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Abstract

Motivated by the goal to give the simplest possible micrpscéoundation for a broad
class of topological phases, we study quantum mechaniti&lelanodels where the
topology of the lattice is one of the dynamical variables.wdaer, a fluctuating ge-
ometry can remove the separation between the system sizén@mange of local in-

teractions, which is important for topological protectiand ultimately the stability

of a topological phase. In particular, it can open the doa fmathology, which has
been studied in the context of quantum gravity and goes byhémee of ‘baby uni-

verse’, Here we discuss three distinct approaches to ssgipgethese pathological
fluctuations. We complement this discussion by applyingggke€s theory relating the
geometry of manifolds to their vibrational modes to studysbectra of Hamiltonians.
In particular, we present a detailed study of the statispecaperties of loop gas and
string net models on fluctuating lattices, both analyticatid numerically.
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1. Introduction

Topological states of matter have become a major topic ideosed matter theory
and experiment. Quite simple microscopic Hamiltoniargs, #hose of fractional quan-
tum Hall (FQH) systems, are known to harbor emergent topcédghases but often
determining the correctfiective low-energy theory is flicult: it becomes a delicate
matter of energetics once one moves beyond idealized sroged interactions. An-
other way of idealizing interactions comes in the form of muian lattice models. In
recent years lattice models have become another, comptangsource of topological
phases. Examples include the well-studied toric code mdilelnd the Kitaev hon-
eycomb model |2], which realizes the Ising topological quanfield theory (TQFT)
in a controlled perturbative regime. A more general cladattite models was intro-
duced by Levin and Wen|[3] — “Turaev-Virg”|[4] in the math litgure — which are rich
sources of exactly solved achiral (“doubled”) theories.

There is, however, a tradd¥dn using these models. In the exactly solved LW
lattice models we know everything, but the Hamiltonianladtificial: finely tuned,
12-body interactions without the comfort of familiar “kith& and “potential” terms.
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In FQH the Hamiltonian is simple and natural, but the conioecto the (or several
competing) topological phases is not obvious. The motivedif this paper is the search
for a middle ground where a simple local Hamiltonian can @y identified with a
unique topological phase. Our chief innovation is to trhatlattice itself as dynamic
variable so that there is no fixed lattice underlying the efittspace, hence the words
“off lattice” in the title. Our search for this middle ground isspented as a travel
log, with some surprises, disappointments, and discosveAdong the way we came
to better appreciate what exactly a fixed lattice is good fat what adaptations its
absence requires. Briefly, a lattice model supplies twottesgales, the lattice scade
and the length of period, where topological protection comes from an error scaling:
€ ~ e onsl/a protecting quantum information without this ratio of ssale.g. when
going df lattice, is a key challenge.

Levin-Wen models place degrees of freedom (“labels”) onettiges of a trivalent
graph dual to a fixed triangulation of a surfaceX, where the labels come from a
fusion category. The labeled graph is called a “string nEltiere is a mathematical fact
encouraging us to leave the concept dikadlattice behind. Starting with a consistent
F symbol (i.e. one obeying the pentagon relations) for a fusategory

a b a b
H N I (11)
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and a closed surfacg the vector space of admissibly labeled string net& amodulo
isotopy and is canonically isomorphic to the LW ground state Hilbertegé(X) built
from a fixed dual triangulation. Clearlfz(1.1) is a simplear§hg point than the LW
Hamiltonian, but there is a serious problem: no singledatfive use the word “lattice”
here to mean the dual structure to a triangulatiortpfvill contain simultaneously
bonds forming the “stick figures” on both the left and righthtlssides of[(T11); the
F-move necessarily modifies the lattice.

In fact the LW Hamiltonian arises from a composition of steimoves which —
like a perturbation through excited states — begins andyiealds on the same lattice.
For the honeycomb lattice, the LW Hamiltonian is a 12-bodyntearising from 6F-
moves. Our idea here is to construct an environment wherg tmove itself may be
written directly into the Hamiltonian forcing the undertygj lattice to fluctuate.

This paper starts by reviewing the problems we encountenvgoing di-lattice
in Sec.[2 and then present various ways to achidi4atiice topological models in
Sec.[B before concluding with a summary of the lessons ledinoen this df-lattice
expedition in Sec[J4. The appendices contain a number oftsethat are interest-
ing beyond the main subject of this paper._Appendix A provessarete version of
Cheeger’s theorem appropriate graphs with weights on ealggwvertices extending
work of Chung |[5]. We use it to derive bounds on the gaps of lyiagplacians and
other local Hamiltoniang._Appendix| B derives an upper bofamdhe scaling of the
gap of the graph Laplacian on outer planar triangulaticsikywing an idea developed
with Oded Schramm._Appendix] C presents exact results forffalattice version of
the toric code model, and finafly Appendix D presents nunaérisults for the gap of
the Graph Laplacian and Cheeger’s constant for treesguiations of the sphere and



outer planar triangulations.

2. Off Lattice Hazards

Let us begin by cataloging three hazards which awaitfisattice.

2.1. Baby Universe

The first hazard is well known in Euclidean quantum gravitys called “minbus”
or “baby universe”|[6]. It refers to the fact that if a triarigtion (or any other poly-
hedral decomposition) is chosen uniformly at ranfBdor a sphere (or other closed
surface of fixed genug) among all triangulations of a fixed numbeof triangles, it
is likely that there will be a short dual loop containing numes vertices on both sides
(or in the case of surfaces with> 0 there will also be short nonseparating loops). We
measure the length of a (dual) loop simply as the number cd®dgrosses. This can
be formalized by saying that Cheeger’s [7] isoperimetrigstant— 0 whenn — oo,
almost always
length(y)

k= min , )
separating dual loops min[area(S), area(S)]

(2.1)

whereS andS are the components of the surfateninusy, andareaS) (area(S)) is
the number of vertices (or sites) $1(S).

It is known that typically a triangulated sphere kas O("’%). There is in fact an
asymptotic formula [8] for the numbegh) of isomorphically distinct divisions of a
closed genug surface into squares with the condition that the dual gragshrto odd
cycles:

#y(n) = 12'n3@-D = 127n73x, (2.2)

wherey is the Euler number. It is only a simplifying technicality treat these quad-
rangulations rather than triangulations — similar asyrtiptsshould apply but with 12
replaced by some other less convenient baseytheis universal.

An easy application of EqL_(2.2) (we thank Gilles Sdfi@efor bringing this to our
attention) is that it is possible to estimate the fractig(m) of genusgy surfaces that are
divided by a separating curve of length four into surfacegesfusy; andgs, g1, g2 > 0.
The method is to remove a random square from random surfacgsaadg,, glue the
results together and count how many ways this is possiblefag@on of surfaces of
genusy = g1 + g2. The resultis:

fa(n) ~ nY2. (2.3)

To summarize: constant size bottle necks are algebrailiiedlly and logarithmic
bottlenecks are virtually assured. This appears to be ve&gvorable for the protection
of topological information. When working with lattice mddewe are used to error
rates appropriate to tunneling problems l&é&"S% wherelL is the linear dimension
of the lattice as a multiple of the lattice constant. If beritécks reduck to constant or

Lor by any other local formula.



even logarithmic size, the protection disappears. Thisdaditst issue to come to terms
with when considering uniformly random triangluations (R

For quite a diterent reason, these bottlenecks and baby universes havereel-
come also in quantum gravity. There one seeks a Hamiltomiactibn on triangula-
tion which concentrates near Euclidean flat space but #itllva a liquid of possible
universes. Forty years offert have failed to find such a phase even in dimension
2 (at least in the homogeneous setting), for a review iseelfdk possible to form
a “branching polymer universe” of Hausdibdimension 2, to perturb about a single
rigid Euclidean crystal, or a “collapsed phase” of infinitautsdoff dimension, but a
nearly flat, yet liquid, phase, or even a critical point, hasrbelusive. However, in the
last dozen years progress has been made by breaking the synhetgveen space and
time and allowing only triangulations appropriately fodid by space-like leaves [6].
The approach is called “causal dynamical triangulationD{¢ and has been shown
numerically to provide “birth control” [9] — there are parater regimes, called the
“C phase”, with no baby universes in which the space-likedsare on average nearly
Euclidean of the desired dimension. In Section 2.3 we desan approach to build-
ing a (1+ 1) + 1 dimensional model for a+2l.-dimensional anyonic system in which
the 2 spatial dimensions are broken into-alIpair to exploit the favorable statistical
geometry of +1 CDTs.

2.2. Gapless Modes

The second issue with URT is the mixing time. We analyticaltfimated the
Cheeger isoperimetric constdnin a toy model of surface triangulations called “outer
planar” triangulations. In this context we show analyftigal < n-z, whereas in our nu-
merical study (presented[in AppendiX D) the first eigenvaloéthe graph Laplacian
(the “graph” has vertices outer plane triangulations argksglaquette flips between
these) goes lika ~ n2 (this translates to the first eigenvalief the graph incidence
matrix scaling likel ~ n"! sinced ~ An"tin our model@). Cheeger like inequalities

show (sef Appendi J):

2h=21=

h2
> (2.4)

or
Nt hen?2.
We believe the truth is near the high eémet n, and that on the sphenex n=175,

As a further probe of the spectrum, we studied the dynamissriofy nets on the
2-sphere (see Appendix] D) and also observed a mixing tinmé, i.e. A ~ n~2, and
A~ n L, String nets are dual to triangulations but slightly morgiiee, e. g. a closed
loop in a string net is permitted whereas the usual definitibtniangulation does not
permit a triangle to be glued to itself.

All this confirms the findings of the quantum gravity commuynithe space of
random triangulations, quadrangulations, string nets, @ a surface will mix alge-
braically fast but not so fast (which would need to®(@)) so that thel first eigenvalue

2 \We need to remove an exponentially small number of states the Hilbert space to obtain this scaling.
For a detailed discussion dee Appendik C[and Appendix D.




of the incidence matrix is gapped or, equivalently, that@eeger constamt(of the
graph-of-triangulations) is bounded away from zero.

2.3. Local Distinguishability

A third problem was noticed when we studied multi loops on Aquiic honey-
comb lattice. The chosen dynamics is that of the toric cofleHdwever, we made
the convention that if two multi loops were isotopic, defatsie one to the other, then
they would be identified and represented by a single kei. IpeRdix G, we present
data which shows that the trivial winding sector can easlpizked out from the other
three by a “local” observation — we count the number of “lesive- that is loops with
no smaller loops within. In retrospect, this is no surpriBeing in the trivial sector
allows the possibility of no essential loops whatever — fiossibility permits more
space on the lattice for leaves.

Local distinguishability is, of course, the death knell gpological protection. A
state which can be observed locally can be acted on by a lpeahtor. This is a third
disturbing finding if we grant that leaves are to be considiéoeal structures. Since
metrical notions have been temporarily banished, it is uquidntuition to reformulate
the appropriate meaning of “local opeator.” Leaf deteclias, in this context, as good
of a claim to being local as does any operator.

2.4. Work-arounds forgLattice Troubles

Of the three problems, (2) is the least concerning. Evenefdtare low energy
metrical fluctuations (one may dub them “gravity waves gytlappear decoupled from
topological degrees of freedom which can be encoded on a#tatel With respect to
problems (1) and (3), there is a somewhat solipsistic swoiutd the apparent loss of
topological protection from (1) bottlenecks and (3) vaadas in leaf count. It is simply
to deny that this is a problem. Once kets of the Hilbert spaeasatopy classes (of
triangulations or nets — perhaps together with a partighe tiabelling of the bonds)
we have lost direct contact with any notion of a position clmatex. Isotopy slides
and stretches, so we no longer know what is long or short ar edere we are. This
viewpoint leads one to say there are no local operators analltherefore topologi-
cal protection — protection against local operations —ugdbpgical. But such a view
comes with a heavy price — without a position coordinaterrelation functions loose
meaning and contact with the condensed matter notionsplisap. Consequently we
will not take this path but rather consider three distingbraaches all of which en-
force flat Euclidean space as the background, but in quierdint ways and with quite
different results.

In summary, we find that there are plausible and even intnguways to model
topological phasesfblattice. The next step should be to identify a case where the
model variables can be mapped to electron degrees of freedom

3. Enforcing Flat Space: Crystalline, Liquid off Lattice Models, and CDT

Topological phases of lattice models are known in the plsyigirature from Levin
and Wen [[3] and in the math literature from Turaev and Vira [¥Ye explore what



happens in taking such a modelfdtattice” by including the underlying cell structure
or “lattice” among the dynamic variables. Thus, our Hilbsgaice/H will be spanned
by kets which are pairA, S)) whereA is a triangulation of the surfacg with n
(fixed) triangles ancs is a “labeling” of the dual edges &f. We can equally well
focus on the dual string net and its variations, some of whiely not be dual to actual
triangulations. It is the dual edges which form our so-chlétice, e.g. the dual edges
form a honeycomb iA is the standard triangulation of the plane by equilateiahtles.
The labels are from a pivotal fusion category. Two interesixamples are with label
set{1, r} of the Fibonacci theory Fib and fusion rul&® r = 1& 7, which when applied
as labels on string nets yields the theory Dfib [10], or withelleset{1, x} and fusion
rule x® x = 1, which gives the toric codel[2]. Rather than speaking inegalities,
we give our constructions in the former case. They are eastignded to the broader
class.

In moving df lattice we can be timid or bold but as we have argued we must find
some way to tie our lattices to the Euclidian plane. Our Hamnian can charge energy
for defects in a base lattice, say the honeycomb, or it ca afktriangulations equally.
There is, of course, an adjustable parameter connectigg tarzero energy penalty
for defects. However, decades of experience with 2D quamgavity (qg) models
suggest that there is a single phase transition from a phélsemplitudes clustered
near the original honeycomb (we call this crystalline) andaid of lattices whose
geometry is almost surely “cactus shaped” — Cheeger cdnstgﬁﬂ. In the quantum
gravity community the lack of an intermediated phase was#use of some despair,
the cactus buds being called “baby universes.” As we rengidrkine introduction, this
problem may have been solved in the quantum gravity corexy][by introducing an
appropriate causal structure. This is explored in SectiBnwhere 3D space is split
into a radial “space” coordinateand a periodic “pseudo-time” coordingeBut if one
insists that 2D space be treated homogenously, then theurdmrses must be faced.
We will do this but first let us explore moving only timidlyfithe honeycomb. There
we find a gapped model which is conceptually very simple (wektimore simple
than the LW model) but the price of our timidness is that the igaabsurdly small,

54 . . .. .
perhapss e(%? , Wheree is the energy scale of the individual terms. In spite of the
disappointingly small gap, we next explain this model as & nice, controlled context
for stepping — ever so slightly fldattice. A bolder step will be taken later.

3.1. Crystalline Case

Our first Hamiltonian has the fortigg = H3; + 6D. Hqg acts on the direct sum of
fibers of a bundle of states over the moduli space of string (tlebught of as metrics)
onzx, say atorus. The terms bfgg are of two types:

1. Fusion constraints; these are projectors acting withir§
2. F-moves; these act between adjacent fibers

The fibers are degrees of freedom on the edge set of any given sét. F-moves de-
fine a connection linking these fibers together which, bezafithe pentagon relation,
trivialize the subbundle satisfying fusion constraints.

The terméD is an energy penalty which charges enafdgr each pair of (5-gon,
7-gon) pairs created by aR-move (see Figure 2.4a). The number of such defects



is counted by the operat@. The expected Levin-Wen 12-body plaquette termas
directly included but we will show that it arises at high artlg considering the process
which virtually breaks a-labeled string, resulting in a pair of “electric” excitari§
costing energy & see|[11]. We consider two triangulationsandA’ (and their dual
nets (or “lattices”)N and N’) to be equivalent if they are isotopic &) i.e. if we
can slide one to the other. Later, we 8db zero to obtain a lattice liquid, then add a
string tension term and also tie each neX fa a fixed way (unrestricted isotopy will no
longer be permitted); but for now we study the crystallingecand need not distinguish
isotopic nets. The dynamics on the set of nktsdual ton-vertex triangulations is
shown in Fig[(311.

Figure 3.1: H-l move, calleéF-move when cogicients are added as in (1.1).

Now let us define}-lgg more precisely. First, it enforces fusion rule terms at each
vertex of each nel' by penalizing the illegal Fibonacci fusion (see Fig. 3.2}l éts
symmetries.

1

Figure 3.2: lllegal Fibonacci fusion.

Second, it contains terms between states of adjacent\hatslN’ which enforce
-1 1/2
T

the unitaryF—symboI’ :1,2 ' T = 1+T‘/§ Letv, wbe the normalized states -f

-1
-7
shown in Fig[3.B. The second termsHﬁg are of the formid —|v)(v|) and {d — |w)(w).

We discuss the spectrum blﬁg first. Hgg is positive semi-definite and its ground
state manifold consists of the staigswith (legghp) = 0. Such a wave function
is completely determined via tHe-symbols by its restriction to a sample i}, e.g.
a honeycomb. (Importantly; is notoverdetermined (frustrated) since tkesymbol
satisfies the famous pentagon equations.) The ground statifaid may be classified
according to the number of magnetic partiles(of which, in our example system,
there is only one type). Since we have only imposed fusion Fumdoves there is
no energy penalty fom charges on plaquets, provided that, unlike in the Levin-Wen

3In the notation ofi[10] the electric pair may be eitherx(1,7® 1) or (18 7, 1® 7).
4In notation of [1Djm=r® 7.
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Figure 3.3: The statesandw. Solid lines carry the particle label and dotted lines the trivial label.

X
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model, they are allowed to roam ergodically according torttewves £) which link
adjacent nets. The magnetic charges\Srcan return arbitrarily permuted, so the only
zero energy (unfrustrated) states wjtmagnetic chargeg,> 2, are the ones that have
equal amplitude for all positions of thiecharges (on alh-vertex nets). In contrast to
the LW model magnetic charges are localized gapped exwittitheF-moves here
delocalize them and lead to a gapless continuum of magrteiges above the ground
state. In addition, there is also a continuum of gaplessvityravaves,” or phase oscil-
lation across the (not very tightly bound) grajph (see sectiop Appendix|B). This is
analogous to coexisting gapless magnon and phonon egoigdti a quantum magnet.
Ny is regarded as an abstract graph with the triangulatign@®r netsN) as vertices
and edges given by the move shown in Fig] 3.1. The approprétex weighting
of N, (seg Appendix A) is uniform until théD term is added. As explained in 1
(“Introduction”) and_3.2 (“Liquid Case”) below it is belied thati;(N,) ~ r—11

Adding the termyD induces frustration which causes the ground state wave func
tion yo to concentrate near the original honeycomb states. Whertonst- y, some
const~ 4 andy the energy scale of thE-symbol, kinetic considerations are over-
whelmed and there will be a phase transition to exponeysatiall fluctuations around
the honeycomb configurations. This concentration altersights (see Appendix|A)
on the vertex se¥(N,) and is expected to gap out the gravity waves.

Second - H move here.

Figure 3.4: Oné — H move creates a pair of {gon, 7-gon) pairs costing energy

Treating a pair of (57)-gons as the fundamental excitation with chsie see that
the hexagonal crystal melts (at first order in perturbati@oty) for “kinetic energy¥
associated with thE-move satisfyingy > %.



Figure 3.5: A second — H move separates the two pairs. A third H move along any of the four bold
bonds (Figure 3.4) causes a % pair to further propagate. Delocalizing the defeci at4y in lead order in
perturbation theory in/6.

Now consider a virtual excitation (of energy cestl) which pulls an electric pair
(say ¢®1, T®1)) out of the vacuum. Because of thentrivial mutual statistics between
the magnetic{®7) and electricf® 1) excitations, a frustration arises which increases
the cost of the electric palr?e* in the presence of magnetic particles. For smglthe
effect is roughly linear:

WS HaguT®) = Wo® IHaghis®) ~ ja (3.1)

for somee > 0 and where we have s@i5® [H s ) = 2e.

Herea = y/54 is the energy scale of the F-symbol constraint divided by the
number ofF-moves required to take one plaqueB®f Ny around a neighboA and
across an “electric string” (see Fig. B.6). Thigiscaling ofa mirrors that of the
ground state energy of a one dimensional ferromagnet ontamysf lengthn with
twisted boundary conditions.

The splitting which separates the “trug= 0 vacuums now show up at 56th order
in perturbation theory. (56 54 + 2, the 54 counts the steps in Fig.13.6 to md/e
aroundA and the 2 comes from first creating then removing the “elgcprair.) The

456
(6 + 2€)%5’
56

uums have an energy reductionzefyi.. These numbers are eash55th
0+ 2+ ja)®®

powers of a small and a somewhat smaller number, respecti@e may say that
perturbation theory predicts, in some regime, a definitétisyg off of the true vac-
uum which, although vanishingly slight, is constant in systsize. Thus in summary,
the timid “crystalline” df lattice approach succeeds in principle but may be judged
physically useless, because the gap will be tiny.

true vacuum has its energy lowered schemati@adly whereas thg vac-

5Slightly more accurately by (combinatorial factorsify®4(s + 2¢)~8(2¢)~".
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Figure 3.6: 9I-H-moves (orF-moves at the Hamiltonian level) rotate the three bonds imgdéhe “dot”
+12C. This rotates hexagoB —60° around its neighboA from B to B’. 54 moves complete the circuit.

3.2. Liquid Case

Let us now move to the other extreme and dropdbeerm by settingd = 0. Now
our kets are over a liquid of “lattices” or “nets” familiar the quantum gravity litera-
ture. Let us summarize what is known about the statisticeaxfd nets through theoret-
ical and numerical study (sge Appendix[B, Appendik D, [9H §&1). Given uniform
weight, a weight proportional to total Gaussgcalar) curvature, a topological quantity
in dimension 2, or any other known local weight which doeserdbrce a “crystal,”
the geometry is cactus-like, with many budding or “baby"wenges. These correspond
to Cheeger constant "’% (using the combinatorial weights), = #triangles. That
is, bottlenecks of size lagare common. In fact, the probability of a bottleneck of
constant size is' nz, i.e. only algebraically small. In a related vein, studymixing
times suggests (s¢e Appendi} D) thaf= 1, of L, se¢ Appendix_p) decays as ap-
proximatelyn—27®> when the nets are weighted uniformly. We find a similar expone
for the related case of multi-loop rather than net dynamics.

This seems to present us with two problems:

1. Gapless gravity waves
2. Loss of a length scale

The first turns out, by itself, not to be a serious problems kdtually quite inter-
esting to have a simple mathematical model which manifegitegs modes living side
by side with protected topological degrees of freedom. éndbntext of FQH states, if
the model is taken to be ficiently comprehensive to include lattice ions, then surely
their phonons are also an example of this phenomenon. Orthikee lvand, the loss of
length scale is inherent in declaring kets toi$&opy classesf labeled nets is a seri-
ous problem. We no longer know if a bond is long or short, glvedr wiggly. We view
with concern the loss of combinatorial protection convelggd large regular lattice.
Recall that on ath x L torus mixing of topological sectors occurs via tunnelingrg a

10



Wilson loop of length and will be suppressed by a factoref°"st. As noted in the
introduction, if bottlenecks caudeto be replaced by loh, or even worse a constant,
then the exponential protection disappears.

To deal with this problem (2), we introduce a fixed fine-scatéde on the surface
¥ (perhaps writingz as anL x L torus) and regulate our nets to lie within this fine
lattice. The netsV, still are restricted to vertices,n = small constant(?), but now
their detailed position i is pinnedas part of the data of a ki, S)); A is regarded
now as a specifically located, or pinnedyertex net inX. We will need to impose
something that acts like “string tension” that preventstéebonds from becoming too
long as measured in the underlying fine L grid. This prevents short essential loops
and so avoids baby universes. As explained below, the boaetsie “virtual”, only
their end points are precisely located. String tension @asimulated by establishing
a hard energy penalty teraB in H, which charges energy for net bonds longer than
{max grid bonds (counted by the operaf). Alternatively, a harmonic string tension
can be imposed.

Technically the simplest way to incorporate our pinning atrechg tension terms
is to alter the basic Hilbert space on which the Hamiltonmwdéfined. Begin with
a fine lattice of sites on the surface (such as a torus) andtagddee all pairs: (a
bond indexed by two sites no more th&g,, steps apart and thought of as joining the
sites, a label on the bond). Note that the precise physiealephent of the bond is
not chosen to be part of the data defining alkedne may say that the string net is
"imbeddable” — according to certain rules — but not "imbeddd& he bonds at this
level are "virtual.” The labeling just mentioned is from thppropriate set of quantum
group representations — as is usudllyr}. The fusion constraints now specify that
the virtual bonds first form a trivalent string net and sectivad the three labels at any
juncture obey the algebraic fusion rules appropriate tosglstem of quantum group
representations being used. An additional “isotopy” testifs the location of a vertex
within the underlying lattice, provided all distance coasits are satisfied. ThE
symbol applies to recoupling virtual bonds.

Let us explain why equally weighted pinned nets are gaplesthese local
moves. The situation is only a slightly more global versidritbe space of all arcs
transversing a rectangle” X. A typical arc will be nearly dense — it will come within
a constant distance of a positive fraction of lattice poinfs define a bottleneck or
“Cheeger cut” on this space of arcs, consider the mid pojrih terms of arc length,
of every arc. LetJ(L) be the set of arcs for whictm lies in the upper(lower) half of
X. The “cut” isU N L. Since the probability density if nearly uniform farin X, the
Cheeger constant satisfiess . Thus by Appendix 2 3= A. The nets will still be
gapless after pinning.

Pinning the net restores thee®™s!/2 scaling for tunneling of quasi-particles and
hence topological protection. Even if the net is thin (in yhdirection) as in Fig_3]7,
orderL/¢maxisotopy moves are required to move an excitation aroundsanéal loop
and so operate on the ground state manifold.

We will now argue thatdyg = Hgg + wB, in the pinned context, supports achiral

6This simplifies detailed balance for theH-moves.
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1 L-moves

excitation path

Figure 3.7: A net with a thin part.

topological phases such as Dfib and the toric code similad g, the Levin-Wen
Hamiltonian, yet coexisting with gapless gravity waves. e Bhsuperscript iana
indicates that we have added one more “between fibers” teoartbasic Hamiltonian
Hgg, := “virtual” fusion and “virtual” F-terms. This term raises or lowers the number
of vertices of the net by 2. The Hilbert space is constrainmsl to have a maximum
of nvertices per net rather than exaatlyertices. The new term introduces (removes)

a “bubble” into a virtual edge:

EUNS 407
with any allowed fect on labels. Rather than write a general formula as befoge,
give as examples the toric code and Dfib cases instead

toric code: ~ 72( —————— e O )
s %(JL ) (3.2)
1 1
S e
- == O O]
V2471 Vr

Just as we did below Fi§. 3.3, the relations[of3.2) are yasihverted into pro-
jector of the form:
(I-IvXv) and  (1-|wxwi),
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where (in the Dfib case)

v 1 S — O
lized = - — Lo Y/ )
unnormalize Vit? Vit2
1 1
Wunnormalized = 1 - = (L + T) - V2r+1 :

These projectors are the new terrTHg\;.
Once a bubble has been introduced in a bond, a successiomioaétgally degree
of face) manyF-moves inflates the bubble, carries it around the face anddbiapses

it back to its initial state

This process is easily seen to enforce the LW plaquette tondthe flux through
each plaquette is trivial. The question is how strongly idorced. Note that there
is no excitation present in Fig._3.2, rather we show a circfamily of “horizontal”
terms relating one fiber to another, returning finally to thigioal fiber. Consequently
the cost of a violation of this emergent “no flux” conditiomist a high power of small
number but rather proportional to the reciprocal of the nenab horizontal terms in the
loop. Again think of a one dimensional ferromagnet with tetsboundary conditions.
The number of horizontal moves is measured by the nets catuios, 6+ 2, which
is 6 for the trip around the hexagon, 2 for creation and afatibn of the bubble. Thus
despite a suppression by a factor%othere is a substantial gap to magnetic excitations
in terms of the bare energy scale of thenove and the “new” term ilh-lga. Of course
the cost of an electric excitation is precisely the baregnefthe “vertical”, i.e. within
fiber, terms which enforce the fusion rules.

Although in a random net some plaquettes will have more thesides, the proba-
bility of ssides decays exponentially wist{sed Appendix_P). Thus a small portién
of the configuration spack’ with s-gon plaquettess large, has cusp-like geometry (as
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in the case of hyperbolic geometry) and supports neithetl Sdh@eger cuts nor low
lying eigen functions. It follows that although a magneticieation may be cheap over
C there is no #icient way to tapper b the amplitude towards zero ox — C where
magnetic excitations are expensive. The conclusion isaliaanalysis fois ~ 6 is, in
fact, general and shows a gap to magnetic excitations aalidhe configuration space
N.

A detailed comparison dflyg to the exactly solved Levin-Wen Hamiltonidd v
is instructive. The ground states (in the thermodynamid)iare expected to be bi-
jective. The excitations dflyg are, in contrast td4,w, mobile. To build point-like,
confined excitations “wave packets” will need to be formedmbinatorial recoupling
arguments show that if such packets are confined in poteméé and braided, the
LW (i.e. Jones) braid representation will be exactly realigin the strong confinement
limit). Thus, we may expect that the entire topologicalstoue, the TQFT, represented
by How is recaptured byqg. Itis true that braiding will excite gapless gravity waves,
but these are visibly non-interacting with the topologicébrmation contained in the
combinatorics of labeled nets and their recoupling rules.

We would like to explain more fully this remarkable propeotythe liquid phase.
This is the rigidity of topological information maintainéd defiance, so to speak, of
the gapless gravity waves which propagate about. To doehissl speak metaphori-
cally of the underlying spack, of (unlabelled) configurations as a “chain”. This is
a reasonable picture since our spectral studies show tadbwheigen values of the
graph Laplacian have inverse power law scaling similar éolftm=2 scaling of a chain.
We may very roughly view the quasi-geometryXyf as a string of lengti®(n). We
should worry that very near the ground state energy we wilelstates whose topolog-
ical characteristics “rotate” as we pass from one end of Hancto the other. Recall
our two main exemplars: the toric code and Dfib. Both of thesesta 4 dimensional
ground state Hilbert space (torus) spanned by the sitBte®), |3), and|4). Imagine
a system state that is a family of topological ground stdtes itotates by 2 as we
move across the length of the “chaii;, and so, on the torus triangulation at “chain
position” x, 0 < x < L, we see the ground statécos(2rx/L) |1) + sin(2rx/L) |2)).

Is such a system state a candidate for a low energy excitaon= L approaches
infinity? The answer is: “No”. To see this look at consecutireks” in the chain,
triangulationsA; andA, with states¥; on A; and¥, on A,. By the “code property”
of topological ground states (see[12P; and¥, cannot difer by the application of
a local operator. Passing betwe#pn and¥, will cost energy according to thldga
term. In fact, this rigidity is quite robust. Up to the usualeats about perturbations
inducing exponentially fine energy splittings, it is not pibde to deform the ground
state as one moves through the configuration spac8ince for us the configuration
X € X is a dynamical variable, this is important. If topologiagafidrmation is stored in
this novel phase, when it is retrievédmust be sampledX will be sampled according
to some distribution and the topological state over the $admwill then be probed
by a quantum measurement. The output distribution of oupgrovhen applied to a
system ground state, will be independent of the sample, as desired.

Because of the pinning and string tension terms, the typie@lin this lattice model
are qualitatively similar to the boundaries of Voronoy sedfoduced by Poisson dis-
tributed centers. We recommend this alternative modekatvestigation of interested
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readers.

Hqg is not a “lattice Hamiltonian.” In particular, it is not deéid on a “tensor
product” Hilbert space (but rather a fiber-wise direct suntheke, one for each net in
Nn). Thus, it is not precise to assert théj is “k-body” for anyk, but it is evidently
quite simple. One may say that the flux (plaguette) termdlgf, which is 12-body, or
more precisely a 6-parameter family of 6-body interactjtnas been simulated by the
F-move, which in these terms is a 4-parameter familgrdébody interactions. But to
achieve this, we have resorted to a context where the latsiel fluctuates and must
be counted among the dynamic variables.

3.3. CDT: A (&1)D Home for Anyons

Causal dynamical triangulation (CDT) builds layered {)-dimensional “space-
times” by randomly constructing Lorentzian strips as beletere all horizontal bonds

T pseudo-time= 9

Figure 3.8: One layer of space-time in CDT.

have length = 1, and all other bonds have lendte: —a < 0, where a is a fixed
constant, see Figl_3.8. The acti@n= f(§ + 2A) is the integrated Regge scalar
curvature (appropriate to Lorentz space) plus a suitatdmotogical constant.

We take pseudo-time, periodic. It is known|[6] that for suitably chosen~ .7,
there is a liquid regime of roughly flat Lorentzian geometoa S x R. This finding
offers a remarkable solution in cosmology to the persisteritlpno of baby universes.
We recommend for further study the possibility of importthgs innovation into con-
densed matter physics. The same action can be used to defmsigydn string nets
supported neat flat geometry, and so preserve topologietdgiion in anyonic models
based on these geometries.

To visualize the braiding of anyons, described next, pe8ir< R asR? — {0} via
6, p) ~ (€,6). The geometry oR?— {0}, i.e. its Lorentzian triangulation, is explicitly
among the dynamic variable, but in addition the bonds of laegulation are labeled
from a (quantum group) label set, which in this papeflis}. “Singularities” of the
labeling (as explained in detail in Fidkowshi al, see|[10]) - annular regions where
the state cannot be extended over the disk to a vacuum sta¢hed'quasi-particles”,
or anyons, of Dfib. So a loop of states is a loop of annular Lizrgaometries together
with anyons.

One might wonder when importing a 2-dimensional net moaehfa (11)-dimen-
sional quantum gravity model, whether “causality” in thedabwill prevent braiding.
If information is not allowed to flow backwards in “time” (psgo-time= 6) we might
be unable to braid anyons since they can only move forwartém tirection. This
may appear to limit their possible braidings, but in actyatidoes not. A full counter-
clockwise Zr-turn generates the centérof each braid groupB,, n > 3. Thus as the
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anyons move radially back and forth, their overall progmss the pseudo-time 6
direction only multiplies the braid by a central element fresponding in each irre-
ducible sector of the Jones representation to an irrelexsartll phase. Consequently,
the causality of the construction (in pseudo-timé) does not restrict the image of the
braid representations and building topological phasestithampered by a causality
constraint.

&

«—t=time

«—0 = pseudotime

Figure 3.9: Anyon trajectories superimposed on a centrigk.tw

4, Conclusions

Because nuclei are heavy lattices in condensed matter aggajly thought of as
fixed or classical degrees of freedom. It is true that in clsémsuperpositions of iso-
mers can be important but generally the lattice is not talké®ta dynamical quantum
mechanical variable. In this paper this is exactly what we\dle have not forgotten
that nuclei are heavy; we imagine that there may be modelshiohasome electron
degrees of freedom define a lattice and others decorate ithamdboth should be al-
lowed to fluctuate. This paper is not about a specific modehisfkind but rather a
preliminary survey of the hazards and prospects that awdiofii lattice”. Our focus
has been entirely on building topological phases, althaffjlattice models may have
wider applicability.

We have seen that the chief hazard is uncontrolled fluctogfiothe now random
geometry of the lattice, a phenomenon colorfully calleddypaniverse” in the quantum
gravity literature. These fluctuations threaten to dedtineyratio of scalet/a, system
length/ lattice spacing, on which topological protection, erroexp(-constL/a) de-
pends. We have also seen our three approaches (methodthafditrol) to retaining
topological protection. Briefly they were: 1) a minimallydtuatingcrystalline phasg
unsatisfactory due to a vanishingly small excitation gdpr the topological phase. 2)
Pinning the fluctuating lattice to a background (lattice ontinuum). This seems to
work but sacrifices some of the simplicity we hoped to find fhlattice models. 3)
Causal Dynamical Triangulations (CDT). Here we borrow thieition (as well as the
problem) from the quantum gravity community.

In order to evaluate the impact of geometry fluctuations|yaical (Appendix ()
and numerical (Appendix |D) work was done on the statistide@b gases and string
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nets. If Appendix A and Appendix|B Cheeger’s theory relatimggeometry of man-
ifolds to their vibrational modes is adapted to the infiniteensional context to con-
struct estimates of the spectrum of Hamiltonians derivechfour models. In particular
we develop a method for constructing upper bounds to thetrgpe@p of a Hamilto-
nianH by Monte Carlo studies (of both the gap and estimates for @r&econstant)
on a weighted grap® derived fromH. We find (method 2 and appendices) regimes
in which topological information is protected while codiig with gapless “vibra-
tional” modes across the space of geometries. Such restgimge us to regard the
off-lattice approach as viable and worthy of continued ingasibn.
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Appendix A. Spectrum of Graph Laplaciansand Other Local Hamiltonians

We start with the following data: a finite dimensional HilbspaceH spanned by
a preferred set of basis keff)}, a HamiltonianH : H — H, and a known ground
state wave functiogg = ; g |i) for H. We construct from the data a weighted graph
G whose Laplaciar? : H — H is easyto study numerically. We focus on the first
eigenvaluel(£) and verify the Cheeger inequalities f6r

hg
2hg > 11(L) > > (A1)

If it should happen that;(£) — 0 (as a scaling limit is taken), we may also conclude
that the originaH is gapless (in the same limit.) This is because a smalheans a
neckin the set of ketg|i)} with little coupling fromcH (wherec is a positive running
factor, perhaps proportional teystem si2e?, arising in the proof) from left to right
sides of the neck. The trial wave of the fogm = by — bgwgght(bl, b, > 0) will be
orthogonal tay and satisfyc(¢w1| H 1) — (ol H o)) — 0. If this rate of convergence
to zeros is faster thag it will imply H gapless. Conversely, if we know a quantum
mechanical system is gapped (e.g. the Levin-Wen maodel il3Nill imply a tightly
connected geometry for the appropriate weighted graphiafistet configurations.

The reader may wonder what good is a method for studyinigdag™if it requires
knowledge of the ground statl. In the case of a topological phase, one may begin
with a formula for the ground state wave function (givendsigotopy, or a chromatic
evaluation) and from this, attempt to build a gapped Hamién. This appendix pro-
vides ammunition for shooting down such Hamiltonians (seowing them gapless)
asin [13].

Here is the construction. The vertices®fare simply the index sdt} for the kets
of H. We set the edge weight; = c|H;;| providedi # j, for a positive constartyet to
be determined. Thevave functiorweight ati is d; = |a|%. Write d; = C X+ IHijl + Wi
wherec is the largesti(independent) constant allowing &l > 0. This fixesc and
thew;. Thecw; are to be thought of as weights on loopsi.atThus,G has edge
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weightscwj and vertex weightsl;. Following Chungl[5], there are “unweighted” and
“weighted” operatord and.£, both of which are symmetric and have a zero mode:

di—wi ifi=]j

Lij _ i Ii J . (A.2)
—Wij otherwise

£ = TYLT? (A.3)

whereT is the diagonal matrix witfl;; = d;. Explicitly,

- it e
L= \_/% otherwise (A-4)
]

ExampleA.1. As a sanity check on the method, we check explicitly, in a taydet,
that the choice of basis onlyfacts the spectrum slightly (by a factor of 2.) We explore
in the simplest case the dependence of the spectrufoofthe choice of bases fa{.

LetH = C2and
H = cosf —sind
9~ \-sind -coss

sing/2

Ho anmhﬂates(cose/2

) , SO we need to solve, withas large as possible, the equations

d;

. -0 .
sir? 5= c|sind| + wip

0 .
dy cog 5= c| sind| + Wa

Recalling that sii = 2 cosg sing, the natural (and correct) guess in the intervat 0
0 < n/2isc = Ztan}. This yields:

wp; =0 and Wo, = COSH
Substituting, we find:
1 tang
_ 2
L= (tan% tar? g)

Solving for the eigenvalues we obtaln = 1/ cos £, which in the considered interval
0 < 6 < /2 varies only between 1 and 2. In the other intervals we getasimesults.

With this small check of quasi-invariance #f under basis change, we derive the
Cheeger inequalities in the relevant weighted graph sgttilosely following [5].

L acts on functions of by (left) multiplication. The lowest eigenvaluedg = 0
with eigenfunctionfy(i) = +d;. WhenG is connefctefd/,lo is non-degenerate. We will
(FLf)
R A
the measure or vertex weighting with weight¢ d;, for f orthogonal to constants. We
denotel; by Ag or justA and usef for its eigenfunction.

be concerned with the next eigenvallge = ir}f computed with respect to,
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We define the Cheeger constant

FW(S$ §)
= min S\
SV min(Vol(S), Vol(S))

h

whereS is an arbitrary subset of the vertex $4G), Sis V \ S, F,, denotes the weight
of edges betwees andS, F,, = Z wi;. Finally, Vol(S) = Z di, Vol(S) = Z d;.

ieS,jeS ieS jeS
Theorem A.2. 2h> A

Proof. Let S achieveh and seta = Vol(S) andb = Vol(S). Define a “trial” eigenfunc-
tion: .
fi = { a, 163
~b 1eS
We have, from the Rayleigh-Dirichlet integral:
_ (+1)2
A< F(S, S)g

1 1
Fa+gb

= F(S,§)(%l + %)
OF(S,5)

~ min(Vol(S), Vol(S))
=2h

TheoremA.3. 1> h—zz

Proof. Let functionsf,k : V(G) — R be related byk = d;fi. Now the Rayleigh
quotient:

-1/2 -1/2
<k’£k>/<k,k> _ (kTVALT k>/<k,k>

<f’Lf>/<T1/2f,T1/2f>

Z Ifi — fj|2/ )
i~ 2,
i
becomest when minimized among; orthogonal tad;, equivalently byf, orthogonal
to constants. We assunfias such a minimum. Thugk = Ak.
We index the verticesof G in f-increasing orderf; < fi.1, and without loss of
generality assumg di > Zdj. For each € V let¢ = Z Wik, measures thith
fi<0 fj>0 j<i<k
“cut” betweenS; = {j < i} andS. Sets = min G

V' min(Vol(S), Vol((S)))’

Clearlyg > k.
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We setV, = {i|fi > 0} andE, the set of edges with at least one endpoinV¥in
fi iffieV,

Finally, setg; ={ 0 otherwise' Now computel:

L Z fi (Z(i,j)ea wij (fi — fj))
iV, Tiev, f2wi
(cutting df some numerator terms)
. Diiiee, Wi (@ — 9j)?
B Yiev Wi
(Z(i,j)eE wij (g — gj)z) (Z(i,j)eE Wij (g + gj)z)
(Ziev giZWi) (Z(i,j)eE wij (g + 91)2)
(by Cauchy-Schwartz)
(Z(i,j)eE wij (92 — QJZ))Z
- (Ziev giZWi) (Z(i,j)eE Wi (gi + gj)z)
(Sincez Wi (g + gj)? < ZZ g?wi)
E v

2
(Z(i,j)eE wij (97 — 9,2))
2
2 (Zv giZWi)
(discarding cross terms from the numerator)

(mialg2- ) (xiBvols)ig? - g3)

> >
- 2 - 2
2 (Zv giZWi) 2 (Zv giZWi)
(telescoping the sum)

(Zi Bwi 9i2)2 _ B2

h2
= — p— Z J—
2(sygew) 2 2

=

O

To better understand the proof of TheorlemlA.3, we summarizmeger’s original
argument in the context of a Riemannian manifvldDefine Cheeger’s constamby:

AredS)

h= Sseplaratinq\/l Vqume(M)
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Let f be the first eigenfunction of the Laplaciarorthogonal to constants.

[faf  [faf [£2  ([1H00F])
A= = >
TG
(o)
4 (f f2)2
Definet = f2 as a parameter oM and apply the co-area formula to th&evels to
obtain:

f(sz) = fAree(t-IeveI)dts thol[O,t]dt
=—hftd;/—toldtz—hftdvmz—hffdeOL

(-h [ f2avol)® 2

Thus,

A2

(f f2avol) 4

NN

O
We dfer a protocol whichmay succeed in verifying that a quantum mechanical
HamiltonianH, : H, — H, is gapplessabove its (known) ground statgd), as a limit
n — oo is taken.

Protocol. Select preferred ket for H,, (we do not clutter the notation by showing the
dependence of the index g&tonn.) useHy, (o), to construct the weighted grafs)

as above, and saf' = 11(Lg,). Recall that the construction &, requires extracting
a constant, (in our two dimensional example® = ¢ = (2 cos%)‘l,) the minimal
suppression factor for interactioi; required to normalize the vertex weightis:=

|aj|*> be positive and witty}; d; = 1. Compute the rati@"T‘m, whereD,, = max |a; n[?
for l/’O,n = Zi din ||>

Dp VAT
C

n

Claim. If

— 0, then H, is gapless, i.ed;(Hn) — 2o(Hn) > 0as n— oo,

2
Proof. We have checked" = 1;(Lg,) = h% sohy = hg, < V2a". As in the proof of
(A2), letS" achieveh, and define:

niin = (L4t icsha - n
(i) = an(an + bn)’ i e S",a,=Vol(S"
Ty -LtL, Ll e 5" by = VolS”
Y1) = bn(an+bn)’ ieS,b,=VolS).
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Then, suppressing thesupefsubscripts,
Wl H 1) — (ol H o) = BE1 — Eo

11
< E amw&”aj”Hiﬂ
ieS
jeS

11

- = \~-1
_al—aDFM&Sm
11 ppe

al-a

wherea = Vol(S) and without loss of generality/ol(S) < Vol(S). From Cheeger’s
inequality [A.3), we have:
Foheva
a
SO 1
Ei1-Eo< EIDFC*l <DV2ic™.

O

This protocol allows a systematic approach for vetting nieddich produce known
topological wave functions as the ground state (say on ah2rgp but may not be
gapped above the ground state. There have been previogssasin showing models
gapless by finding directly the Cheeger cut iWi(@) = SIIS [14]. The present proto-
col may be more practical as less geometric insight is requirnfortunately plugging
in the analytical bounds from Appendix C into the claim we flﬁg@ ~ n%4, Using

the numerical scalings in Appendix D we fir?dtn—‘”_" ~ n*8, which does not approach
zero asn — oo either. Further geometric insight into the gra@h might allow one
to usel” rather thanya" in the claim, yieldingn=3/4. This would be legitimate 6,
looked spectrally more like a tree than a line.

Thed = 1 loop gasl[14] has the surprising feature that the very saxmeng state
arises as a gapped and gapless ground states of fievedit Hamiltonians [13]. A
second exampled(= V2) was proven| [15] via decay of spatial correlators never to
arise as a gapped ground state for any local Hamiltonian. edew in many cases
unlike the above, one will not be so fortunate to find a narratfor G. Rather, more
generically one may expect to learn something about therspedl) of £ onG and
perhaps some properties of the first eigenfuncfiaia Monte Carlo methods applied
to G (since this problem is completely classical). In this cases should try to use the
protocol. In a gapless system, to find the precise power athwiii— 0, more refined
trial wave functions involving a gradual, not abrupt, phelsange across the cut should
be studied, as in [14].

NoteA.4. Our protocol can be used in contrapositive form to arguettiet associ-
ated to certain weighted graphs of configurations cannatyd&mo quickly in system
size when we know that the (weighted) graph arises as thengrstate of a gapped
Hamiltonian, such as the Levin-Wen model. Specifically, wia@plied to the Fi-
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bonacci anyons, one may argue that the set of subg@pifsthe honeycomb when
weighted by its topological evaluation (seel[10]) and siggpWith edges correspond-
ing to a bounded number & moves and local circle creati@eletions on a finer scale
honeycomb must havk; decaying no faster than (system siZe)

Monte Carlo methods may eventually be able to extract soffieenvation of the
eigenfunctionf associated td;(Lan). It is reasonable to suppose that knowledge of
f could refine the previous protocol. The final paragraphs gbelygix A present,
schematically, the outlines of a complementary approa(eixmtactlng information on
the quantum mechanical spectrul) from the first eigenfunction of the classicég.

Let us usef to build a trial wave functio; = f¥, from the ground stat®, of H.

An = dop < WalHIpn) = WolHIo) = > (FolTal fio) = D WolTalyo)  (A5)

where we have writtetd = ), T, as a sum of local terms. For any tefiim which
acts at staté € V(G) we should study the variation of the quadratic forms on the
right hands side of equatién_A.5 at second order in the gnadié€. (The 0-th order
variation vanishes sincé is normalized,[ f2du — [1%du = 0,3 laf> = 1. After
summing overr, first order variation must also vanish singe|H|yo) is critical for
(actually minimizes) expectation.)

At 2nd order inv f and witha fixed,

rh.s,(AE) = ATVl (A.6)

where/lmax measures the largest eigenvaluergfafter normalizing all eigenvalues to
be posmve In[(A.B)j ranges over states on whidly operates. If is the maximum
number of termd, operating on any statg, we may “integrate over” to obtain from

(A.):

rh.s[&B)< nap™ 3" v

iEV(G)
< NG, for Ay = max{aT™".

So, at least schematically, there should be an estimate:
AH —AoH < n/l?ax/le.
We finally wish to mention a related paper/[16] which useslsinmethods to argue
for the existence of gapped models.
Appendix B. Outer Planar Triangulation

An outer planar triangulatiorQPT) is a triangulation of th@-gonP,, in which no
new vertices in the interior disk are permitted. Tirgon is given a fixed base point
vertex and orientation. Thus, for = 3, 4, 5, 6,.. the number ofOPT are 1, 2, 5,
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14, ... In general|OPTya| = Cn = Fll(zn”) thenth Catalan number. This statement
may be familiar as the correct counting of dual planar tewatrees.

Let G, be the abstract graph with vertic€PT, and edges determined by “di-
agonal flips” defined on quadrilaterals made from a pair @nigie sharing a bond.
Give all vertices and edges &f,., unit weight. The spectrurh of G may be simi-
lar to that of the more interesting case of triangulationshef 2-sphere and because
there are simple asymptotic formulas for the Catalan nupveeican explicitly com-
pute a lower bound, < O(n~*/?) for our Cheeger-like isoperimetric constdqt =

E(S.S)
min —
ScV(Gn) min(Vol(S), Vol(S))
andVol(S) = # vertices inS. We thank Oded Schramm for guiding us through this
example.

For simplicity (only) taken odd. Now there will certainly be a unique “central
triangle” A with the property the three connected bits of sitgséll contain less than
5 sides. Call the “lengths” of these three bts- ny > nz > ng, Ny + N + Nz = n. We
divide OPT, into two disjoint piecesthick, U thin, = OPT,, andthick, N thin, = 0
according to whethem; > 1 (calledthick,) or n3 < f (calledthiny).

We will use the well known relation.const= O(1)4“n‘% and in the future use to
absorb the>(1).

whereE(S, S) counts edges fros to S = V(G,) \ S

3 3 3

N 2R 24K 2

E 4™n, 24%n,24%n,
§>m=np>nz>

Z 4”(”1”2”3)7%

§>m=np>nz>
_3
> Ay
O(n?) terms

~ 4'n~3

|thicky|

Q

Q

and

[thing| = Z (#(nq, n2) with ng = s)(#(ny, Nz, N3 = S)) configurations
1<s<yg

3

_3 _3 . .
~ Z 5(4”1n124”2n224”3s’2), for typicalng, n withng + np =n-s

So boththick andthin portions ofOPT, haveO(1) proportion of all the vertices on
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Gn.
Now consider the probability of being “near,” withaof the boundary between
thick and thin:|nz — 1—”0| < a. Call such configurations “boundary” 6§, |04 = adn:

as there ar@®(na) such numerical configurations each occurring order 2 ways.
Only diagonal flips on one of the three sides of the centrahgie can possiblyftect
membership inthick, andthin,, and we should estimate how many such flips can relate
thin to thick. The largest contribution comes from flips on sidgor equivalentlyn,)

in which a vertices of thex-gon move tanz wherea = o(n). We estimate the number
of suchG-edges as follows:

Figure B.1:

E1(thiny, thick,) ~ consin Z (4”n’%)

2 =biz1

[b%(nl )~

_3
2

n

Above, consh reflects a summation over Configurations witz = 15 — a are
counted in the first term; the fraction crossing from thinhizk upon the flip indicated
in Fig.[B.1 is given by the second term within the sum.

E1(thiny, thick,) ~ 4"consin Z ntb 3
2 =biz1
~ 4”constn(n’%n’%)

~ 4"n3,

Neglected terms, such ascomparable ta, are down by a powem*% and have
been dropped.
Putting the three calculations together, we conclude treisoperimetric Cheeger
constank satisfies
4nn—3
k< s =n"
4"n~2
This means that the valence normalized Cheeger cortsegpyropriate to random

(NI
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walks [5] satisfies ,
h<naz

and that the mixing time is at lea@{(n®?). A mixing time of ~ n corresponds to the

usual graph theoretic notion of an “expander.” Numericaéstigation of this model

indicates that the actual mixing time@n?).

Appendix C. Analytical resultsfor the off-lattice loop gas

Appendix C.1. Anjlattice loop gas model

In this appendix, we study analytical properties of dhlattice loop gas model.
The basis states of the model are configurations of nonsetéing, indistinguishable
loops, identifying loop configurations related by isotofdyoop configurations with
at mostN loops can be represented by unlabeled rooted trees with stthnoodes,
excluding the root node. Using the recursion relations df R€] the number of such
trees (.e., the number of loop configurations) for a fixed number of natdisgyiven by

>

1
C(h-kK) Z mc(m), (C.1)

1
c(n) = —
n-1 1 mk

=~
1

wheren > 1, C(1) = 1, and ‘mk” denotes allm which are factors ok. A similar
expression exists for the number of leaves (excluding tlo¢) rof unlabeled rooted
trees,

n-1

L(n) = Z C(n-k) Z L(m) (C.2)
k=1 mk

with L(1) = 1.

The Hamiltonian of our fi-lattice model acts locally by the three types of moves
shown in Fig[Cll: a) The inflation move corresponds to cngatir annihilating a
loop. b) The surgery move is merging of two loops. ¢) The salgery move is a
surgery move of a loop with itself. We define the Hamiltonkaas a sum of projectors
performing inflation, surgery, and self-surgery moves stingtt for the ground state
wave functionyo) we haveH|yo) = 0. The ground state wave function then becomes
an equal-weight superposition of all loop configuratibns

oy = ") (C.3)
|

Note that the Hamiltonian takes the form (up to rescalinggrofinweightedyraph
LaplacianL (see Appendix A): each transition (via inflation, surgeryself-surgery
moves) from a statfy) to a statgB) gives an entry of-1 in the Hamiltonian matrix,
and the diagonal elements aflg, = — 3,5, Hag, i.€., the diagonal elemem,,, count
the number of transitions out of state.

Topological protection
We consider the loop gas on an annulus (periodic boundariese direction). A
particular loop gas configuration can be represented byeanthere one leaf marks the
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Figure C.1: Loop gas moves. From top to bottom: a) inflatiorvend) surgery move, and c) self-surgery
move.

inner edge of the annulus and the root corresponds to the edge of the annulus as
illustrated in Fig[C.R. The surgery move alters the numtbéoaps that wind around
the system by2; the parity of the winding is hence a conserved quantity.

Is it possible tolocally distinguish even and odd winding sectors? In a lattice
realization of a loop gas, such as the toric code [1], the egpien values of any local
operator in these sectors split by at most an exponentiaifismount — the hallmark
of topological protection. In anfBlattice model, on the other hand, the splitting of
these winding sectors turns out to be only algebraicallylisa see this, consider the
average number of Ieavdz:gI in a sector with parityp. The diference between the odd
and even winding sectors

A(N) = (L) = (L] o 1/N (C.4)

can be computed using Eds. (C.2) and{C.1) and is found to/ddgabraically as AN,
which is also illustrated in Fi§. C.4.

Appendix C.2. Proof of gaplessness of loop gas Hamiltonian

A loop gas configuration afi loops can be represented by a rooted unlabeled ran-
dom tree withn + 1 nodes. In the following, we shall refer to this tree repn¢agon.
The ground state of the Hamiltonian is given by

1
= C.5
o) = ;] la) (C.5)
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Figure C.2: Loop gas on an annulus.

R

Figure C.3: Height-changing moves (inflation and self-styg— surgery moves do not change the height)
are only possible if a tree has only one leaf at its maximajthiteievel, like the configuration shown here.
Such configurations then allow faneinflation move andne self-surgery move that changes the height
by 1 (left panel). In contrast, there are many self-surgeoyes possible that change the height by 2 (right
panel).

where the sums runs over all possible rooted unlabeled mh@® configurations, and
Cy is the total number of such configurations with at méstodes,

N-1

N
Cn = Z c(n, h). (C.6)

n=1 h=0

whereC(n, h) denotes the number of tree configurations withodes and height
wheren > h. The action of the Hamiltonian is such that

Hlyo) = 0. (C.7)

The terms of the loop gas Hamiltonian (inflation, surgerif;sgrgery) are equivalent
to the following modifications in the tree representatiom (8t only the direction of
the moves that remove a node): inflation corresponds to remgavleaf of the tree,
surgery corresponds to “fusing” two sibling nodes into gge@mode, and self-surgery
corresponds to “fusing” a child node with its grandparendendall children nodes
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Figure C.4: Power-law decay @f(N), the diference of the average number of leaves of unlabeled rooted
trees in even and odd winding sectors for an annulus.

of the child node become sibling nodes of its parent nodewiae process can be
visualized as “folding” the tree such that child node andndgparent node become
one node). The dierent moves in the Hamiltonian change the tree height bgefth

(all surgery moves, some self-surgery moves, some inflatioves), 1 (some inflation

moves, some self-surgery moves), or 2 (some self-surgeves)oand thus

—(aHl) = > @H+ > @H+ Y (BHI)
{B.hg=h, B#a} {B.hs=h,+1} {B.,hy=h,—1}
£ > @H+ Y (BH). (C8
{B.hg=h,+2) {B.hg=h, 2

We define a “constrained” number of configurations at hefight

chy:= >  Cnh), (C.9)

n, whereg(n)>h

whereg(n) is some function of to be defined below. Using this definition, we make
sure that only a constrained number of configurations isuged. Next, we consider

the state
mh—-1

2rih/h)
W) = — Z exp(in/h)

—H la), (C.10)

{a, ha=h, g(ne)zh}
wherem > 1, E = Int[k(N)] (Intf[x] denotes the smallest integer number larger than

X), andC = th 11/C(h). The following proof relies on the inequali§(n, h + 1) <
C(n, h) that should be valid for all configurations included in thee trial state. This
inequality can be satisfied by proper choice of the functginyandk(n), see below.
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The stategyo) and|y,) are two distinct orthonormal basis states,

1 ”i » 1 i 1
Walvr) = = 5 (@ay== ) = =1,
¢ (C(h) {@, he=h, g(n.)=h} c h=h C(h
and
mh-1 PR
exp(2rih/h)
Wolpr) = ——— Z (ala)
CCy C(h) {e, hy=h, g(n,)=h}
1 mh-1 _
= exp(zrih/h) = 0.
= hz; p(2rih/h)
The energy gap can be estimated as
AE < (alHly1)

mhlmhl

exp(2ri(h-h’ )/h) Z Z
Z >, 5 BIHI).
c fr=h C(hc() {8, hg=lv, g(ng)=h'} {a, ho=h, g(n,)=h}

Using relation[{C.B), and th&B|H|a) < O if @ # B, we obtain

ot 2 cos(z/h)

1 2
AE = Ehz[(C(h))z CmC(h+1) 2, Ak

=| {B. hg=h+1, g(ng)=h+1} {e, h,=h, n,=nz—-1}

> KAH)L

{B. hg=h+2, g(ng)=h+2} {e, h,=h, n,=nz—-1}

mh

2cos(zr/ ﬁ)
[(C(h))2 C(hC(h+2)

M

h=h

A state|B) of heighth has at most one inflation move transition to only one of all
stateda) of heighth — 1. The same applies to self-surgery transitions that chtrge
height by one. A tree of heiglit can have at most — 2 self-surgery transitions that
decrease the height by two. Using these estimates, an€that 1) < C(h) (since
C(n,h+ 1) < C(n, h) for all configurations included in the trial state), we dbta

1 2C(h+1) (h-2)C(h+2)
AE < za sinP(rr/h) Z ( ChE " ey
mh-1
< —agsmz(n/h)hmz 0] < ap sinf(r/h)mh ~ -ahf

for Iargeﬁ, whereay, a,, andaz are constants.
We need to choose the functioggé) andk(n). The authors of Refl [18] showed
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Figure C.5: Growth oh* (value of height wheré&(n, h) is maximal at a givem) as a function o as
obtained from[{C.J]1). The growth is proportional {.

that forn — oo,

C(n, h) ~ C(n)2b /'0—7:/34 Z K2(2k?B%n? — 3) exp-k2n?B?), (C.11)

k>1

wherep ~ 0.3383219b ~ 2.68112663 = 2n/hb+/p, and[19[ 17]

b
Cc(n) ~ —\/'L_)n’3/2p’”.

2

Eq. (C11) is asymptotically valid for arbitrary but fixédind ¢ v/logn)~ < h/y/n <
§+/logn. It can be seen from Fig._ 3.5 that the number of configuratidras givenn
is largest forh*(n) = 2.1+/n. It follows from Eq. [CI1) thaC(n,h + 1) < C(n,h)
in its region of validity if h > h*(n). It is easy to check tha€(n,h + 1) < C(n, h)
for any configuration in Eq[{C10) if we choogé) = 6 y/nlogn andk(n) = 2.1+/n.
Here,d is chosen in such a way that there exists, for a geat least on@ such that
h < h < g(n). Using this choice ofj(n) andk(n), we obtain the following estimate for
the energy gap

AE< B (C.12)

VN

whereaz is a constant.
It is likely that C(n,h + 1) < C(n,h) as long ash > h*(n) (and not only for
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d+/nlogn > h > h*(n) as in the previous paragraph). If this is true then we caiveler

a tighter bound for the gap. Indeed, asymptotichlly h*(n) for anyh in Eq. (C.I0) if

we choose the following functiok(n) = arf, where ¥2 < « < 1 anda is a constant.

In this case, the gap scalesNs‘ and the upper bound ™1, The states witl that is
close to 1 have support only on an exponentially small nurob&ee configurations
and thus detecting thid~! scaling in Monte Carlo simulations seems unfeasible, see
Appendix D.

Rescalina this Hamiltonian to a graph Laplaciaff , we obtain a scaling of the
gap asN~¥?2 (from Eq. [CI2)). Plugging this into the gap estimates femneyal local
Hamiltonians irf Appendix A we find an upper bound ¥N. We will see below, in
the numerical results D that the gap actuallyescasN-175, which is
still not enough by itself to prove gaplessness of any model.

Estimating Cheeger’s constant

180
160
140 ¢
120 +
100
80 r
60 r
40 +
20 ¢ ‘ ‘ ‘ ‘

10 20 30 40 50 60 70 80 90

h

number of moves

Monte Carlo  »
inear fit

Figure C.6: Scaling of the average number of moves that tafeeaacross the mean heidtit The perfect
linear behavior shows that the number of moves indeed satisfe linear upper bound.

Since the gap of the graph Laplacian seems to be too weak aliouthe Cheeger
constant, we next try to estimate the Cheeger constanttlgirétsing the same cut as
in the above proof, we consider a split of the configuraticacggnto those trees which
are smaller or larger than the mean height The fraction of trees at this boundary
can be obtained from equatidn (C.11) to®@, h*)/C(n) ~ 1/ +/n. Multiplying this
with the number of moves across the cut, which can be boungéghs) ~ O(+/n) we
obatin as estimate for Cheeger’s constant

h < O(1/ VN)O(h*(N)) < O(1/ VN)O( VN) = const, (C.13)

which is now border line regarding the absence of a gap. Weehared to check

"We drop an exponentially small fraction of states, corresiitg to some trees whose height scales
slower tharO(+/n) and whose connectivity scales faster tian
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numerically whether the number of height changing moveschvive have bounded
by h* might grow slower then linear. However it turns out, as isvahin Fig.[C.6 that
the scaling indeed satisfies this bound.

Appendix D. Numerical study of off-lattice loop gases and string nets

A
T

Y

|

-~
T

Figure D.1: String net moves. From top to bottom: inflatiorvend -move, and surgery move.

In this appendix, we turn to a numerical analysis of tlielattice loop gas and
string net models by Monte Carlo and exact diagonalizatidme df-lattice loop gas
model has been introduced in the previous appendix. In dasirfisishion, dt-lattice
string nets can be defined as indistinguishable (unlabpladar trivalent graphs, where
we exclude configurations with bubbles or parallel edges.défne the system size
N as the maximum number of faces, which is related to the nuwbezrticesn, via
N = (n, + 4)/2. The Hamiltonian again takes the form of a graph Laplacishia
defined by the three types of moves illustrated in Eig] D.le $ting net ground state
again is an equal-weight superposition of all string nefigumationss

o) = > 19).

S

The definition of the graph Laplaciag in includes the constant
¢ = mini(di/ X4 [Hijl). The sum in the denominator is basically the (weighted) ver
tex degree of vertex (basis state)lt typically grows faster than the system silxie
However, the number of vertices (or basis states in the Hikggace) for which the
weighted vertex degree is not bounded by a linear functidt isfexponentially small.
As an example, surgery moves within a plaquette of a stringyreav like the square
of the the number of edges in the plaquette, since one canrdergitbetween any pair
of edges. Since plaquettes with a large number of edges pomentially suppressed
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Figure D.2: Distribution of the plaquette sizes in th#lattice string net

(see Fig[[D.R), we discard those exponentially rare statdsestrict the Hilbert space
H to H’ such that a basis stale) belongs toH" iff [i’) € H and X, [Hijl/di is
bounded by a linear function ™. The graph Laplaciad’ is then defined following
[Appendix A, withc’ proportional toN .

The graph Laplacian is gapless by definition. In the follayviwe also demon-
strate the gaplessnessiy’ for both the df-lattice loop gas and string net models by
numerically determining the gap to the first excited modé&£of

Monte Carlo method

One can extract the gap of the graph Laplacian from clasMoaite Carlo simu-
lations [20] by ensuring that the Monte Carlo transition mixais proportional to the
graph Laplaciar’:

T=0Q-a)l+al, (D.1)

whereT is the transition matrix and is the codficient of proportionality.

We perform Monte Carlo simulations by first calculating thenmberNmovesof pos-
sible moves for a given configuration. LBkowes = 1/¢. ThenNmovesiS a linear
function of N and it is larger or equal tdlyves for any configuration. We randomly
pick one of the possible moves and accept it with probatiifyes/ Nmoves The total
probability to make a move is/Nmovesand it is the same for any move. The probability
to stay in the given configuration is-1Nmoves/ Nmoves ThiS transition matrix is equal
to the graph Laplaciaf’ (« = 1).

The enumeration of possible moves can be implemented Viécieatly for rooted
trees allowing us to access large system sizes. Howevsristimiot the case for the
string nets as one needs to check for graph isomorphisms/éoy @ossible move,
which restricts us to considerably smaller sizes. We usistimorphism test suggested
in Ref. [21].

The gap is related to the autocorrelation timeof some observabla as

A=1-elm
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Figure D.3: Exact diagonalization resultsthe gap of the graph Laplacian as a function of the inverse
system size N obtained from exact diagonalization. Results for tfficlattice loop gas are shown on the
left (1/¢’ = 3200N), and for the &-lattice string net on the right (¢’ = 30N).

wherer, is measured in Monte Carlo time. The observabtaust be chosen carefully
— it must couple to the lowest mode in order to extract the gap.

Exact diagonalization results

We first analyze the spectrum of the graph Laplacian fbtaitice loop gas and
string net model using exact diagonalization. In particwiee calculate the lowest gap
using the Lanczos algorithm [22] as shown in [Fig.]D.3. Fordffidattice loop gas, we
find that if we only consider inflation and surgery moves, theph Laplacian times
the system size is clearly gapless — consistent with thef im¢@pendix_G. Adding
self-surgery moves the gap NfL’ appears to extrapolate tdfiaite value. The same is
seen for the fi-lattice string net. However, this apparent convergenogiséeading as
we will see below in Monte Carlo simulations of larger syssem

Monte Carlo results

To determine the gap of the graph Laplacian in Monte Carlakitions we mea-
sure the autocorrelation function of the tree height (ferlttop gas) or graph diameter
(for the string net). As shown in Fig. 0.4 we find that, for shslstem sizes, the
autocorrelation functions couple to high energy modesltiagun a fast initial decay
before turning to a slower asymptotic behavior correspagth the smallest gap. This
makes it dfficult to extract the gap for large system sizes, since at longstthe au-
tocorrelation function is very small and noisy. To overcatmis obstacle, we then fit
the autocorrelation function to the transient behaviontdrimediate times, which will
overestimatghe gap, thereby providing an upper bound.

As shown in Fig[D.b the gap obtained from the asymptotic bieihdor small
system sizes agrees perfectly with the exact diagonalizaéisults. For intermediate
system size the transient behavior overestimates the gapeVér, for very large sys-
tem sizes we see that this upper bound goes to zero with siogegystem size faster
than the gap extrapolated from the exact diagonalizatismt® Fitting the largeN be-
havior to a power-laviN~1"? we obtainz = 0.765(6) for the loop gas, arm= 0.746(4)
for the string net. The graph Laplacian times the system(diz&) is hencegapless
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Figure D.4: Autocorrelation functionsMonte Carlo results for the autocorrelation function oftzg tree
height for the loop gas b) graph diameter for the string n€tse Monte Carlo timer is given in arbitrary
units. Lines denote exact diagonalization results.

There is a simple heuristic argument for the crossover doatiween the gapped
behavior for smalN and the gapless behavior for larlyen the case of the string net.
This argument is best discussed in the dual picture of trikatigpns of the sphere. For
a small number of triangles the geometry is always that ofrgpkd sphere and the
updates mix well resulting in gapped behavior. Rbtarger than about 40, one can
— for the first time — find triangulations that correspond tceametry of two spheres
described by two icosahedra connected by a narrow neck.tepda longer mix well,
in particular there is a slow mode associated with shiftirangles from one sphere to
the other via the narrow neck. It is this slow mode which dates the mixing times
for large system sizes resulting in gapless behavior.

Outer planar triangulations

Finally, in Fig.[D.6 we show Monte Carlo results for the gaghe graph Lapla-
cian for outer planar triangulations as a function of the hanof trianglesN. The
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observed decrease Bs? is consistent with but faster than the bouc®/2 derived in

[Appendix B. This scaling is fast enough to marginally show ¢faplessness of any
local Hamiltonian based o moves for this model.

References

References

[1] A.Y. Kitaev, Ann. Phys303, 2 (2003).

[2] A. Kitaev, Ann. Phys321, 2 (2006).

[3] M. A. Levin and X.-G. Wen, Phys. Rev. Bl, 045110 (2005).

[4] V. G. Turaev and O. Ya. Viro, Topolog¥l, 865 (1992).

37



[5] Fan R. K. Chung, Spectral graph theory, volume 92 of CBM&iBnal Confer-
ence Series in Mathematics, Published for the ConfereneedBaf the Mathe-
matical Sciences, Washington, DC, 1997.

[6] J. Ambjorn and R. Loll, Non-perturbative lorentzian aqaam gravity, causality,
and topological change, Nuclear Phyd8536, 407 (1998).

[7] J. Cheeger, A lower bound for the smallest eigenvaluéefiaplacian, in: Prob-
lems in analysis (Papers dedicated to Salomon Bochner,),LB&8ceton Univ.
Press, Princeton, N. J., 1970, p. 195.

[8] G. Chapuy, M. Marcus, and G. Schaefer, A bijection fortembmaps on ori-
entable surfaces, SIAM J. of Discrete Math, 23(3): 158711@D09).

[9] J. Ambjorn, J. Jurkiewicz, and R. Loll, Quantum gravity @ sum over space-
times, preprint arXiv: 0906.3947

[10] L. Fidkowski, M. Freedman, C. Nayak, K. Walker, and Z.aMgaCommun. Math.
Phys.287, 805 (2009).

[11] M. Freedmar, arXiv:0812.2278.

[12] M. Freedman, A magnetic model with a possible CherneBisnphase, preprint
quant-p0110060.

[13] M. Freedman, C. Nayak, and K. Shtengel, Phys. Rev. Bé41t147205 (2005).
[14] M. Freedman, C. Nayak, and K. Shtengel, Phys. Rex8BL74411 (2008).

[15] M. Troyer, S. Trebst, K. Shtengel, and C. Nayak, Phys. Rett. 101, 230401
(2008).

[16] A. Al-Shimary and J.K. Pachos, preprint arXiv:1010341
[17] R. W. Robinson and A. J. Schwenk, Disc. MatB, 359 (1975).

[18] M. Drmota and B. Gittenberger. The shape of unlabelaxted random trees.
preprint arXiv:1003.1322.

[19] R. Otter, The number of treeAnn. Math .49, 583 (1948).
[20] C. L. Henley, J. Phys.: Condens. Matf&;, S891 (2004).

[21] G. Brinkmann and B. D. McKay, Fast generation of planapis, available at
httpy/cs.anu.edu.dubdnyplantri.

[22] C. Lanczos, J. Res. Natl. Bur. Stadé, 255 (1950).

38


http://arxiv.org/abs/0812.2278
http://arxiv.org/abs/quant-ph/0110060
http://arxiv.org/abs/1010.4130
http://arxiv.org/abs/1003.1322
http://cs.anu.edu.au/~bdm/plantri

	1 Introduction
	2 Off Lattice Hazards
	2.1 Baby Universe
	2.2 Gapless Modes
	2.3 Local Distinguishability
	2.4 Work-arounds for off Lattice Troubles

	3 Enforcing Flat Space: Crystalline, Liquid off Lattice Models, and CDT
	3.1 Crystalline Case
	3.2 Liquid Case
	3.3 CDT: A (1+1)D Home for Anyons

	4 Conclusions
	Appendix  A Spectrum of Graph Laplacians and Other Local Hamiltonians
	Appendix  B Outer Planar Triangulation
	Appendix  C Analytical results for the off-lattice loop gas
	Appendix  C.1 An off-lattice loop gas model
	Appendix  C.2 Proof of gaplessness of loop gas Hamiltonian

	Appendix  D Numerical study of off-lattice loop gases and string nets

