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Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations
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We present an adaptive algorithm which optimizes the statistical-mechanical ensemble in a generalized
broad-histogram Monte Carlo simulation to maximize the system'’s rate of round trips in total energy. The
scaling of the mean round-trip time from the ground state to the maximum entropy state for this local-update
method is found to b@([N In NJ?) for both the ferromagnetic and the fully frustrated two-dimensional Ising
model with N spins. Our algorithm thereby substantially outperforms flat-histogram methods such as the
Wang-Landau algorithm.
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[. INTRODUCTION very little as long as it remains in that phase, so to get a new
statistically independent visit to the phase the system has to
At first-order phase transitions and in systems with manyleave it and equilibrate elsewhegesually at high energigs
local minima of the free energy such as frustrated magnets ofFhus the quantity we want our simulation to maximize is the
spin glasses, conventional Monte Carlo methods simulatingumber of round trips—between low and high energy—per
canonical ensembles have very long equilibration times. Sewinit computer time. This should minimize both the simula-
eral simulation methods have been developed to speed un’s equilibration time and the statistical errors in the low-
such systems, including the multicanonical methdd,  energy regime of interest.
broad histogramq?2], parallel tempering[3], the Wang- In this paper, we present an algorithm that systematically
Landau algorithm[4], and variations thereof5]. Most of  optimizes the ensemble simulated to maximize the rate of
these methods simulate a flat-histogram ensemble. Instead @fund trips in energy. We use a feedback loop that reweights
sampling a configuration of energywith Boltzmann weight the ensemble based on preceding measurements of the local
W(E) xexp(-BE), they use weightsv(E)=1/g(E), where diffusivity of the total energy. This detects the “bottlenecks”
g(E) is the density of states. The probability distribution of in the simulation as minima in the diffusivityat critical
the energyn(E) =w(E)g(E), then becomes constant, produc- points in the cases we stuglyand reallocates resources to
ing a flat energy histogram. Naively, one might assume thathose energies in order to minimize the slowdown. We find
sampling all energies equally often produces an unbiasethat the resulting statistical errors in the density of states as
random walk in energy. However, it was recently shg®h  estimated by this algorithm are nearly uniform in energy, in
that the growth with the number of spihsof the “tunneling  strong contrast to flat-histogram simulations where the errors
times” between low and high energy in any local-update flat-are much larger at low energy than at high energy. While our
histogram method is stronger than the nalNeof an unbi-  algorithm is rather general and should be widely applicable
ased random walk in energy for various two-dimensionalto study complex systems, we have developed and tested it
(2D) Ising models: as-N2“for the ferromagnetic andN>°  on ferromagnetiqFMI) and fully frustrated(FFIl) square-
for the fully frustrated models. For the 2DJ4spin glass, lattice Ising models.
exponential growth was observée.
In view of these results for flat-histogram simulatiqi6$
we have asked how this type of simulation can be improved, Il. FEEDBACK OF LOCAL DIFFUSIVITY
in terms of both computer time and statistical errors. The

L . o .~ In our simulations, the system’s energy does a random
general type of application we have in mind is to the equi- . )
2~ ) . o walk in the energy range between two extremal energies,
librium behavior of a system that is very slow to equilibrate

: . . ; . ; E_<E=<E, where we take the lowest enery to be the
in a conventional simulation, such as domain walls in or-

: . system’s ground state, although this is not necessary for our
dered phases, low-energy configurations of frustrated sys- . . .
%Dproach. Consider a general ensemble, with weighkis,

tems or a spin-glass ordered phase. Our algorithm instead, " :
simulates a broad-histogram ensemble, where the syste hich deflne_the acceptance probabilities for moves based on
e Metropolis scheme

can, at “equilibrium” in this ensemble, wander to part of its
phase diagram where equilibration is rapid. We look specifi- _ wW(E")

cally at histograms that are broad in energy, but in general PE—E)= mm(l,E). (1)
another variable other than the energy could be used. To

minimize the statistical errors of measurements in the energ@ur algorithm iteratively collects data from batch runs which
range of interest, one maximizes the numbestattistically ~ simulate with a fixed ensemble. During a simulation detailed
independentisits. For a glassy phase, the system will relaxbalance is strictly satisfied at all times. For a reasonably large
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number of sweeps we can thus measure the equilibrium dis- E. 1
tribution of the energy in this ensemble which rig,(E) J dE(mH\nW(E))- (4)
«w(E)g(E). The simulated system does a biased and Mar- E- W
kovian random walk in configuration space. Since we biasTo minimize this integrand, the ensemble, that is, the weights
this walk based only on total energy, the projection of thisw(E) and thusn,(E), is varied. At this point we assume that
random walk onto that variable is what we will discuss. Thisthe dependence db(E) on the weights can be neglected.
projection, which ignores all properties of the state otherrhijs is justified by noting that the rates of transitions be-
than its total energy, results in a random walker that is nontween Configurations depend 0n|y on traios of Weights,
Markovian, with its memory stored in the system’s configu-so the diffusivity D(E) is unchanged when the weights are
ration. Thus the simulation may be viewed as a biased NONmultiplied by an energy-independent constant. By ignoring
Markovian random walker moving along the allowed energythe variation ofD(E) with the weights, we are assuming that
range between the two extremal energies. the adjustments to the weights are slowly varying in energy,
To measure the round trips we addadel to the walker  \yhich is true for most systems, particularly for large systems
that says which of the two extremal energies it has visitedyhere the energy range being studied is large. With this as-

most recently. The two extrema act as “reflecting” and absymption, the optimal weighting which minimizes the above
sorbing boundaries for the labeled walker: e.g., if the label isntegrand is

plus, a visit toE, does not change the label, so this is a

“reflecting” boundary. However, a visit t&_ does change opy_ 1 dfloPy
the label, so the plus walker is absorbed at that boundary. My = \m T dE
The steady-state distributions of the labeled walkers satisfy

n_(E)+n,(E)=n,(E). It is important to note that the behavior Thus for the optimal ensemble with Metropolis dynamics,
of the labeled walker isot affected by its label except when the probability distribution is simply inversely proportional
it visits one of the extrema and the label changes. When tht the square root of the local diffusivity.

unlabeled walker is at equilibrium, the labeled walker is in a

nonequilibrium steady state. Lé{E)=n,(E)/n,(E) be the B. N-fold way dynamics

fraction of the walkers & that have label pIUS, SO they have Since Metropo"s dynamics can be S|0wed down by h|gh
most recently visitedt,. The above-discussed boundary con-rejection rates of singular moves, e.g., in the vicinity of the
ditions dictatef(E_)=0 andf(E,)=1. fully polarized ground state of the FMI model, or the occur-
To calculate the rate of round trips, we note that in steadyence of multiple, generally accepted zero-energy moves, it
state the currentof the labeled walkers is independent®df  can be advantageous to introduce rejection-free single-spin
The plus and minus walkers drift in opposite directions andip updates such as tHé-fold way [7]. N-fold way dynam-
the equilibriumunlabeledwalker has no net current. We first jcs involve two time scales, the walker’s time and the com-
examine the case of a continuous enefgyrhe steady-state puter time. At a given energy level the two time scales differ

©)

current fromE, to E_ to first order in the derivative is by the (energy-dependentifetime of a given spin configu-
df ration. The random walk witiN-fold way dynamics is an
j= D(E)nW(E)d_E’ (2)  equilibrium process when measured in walker’s time, that is,

the equilibrium distributionn,(E) is proportional to the
whereD(E) is the walker’s diffusivity at energf. There is ~amount ofwalker's time the walker spends &. However,
no current iff is constant, since this is equilibrium; this is for the ensemble optimization witk-fold way dynamics we
why the current is to leading order proportionaldt/dE. If ~ Want to speed up the random walk measurecomputer

one rearranges the above equation and integrates on botﬂ'me._Thi_s setup with two clo.cks requires a slightly different
sides, noting thaj is a constant andl runs from 0 to 1, one reweighting procedure than is presented above for Metropo-

obtains lis dynamics.
As for the Metropolis dynamics the amount of walker’s
1 Bt dE time it takes to make a round trip is proportional tg fiven
JT‘JE D(E)n,(E)’ @ i Eqg. (3). However, we are interested in minimizing the

amount of computer time spent, so we need to multiply this
In the following we separately discuss how we can maximizeby the ratio of computer time to walker’s time BEtwhich we
the rate of round trips for Metropolis am¢tfold way dynam-  denote ad(E). Let us assume the distribution(E) is nor-
ics based on this estimate of the current. malized to integrate to 1. Then for one unit of walker’s time,
the fraction spent aE in dE is n,(E)dE. The amount of
A. Metropolis dynamics computer time used per unit walker’s time is thus

E+

For Metropolis dynamics the rate of round trips is simply f (EN(E)E ©)
Ny .

proportional to the current. To maximize the round-trip rate, T=
the above integral Eq(3) must be minimized. However,

there is a constrainn,(E) is a probability distribution and To find the weights that minimize the round-trip time as mea-
must remain normalized. We do this by adding a Lagrangeured in computer time, the full quantity we want to mini-
multiplier: mize is thus

E_
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_ m (7) the scaling _of rour.1djtrip times, and calculated the density of
- W states and its statistical errors for both models. In both cases
Since the probability distributiom,(E) occurs in both the We used the ground state =E, and zero energ§.=0 as
numerator and denominator of the integrand there is no nedff€ energy limits. _

to enforce its normalization by a Lagrange multiplier. To In the initial batch mode step we simulated a flat-
extremize the integrand, we will again vary the Weightshistogram ensemble for small system sizes using either the

w(E), which gives the following condition for the optimum: €Xact density of state$] or a rough estimate thereof calcu-
lated with the Wang-Landau algorithfd]. For larger sys-

T _ @ ®) tems (N>64x 64) where the round-trip times for the flat-
D(E)nfv(E) i histogram ensemble are more than a magnitude larger than
for the optimized ensemble, we produced an initial estimate
of the optimal weights by extrapolating the optimized
weights of smaller systems. For all batch mode steps the

iT fraction of labeled walkerd,(E), was determined by record-
nieP(E) = DENE) (9 ing two histograms, one for the equilibriurfunlabeled
walker and one for the labeled walker that most recently
For the optimal ensemble withl-fold way dynamics, the visited E_. The derivativedf/dE was then estimated by a

probability distribution is thus larger at the points with linear regression of several neighboring points at each energy
smallert(E) (since they do not cost a lot of computer time level. The number of points used for the regression can be

E. dE E. the optimal ensembles for the FMI and FFI models, obtained
f J t(E")n,(E")dE".
E_

so the weights should be chosen to give the optimal distri
bution

and smaller diffusivityD(E). reduced for subsequent batch mode steps as the estimate of
o f(E) becomes increasingly accurate due to better statistics. In
C. Feedback iteration the final batch mode steps of our calculations the regression

To feed back we simulate with some trial weightéE), was performed using a minimum of three points. In general,
get steady-state data far,(E) and f(E), and thus obtain there is a trade-off between the accuracy in the measurement
estimates for the diffusivity via of the local diffusivity and the number of feedback steps. For

. the Ising models we study we found rapid convergence to the
J—. (100  optimal ensemble. For small systeriés 32X 32, an initial
ny(E)df/dE batch mode step with some %1 10° sweeps was sufficient
to find the optimal weights after the first feedback step. Since
the possible energy levels are discrete for the Ising model,
/ df special care is taken when applying the reweighting derived
Ny (E)=A nW(E)d_E’ (11) for the continuum limit, particularly at the boundaries of the
energy intervalE_,E,]. However, we did not encounter any
where A is a normalization constant whose value is notsubtlety for either model.
needed to run the next “batch” of the simulation with the
new weightsw’(E). For N-fold way dynamics the new
weightsw’(E) are chosen to be

D(E) =

For Metropolis dynamics chose new weight§E) so that

A. Fully frustated Ising model

We first present our results for the fully frustated model,
n,(E) = 1/n (E)ﬂL_ (12) which has a critical point at its ground state, and shows
" " dE(E) rather simple scaling of our algorithm’s behavior with energy
and system size. For the optimized ensemble of the FFI
model the histogram of the equilibrium random walker is no
longer flat, but exhibits a power-law divergence at its ground
, 1 df state, as shown in Fig. 1. This divergence reflects the behav-
Inw'(E) = In w(E) + z('”{d—E} = Inny(E) - '”t(E))’ ior D(E) ~[(E~E)/NJ? of the diffusivity, as is seen in the
(13) inset of Fig. 1. These power-law behaviors extend from the
first few points,E-E;=0(1), up nearly to zero energ¥
where all energy-independent terms have been dropped as,=O(N). If we accept that the critical exponent for
they introduce a constant shift only. For Metropolis updateghe diffusivity is indeed 2, then the optimal distribution
the last term Irt(E) can also be dropped. Each subsequenscales am,~ 1/[(E-Ey)In N], and the round-trip time as
batch should be run significantly longer than the previousr~ (N In N)?, consistent with our results shown in Figs. 1
one—in our implementation we double the number ofand 2.
sweeps—in order to get better statistics, and feed back to Noting that for our optimized ensemble the system spends
improve the estimates of the optimal weights. a large fraction of its time near the ground state where many
Metropolis moves are rejected, we applied a version of our
lil. IMPLEMENTATION AND APPLICATIONS algorithm that instead uses single-spin-flip rejection-free
We implemented this algorithm for 2D Ising models with N-fold way updates. We find thid-fold way updates do give
single-spin-flip Metropolis ant-fold way dynamics, found a significant speedup compared to Metropolis dynamics, but

In practice we work with the logarithms of the weights, so
the reweighting becomes
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FIG. 1. Histograms of the optimal ensemble for the 2D fully ~ FIG. 3. Histograms for the 2D ferromagnetic Ising model ob-
frustrated Ising model with Metropolis dynamics. For various sys-tained after feedback: for the optimal ensemble a peak evolves
tem sizes and a broad energy range the rescaled data points collaggeund the critical energy in the histograms. The additional peak
onto a power-law divergencE-Eg)/NInN]™* (bold line). The  near the fully polarized ground state found for Metropolis updates
inset shows the diffusivityD(E) for the same model which is pro- (thin line) can be eliminated by changing the dynamics\edold
portional to[ (E—Eg)/N]? (bold line). way updategbold line). The inset shows the fractiditE) of walk-
ers which have most recently visité&d =0 for flat-histogrammul-
ticanonica) sampling and the optimal ensembles for Metropolis and
N-fold way dynamics.

do not change the~~ (N InN)? scaling of the round-trip
time. In comparison to the performance of flat-histogram
sampling we find a substantial speedup up to a factor ofnanging the dynamics to rejection-fraefold way moves.
around 50 for the largest simulated system wWNE128  However, the minimum in the diffusivity at the critical point

X128 spins(see Fig. 2 remains withN-fold way dynamics and the resulting peak in
the histogram is not suppressed. With increasing system size
B. Ferromagnetic Ising model this power-law divergence moves toward the critical energy

We now turn to the results for the ferromagnetic Ising.Of the infi'nite systemEJZNE—O.?}, as illgstrgted in the
model which exhibits a finite-temperature second ordefnSet Of Fig. 4. For both types of single-spin-flip moves we
nd that the rate of round trips between the magnetically

phase transition. After applying the feedback, we find a pea ;
in the histogram near the critical energy, as shown in Fig. 3prdered and disordered phases of the ferromagnet appear to

~ 2 i
For Metropolis updates a second divergence close to thﬁCale asr~(NIn N)* as for the FFI modefsee Fig. 4.

fully polarized ground state appears which is eliminated by 7 — — —7
: —— g
T T T T T T T T — T 6 - /,/ - 6
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1/2 . s . .
L=N FIG. 4. Scaling of round-trip times in the energy interval

FIG. 2. Scaling of round-trip times in the energy interval [-2N,0] for the flat-histogram ensembi@pen symbolsand the
[-N, 0] for the flat histogramopen symbols and optimized en- optimal ensemblégfilled symboly of the 2D ferromagnetic Ising
semble(filled symbolg of the 2D fully frustrated Ising model with  model with Metropolis (circles and N-fold way dynamics
Metropolis (circley and N-fold way (squaresdynamics. The solid (squares The solid (dashegl lines correspond to a logarithmic
lines correspond to a logarithmipower-law fit for the optimized  (power-law fit for the optimized (flat-histogram ensemble. The
(flat-histogram ensemble. The inset illustrates the frustrated cou-inset shows the scaling of histograms for the optimal ensemble for
plings of the fully frustrated model. N-fold way updates.
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10°F ; The observed distribution of statistical errors is nearly flat in

i ' ' ' ' ' B energy, which is a further improvement compared to flat-
histogram simulations where the errors can be orders of
magnitude larger at low energy than at high enefdy.

The statistical error is found to scale a&lIng(E)
~1/(round trip$*/? with the number of round trips in energy
which is shown in the main panel of Fig. 5. For different
system sizes we find the statistical errors to collapse onto a
single 1/round tripg*? dependence which posteriorivali-
dates our goal of maximizing the rate of round trips.

<Alng(E) >a

._
o-
1
T

V. CONCLUSIONS

bl g gesl wow gpemsl 4oq pvomel 6§ The presented algorithm should be widely applicable to

10* 10° ,106 10 study the equilibrium behavior of complex systems, such as

TG EhifEs glasses, dense fluids, or polymers. To speed up the system’s

FIG. 5. Average statistical errdd\ In g(E))e of the computed  equilibration the rate of round trips in energy is maximized
density of states of the FFI model versus the number of round trip@y systematically optimizing the statistical ensemble based
in the energy interval-N, 0]. The statistical errors were obtained gn measurements of the local diffusivity. We find that the
for 16 independent runs and averaged over all energiebl#86  rejative statistical error in the density of states as calculated
(open symbols Data points for larger system sizes are superim-with our method scales a(1/(round tripsllz). For the 2D
posed(solid symbol3, with the system size increasing from right to ferromagnetic and fully frustrated Ising models the round-
left. The statistical error reduces like (tdund trip$/2 (solid line) trip time from the ground state to the maximum entropy state
for all system sizes. The inset shows the deviatifR)=In g(E) scales likeO([N In NJ?) which is a significant speedup com-
=In gexacfE), from the exact result for the 2424 FMI model ob- d h | behavi@(N2?) of flat-hi
tained for 16 independent runs with X2A.0° sweeps. p?rsr'tf:?nt e power law behavie( ) of flat-histogram

algorithms.

The idea of performing round-trips in energy is similar to

the parallel tempering algorithii3] which simulates replicas

Finally we address the statistical errors of measurement%lf: the tsyst'e?bat'varltous temtperaturestht_a swzzlpplng of :jep-

performed during the simulation. Standard tools can be use as at neighboring temperatures can be viewed as a random

for the error analysis as the simulated random walk in conWE_ilk of the repllcqs al_ong the temperature. In order to maxi-
ize the round-trips in temperature one can use our algo-

figuration space is a conventional Markov chain Monte carld" : e :
simulation. Only the projection of this random walk onto rithm to systematically optimize the simulated temperature

energy space becomes non-Markovian which is irrelevant foret which we will discuss in a forthcoming publicatiiH].
the measurements.
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