opposed to the quantity in Eq. (A11). The consequences
of the multifractal scaling (A12) for Renyi entropies can be
derived by performing a cumulant expansion of e−k(n−1)Sn(s)

and Taylor expanding R−2Xn,k in the moment order ‘k’. Fo-
cusing on the 2nd Rényi entropy (n = 2) for simplicity, we
have

e−kS2(s) = exp(−kκ1 +
k2

2!
κ2 −

k3

3!
κ3 + . . .) , (A13)

with the cumulants defined in Eq. (9). Now if we Taylor ex-

pand the scaling dimension X2,k = ∑m
x
(m)
2

m!
km, we have

R−2Xn,k = exp(−2 [kx(1)n +
k2

2!
x(2)n + . . . ] lnR) (A14)

with n = 2. Comparing the latter two equations, we find in
view of Eq. (A12) the following scaling of all cumulants of
the 2nd Rényi entropy

κm ∼ 2(−1)
m−1x

(m)
2 lnR , (A15)

which is the relation used in the main text. An analogous re-
sult is arrived at for general n > 1. Because the density matrix
ρ(s) appearing in Eq. (A11) is normalized, a trivial result is
obtained for the direct n → 1 limit of the moment exponents
Xn,k.

Appendix B: Supplementary numerical data

1. Computational costs

Our numerical codes have been run on national high-
performance computing resources, specifically the AMD
EPYC (v3 Milan)-based Noctua2 cluster at the Paderborn
Center for Parallel Computing (PC2), the AMD EPYC
(v4 Genoa)-based RAMSES cluster at RRZK/University of
Cologne, and the Intel XEON Platinum 8168-based JUWELS
cluster at FZ Julich. An overview of key characteristics for
production runs on these machines is provided in Table II
above.

2. Entanglement peak location

One particular striking numerical result presented in the
main text is the non-monotonous behavior of the effective cen-
tral charge estimate cent along the RG flow from percolation
to Nishimori shown in Fig. 2 of the main text. Since we show
data for different system sizes L = 64,128,256,512,1024 one
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might ask for a finite-size extrapolation of this data, which we
present here.

In Fig. 9 below, we show how the peak position for increas-
ing system sizes moves towards the percolation fixed point
(θ = π/2), with panel (a) showing θpeak as a function of in-
verse system size, while panel (b) shows the distance of θpeak
from the percolation fixed point as a function of inverse sys-
tem size in a doubly logarithmic plot. The latter data falls
on top of a line, indicating a power-law fit (dashed line), indi-
cating that peak position indeed moves to the percolation limit
for infinite system size L→∞. Physically, this implies a step-
function behavior in the thermodynamic limit where upon
moving away from the Clifford-limit of percolation the sys-
tem immediately picks up a seizable amount of entanglement
(available from spreading the Clifford-constrained wavefunc-
tion to the fully available Hilbert space).
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FIG. 8. Entanglement scaling: Nishimori point (top panel) ver-
sus percolation point (bottom panel). Left panel: effective central
charge fit by the variation of entropy with varying entanglement cut:
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SvN(l = L/2) as a function of L. For the computation a long stripe
Ly = 2Lx = 2L is chosen to guarantee the boundary 1D quantum
state reaches steady state of the transfer matrix. The boundary con-
dition is open boundary. The MPS cutoff is set to 10−20.
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FIG. 9. Entanglement peak location. To extrapolate the peak po-
sition of cent to the thermodynamic limit L →∞, we show (a) θpeak

(determined from the data in Fig. 2) against the inverse system size,
and (b) its distance from π/2 versus inverse system size on a doubly-
logarithmic scale. We fit the power law function f(x) = p1x

p2

to the data. The optimal coefficients are p1 = 0.509(53)π and
p2 = 0.428(21).

3. Numerical estimation of cumulants

Figs. 10 and 11 provide a detailed account of our data fitting
procedure to extract the leading five cumulants from fits to the
entanglement entropy for the system sizes up to N = 1024 ×
4096 using periodic boundary conditions.

Nishimori versus percolation criticality

Concentrating first on the data in Fig. 10 one can see that the
Nishimori universality class leads to cleaner data than perco-
lation criticality, which one might rationalize by the fact that
the percolation/Clifford problem is obtained from averaging
discrete data, which requires more samples to converge.

For both universality classes, the “arc structure” of the en-
tanglement entropy, when plotted as a function of subsystem
size l/L, is clearly visible (as demanded by the analytical form
of Eq. 5) and switches its overall sign for the fourth-order cu-
mulant (as expected analytically for percolation, but unknown
in the case of Nishimori universality).

When trying to fit the fourth order cumulant, we note that
this is a challenging task for the percolation data. In fact, there
is a strong dependence of the numerical estimate of the cu-
mulant when restricting the data set to only fit the bulk data
in the middle of the arc. What an ideal choice might look
like is not at all obvious and we have “cherry-picked” the in-
terval to obtain an estimate close to the analytical prediction
(which, of course, does not serve as an independent confirma-
tion anymore). In contrast, there is no such need for outside
guidance for the case of Nishimori criticality where we can
provide a high-precision estimate for the fourth-order cumu-
lant from following the same fitting protocol as for all other
cumulants. We can even expand this approach to obtain an
estimate for the fifth-order cumulant, as shown in the lower
right panel of Fig. 10, though the fit is clearly of much lesser
quality than the other cumulants.
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FIG. 10. Multifractality and cumulants (periodic boundary conditions). Left panels: percolation criticality. Right panels: Nishimori
criticality. The underlying data is for the von Neumann entropy of system sizes L = 1024 using periodic boundary conditions. Data is
averaged over ∼ 14,000,000 (percolation) and ∼ 18,000,000 (Nishimori) samples. For percolation we employed Clifford simulations, while
for Nishimori universality we used free fermion simulations (see main text).

Higher-order Rényi entropies

Notably, the quality of the cumulant fits further improves as
one goes from the n = 1 von Neumann entropy to higher-order
Rényi entropies, with a direct comparison shown in Fig. 11 for
the second and n = ∞ Rényi entropies. Of particular interest
might be the behavior of the fifth-order cumulant, which ex-
hibits a sign change when going from the first to second Rényi

entropy (and then remains negative for all higher-order Rényi
entropies).

Boundary conditions

Let us close with the observation that, in our simulations,
periodic boundary conditions (see, e.g., Fig. 10) lead to much
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FIG. 11. Multifractality and cumulants for higher-order Rényi entropies (periodic boundary conditions). Same as Fig. 10 but for the
second Rényi entropy (left) and n =∞ Rényi entropy (right). Data is again for system sizes L = 1024 averaged over ∼ 18,000,000 samples.
Note that the fifth cumulant switches sign when going from SvN [Fig. 10(b)] to the higher-order Rényi entropies.

cleaner data than open boundary conditions (Fig. 12). This might be a useful pointer for any future calculations of cumu-
lant estimators.
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