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Abstract. For decades, frustrated quantum magnets have been a seed for
scientific progress and innovation in condensed matter. As much as the numerical
tools for low-dimensional quantum magnetism have thrived and improved in
recent years due to breakthroughs inspired by quantum information and quantum
computation, higher-dimensional quantum magnetism can be considered as the
final frontier, where strong quantum entanglement, multiple ordering channels,
and manifold ways of paramagnetism culminate. At the same time, efforts in
crystal synthesis have induced a significant increase in the number of tangible
frustrated magnets which are generically three-dimensional in nature, creating an
urgent need for quantitative theoretical modeling. We review the pseudo-fermion
(PF) and pseudo-Majorana (PM) functional renormalization group (FRG) and
their specific ability to address higher-dimensional frustrated quantum magnetism.
First developed more than a decade ago, the PFFRG interprets a Heisenberg
model Hamiltonian in terms of Abrikosov pseudofermions, which is then treated
in a diagrammatic resummation scheme formulated as a renormalization group
flow of m-particle pseudofermion vertices. The article reviews the state of the art
of PFFRG and PMFRG and discusses their application to exemplary domains
of frustrated magnetism, but most importantly, it makes the algorithmic and
implementation details of these methods accessible to everyone. By thus lowering
the entry barrier to their application, we hope that this review will contribute
towards establishing PFFRG and PMFRG as the numerical methods for addressing
frustrated quantum magnetism in higher spatial dimensions.

Keywords: Quantum Many-Body Methods, Functional Renormalization Group,
Strongly Correlated Systems, Frustrated Magnetism, Spin Models, Quantum Spin
Liquids
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1. Introduction

In condensed matter physics, quantum-many body
systems can give rise to remarkable collective states
of matter that have no classical counterparts, such as
superconductors [1], superfluids [2] or quantum spin
liquids [3]. But connecting such complex emergent
behavior to a microscopic picture in terms of short-
ranged interactions between the elementary quantum
mechanical degrees of freedom has, to this day, remained
a fundamental challenge. Analytical approaches can
often provide initial guidance and crude understanding
on the level of mean-field theory or effective field
theory descriptions, but their validity and underlying
abstractions are often a matter of debate. Instead,
unbiased numerical simulations are called for in
verifying these assumptions and providing quantitative
guidance, e.g. by mapping out phase diagrams (in
terms of the microscopic interactions) and identifying
the respective phase transitions. This has led to a
remarkable string of method development including
the expansion of Monte Carlo simulation techniques to
the quantum realm [4], the development of dynamical
mean-field theory [5], the formulation of entanglement-
based variational approaches such as the density
matrix-renormalization group [6] and tensor network
approaches [7], and most recently their combination
with ideas from machine learning [8, 9]. Over the
past three decades, this combination of analytical and
numerical approaches has led to remarkable progress in
understanding the general features of collective states
of quantum systems constituted by bosonic degrees of
freedom, such as a broad class of quantum magnets or
ultracold atomic systems.

However, there are a number of important
outstanding problems that have for decades resisted
solution, most prominently the many-fermion problem.
The quantum statistics, which sets fermions apart
from bosons, has profound implications not only on
the intricate nodal structure of quantum mechanical
wavefunctions of many-fermion systems and the
resulting, enticingly complex variety of fermionic ground
states but also on the ability to simulate many-fermion
systems with the most powerful, unbiased numerical
approach to quantum many-body systems – quantum
Monte Carlo simulations. As realized early on, the
fermionic exchange statistics leads to the infamous
sign problem [10], i.e. the occurrence of negative
statistical weights in the sampling of fermionic world-

line configurations. Overcoming the sign problem by
identifying a basis transformation to a sign-free basis
(such as the basis of eigenstates) is known to be a NP-
hard problem [11]. This computational complexity
arising from the sign problem also manifests itself
in a broad variety of frustrated quantum magnets –
quantum magnets with competing interactions that
cannot be simultaneously satisfied and which thereby
give rise to low-temperature physics that is quite
distinct from their conventional counterparts [12]. This
includes the formation of long-range entangled quantum
order, emergent gauge theories, and fractionalization of
the elementary quantum mechanical (spin) degrees of
freedom. As such, frustrated quantum magnets have
attracted broad interest since they have long served as
a fertile ground to develop the basic phenomenology
and concepts of quantum many-body systems at large.
However, their numerical exploration has remained
challenging as they are often not amenable to path-
integral quantum Monte Carlo techniques due to
their intrinsic sign problem (with some exceptions
[13]), dynamical mean-field theory due to their long-
range quantum structure at low temperatures, or
tensor-network based approaches as some of the most
interesting problems occur in three spatial dimensions
such as the formation of quantum spin ice (though
DMRG has made some inroads into higher-dimensional
problems [14]).

The pseudo-fermion functional renormalization
group (PFFRG) was formulated in a seminal work
by Reuther and Wölfle [15, 16], and subsequently
developed over the years [17,18,19,20,21,22,23,24,25,26]
to bring much-needed numerical guidance to such
frustrated quantum magnets in two [27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37] and three spatial dimensions [31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. It has
been built upon the functional renormalization group
(FRG) developed for electronic systems [51] by recasting
the interacting spin problem in terms of auxiliary
(complex) fermions, formulating and truncating the
corresponding flow equations, and by then integrating
the so-obtained coupled differential equations to follow
the renormalization group flow to low-energy states.
Much technical understanding has been developed over
the past fifteen years including ways to reduce the
number of flow equations by symmetry-optimization
[52], to reliably distinguish the formation of quantum
spin liquids versus the long-range magnetic order, to
expand the approach to the limits of large S [53] and
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large N [54], along with numerous technical tricks to
speed up practical implementations which have been
made available as open-source packages [55, 56, 57].
More recent advances include an alternate formulation
of the PFFRG approach in terms of auxiliary Majorana
fermions along with inroads to quantitatively describe
the finite-temperature physics [58, 59] of frustrated
magnets.

We emphasize that the diagrammatic Monte Carlo
approach has been applied to PF Hamiltonians [60,
61, 62]. Offering a different type of resummation
scheme than the FRG, this method can thus be seen as
closely related to PFFRG and we will make appropriate
quantitative comparisons below.

It is the purpose of this review to give a pedagogical
introduction to the PFFRG approach and to provide
extensive technical details on its implementation so
that a beginning graduate student might find all the
information to set up one’s own calculations. We
also provide an overview of the many applications
of the PFFRG approach over the past fifteen years
to a variety of quantum magnets with competing,
diagonal and/or off-diagonal spin exchange in two
and three dimensional lattice geometries as well as,
more recently, to systems with coupled spin-orbital or
spin-valley degrees of freedom. For those wanting to
readily jump to certain parts of this review here is an
overview of its structure: In section 2 we introduce
the basic microscopic exchange model of a quantum
magnet, which we then recast in terms of auxiliary
fermions in section 3 and discuss its fundamental
symmetries. We then dive into the technical discussion
setting the stage with an introduction of the functional
renormalization group in section 4, then moving to
the PFFRG in section 5. We close our technical
discussion with an account of recent extensions to
finite-temperature physics in section 6. section 7 is
then devoted to a broad overview of applications of
the PFFRG approach to fundamental problems in
frustrated quantum magnetism. We close this review
with section 8 on future directions and some of the
challenges that still lay ahead of us and some conclusions
in section 9.

2. Model

In the following, we consider models with time-
independent spin Hamiltonians in which two spins on
lattice sites i and j interact via an exchange interaction
Jαβij . Here, we assume a general interaction with
α, β = x, y, z that couples the α’th component of spin
i to the β’th component of spin j

H =
1

2

∑

i,j

∑

α,β

Sαi J
αβ
ij S

β
j . (1)

For spin-1/2, the operators can be represented by Pauli
matrices σα, i.e. Sαi = ℏ

2σ
α
i , where σ

α
i is defined to only

act on site i and thus commute with all other operators
that are not acting on i. In this general form, eq. (1)
describes a vast multitude of interacting spin models, for
instance the isotropic Heisenberg model Jαβij = Jijδαβ ,
but can also contain anisotropic interactions, e.g. of
Kitaev [20,24,63,64,65,66,67] or Dzyaloshinsky-Moriya
type [48,52,68]. Similarly, the real-space extent of the
interactions is not only limited to short-range, but also
long-range interactions are treatable [69,70,71]

Due to its exponentially large Hilbert space and its
strongly interacting nature, an exact solution of eq. (1)
is often impossible. In the following, we discuss the
functional renormalization group as a many-body field
theoretical method to obtain an approximate solution.
Although this approach, in principle, also can handle
interactions involving more than two spins, this is
numerically not tractable, such that we restrict the
discussion in this manuscript of Hamiltonians of the
type defined in eq. (1).

3. Auxiliary Fermions

Many standard diagrammatic techniques used to treat
quantum many-body systems are not applicable to spin
models, due to the peculiar commutator structure of
their corresponding operators. The canonical angular
momentum commutation relations

[
Sα, Sβ

]
= iℏ

3∑

γ=1

ϵαβγS
γ , (2)

of the spin operator’s components Sα (α = x, y, z)
is neither fermionic nor bosonic. This in turn renders
Wick’s theorem [72], a fundamental theorem upon which
most many-body techniques are based, inapplicable in
its standard formulation [73,74].

This fact can be remedied by introducing an
auxiliary particle representation of the spin operators
in terms of pseudo-fermions, first introduced by
Abrikosov [75]. In the following, we will review
this representation and give an overview over the
consequences the construction has for the Green’s
functions of the pseudo-particles.

3.1. Spin-operator mapping

We introduce two species of auxiliary (complex)

fermions, c↑ and c↓, to define the operator mapping

Sα =
1

2

∑

µ,µ′=↑,↓

c†µσ
α
µµ′cµ′ , (3)

where σα (α ∈ {1, 2, 3}) are the Pauli matrices. As
can be readily verified, this representation fulfills the
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commutation relations eq. (2). However, by introducing
two different fermionic operators, the Hilbert space now
consists of four states

|0↑, 0↓⟩ |1↑, 1↓⟩ = c†↑c
†
↓ |0↑, 0↓⟩

|1↑, 0↓⟩ = c†↑ |0↑, 0↓⟩ |0↑, 1↓⟩ = c†↓ |0↑, 0↓⟩ , (4)

where only the singly occupied ones in the second row
correspond to the physical up/down spin states |↑⟩/|↓⟩
of the spin model, while the empty and doubly occupied
ones do not have a physical counterpart.

This overcounting necessitates the introduction of
the single occupation constraint in form of the operator
identity

c†i↓ci↓ + c†i↑ci↑ = 1. (5)

in addition to the mapping in eq. (3), to construct a
faithful operator mapping. For a many-body system,
eq. (5) has to hold individually per site i.

3.2. Gauge symmetry

The restriction to half-filling in pseudo-fermion
space introduces an ambiguity in the pseudo-fermion
description: The physical states can be described as
being constructed by filling an unphysical fermionic
vacuum, as done in eq. (4), but equally well as filling
holes into an unphysical fully occupied state. This
leads to an SU(2) gauge structure, which allows to
rotate freely between creation operators of one and
annihilation operators of the other spin species, while
simultaneously changing the fermionic vacuum.

To formalize this intuitive picture, we introduce
the matrix operator [76]

Ψ =

(
c↑ c†↓
c↓ −c†↑

)
, (6)

which allows us to express the mapping in eq. (3) as

Sα = −1

4
Tr
[
σαΨΨ†] . (7)

In this form, it becomes clear that the mapping
is invariant under a right-multiplication with a SU(2)
matrix according to

Ψ → ΨU†, U ∈ SU(2), (8)

i.e., a SU(2) transformation intermixing creation and
annihilation operators of up- and down spins. This
SU(2) gauge symmetry [76, 77], in turn, leads to an
intermixing of the two possible vacua |0↑, 0↓⟩ and
|1↑, 1↓⟩ due to their definitions in eq. (4).

As operator expectation values in second quantiza-
tion are always taken with respect to a specific vacuum,
only the U(1) and Z2 subgroup of the full SU(2) gauge
symmetry can be exploited, as they will lead to a pure,

rather than mixed, vacuum state. The former amounts
to multiplying the operators with a complex phase, leav-
ing the vacuum invariant, while the latter represents a
particle-hole transformation given by

UZ2
=

(
0 1
−1 0

)
. (9)

Under this transformation, |0↑, 0↓⟩ and |1↑, 1↓⟩
swap their roles. Both these subgroups of the full SU(2)
symmetry, therefore, lead to well-defined expectation
values, which can be brought into relation with each
other.

For completeness, let us mention that the single
occupation constraint eq. (5) can also be recast in terms
of the matrix operator in eq. (6), by realizing that half
filling additionally implies the operator identities

c†i↑c
†
i↓ = ci↑ci↓ = 0, (10)

as in a half-filled state, we can neither create nor
annihilate two fermions at the same time.

Together, eqs. (5) and (10) can be recast as a vector
equation

Gα =
1

4
Tr
[
σαΨ†

iΨi

]
= 0. (11)

Using the cyclic property of the trace, a SU(2)
transformation according to eq. (8) corresponds to
transforming the Pauli matrix in eq. (11) according
to

σα → U†σαU =
∑

β

Rαβσ
β , (12)

where we have used the fact that any SU(2)
transformation on a Pauli matrix will correspond to
an SO(3) rotation R of the Pauli matrix vector. This
means, although superficially equivalent to the half-
filling constraint, the additional operator identities in
eq. (10) will be generated under the action of the SU(2)
gauge symmetry of the pseudo-fermion representation.
The special case of a particle-hole symmetry eq. (9)
does not mix the components of the constraint vector
Gα defined in eq. (11), but only flips the sign of its y
component.

Lastly, using the relation between SO(3) and SU(2)
backward, we can straightforwardly show that also
any physical rotation in spin space corresponds to a
SU(2) transformation of the corresponding fermionic
operators, according to

∑

β

RαβS
β
i = −1

4
Tr




∑

β

Rαβσ
β


ΨiΨ

†
i


 (13)

= −1

4
Tr
[
U†σαUΨiΨ

†
i

]
(14)

= −1

4
Tr
[
σα(UΨi)(UΨi)

†
]
. (15)

This, however, is clearly not a symmetry of the operator
mapping eq. (3).
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3.3. Pseudo-fermion Hamiltonian

Having defined the pseudo-fermion mapping, we are
now able to rewrite the spin Hamiltonian, eq. (1), in
fermionic language, leading to

H̃ =
1

8

∑

i,j

∑

α,β

∑

µ,ν,ρ,σ

Jαβij c
†
iµciνc

†
jρcjσσ

α
µνσ

β
ρσ. (16)

The absence of a kinetic term here is generic for pseudo-
fermion Hamiltonians. As we will show in section 3.4.6,
the U(1) gauge-symmetry of the operator mapping in
eq. (3) does not allow for terms quadratic in operators
which are not on-site. This renders spin systems
inherently strongly interacting in the pseudo-fermionic
picture, preventing any perturbative treatment of the
problems around a Gaussian theory.

3.4. Symmetries of pseudo-fermion Green’s functions

The spin Hamiltonian in eq. (16) features, in addition
to the SU(2) gauge symmetry of the pseudo-fermion
mapping, a series of physical symmetries, such as
hermiticity and time-reversal invariance. In this
section, following the presentation in Ref. [78], we will
summarize these symmetries and their implications for
the relevant one- and two-particle Green’s functions2.

To fix notation, we define the one-particle Green’s
function [79]

G(x′1|x1) = −
∫

dτ ′1dτ1e
i(τ ′

1ω
′
1−τ1ω1)×

×
〈
Tτ ci1,µ1

(τ1)c
†
i′1,µ

′
1
(τ ′1)

〉 (17)

and its two-particle counterpart

G(x′1,x
′
2|x1, x2) =∫
dτ ′1dτ

′
2dτ1dτ2e

i(τ ′
1ω

′
1+τ

′
2ω

′
2−τ1ω1−τ2ω2)×

×
〈
Tτ ci1,µ1

(τ1)ci2,µ2
(τ2)c

†
i′2,µ

′
2
(τ ′2)c

†
i′1,µ

′
1
(τ ′1)

〉
,

(18)

where Tτ is the imaginary time ordering operator and
we use multi-indices xj = (ij , iωj , µj), containing the
site index ij , Matsubara frequency3 ωj and spin index
µj . Primed indices are referred to as outgoing, whereas
unprimed ones are called incoming indices.

2 In literature, n-particle functions are also called 2n-point
functions. We choose the former name, referring to the number of
pairs of creation and annihilation operators within an expectation
value, signifying the number of particles involved, while the latter
refers to the number of operators itself, or equivalently the number
of external arguments to the function.
3 For clarity we drop the discrete index of the Matsubara
frequencies.

3.4.1. Time-translation invariance We start our
discussion of symmetries with the invariance of the
pseudo-fermion Hamiltonian under translations in
imaginary time, manifested in the absence of any
explicit time or Matsubara frequency dependence in
eq. (16). This, in turn, implies Matsubara frequency
conservation, leading to a parametrization of one- and
two-particle Green’s functions as

G(x′1|x1) = G(x′1|x1)δω′
1,ω1

(19)

and

G(x′1, x
′
2|x1, x2) = G(x′1, x

′
2|x1, x2)δω′

1+ω
′
2,ω1+ω2

, (20)

reducing the frequency dependencies by one frequency
each.

3.4.2. Time-reversal invariance The second physical
symmetry to be considered is imaginary time-reversal,
which can be implemented at the pseudo-femion level
by the antiunitary operator T acting according to

T

(
c†iµ
ciµ

)
T −1 =

(
eiπµ/2c†iµ̄
e−iπµ/2ciµ̄

)
, (21)

where the notation µ̄ = −µ is a shorthand to indicate
the flip of the spin index with µ = ±1 representing spin
up/down.

Using this relation for the two-particle Green’s
function in eq. (17), we find for time-reversal invariant
systems the relation

G(x′1|x1) = eiπ(µ
′
1−µ1)/2G(T x′1|T x1)∗, (22)

where T xj = (ij ,−iωj , µ̄j) and the complex conjugation
due to the antiunitarity of time-reversal is only meant
to act on the Green’s function itself, but not on its
arguments.

The phase factor eiπ(µ
′
1−µ1)/2 can be simplified,

using the fact that µ = ±1, to

eiπ(µ
′
1−µ1)/2 = µ′

1µ1, (23)

as can be easily verified by considering all possible
combinations of the spin indices.

Similarly, the two-particle vertex obeys the relation

G(x′1, x
′
2|x1, x2) = µ′

1µ
′
2µ1µ2G(T x′1, T x′2|T x1, T x2)∗.

(24)
Note that time-reversal symmetry of a magnetic

system is broken when coupling to an external magnetic
fieldB via a term S·B or more generally by interactions
involving an odd number of spins. Since, however,
time-reversal symmetry will turn out to be crucial for
the performance of our calculations, we will refrain
from adding such terms, although the formalism is, in
principle, capable of handling these.
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3.4.3. Hermiticity The Hamiltonian and therefore the
thermal density matrix of a pseudo-fermionic system
being real directly dictates that the complex conjugate
of operator expectation values can be related to the
expectation values of their hermitian conjugate.

From this observation, the relations

G(x′1|x1) = G(x∗1|x′1
∗
)∗ (25)

for the one-particle Green’s function and

G(x′1, x
′
2|x1, x2) = G(x1

∗, x2
∗|x′1

∗
, x′2

∗
)∗ (26)

for the two-particle Green’s function follow directly.
Here, we use the shorthand x∗j = (ij ,−iωj , µj). By
themselves, these relations already give some insight
into the analytical structure of the Green’s functions,
however, a combination with the time-reversal relations,
eqs. (23) and (24), will lead to new relations for the
whole Green’s function, rather than their real and
imaginary parts separately.

3.4.4. Lattice symmetries As a last physical symmetry,
we want to consider the effect of lattice symmetries
associated with the spin Hamiltonian in eq. (16).
Defining a suitable unitary operator L, the action of
the space group on the operators can be expressed as

L

(
c†iµ
ciµ

)
L−1 =

(
c†L(i)µ
cL(i)µ

)
, (27)

where the lattice point i is mapped to L(i) by the
transformation. Assuming invariance of the system
under all lattice symmetries4, we find for the Green’s
functions

G(x′1|x1) = G(Lx′1|Lx1) (28)

and

G(x′1, x
′
2|x1, x2) = G(Lx′1,Lx

′
2|Lx1,Lx2). (29)

Due to the translational subgroup contained in any
space group, we can therefore always map at least one
of the site indices on which the Green’s function depends
on, back into a reference unit cell. If, furthermore, all
lattice points are symmetry equivalent (an Archimedian
lattice), we can use the point group of the lattice to
select a single reference point in this unit cell5.

4 Any symmetry breaking imposed by the specific coupling
structure can be treated by defining a new lattice compatible
with the coupling symmetries.
5 In case of n symmetry inequivalent points per unit cell (for a
non-Archimedian lattice such as the square-kagome lattice), we
have to choose n such reference points.

3.4.5. Crossing symmetries Before turning towards
the gauge symmetries of the pseudo-fermion mapping,
let us briefly mention that, due to the fermionic
anticommutation relations, Green’s functions have to
change sign under pairwise exchange of two incoming or
outgoing indices. For the two-particle Green’s function,
this implies

G(x′1, x
′
2|x1, x2) = −G(x′2, x′1|x1, x2)

= −G(x′1, x′2|x2, x1)
= G(x′2, x

′
1|x2, x1) .

(30)

These relations are commonly referred to as crossing
symmetries of the Green’s function, as in a diagram-
matic language it corresponds to crossing the incoming
or outgoing legs of a given diagram.

3.4.6. Local U(1) gauge symmetry Having exhausted
all symmetries of the Green’s functions which hold for
general fermionic systems, we now want to consider
the additional constraints the pseudo-fermion mapping
in eq. (3) imposes on these objects. As already
discussed in section 3.2, the single occupation constraint
accompanying the mapping of spin operators to
fermions introduces a local SU(2) gauge symmetry.
Since however, the vacuum is not invariant under this
group, only two subgroups of the full symmetry can
be exploited for expectation values defining Green’s
functions. The first one, we want to discuss, is the local
U(1) symmetry.

The action of this group amounts to rotating the
complex phase of an operator at site i by an arbitrary
angle ϕi, i.e., the operators transform as

Uϕ

(
c†iµ
ciµ

)
U−1
ϕ =

(
eiϕic†iµ
e−iϕiciµ

)
. (31)

To allow for non-vanishing Green’s functions, these
phases have to cancel, which implies that pairs of
incoming and outgoing parameters have to reside on
the same lattice point. This leads to a purely local
one-particle Green’s function

G(x′1|x1) = G(x′1|x1)δi′1i1 , (32)

while the two-particle Green’s function features two
possible combinations of incoming an outgoing sites

G(x′1, x
′
2|x1, x2) =G(x′1, x′2|x1, x2)δi′1i1δi′2i2

−G(x′2, x′1|x1, x2)δi′1i2δi′2i1 .
(33)

In the second term, we have already explicitly
incorporated the crossing-symmetry, eq. (30), leading
to a direct and crossed term in terms of real space
indices6. Similar to a global U(1) symmetry implying

6 The real-space structure we find here is completely analogous
to the one in spin space for SU(2) symmetric systems, as used in
itinerant fermion FRG [80].
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conservation of total particle number, this gauged
implementation leads to a particle number conservation
per site, in accordance with the local single occupation
constraint of the pseudo-fermions.

In analogy, multi-particle Green’s functions will
become multi-local, which has profound implications
for the natural basis we will treat pseudo-fermions in:
While itinerant particles tend to delocalize, electronic
systems are usually best treated in a momentum-space
picture, whereas for pseudo-fermions real space is more
appropriate.

3.4.7. Local particle-hole conjugation The second
subgroup of the SU(2) gauge symmetry, we want to
discuss, is the Z2 subgroup, which amounts to a local
particle-hole conjugation7

Zi

(
c†iµ
ciµ

)
Z−1
i =

(
µciµ̄
µc†iµ̄

)
, (34)

which also swaps spin sectors. Applying this
transformation to the locally parameterized Green’s
function from the previous section, we find

G(x′1|x1)δi′1i1 = −µ′
1µ1G(T x1|T x′1)δi′1i1 (35)

for the one-particle case. The negative sign is due to an
anticommutation within the expectation value defining
the Green’s function, while the inversion of frequency
is due to the swapping of creation and annihilation
operators, which flips the energy spectrum.

For the two-particle case, we analogously find, by
applying the local conjugation to the two independent
sites separately

G(x′1, x
′
2|x1, x2)δi′1i1δi′2i2

= −µ′
1µ1G(T x1, x′2|T x′1, x2)δi′1i1δi′2i2

(36)

= −µ′
2µ2G(x

′
1, T x2|x1, T x′2)δi′1i1δi′2i2 .

(37)

Note that even in the case of i1 = i2, the two
relations eqs. (36) and (37) hold separately, as the
symmetry is connected to the decomposition of the spin
operators involved, as labelled by 1 and 2, rather than
the sites the fermions reside on.

3.4.8. Summary of the symmetries For reference, we
summarize all symmetry relations of the one- and
two-particle Green’s function in table 1 and table 2,
respectively.

7 In PFFRG literature, this transformation is usually called
particle-hole symmetry, which would imply an antiunitary
implementation. As the local Z2, however, is unitary, we prefer
the term conjugation.

We can divide the symmetries into two groups.
The first one reduces the dependence of the Green’s
functions on the external degrees of freedom: The local
U(1) symmetry renders the one(two)-particle function
(bi-)local, greatly reducing their spatial dependence.
Additionally, lattice symmetries (L) allow to fix one site
as a reference point within the unit cell. In frequency-
space, time-translational invariance (TT) has a similar
effect, reducing the number of frequency arguments by
one.

The second group of symmetries establishes
relations within the remaining structure of the Green’s
functions: This is the case for the remaining part
of the lattice symmetries and the local particle-hole
conjugation, which induces one symmetry relation (PH)
in the one-particle case and two, (PH1) and (PH2), in
the two-particle one, one for each site index. Time-
reversal (TR) and Hermitian (H) symmetry relate
the real and imaginary parts of the Green’s function.
For the case of the two-particle Green’s function, we
also have the combined crossing symmetry in both
incoming and outgoing arguments (X). As the bilocality
constraint following from (U(1)), already decomposes
the vertex into two components, which are related by
an individual crossing symmetry, as shown in eq. (30),
crossing symmetry in incoming or outgoing particles
seperately is already accounted for.

3.5. Gauge invariance of Lagrangian

Having discussed the symmetries of both the spin
Hamiltonian and the Green’s functions, we still have to
see, how the gauge symmetry affects the Lagrangian,
which we need for a field-theoretic treatment of pseudo-
fermion systems. To this end, we bring the spin
Hamiltonian eq. (16) in a more convenient form for
our purpose

H̃ = − 1

32

∑

i,j,α,β

Jαβij Tr
[
σαΨiΨ

†
i

]
Tr
[
σβΨjΨ

†
j

]
. (38)

Here, it is manifest that the Heisenberg model with
Jαβ ∝ δαβ is invariant both under a local SU(2) gauge
transformation according to eq. (8),

Ψi → ΨiU
†
i , Ui ∈ SU(2), (39)

where the matrix Ui can be site-dependent, as well as a
global rotation in spin space given by eq. (15). For field-
theoretical treatments, we will need the Lagrangian of
this system [76]

L = i
∑

i,µ

c†iµ
∂

∂t
ciµ −H, (40)

which, by means of integration by parts, is up to
a constant term, equivalent to the manifestly gauge
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G(x′1|x1) = G(x′1|x1)δi′1i1 (U(1))

G(x′1|x1)δi′1i1 = G(Lx′1|Lx1)δi′1i1 (L)

G(x′1|x1)δi′1i1 = G(x′1|x1)δi′1i1δω′
1,ω1

(TT)

G(x′1|x1)δi′1i1 = −µ′
1µ1G(T x1|T x′1)δi′1i1 (PH)

G(x′1|x1)δi′1i1 = µ′
1µ1G(T x′1|T x1)∗δi1′ i1 (TR)

G(x′1|x1)δi′1i1 = G(x∗1|x′1
∗
)∗δi′1i1 (H)

Table 1. Symmetry relations of the one-particle correlation function for pseudo-fermion Hamiltonians. The combined index
xj = (ij , iωj , µj) is used as shorthand for site index ij , Matsubara frequency iωj and spin index µj for incoming (unprimed) and
outgoing (primed) parameters. The labels are shorthands for the underlying symmetry of the relations: TR denotes time-reversal,
TT time translation, L lattice symmetries, H hermitian conjugation, X crossing symmetry in both incoming and outgoing particles
and PH is a particle-hole transformation.

G(x′1, x
′
2|x1, x2) = G(x′1, x

′
2|x1, x2)δi′1i1δi′2i2

−G(x′2, x′1|x1, x2)δi′1i2δi′2i1 (U(1))

G(x′1, x
′
2|x1, x2)δi′1i1δi′2i2 = G(Lx′1,Lx

′
2|Lx1,Lx2)δi′1i1δi′2i2 (L)

G(x′1, x
′
2|x1, x2)δi′1i1δi′2i2 = G(x′1, x

′
2|x1, x2)δi′1i1δi′2i2δω′

1+ω
′
2,ω1+ω2

(TT)

G(1′, 2′; 1, 2)δi′1i1δi′2i2 = −µ′
1µ1G(T x1, x′2|T x′1, x2)δi′1i1δi′2i2 (PH1)

G(x′1, x
′
2|x1, x2)δi′1i1δi′2i2 = −µ′

2µ2G(x
′
1, T x2|x1, T x′2)δi′1i1δi′2i2 (PH2)

G(x′1, x
′
2|x1, x2)δi′1i1δi′2i2 = µ′

1µ
′
2µ1µ2G(x1

∗, x2
∗|x′1

∗
, x′2

∗
)∗δi′1i1δi′2i2 (TR)

G(x′1, x
′
2|x1, x2)δi′1i1δi′2i2 = G(x1

∗, x2
∗|x′1

∗
, x′2

∗
)∗δi′1i1δi′2i2 (H)

G(x′1, x
′
2|x1, x2)δi′1i1δi′2i2 = G(x′2, x

′
1|x2, x1)δi′1i1δi′2i2 (X)

Table 2. Symmetry relations of the two-particle correlation function for pseudo-fermion Hamiltonians. The combined index
xj = (ij , iωj , µj) is used as shorthand for site index ij , Matsubara frequency iωj and spin index µj for incoming (unprimed) and
outgoing (primed) parameters. The labels are shorthands for the underlying symmetry of the relations, for details see main text.

invariant form

L =
i

2

∑

i

Tr

[
Ψi

∂

∂t
Ψ†
i

]
−H. (41)

To incorporate the single-occupation per site
constraint in this formulation, we add three Lagrange
multipliers Aα enforcing the three components of

eq. (11), by adding a term Tr
[
Ψi(A · σ)Ψ†

i

]
to the

Lagrangian. This term, however, is nothing else than a
coupling of the matrix valued field Ψ to the temporal
component of the SU(2) gauge field A·σ, given we allow
for fluctuations of the Lagrange multipliers, promoting
them to fields.

This approach even allows for time-dependent
gauge transformations, which would not leave the
quadratic term in eq. (41) invariant, due to the
time derivative terms of the transformation not being
cancelled. Demanding a suitable transformation of the
gauge field

A · σ → U†
(
A · σ − i

∂

∂t

)
U, (42)

restores this invariance, thereby promoting the local
SU(2) gauge invariance to a time-dependent one. The
Lagrangian fully invariant under the local and time-
dependent gauge symmetry of the SU(2) symmetry of

the pseudo-fermions therefore reads as

L =
1

2

∑

i

Tr

[
Ψi(i

∂

∂t
+A · σ)Ψ†

i

]
−H. (43)

4. Functional Renormalization Group

The reformulation of the general spin Hamiltonian
in terms of auxiliary spinon operators as presented
in the previous section opens up the possibility of
employing established many-body techniques developed
for interacting fermions. In contrast to itinerant
systems, however, the fermionized spin model lacks a
quadratic term as a result of the aforementioned SU(2)
gauge invariance, such that perturbative approaches
based on a small parameter t/J , where t characterizes
the kinetic energy scale and J the spin interactions, are
inapplicable.

The functional renormalization group [51, 81, 82]
first emerged in high-energy physics, where it has been
successfully applied to, e.g., electroweak physics [83],
quantum chromodynamics [84, 85, 86, 87] and models of
quantum gravity [88,89]. The general idea behind FRG
is the successive inclusion of low-energy fluctuations
during a renormalization group flow, which evolves
the many-body interactions of a microscopic theory in
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terms of an infrared cutoff. In this sense, it naturally
extends concepts of Wilsonian RG [90,91,92], namely,
running couplings and an effective action, to coupling
functions (vertices) and their generating functionals.
Nowadays, FRG calculations are also widely used in
condensed matter research, ranging from applications
to zero dimensional systems such as quantum dots [93,
94, 95, 96], over studies of Luttinger-liquid physics in
1D [97,98,99], to extensive characterizations of Fermi
liquid instabilities in variants of the Hubbard model
[100,101,102,103,104,105,106,107,108,109,110].

In this section, the functional renormalization
group approach to correlated fermionic systems is
introduced on a general level, closely following the
derivations presented in Refs. [78,111]. Given the vast
amount of literature that exists on the matter [80,93,99,
112,113,113,114,115], we aim at keeping the discussion
concise and, if feasible, encourage the reader to follow
the given references for further detail beyond the scope
of this review. For a practical implementation of FRG
for pseudo-fermions, see section 5.

4.1. Generating functionals

We consider a fermionic action of the form

S[ψ̄, ψ] = −(ψ̄, G−1
0 ψ) + Sint[ψ̄, ψ] , (44)

where (ψ̄, G−1
0 ψ) ≡

∑
x′
1,x1

ψ̄x′
1
[G−1

0 ]x′
1x1
ψx1

. Here,

ψ̄, ψ denote fermionic Grassmann fields and summations
over their multi-indices xi, which could comprise e.g.
spin projections or Matsubara frequencies, are to be
understood as sums (integrals) over their discrete
(continuous) components. Furthermore, we assume a
quartic interaction

Sint[ψ̄, ψ] =
∑

x′
1,x

′
2,x1,x2

Vx′
1x

′
2|x1x2

ψ̄x′
1
ψ̄x′

2
ψx2

ψx1
, (45)

in which the interaction tensor V is antisymmetric with
respect to permutations (x′1 ↔ x′2) and (x1 ↔ x2), as
indicated by a vertical line separating the respective
index sets.

For a given action, the central goal is to compute
the corresponding n-particle Green’s functions, i.e.,
expectation values of the form

⟨ψ̄x′
1
...ψ̄x′

n
ψxn

...ψx1
⟩ ≡ Gn(x

′
1, ..., x

′
n|x1, ..., xn) , (46)

where the (thermal) average ⟨ . ⟩ is defined with respect
to the partition function

Z =

∫
D[ψ̄, ψ] e−S[ψ̄,ψ] . (47)

Defining the functional

W[η̄, η] =
1

Z0

∫
D[ψ̄, ψ]e−S[ψ̄,ψ]−(ψ̄,η)−(η̄,ψ) , (48)

where Z0 is the Gaussian partition function, the
disconnected Green’s functions can be obtained by
considering functional derivatives of W with respect
to the fermionic sources η̄, η and setting them to zero
afterwards:

Gn(x
′
1,..., x

′
n|x1, ..., xn) =
δn

δη̄x1 ...δη̄xn

δn

δηx′
n
...δηx′

1

W[η̄, η]

∣∣∣∣
η̄=η=0

. (49)

For practical purposes it is more convenient to work
with fully-connected correlators8, as disconnected
diagrams contain redundant information from Greens’s
functions involving less particles, effectively mixing
information about different particle number sectors.
These are generated by the so-called Schwinger
functional

Wc[η̄, η] = ln(W[η̄, η]) . (50)

Although this new functional reduces the superflu-
ous information contained in W by excluding fully-
disconnected contributions, there is still some redun-
dancy left in this description: some terms can be sepa-
rated into two mutually disconnected parts by remov-
ing a single propagator G ≡ G1 = Gc1

9. To obtain a
complete description of the physical system, it there-
fore suffices to compute precisely those one-particle
irreducible (1PI) correlation functions or vertices from
which external legs have been amputated [79]. Their re-
spective generator Γ is given by the functional Legendre
transform of Wc, i.e.,

Γ[ϕ̄, ϕ] = −Wc[η̄, η]− (ϕ̄, η)− (η̄, ϕ) + (ϕ̄, G−1
0 ϕ) ,

(51)

where ϕ = − δWc[η̄,η]
δη̄ and ϕ̄ = δWc[η̄,η]

δη are the conjugate
sources. The one-particle vertex Γ1, for example,
corresponds to the fermionic self-energy Σ up to a minus
sign, i.e., Γ1 = −Σ. The 1PI vertices thus resemble
the effective n-body interactions of the system, and
their generating functional Γ is therefore commonly
referred to as the effective action [79, 113, 114]. It
turns out, that of these three functionals only the 1PI
formulation allows for well-defined initial conditions for
the renormalization group equations we will derive in
the following [113].

4.2. Exact flow equations

In order to set up the functional renormalization group
approach, a proper RG transformation needs to be
defined. To this end, an infrared cutoff Λ is introduced

8 Statistically speaking, this corresponds to considering the
cumulants of the distribution 1

Z
e−S[ψ̄,ψ] instead of its moments.

9 Here, Gc1 corresponds to the second functional derivative of
Wc with vanishing sources.



Pseudo-fermion functional renormalization group for spin models 10

into the bare propagator G0 such that it vanishes in the
ultraviolet limit, GΛ→∞

0 = 0, and again coincides with
G0 when approaching the infrared limit, GΛ→0

0 = G0.
This is usually achieved by virtue of a multiplicative
regulator function R(Λ) with GΛ

0 = R(Λ)G0, such
that R(0) = 1 and R(Λ → ∞) = 0. This procedure
renders the original action S and likewise the generating
functionals W, Wc and, most importantly, Γ, cutoff
dependent. Considering its derivative with respect to
Λ, the evolution of the effective action from Λ → ∞ to
Λ → 0 can thus be described by an ordinary differential
equation (ODE) which reads

∂ΛΓ
Λ[ϕ̄, ϕ] =− ∂ΛWΛ

c [η̄
Λ, ηΛ]−

(
ϕ̄, ∂Λη

Λ
)

−
(
∂Λη̄

Λ, ϕ
)
+
(
ϕ̄, QΛϕ

)
, (52)

with QΛ ≡ ∂Λ(G
Λ
0 )

−1. Note that a Λ-dependence needs
to be added to the η̄, η source fields to make up for the
change of variables in the Legendre transformation. The
cutoff derivative of the generator Wc hereby computes
to

∂ΛWΛ
c [η̄, η] = −Tr

(
QΛGΛ

0

)
+Tr

(
QΛ δ

2WΛ
c [η̄, η]

δη̄δη

)

−
(
δWΛ

c [η̄, η]

δη
,QΛ δWΛ

c [η̄, η]

δη̄

)
, (53)

which, due to Eq. (51), motivates10 the definition of a
matrix MΛ capturing the second functional derivatives
of Γ with respect to the conjugate source fields, i.e.

MΛ =
[

1 −
(−GΛ 0

0
(
GΛ
)T
)(

UΛ δ2ΓΛ[ϕ̄,ϕ]

δϕ̄δϕ̄
δ2ΓΛ[ϕ̄,ϕ]
δϕδϕ −(UΛ)T

)]−1

,

(54)

with UΛ = δ2ΓΛ[ϕ̄,ϕ]

δϕ̄δϕ
− ΓΛ

1 . Using this matrix, Eq. (52)

can be written in a more compact form

∂ΛΓ
Λ[ϕ̄, ϕ] = Tr

(
QΛGΛ

0

)
− Tr

(
GΛQΛMΛ

11

)
, (55)

where MΛ
11 denotes the upper left element of MΛ.

In practice, it is more convenient to rephrase this
functional equation as a hierarchy of ODEs for the
vertices, which represent ordinary functions. To this
end, one Taylor-expands the effective action on both
sides of Eq. (55) as

ΓΛ[ϕ̄, ϕ] =

∞∑

n=0

(−1)n

(n!)2

∑

x′
1,...,x

′
n

∑

x1,...,xn

ΓΛ
n(x

′
1, ..., x

′
n|x1, ..., xn)ϕ̄x′

1
...ϕ̄x′

n
ϕxn

...ϕx1
, (56)

10 This is because the derivative
δ2WΛ

c [η̄,η]

δη̄δη
, which appears in

∂ΛWΛ
c [η̄, η], can also be expressed in terms of second order field

derivatives of Γ.

and carries out the matrix valued geometric series in
MΛ explicitly. By comparing the coefficients for a given
power of the fields on the left and right hand side of
the so-expanded Eq. (55), we can finally find the flow
equations for the n-particle vertices. Henceforth, we
limit the discussion to the flow of the self-energy Σ and
two-particle vertex, which we simply refer to as the
vertex from now on and, for the sake of brevity, denote
it by Γ instead of Γ2. For the flow of Σ one finds

∂ΛΣ
Λ(x′1|x1) = −

∑

x′
2,x2

ΓΛ(x′1, x
′
2|x1, x2)SΛ(x2|x′2)

≡ −[ΓΛ • SΛ](x′1|x1) , (57)

where we defined the single-scale propagator11

SΛ ≡ GΛQΛGΛ = −∂ΣΛGΛ , (58)

as well as the tadpole contraction •, which connects
an incoming and an outgoing line at an n-particle
vertex with a fermionic propagator. For a compact
representation of the vertex flow, we resort to the
notation utilized in Refs. [116,117] that is we define the
propagator bubbles

Π̇s(x
′
1, x

′
2|x1, x2) = − 1

2∂
Σ
Λ

[
GΛ(x′1|x1)GΛ(x′2|x2)

]

Π̇t(x
′
1, x

′
2|x1, x2) = +∂ΣΛ

[
GΛ(x′1|x2)GΛ(x′2|x1)

]

Π̇u(x
′
1, x

′
2|x1, x2) = −∂ΣΛ

[
GΛ(x′2|x2)GΛ(x′1|x1)

]
,
(59)

and two-particle contractions

[ΓΛ◦sΓ̃Λ](x′1, x
′
2|x1, x2) =∑

x3,x4

ΓΛ(x3, x4|x1, x2)Γ̃Λ(x′1, x
′
2|x3, x4)

[ΓΛ◦tΓ̃Λ](x′1, x
′
2|x1, x2) =∑

x3,x4

ΓΛ(x′1, x4|x1, x3)Γ̃Λ(x3, x
′
2|x4, x2)

[ΓΛ◦uΓ̃Λ](x′1, x
′
2|x1, x2) =∑

x3,x4

ΓΛ(x4, x
′
2|x1, x3)Γ̃Λ(x′1, x3|x4, x2) , (60)

such that

∂ΛΓ
Λ(x′1, x

′
2|x1, x2) = [ΓΛ

3 • SΛ](x′1, x
′
2|x1, x2)

+ [ΓΛ ◦s Π̇s ◦s ΓΛ](x′1, x
′
2|x1, x2)

+ [ΓΛ ◦t Π̇t ◦t ΓΛ](x′1, x
′
2|x1, x2)

+ [ΓΛ ◦u Π̇u ◦u ΓΛ](x′1, x
′
2|x1, x2) . (61)

So far, it may not be apparent to the reader why
precisely these definitions of bubble functions and two-
particle contractions are useful. For now, we will

11 ∂Σ
ΛGΛ is a shorthand notation for ∂ΛG

Λ|ΣΛ=const..
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simply regard them as one specific way of grouping
the diagrams on the right hand side of the vertex flow
(see fig. 1) and postpone this particular discussion to
section 4.3.

A cumbersome property of the vertex flow is the
appearance of the tadpole contracted three-particle
vertex ΓΛ

3 •SΛ. In other words, the computation of ∂ΛΓ
Λ

requires knowledge about ∂ΛΓ
Λ
3 , which itself features

a contribution ΓΛ
4 • SΛ. More generally speaking, the

flow of the n-particle vertex depends on all ΓΛ
m with

m ≤ n+ 1, implying that the formally exact hierarchy
of vertex ODEs cannot be solved without employing
additional approximations, which we discuss in the next
section. After having implemented such a truncation,
the flow equations for the action in Eq. (44) can be
solved using the initial conditions [113,114]

ΣΛ→∞(x′1|x1) = 0

ΓΛ→∞(x′1, x
′
2|x1, x2) = 4Vx′

1,x
′
2|x1,x2

ΓΛ→∞
n≥3 (x′1, x

′
2|x1, x2) = 0 . (62)

4.3. Truncation of the flow equations

The action considered in this review (see eq. (44))
consists of a Gaussian part and a quartic interaction and
we, thus, concern ourselves with approximations that
truncate the flow equations beyond the two-particle
level. In other words, the goal of this section is
to present different ways of removing the expression
ΓΛ
3 • SΛ from the right hand side of ∂ΛΓ

Λ. To
simplify the notation for the following discussions, we
suppress the Λ-superscripts above all propagators and
n-particle vertices and consider them implicitly as cutoff
dependent. Furthermore, we dispense with writing out
external arguments such as G(x′1|x1), since they can be
reintroduced a posteriori without further complications.
The flow of the vertex then reads

∂ΛΓ = Γ3 • S +
∑

c

Γ ◦c Π̇c ◦c Γ . (63)

The most simple approximation, the level-2 (L2)
truncation, sets all n-particle vertices with n ≥ 3 to
zero, such that

∂ΛΓ (L2)
≈

∑

c

Γ ◦c Π̇c ◦c Γ . (64)

As long as the bare interaction V is small if compared
to, for example, the electronic bandwidth in itinerant
fermion models, the L2 truncation can be justified in
the Λ → ∞ limit: contributions to Γ3 are at least
third order in V , whereas the vertex is O(V 2) [80, 102].
During the flow, two scenarios are possible: 1) the
vertex stays small and the L2 truncation remains well-
controlled, or 2) Γ flows to strong-coupling, i.e., it

becomes large and higher order vertices cannot be
ignored, resulting in a breakdown of the flow. The
latter usually happens when approaching a low-energy
ordered phase [113,114] or when correlations mediated
by a subclass of diagrams become particularly strong.

One of the downsides of the L2 truncation concerns
the accuracy with which Ward identities are fulfilled
12. More specifically, violations of the conservation law
already set in at third order in Γ, thereby spoiling the
robustness of the results obtained at the end of the
RG flow. Moreover, the latter usually depend on the
specific implementation of the regulator, complicating
the analysis even further. A first attempt to improve
the truncation of the flow equations, specifically with
respect to the fulfilment of Ward identities, was made by
Katanin in Ref. [119] and amounts to the replacement
of the partial derivative in Π̇c by a full Λ-derivative:
∂ΣΛ → ∂Λ. Consequently, the vertex flow becomes

∂ΛΓ (Kat.)
≈

∑

c

Γ ◦c ∂ΛΠc ◦c Γ , (65)

where Πc is defined as in Eq. (59) but without the
partial derivative ∂ΣΛ . By expressing G via Dysons’s
equation, one finds that

SΛ = ∂ΣΛG→ SΛ
kat = ∂ΛG = ∂Λ

(
G−1

0 − Σ
)−1

= ∂ΣΛG+G (∂ΛΣ)G , (66)

i.e., the propagator bubbles in the Katanin truncation
feed back the self-energy flow into ∂ΛΓ, augmenting the
diagrams on the right-hand side (rhs) of the vertex
flow by those O(Γ3) diagrams without overlapping
loops. If these additional diagrams are accounted for,
single-channel FRG calculations13 fulfill Ward identities
exactly and, thus, self-consistency of the FRG approach
is improved [119].

While the Katanin truncation reduces the
systematic error induced by truncating three-particle
and higher-order vertices (see Ref. [118] for numerical
results), it does not include all O(Γ3) diagrams and
violations of conservations laws will therefore likewise
set in at third order in Γ. This issue was later
addressed by Eberlein [120], who proposed a scheme
to systematically compute the missing third-order
diagrams by first decomposing the vertex into three
channels gc corresponding to the three different types
of bubbles and contractions introduced in section 4.1
and subsequently inserting one-loop diagrams from
channel c into contractions with c′ ̸= c. In 2018,
this idea was generalized by Kugler and von Delft in
what is now called multiloop FRG (MFRG) [116,121].

12 Ward identities are exact relations between vertices of different
order that can be derived from conservation laws [113,118]
13 That is, ladder summations using only one of the terms
Γ ◦c ∂ΛΠc ◦c Γ on the rhs of ∂ΛΓ.
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<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="I2VC/pcOPLcN1XK7X49ZAzm5YKA=">AAACJ3icbVDLSgNBEJz1Gd+JHr0sBsFT2BVRL0LQi8cIRgNJkN7Z3mRwHsvMrBKWfIFX/Qi/xpvo0T9xElcwiQUNRVU33V1RypmxQfDpzc0vLC4tl1ZW19Y3NrfKle0bozJNsUkVV7oVgUHOJDYtsxxbqUYQEcfb6P5i5N8+oDZMyWs7SLEroCdZwihYJ12d3ZWrQS0Yw58lYUGqpEDjruKVO7GimUBpKQdj2mGQ2m4O2jLKcbjayQymQO+hh21HJQg03Xx86dDfd0rsJ0q7ktYfq38nchDGDETkOgXYvpn2RuJ/XjuzyWk3ZzLNLEr6syjJuG+VP3rbj5lGavnAEaCauVt92gcN1LpwJrZwoWLU0j2iUeIjVUKAjPNOAoLxQYwJZNwO845JfrnLMJxObJbcHNbC49rR1VG1fl6kWSK7ZI8ckJCckDq5JA3SJJQgeSLP5MV79d68d+/jp3XOK2Z2yAS8r29i96bW</latexit>= <latexit sha1_base64="5qUZb+nWBJFOQpNpcpbjXQWeM2Q=">AAACJ3icbVDLSgNBEJyN7/iKevSyGAQvhl0J6jHoxaOCiYEkhN7Z3mTIPJaZWSUs+QKv+hF+jTfRo3/i5CGosaChqOqmuytKOTM2CD68wsLi0vLK6lpxfWNza7u0s9swKtMU61RxpZsRGORMYt0yy7GZagQRcbyLBpdj/+4etWFK3tphih0BPckSRsE66ea4WyoHlWACf56EM1ImM1x3d7xSO1Y0Eygt5WBMKwxS28lBW0Y5jortzGAKdAA9bDkqQaDp5JNLR/6hU2I/UdqVtP5E/TmRgzBmKCLXKcD2zV9vLP7ntTKbnHdyJtPMoqTTRUnGfav88dt+zDRSy4eOANXM3erTPmig1oXzawsXKkYt3SMaJT5QJQTIOG8nIBgfxphAxu0ob5vkm7sMw7+JzZPGSSU8rVRvquXaxSzNVbJPDsgRCckZqZErck3qhBIkj+SJPHsv3qv35r1PWwvebGaP/IL3+QVGx6bG</latexit>≠
<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+
<latexit sha1_base64="eK5HJwlvzwpbRotxUj4vpl98Mb4=">AAACMXicbZDLSsNAFIYnXuu96tJNsAiuSlKKuhTduKxgW6EpcjI5qYNzCTMTpYQ8hlt9CJ+mO3HrSzi9CFr9YeDjP+dwzvxxxpmxQTDyFhaXlldWK2vrG5tb2zvV3b2OUbmm2KaKK30bg0HOJLYtsxxvM40gYo7d+OFyXO8+ojZMyRs7zLAvYCBZyihYZ/WiVAMtwrJolHfVWlAPJvL/QjiDGpmpdbfrVaNE0VygtJSDMb0wyGy/AG0Z5ViuR7nBDOgDDLDnUIJA0y8mN5f+kXMSP1XaPWn9iftzogBhzFDErlOAvTfztbH5X62X2/SsXzCZ5RYlnS5Kc+5b5Y8D8BOmkVo+dABUM3erT+/BxWBdTL+2cKES1NJ9RKPEJ6qEAJkUUQqC8WGCKeTclkVk0m92GYbzif2FTqMentSb183a+cUszQo5IIfkmITklJyTK9IibUKJIs/khbx6b97Ie/c+pq0L3mxmn/yS9/kFEWGrSA==</latexit>1
2

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+

<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk=">AAACPXicbVDLShxBFK32ER8xyai4ctNkELMaukWiS4kblwYcFaaH4Xb1baewHk3VbXUo+mPcxo/Id+QD3Em22aZmHMHXgYLDOffWqTp5JYWjJPkTzczOzX9YWFxa/rjy6fOX1uraqTO15djlRhp7noNDKTR2SZDE88oiqFziWX55OPbPrtA6YfQJjSrsK7jQohQcKEiD1sZORnhDk4v89VAQNn67GbTaSSeZIH5L0ilpsymOB6tRKysMrxVq4hKc66VJRX0PlgSX2CxntcMK+CVcYC9QDQpd309im3grKEVcGhuOpniiPt/woJwbqTxMKqChe+2Nxfe8Xk3lft8LXdWEmj8GlbWMycTjMuJCWOQkR4EAtyK8NeZDsMApVPYiRSpToNXhIxY1XnOjFOjCZyUoIUcFllBLanzmyiceOkxfN/aWnO500u+d3Z+77YMf0zYX2Sb7yr6xlO2xA3bEjlmXcebZLfvF7qLf0X30EP19HJ2Jpjvr7AWif/8B+VSwPA==</latexit>

2Õ<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk=">AAACPXicbVDLShxBFK32ER8xyai4ctNkELMaukWiS4kblwYcFaaH4Xb1baewHk3VbXUo+mPcxo/Id+QD3Em22aZmHMHXgYLDOffWqTp5JYWjJPkTzczOzX9YWFxa/rjy6fOX1uraqTO15djlRhp7noNDKTR2SZDE88oiqFziWX55OPbPrtA6YfQJjSrsK7jQohQcKEiD1sZORnhDk4v89VAQNn67GbTaSSeZIH5L0ilpsymOB6tRKysMrxVq4hKc66VJRX0PlgSX2CxntcMK+CVcYC9QDQpd309im3grKEVcGhuOpniiPt/woJwbqTxMKqChe+2Nxfe8Xk3lft8LXdWEmj8GlbWMycTjMuJCWOQkR4EAtyK8NeZDsMApVPYiRSpToNXhIxY1XnOjFOjCZyUoIUcFllBLanzmyiceOkxfN/aWnO500u+d3Z+77YMf0zYX2Sb7yr6xlO2xA3bEjlmXcebZLfvF7qLf0X30EP19HJ2Jpjvr7AWif/8B+VSwPA==</latexit>

2Õ

<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c=">AAACPXicbVDLShxBFK32ER8xcTS4ctNkCMlq6BYxWYpuXBpwVJgehtvVt53CejRVt6ND0R+TrX6E3+EHuAtu3aZmHMHXgYLDOffWqTp5JYWjJLmNZmbn5j8sLC4tf1z59Hm1tbZ+7ExtOXa5kcae5uBQCo1dEiTxtLIIKpd4kp/vj/2TP2idMPqIRhX2FZxpUQoOFKRBayPNCC9pcpG/GArCxn9vBq120kkmiN+SdErabIrDwVrUygrDa4WauATnemlSUd+DJcElNstZ7bACfg5n2AtUg0LX95PYJv4WlCIujQ1HUzxRn294UM6NVB4mFdDQvfbG4nter6byV98LXdWEmj8GlbWMycTjMuJCWOQkR4EAtyK8NeZDsMApVPYiRSpToNXhIxY1XnCjFOjCZyUoIUcFllBLanzmyiceOkxfN/aWHG910p3O9u/t9u7etM1Ftsm+sh8sZT/ZLjtgh6zLOPPsL7ti19FNdBf9i+4fR2ei6c4X9gLRw3/3fbA7</latexit>

1Õ

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>
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Figure 1. Flow equations for the self-energy and two-particle vertex. The self-energy flow shown in (a) simply consists of a vertex
contracted with a single-scale propagator S. The contributions to Γ in (b), involve two vertices, which have their legs contracted
with one of three propagator bubbles Π̇c. Dashed lines indicate partial derivatives ∂Σ

ΛG. The three-particle vertex Γ3 is difficult to
compute (see section 4.3) and requires some approximation.

This approximation mitigates many of the deficiencies
mentioned above by instantiating an RG scheme that
incorporates all diagrams of the so-called parquet
approximation (PA) [75,122,123,124] - a set of coupled
many-body relations that self-consistently connects
the one- and two-particle level while maintaining an
effective one-loop structure. Furthermore, the PA
exactly incorporates Ward identities on the one-particle
level [116], allowing for FRG calculations with an
accuracy on par with QMC simulations in the weak to
intermediate coupling regime [109].

To present the general formulation of the MFRG
flow, we adopt the language commonly used in the
context of the PA and classify diagrams according
to their two-particle reducibility in a particular
channel [124]. A diagram is called two-particle reducible
(2PR) in the s-channel if it can be fully disconnected
by cutting two parallel propagator lines. If however,
those propagators point in opposite directions, we refer
to them as t- or u-reducible. t-reducible diagrams
differ from those reducible in the u-channel in the way
external legs are assigned to the disconnected parts: in
a t-reducible diagram the external legs lie on the same
edge of a fermionic vertex, whereas they lie on opposite
corners in a u-reducible term14. The total contribution
of c reducible diagrams to the vertex we denote by gc.
For simplicity, we drop the subscripts c in the vertex
contractions ◦ whenever the two-particle reducibility
can already be deduced from the inserted bubble Πc.
To compute the multiloop (mℓ) flow of gc, one first

14 The notion of ”edges” and ”corners” here refers to the
diagrammatic representation of Γ as a rectangular box.

computes the respective Katanin (1ℓ) diagrams, i.e.,

∂Λgc
(1ℓ)
≈ Γ ◦ ∂ΛΠc ◦ Γ ≡ ġ(1ℓ)c . (67)

In a second step, one substitutes the one-loop flows in
the complementary 2PR classes for the vertex to the
left and right, while excluding the Λ-derivative in the
bubble:

∂Λgc
(2ℓ)
≈ ġ(1ℓ)c + ġ

(1ℓ)
c̄ ◦Πc ◦ Γ + Γ ◦Πc ◦ ġ(1ℓ)c̄

≡ ġ(1ℓ)c + ġ(2ℓ)Lc + ġ(2ℓ)Rc . (68)

Here, we introduced the left (L) and right (R) part of

the 2ℓ contribution ġ
(2ℓ)
c ≡ ġ

(2ℓ)L
c + ġ

(2ℓ)R
c as well as

the short-hand notation gc̄ =
∑
c′ ̸=c gc′ . In a two-

loop approximation, i.e., ∂Λgc ≈ ġ
(1ℓ)
c + ġ

(2ℓ)
c , the

vertex flow contains all third-order diagrams as in the
Eberlein construction, as well as some fourth order
diagrams due to the insertion of 1ℓ-diagrams with
Katanin bubbles. To construct the mℓ diagrams for
m ≥ 3, we additionally need the central part

ġ(mℓ)Cc = ġ([m−1]ℓ)R
c ◦Πc ◦ Γ

= Γ ◦Πc ◦ ġ([m−1]ℓ)L
c , (69)

such that ġ
(mℓ)
c = ġ

(mℓ)L
c + ġ

(mℓ)C
c + ġ

(mℓ)R
c . The

multiloop flow in the c-channel is thus obtained as

∂Λgc
(mℓ)
≈

m∑

n=1

ġ(nℓ)c , (70)

from which the flow of the full vertex follows as
∂ΛΓ =

∑
c ∂Λgc. Finally, the central part of the s-
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and u-channel

ġCt̄
(mℓ)
≈

m∑

n≥3

ġ
(nℓ)C
t̄ , (71)

can be used to add multiloop corrections Σ̇1(2) to the
self-energy flow

∂ΛΣ
(mℓ)
≈ −Γ • S + Σ̇1 + Σ̇2 , (72)

where Σ̇1 = ġCt̄ •G and Σ̇2 = Γ • (G× Σ̇1 ×G)15. The
additional terms in ∂ΛΣ are necessary to fully establish
agreement of MFRG with the parquet approximation
[121]. Since the derivatives ∂ΛΠc in the Katanin bubbles
already depend on the self-energy flow, the calculation
of vertex and self-energy corrections can in principle be
iterated until convergence is reached.

One remarkable property of MFRG is the
restoration of regulator independence at the end of the
RG flow. For Λ → 0, the multiloop equations precisely
coalesce with the parquet approximation, which, as a
general many-body relation, is insensitive to the type
of regularization used throughout the RG flow.

Let us summarize the main aspects of this
section. We have presented a general formulation
of the functional renormalization group framework
for interacting fermions with quartic interactions. In
order to make the differential equations for the 1PI
vertex functions soluble, an approximate truncation
scheme is unavoidable. Our discussion introduced three
commonly used truncation strategies: L2 truncation
(Γn = 0 for n ≥ 3), Katanin scheme (Π̇c → ∂ΛΠc) and
multiloop FRG, which adds parquet type diagrams to
the flow of 2PR vertices and accounts for corrections
to the self-energy. In the next section, we will occupy
ourselves with the explicit implementations of these
truncations within the pseudo-fermion FRG. For this
purpose, we derive an efficient parameterization of
the vertex functions based on the symmetries of the
pseudofermion Hamiltonian presented in section 3. This
will allow a compact representation of the bubble
functions and vertex contractions which minimizes the
numerical effort involved to compute them.

5. Pseudo-fermion functional renormalization
group

The reformulation of spin Hamiltonians in terms of
pseudo-fermions, as introduced in section 3.1 allows
for the implementation of the general fermionic FRG
formalism from the previous section to treat pure spin
systems. Here, we will introduce this fusion, the pseudo-
fermion functional renormalization group (PFFRG),
by translating the symmetries of the pseudo-fermion

15 × denotes an ordinary product.

Green’s functions derived in section 3.4 into an efficient
parametrization of the vertex functions forming the
basic building blocks for the FRG.

5.1. Parameterization of the self-energy

The self-energy is directly related to the one-particle
Green’s function according to Dyson’s equation

Σ(x′1|x1) = G−1
0 (x′1|x1)−G−1(x′1|x1)

= iω1δx′
1,x1

−G−1(x′1|x1),
(73)

where we have already used that kinetic terms vanish in
the pseudo-fermion formulation and, thus, G0(x

′
1|x1) =

1
iω1
δx′

1,x1
for the non-interacting propagator. As it

is completely diagonal in all degrees of freedom, the
symmetries of the one-particle Green’s function listed
in table 1 directly apply to the self-energy.

Upon inspection, we note that U(1) symmetry
guarantees locality of the self-energy in real space,
which, in combination with translational symmetry
of the lattice removes any spatial dependence16.
Similarly, time-translational invariance (TT) guarantees
diagonality in frequency space.

Therefore, we find the intermediate parametriza-
tion

Σ(x′1|x1) =
∑

α=0,1,2,3

Σα(ω1)σ
α
µ′
1µ1

δi′1i1δω′
1,ω1

, (74)

where we have expanded the remaining spin structure in
terms of Pauli matrices supplemented by a unit matrix
σ0.

The combination of hermiticity and time-reversal
symmetry furthermore implies

Σα(ω1)σ
α
µ1′µ1

= µ′
1µ1Σ

α(ω1)σ
α
µ̄1µ̄′

1
. (75)

Realizing that

µ′
1µ1σ

α
µ̄1µ̄′

1
= µ′

1µ1

(
σαµ̄′

1µ̄1

)∗
= ξ(α)σαµ′

1µ1
(76)

with

ξ(α) =

{
1 α = 0

−1 α ∈ {1, 2, 3}.
(77)

immediately leads to the conclusion that only the α = 0
component of the self-energy is non-vanishing, removing
any spin-dependence. Additionally, the combination
of particle-hole conjugation implies that Σ0 has to
be antisymmetric in its frequency argument, while
time-reversal symmetry renders it purely imaginary.
Therefore, for the pseudo-fermion self-energy, we adopt
the parametrization

Σ(x′1|x1) = iγ(ω1)δx′
1,x1

(78)

16 This is only strictly true for Archimedean lattices, for which
all lattice sites are equivalent. For n inequivalent types of lattice
sites, one has to define n different self-energies Σ.
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with a real, antisymmetric function γ.
It is important to note that this simple structure

heavily relies on time-reversal symmetry. Breaking it
by, e.g., considering external magnetic fields would
introduce both real- and imaginary parts and non-
vanishing contributions from α = 1, 2, 3 in the self-
energy parametrization of eq. (74).

5.2. Spin and real space dependence of the two-particle
vertex

Similar to the self-energy, we now aim at a simplified
representation of the two-particle vertex, manifesting
the symmetries of the pseudo-fermion Green’s functions
as summarized in table 2. To this end, we first
give the relation between the full two-particle Green’s
function and the corresponding vertex through the tree
expansion [79]

G2(x
′
1,x

′
2|x1, x2)

=
∑

x′
3,x

′
4,x3,x4

G(x′1|x′3)G(x′2|x′4)Γ(x′3, x′4|x3, x4)

×G(x3|x1)G(x4|x2)
+G(x′1|x1)G(x′2|x2) .

(79)

Due to the diagonality of G in all indices, as
discussed in the previous section, again all symmetries
of the full two-particle Green’s function G2 directly
carry over to the two-particle vertex Γ.

As in the case of the self-energy, we start form
the local U(1) symmetry of the pseudo-fermions, which
induces a bi-locality of the vertex function captured in
the expansion

Γ(x′1, x
′
2|x1, x2) = Γ=,i1i2(x

′
1, x

′
2|x1, x2)δi′1i1δi′2i2

− Γ×,i1i2(x
′
1, x

′
2|x1, x2)δi′1i2δi′2i1 .

(80)

Here, Γ= and Γ× represent the vertex content, where
site indices are constant across the equally numbered
pairs of indices or swapped, respectively. Clearly, from
crossing symmetry, the relation

Γ×,i1i2(x
′
1, x

′
2|x1, x2) = Γ=,i2i1(x

′
1, x

′
2|x2, x1) , (81)

holds. Employing the space group symmetries of the
lattice, we are able to project back one of the remaining
site indices onto a single reference site, rendering the
vertex only dependent on the difference vector between
the sites i1 and i2. We will, however, not explicitly
implement this fact in our notation, as this would
complicate the flow equations discussed henceforth.

In numerical implementations, however, we will
use this fact to approximate the vertex by neglecting
vertex contributions, for which ∥Ri1 −Ri2∥ < L, i.e.
we impose a maximum correlation length in some

norm ∥·∥. Effectively, this implements calculations
in an infinite system, which avoids both boundary
effects for calculations with open boundary conditions
and finite momentum resolution imposed by periodic
ones. Although the finite correlation length imposed
will lead to broadened features in reciprocal space, in
this way we are able to resolve magnetic phenomena
incommensurate with the lattice. For details on the
implementation see Appendix B.1.

In the next step, we expand the spin dependence
of the vertex in terms of Pauli matrices, leading to

Γ=,i1i2(x
′
1, x

′
2|x1, x2) = Γαβi1i2(ω

′
1, ω

′
2|ω1, ω2)σ

α
µ′
1µ1

σβµ′
2µ2

(82)
with a similar expansion for Γ×,i1i2 . Summation
over α and β is implied. We use a similar notation
gαβc,i1i2(ω

′
1, ω

′
2|ω1, ω2) for the c-channel contributions to

the vertex.
In the special case of a Heisenberg Hamiltonian,

which is spin-rotation invariant, this relation can be
further simplified to

Γ=,i1i2(x
′
1, x

′
2|x1, x2) = Γs,i1i2(ω

′
1, ω

′
2|ω1, ω2)σ

α
µ′
1µ1

σαµ′
2µ2

+ Γd,i1i2(ω
′
1, ω

′
2|ω1, ω2)δµ′

1µ1
δµ′

2µ2
,

(83)

introducing the so-called spin- and density vertices Γs

and Γd, respectively. These two terms in eq. (83)
correspond to the only possible spin dependences
of a two-particle vertex that obey the spin-rotation
symmetry of a Heisenberg Hamiltonian.

The last symmetry we want to invoke at this
point is a combination of the two particle-hole
symmetries listed in table 2, followed by a time-
reversal transform, hermitian conjugation and another
time-reversal operation. This sequence of symmetry
transformations yields the relation

Γαβi1i2 = ξ(α)ξ(β)
(
Γαβi1i2

)∗
, (84)

which significantly simplifies the analytic structure of
the two-particle vertex functions. In particular, it
indicates that the spin and density vertices Γs and
Γd are purely real.

As an intermediate result, we present the multilocal
flow equations, obtained by inserting the bilocal
parametrization of the two-particle vertex, eq. (80),
into eq. (57) and eq. (61), respectively. Keeping in
mind the locality of the self-energy, we find

d

dΛ
ΣΛ(x1|x1) =

∑

x2

(
ΓΛ
×,i1i1(x1, x2|x1, x2)

−
∑

j

ΓΛ
=,i1j(x1, x2|x1, x2)

)
SΛ(x2, x2)

(85)
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Figure 2. Diagrammatic representation of the multi-local PFFRG flow equations of the (a) self-energy Σ [gray circle, eq. (85)] and
(b) two-particle vertex Γ= [gray square, eq. (86)]. Along solid lines of the vertices, the site index remains constant. The arrows
represent full Green’s functions GΛ, while slashed arrows are single scale propagators SΛ. A slash crossing two propagators denotes a
sum of the two possibilities of replacing one propagator by a single scale propagator.

for the flow of Σ, as well as

d

dΛ
ΓΛ
=,i1i2(x

′
1, x

′
2|x1, x2) =

∑

x3,x4

[
ΓΛ
=,i1i2(x

′
1, x

′
2|x3, x4)ΓΛ

=,i1i2(x3, x4|x1, x2)

−
∑

j

ΓΛ
=,i1j(x

′
1, x4|x1, x3)ΓΛ

=,ji2(x3, x
′
2|x4, x2)−

(
3 ↔ 4

)

+ ΓΛ
=,i1i2(x

′
1, x4|x1, x3)ΓΛ

×,i2i2(x3, x
′
2|x4, x2) +

(
3 ↔ 4

)

+ ΓΛ
×,i1i1(x

′
1, x4|x1, x3)ΓΛ

=,i1i2(x3, x
′
2|x4, x2) +

(
3 ↔ 4

)

+ΓΛ
=,i1i2(x

′
2, x4|x1, x3)ΓΛ

=,i1i2(x3, x
′
1|x4, x2) +

(
3 ↔ 4

)]

×GΛ(x3, x3)S
Λ
kat(x4, x4)

(86)

for the two-particle vertex. Note that we have already
neglected the three-particle vertex terms and performed
the Katanin substitution in these flow equations.
Furthermore, we have explicitly incorporated the
diagonality of the full and single-scale propagators in all
their arguments. Using eq. (81), we can replace Γ× by
Γ=, such that the two-particle vertex is only represented
by Γ=. In fig. 2, we illustrate a diagrammatic
representation of the multilocal flow equations.

Comparing eq. (86) to eq. (61), there are a few
notable features. Firstly, all but the third line in eq. (86)
do not involve a site summation, rendering these terms
bi-local. Secondly, the t-channel diagram contained in
eq. (61) splits into three contributions: The third line
in eq. (86) represents a RPA-like contribution, which
involves a site summation. As this is the only term
mixing correlations between different pairs of lattice
sites, possibly generating longer-range correlations from
initially short-ranged bare interactions. Therefore, we
can expect it to be pivotal in the formation of long-
range order, a notion we will put on more solid grounds
in section 5.9.1. The fourth and fifth lines in eq. (86),

originate from the intermixing of Γ× and Γ= in the
parameterization.

The flow of the self-energy, eq. (85), also splits
into two contributions, with the first term resembling a
purely local Fock-style diagram, while the second term
is a non-local Hartree contribution involving a sum over
the lattice.

5.3. Frequency parametrization

After discussing the implications of symmetries on the
spin and real-space structure of the pseudo-fermion
vertices, we now turn to an adequate treatment of
the remaining frequency structure of Γαβi1i2 . As already
mentioned in section 3.4, time translation invariance
implies frequency conservation, so that the vertex
has only three fermionic frequency arguments instead
of four. In the early days of PFFRG, these were
usually rewritten in terms of the three bosonic transfer
frequencies

ωs = ω′
1 + ω′

2 = ω1 + ω2 (87)

ωt = ω′
1 − ω1 = ω2 − ω′

2 (88)

ωu = ω′
1 − ω2 = ω1 − ω′

2 , (89)

each of them associated with the energy exchanged
during a scattering process in the corresponding 2PR
channel. However, as pointed out in a seminal paper by
Wentzell et al. [125], this fully bosonic representation
of the vertex function gives rise to complicated high-
frequency asymptotics: if one of the transfer frequencies
goes to infinity while the other two remain fixed, Γ
generally does not decay to zero but to a (non-vanishing)
constant depending on the value of the other two
frequencies.

As can be seen from fig. 3, where an exemplary
decomposition of the pseudofermion vertex Γ into its
2PR contributions gc is shown, this constant arises
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Figure 3. (a) Illustration of a full pseudo-fermion spin-vertex
Γ for the simple-cubic lattice antiferromagnet shown in the
t = 0 plane, showing characteristic double-cross structure. Its
decomposition in the (b) s-, (c) t- and (d) u-channel contributions
reveals the origin of the structure in the different channels. Due to
this structure, the asymptotics are not well-defined in the transfer
frequency parametrization, necessitating a parametrization for
each channel individually.

from some residual, non-decaying contributions in
the complementary channels gc′ ̸=c. For example,
if s → ∞, all contributions from the s- and t-
channel vanish (see fig. 3(b) & (d)), whereas the u-
channel assumes some finite value that depends on
ωu ( fig. 3(c)). To model the vertex more accurately,
Wentzell and coworkers introduced a mixed bosonic-
fermionic frequency notation for each 2PR channel,
grouping the diagrams contributing to gc(ωc, νc, ν

′
c) into

three types of kernel functions, i.e.

gc(ωc, νc, ν
′
c) = Kc

1(ωc)

+Kc
2(ωc, νc) + K̄c

2(ωc, ν
′
c)

+Kc
3(ωc, νc, ν

′
c) . (90)

Most importantly, all K-functions decay to zero if
one of their arguments is taken to infinity, which
tremendously simplifies their numerical implementation.
This decomposition can already be motivated from the
lowest orders of perturbation theory, where so-called
’bubble’ (K1) and ’eye’ (K2, K̄2) diagrams govern the
high-frequency structure [125].

The rest functions K3 then capture all diagrams
which have an even more intricate loop structure and
belong neither to K1 nor to K2/K̄2, see fig. 4. More
recent implementations of PFFRG [26, 55, 126, 127,
128] have adopted this strategy in order to improve

(a) (b) (c) (d)

∈ 𝐾𝑠
1 ∈ 𝐾𝑠

2 ∈ 𝐾̄𝑠
2 ∈ 𝐾𝑠

3

Figure 4. Exemplary diagrammatic contributions to the s-
channel kernel functions Ks

1 , K
s
2 , K̄

s
2 , and Ks

3 . For simplicity,
here, we illustrate the bare vertex as a black dot. (a) Ks

1 diagram,
where all external legs couple to the bare vertices. (b) and (c)
are Ks

2 and K̄s
2 contributions, respectively, where the νs or ν′s

dependencies arise from the additional loops. These diagrams
are dubbed fish-eye diagrams. The nested three-loop diagram (d)
contributes to the Ks

3 kernel.

numerical accuracy when integrating the FRG flow.
Following Refs. [26, 55, 126], the bosonic frequencies
are defined as in eq. (89), whereas the remaining two
fermionic frequencies are chosen as

νs = (ω1 − ω2)/2 ν′s = (ω′
2 − ω′

1)/2

νt = (ω1 + ω′
1)/2 ν′t = (ω2 + ω′

2)/2

νu = (ω1 + ω′
2)/2 ν′u = (ω′

1 + ω2)/2. (91)

The distribution of the frequencies to the external
legs of a two-particle diagram is illustrated in fig. 5.
Please note, that this choice of fermionic frequencies
is shifted with respect to Refs. [125, 129] to simplify
symmetry relations.

Taking the appropriate high-frequency limits,
the general symmetry relations in table 2 can
straightforwardly be translated into the mixed
frequency notation and assume are particularly simple
form, see table 3. Most noteworthy, the t-channel
decouples from the other two, while the s- and
u-channels are coupled by inverting the fermionic
frequencies. In total, these symmetries allow us to
restrict the frequency domain of every channel to
positive frequencies only, where, in addition, ν ≥ ν′. We
want to emphasize that those symmetries exchanging
νc and ν

′
c also imply that K2 and K̄2 are equivalent for

pseudo-fermionic systems and, thus, only one of them
needs to be implemented. The full flow equations in this
asymptotic frequency parametrization are presented in
Appendix A.

5.4. Choice of truncation

In the multi-local flow equations, eq. (86), we have
already performed the Katanin-substitution to go
beyond a conventional L2 truncation of the FRG
equations. As already realized in the early days of
PFFRG, the feedback of the self-energy flow into
the vertex flow equations is necessary to not only
capture magnetic long-range order of the system under
investigation, but to also allow for non-magnetic low-
energy phases such as spin-liquid ground states [15].
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(a)
𝜔1 = 𝑠

2 + 𝜈𝑠

𝜔2 = 𝑠
2 − 𝜈𝑠

𝜔1′ = 𝑠
2 − 𝜈′𝑠

𝜔2′ = 𝑠
2 + 𝜈′𝑠

𝑔s

(b)
𝜔1 = − 𝑡

2 + 𝜈𝑡

𝜔2 = 𝑡
2 + 𝜈′𝑡

𝜔1′ = 𝑡
2 + 𝜈𝑡

𝜔2′ = − 𝑡
2 + 𝜈′𝑡

𝑔t

(c)
𝜔1 = 𝑢

2 + 𝜈𝑢

𝜔2 = −𝑢
2 + 𝜈′𝑢

𝜔1′ = 𝑢
2 − 𝜈′𝑢

𝜔2′ = −𝑢
2 + 𝜈𝑢

𝑔u

Figure 5. Natural frequency parametrization as used in the asymptotic parametrization scheme defined in eq. (91). The diagrammatic
s-, t-, and u-channels vanish in the limit of taking the corresponding bosonic transfer frequency s/t/u to infinity. The shift by half
the transfer frequency allows for a simpler implementation of symmetries.

gs,αβi1i2
(ωs, νs, ν

′
s) = gs,βαi2i1

(−ωs, νs, ν′s) (X ◦ TR ◦ H ◦ PH1 ◦ PH2)

gs,αβi1i2
(ωs, νs, ν

′
s) = −ξ(α)gu,βαi2i1

(ωs,−νs, ν′s) (PH2 ◦ X)

gs,αβi1i2
(ωs, νs, ν

′
s) = −ξ(β)gu,αβi1i2

(ωs, νs,−ν′s) (PH2)

gs,αβi1i2
(ωs, νs, ν

′
s) = gs,βαi2i1

(ωs, ν
′
s, νs) (X ◦ TR ◦ H)

gt,αβi1i2
(ωt, νt, ν

′
t) = ξ(α)ξ(β)gt,αβi1i2

(−ωt, νt, ν′t) (TR ◦ H)

gt,αβi1i2
(ωt, νt, ν

′
t) = −ξ(α)gt,αβi1i2

(ωt,−νt, ν′t) (PH1)

gt,αβi1i2
(ωt, νt, ν

′
t) = −ξ(β)gt,αβi1i2

(ωt, νt,−ν′t) (PH2)

gt,αβi1i2
(ωt, νt, ν

′
t) = gt,βαi2i1

(ωt, ν
′
t, νt) (X ◦ TR ◦ H)

gu,αβi1i2
(ωu, νu, ν

′
u) = ξ(α)ξ(β)gu,βαi2i1

(−ωu, νu, ν′u) (X ◦ TR ◦ H)

gu,αβi1i2
(ωu, νu, ν

′
u) = −ξ(β)gs,βαi2i1

(ωu,−νu, ν′u) (X ◦ PH2)

gu,αβi1i2
(ωu, νu, ν

′
u) = −ξ(β)gs,αβi1i2

(ωu, νu,−ν′u) (PH2)

gu,αβi1i2
(ωu, νu, ν

′
u) = gu,βαi2i1

(ωu, ν
′
u, νu) (TR ◦ H)

Table 3. Symmetry relations of the channel contributions to the two-particle vertex functions for pseudo-fermion Hamiltonians
expanded in terms of Pauli matrices in the natural frequency parametrization for the s-, t- and u-channels respectively, see eq. (91).
The rightmost column specifies the combinations of physical symmetries to realize these relations. TR denotes time-reversal, H
hermitian conjugation, X crossing symmetry in both incoming and outgoing particles and PH1/2 is a particle-hole transformation for
particle 1 or 2.

As shown in fig. 6, the flow of the spin-susceptibility
of the Pyrochlore nearest-neighbor antiferromagnet (see
section 7.2 for a discussion of the model) diverges in the
L2 truncation, whereas it stays regular in the Katanin
corrected case even for small RG scales Λ.

10−1 100 101

Λ/J

10−1

100

101

J
χ

Λ
(4
π
,0
,0

)

L2 truncation
Katanin truncation

Figure 6. Flow of the PFFRG spin-susceptibility at the pinch-
point of the nearest-neighbor antiferromagnet on the Pyrochlore
lattice. The L2 truncated flow features a divergence, indicative
of long-range magnetic order, whereas the flow remains regular
when the Katanin truncation is invoked.

We will refrain from including multiloop corrections
[26, 127] in this review, as the qualitative results are
not changed by these and the quantitative numerical
improvements do not warrant the increased effort (see
section 8 for details).

5.5. Regulator

To complete the discussion of the PFFRG flow
equations, we have to specify the regulator function
R(Λ) [defined before eq. (52)] used to introduce the IR
cutoff. While in itinerant systems, a cutoff in reciprocal
space [114], as well as rescaling of the interactions [130]
or temperature itself [80, 102] are commonly used
for performing the regularization, the formulation of
PFFRG in real space at zero temperature calls for a
different approach, which, most naturally, amounts to
implementing the RG scale Λ in frequency space. Here,
we will discuss the two different implementations used in
this context: the sharp step regulator already employed
in earlier implementations of PFFRG [15] and a recently
introduced smoothened version [26,127].

5.5.1. Step regulator The most straightforward way
to separate high- and low-energy degrees of freedom is
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by introducing a step-like regulator in frequency space
of the form

R(ω,Λ) = θ(|ω| − Λ), (92)

where θ denotes the Heaviside step function. The scale-
dependent bare propagator for a spin system in pseudo-
fermionic representation is then given by

iGΛ
0 (ω) =

θ(|ω′| − Λ)

ω
, (93)

from which we immediately find the full propagator, by
using Dyson’s equation [eq. (73)], to be

iGΛ(ω) =
θ(|ω′| − Λ)

ω + γΛ(ω)
. (94)

The corresponding single-scale propagator [eq. (58)] can
be calculated using Morris’ lemma [131], yielding

iSΛ(ω) =
δ(|ω′| − Λ)

ω + γΛ(ω)
, (95)

where δ denotes the Dirac-delta function. This form
a posteriori accounts for its name: the single-scale
propagator in this formulation filters out exactly the
frequency corresponding to the RG scale Λ. This
considerably simplifies the right-hand side of the FRG
equations in a L2 truncation, as it analytically replaces
frequency integrations by a finite summation.

However, invoking the Katanin substitution in
eq. (65) or performing a full multiloop scheme, this
advantage is remidied due to integrations not containing
the single-scale propagator. Furthermore, due to
the non-analyticity of the regulator, the frequency
dependence of the vertex functions shows characteristic
kinks at Λ dependent positions, which in a numerical
implementation leads to an oscillating behavior of the
RG flow, see e.g. Ref. [15].

5.5.2. Smoothened frequency cutoff To circumvent
these numerical problems, in more recent implementa-
tions of PFFRG, a smooth regulator

R(ω,Λ) = 1− e−
ω2

Λ2 , (96)

is employed, which smears out the step at |ω| = Λ over
a width of Λ. This regulator is similar to the so-called
Ω-flow used in itinerant fermion FRG [132], in the sense
that in eq. (96) the suppression of the low-frequency
region is done in a Gaussian shape, while in the Ω-flow,
this is done using a Lorentzian.

The bare propagator for the smooth cutoff is given
by

iGΛ
0 (ω) =

1− e−
ω2

Λ2

ω
, (97)

and, consequently, the full propagator reads as

iGΛ(ω) =
1− e−

ω2

Λ2

ω + γΛ(ω)
. (98)

Since, no discontinuities are present in this function,
we can directly use eq. (58) to obtain the single scale
propagator

iSΛ(ω) =
2e−

ω2

Λ2

[ω + γΛ(ω)]2
ω3

Λ3
, (99)

which, as in the sharp cutoff case, features two peaks
located symmetrically around ω = 0, but now at a
frequency ωp < Λ, whereas we have ωp = Λ in the case
of a sharp cutoff.

5.6. Initial conditions

To close the PFFRG flow, we have additionally to
specify the initial conditions [see eq. (62)] for our
parameterization of the PFFRG. Since, the self-energy
has to vanish at the beginning of the flow, we trivially
find

γΛ→∞(ω) = 0. (100)

Antisymmetrizing the pseudo-fermion Hamiltonian in
eq. (16), we find for the two-particle vertex

Γαβ,Λ→∞
i1i2

=
Jαβi1i2
4

. (101)

Interactions involving three or more spins would
lead to a non-vanishing initial condition for the three-(or
higher-)particle vertex, which is, although analytically
possible to include, numerically not tractable due to
the more involved frequency dependence.

5.7. Susceptibilities

As discussed in the previous sections, the FRG flow
equations are formulated in terms of vertex functions.
While these, in principle, contain the full physical
information about the quantum mechanical state of
a system, they are no physical observables and are
therefore of limited use.

The simplest physical observable that can be
straightforwardly calculated with PFFRG and which
also allows for physically interpreting the system’s
quantum state is the static susceptibility or spin-spin
correlator

χαβij (ω = 0) =

∞∫

0

dτ
〈
Sαi (τ)S

β
j (0)

〉
, (102)

where τ is the imaginary time and only contributions
from α = β are finite for Heisenberg systems.
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Expressing the right-hand side of eq. (102) in terms
of pseudo-fermions, and using the tree expansion for
the full two-particle Green’s function [eq. (79)], we can
express this quantity in terms of the self-energy and
the two-particle vertex as

χαβ,Λij (ω) = −1

2

1

2π

∫
dω′GΛ(ω′)GΛ(ω′ + ω)δijδαβ

− 1

4

(
1

2π

)2 ∫∫
dω′dω′′GΛ(ω′)GΛ(ω′ + ω)GΛ(ω′′)

×GΛ(ω′′ + ω)
∑

µ1′µ2′µ1µ2

ΓΛ(x1′ , x2′ |x1, x2)σαµ1µ1′
σβµ2µ2′

.

(103)

where x1′ = (i, ω′ + ω, µ1′), x2′ = (j, ω′′, µ2′), x1 =
(i, ω′, µ1), and x2 = (j, ω′′ + ω, µ2). Note that through
its dependence on vertex functions, the correlator
χαβ,Λij (ω) has acquired a Λ-dependence. While this
expression is formulated for arbitrary frequencies ω,
it should be kept in mind that these are Matsubara
frequencies defined on the imaginary frequency axes.
Therefore, only the point ω = 0 corresponds to a
physical quantity. Another physical observable can
be obtained by integrating over frequencies in eq. (102),
which yields the usual equal time (i.e., instantaneous)
spin-spin correlator

⟨Sαi S
β
j ⟩ =

∫
dωχαβij (ω). (104)

Since this additional frequency integration (which in
numerical approaches is performed over a discrete
mesh) introduces additional numerical errors, the static
correlator in eq. (102) is more often used in applications
of the PFFRG.

By Fourier-transforming the static correlator into
momentum space, one further obtains the static
susceptibility

χΛ(k) =
1

N

∑

i,j

eik·(ri−rj)χαβ,Λij (ω = 0). (105)

This quantity is of particular physical interest as it
describes the magnetic response to an (infinitesimally
small) static external magnetic field. Moreover, as it is
defined in entire momentum space (i.e., it does not only
correspond to the response to homogeneous magnetic
fields but also to spatially varying ones) with this
quantity one can identify the wave vectors of dominant
magnetic fluctuations.

At this point, it is important to mention that, by
definition, the PFFRG flow respects all symmetries of
the initial spin Hamiltonian, in particular, χΛ(k) is
invariant under the full space group of the underlying
lattice. In magnetically ordered phases, however, time-
reversal symmetry (and usually also lattice symmetries)

are spontaneously broken. As the RG flow cannot enter
phases with spontaneously broken symmetries, this will
lead to an instability in the Λ-flow of χΛ(k) at a critical
scale Λc, usually in the form of a divergence or kink. In
this case, the wave vector k where χΛ(k) is maximal,
provides the ordering wave vector of the respective
magnetically ordered phase. Here, the implementation
of the magentic system as infinite with finite correlation
length (see section 5.2) allows for accessing the precise
location of incommensurate ordering vectors, e.g. for
spin spirals, which would not be accurately resolvable
with other boundary conditions [111]. On the other
hand, in spin liquid phases, where no spontaneous
symmetry breaking occurs, a featureless flow of χΛ(k)
down to the small Λ limit is expected.

We note that, in principle one can also continue
the flow into symmetry broken phases by including
a suitable order parameter field [112]. However, this
requires an a priori anticipation of the specific type of
symmetry breaking to define this field. Furthermore,
explicitly breaking symmetries on the Hamiltonian level
may increase the numerical efforts enormously. To avoid
both types of complications, applications of the PFFRG
are usually performed without such symmetry breaking
fields and, consequently, the flow has to be stopped
when indications for a magnetic instability arise.

Through Kramers-Kronig relations, the static
susceptibility χΛ(k) is also closely related to the
dynamical spin structure factor Sαβ(k, ω) that can be
measured in neutron scattering experiments,

χΛ=0(k) =

∫
dω

Sαβ(k, ω)
ω

. (106)

This correspondence allows one to perform direct theory-
experiment comparisons based on the outcomes of
PFFRG, which have been carried out very successfully
in past applications [45, 46, 133]. Having numerical
access to the system’s momentum resolved spin
fluctuations as contained in χΛ(k) is particularly
important for magnetically disordered systems, such as
quantum spin liquids. There, the precise distribution
of signal in momentum space provides a superb
characterization of the system’s ground state magnetic
properties which constitutes one of the key strengths
of PFFRG.

In principle, by performing an analytic continua-
tion of χαβ,Λij (ω) [eq. (103)] to the real frequency axis
and additionally transforming this quantity to momen-
tum space, one could even obtain the full dynamical
spin structure factor Sαβ(k, ω). However, an analytic
continuation of numerical data is a long standing prob-
lem which so far has defied a satisfactory solution and,
hence, this strategy of obtaining Sαβ(k, ω) has until
now not been further pursued.
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5.8. Single occupation constraint

The pseudo-fermion representation necessitates the
fulfilment of the single occupation per site contraint
as given in eqs. (5) and (10) for eq. (3) to be a
faithful operator mapping. As discussed in section 3.5,
a suitable SU(2) gauge field will act as a Lagrange
multiplier enforcing the constraint. In FRG, however,
the inclusion of such a non-Abelian field complicates
the flow equations further [134] and, therefore, this has
not been pursued to date.

At finite temperature, the inclusion of an imaginary
chemical potential µPF, as initially put forward by
Popov and Fedotov [135] projects out the contributions
from unphysical pseudo-fermion sectors, as discussed
further in section 6. In the limit T → 0, µPF vanishes.
As this limit, however, does not commute with the
path integral, a vanishing chemical potential does only
guarantee a fulfillment of the constraints on average [i.e.

⟨c†i↓ci↓+c
†
i↑ci↑⟩ = 1 instead of eq. (5)], as it implies half-

filling of the particle-hole symmetric pseudo-fermionic
system.

This average constraint was used in all T = 0
implementations of PFFRG to date, motivated by
initial studies that present physically correct results
when compared to an exact implementation of the
Popov-Fedotov scheme [111,134]. Another systematic
treatment of the single occupation can be reached by
implementing a level-repulsion term

HLR = −A
∑

i

S2
i , (107)

which for A > 0 energetically favors the physical
S = 1/2 states, gapping out the unphysical S = 0
sector of the pseudo-fermions, in the limit A → ∞
leading to an exact fulfillment of the constraint. Large
values of A however spoil numerical stability, of the
FRG flow, but up to this point it has been shown
that the flow remains essentially unaffected by the
level-repulsion [136]. Recent studies on small clusters,
however, suggest that small size systems can be found,
in which the constraint violation can spoil the results
of PFFRG [59].

5.9. Generalizations

5.9.1. Arbitrary spin-length S Although most inter-
esting from the perspective of quantum fluctuations,
the S = 1/2 case of spin operators treated by pseudo-
fermions is not generally applicable to model Hamilto-
nians of real materials, which often feature higher spin
S moments. The obvious way to extend (3) would be
to replace the Pauli-matrices σ with their higher-spin
counterparts, leading to a pseudo-fermionic representa-
tion comprising 2S +1 flavors of particles per site [137].
The occupation constraint then calls for a 1/(2S + 1)

filling to achieve one-particle per-site on average. The
corresponding chemical potential is, however, not a pri-
ori known and nor is particle-hole symmetry present in
such a framework, thereby complicating the implemen-
tation of such a scheme.

Therefore, for PFFRG, as an alternative route,
it has been put forward in Ref. [53] to introduce 2S
replicas of spin S = 1/2 operators per site to express a
single spin-S operator at site i as

Si =

2S∑

κ=1

Si,κ, (108)

with κ enumerating the different replicas. Introducing
the pseudo-fermion mapping, eq. (3), for each
constituent spin, we find an alternative pseudo-
fermionic representation

Sαi =
1

2

∑

κ,µ′,µ

c†µ′κσ
α
µ′µcµκ, (109)

now subject to the constraint that at each lattice point,
the system has to be at half-filling and simultaneously
the total spin length must be maximized.

While the first condition can again be implemented
by means of an average projection scheme, the second
needs a bit more care: In addition to the physical
sector with spin-length S, we have introduced S (S −
1/2) unphysical sectors with lower spin for 2S being
even (odd). To minimize their contributions in the
calculations, a modified version of eq. (107) as a level-
repulsion term [53]

HLR = −A
∑

i

(
2S∑

κ=1

Si,κ

)2

(110)

is added to the Hamiltonian.
For A > 0, this will energetically favor the case

where the maximal spin length S per site is achieved,
while gapping out sectors with lower spin value. In
practical calculations, however, the inclusion of this
term has been shown to have negligible effects, as the
spin replicas already tend to form the largest spin length
multiplets [53].

5.9.2. Flow equations at arbitrary S The modifications
needed to implement the replica scheme in the PFFRG
flow equations eqs. (85) and (86) are in the form of
additional factors, which do not change the general
structure of the equations.

Firstly, we note that in eq. (109) every site index
i is accompanied by an additional flavor index κ. As
the U(1) gauge symmetry of the pseudo-fermions (cf.
section 3.2) acts on every replica of the S = 1/2 fermions
separately, we find a locality not only in the site index
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as discussed in section 3.4.6, but also for the flavor
index.

Secondly, considering the initial conditions of the
vertex in eq. (101), we see that these are agnostic
to the flavor index. Combined with the flavor index
locality, this leads to the vertex function staying
completely independent of the flavor index during the
flow. Therefore, any summation over flavor indices
is trivially carried out, contributing a factor of 2S in
the flow equations wherever there is an internal site
summation, due to the intimate connection between site
and flavor indices discussed above. Therefore, the only
changes to the flow equations are factors 2S for the site
summation in eq. (85) and the RPA-like contribution
in eq. (86).

Since, for increasing S, quantum fluctuations
become less pronounced and the tendency towards
classical long-range order is enhanced, this term can be
identified as the one inducing such a phase transition.

5.9.3. Equivalence of S → ∞ to Luttinger-Tisza In
the limit S → ∞, this notion becomes particularly
clear [53]. The only surviving term in the two-particle
vertex flow then is the non-local RPA contribution in
the t-channel. Therefore, the only frequency structure
of the intially frequency independent vertex will be in
the corresponding transfer frequency.

Introducing the shorthand notation

Γ̃
s/d,Λ
ij (t) =

1

2S
Γ
s/d,Λ
ij (s, t, u), (111)

for the spin and density vertices introduced in
section 5.2, the flow equation for the latter simplifies to

Γ̃d,Λi1i2(t) =
1

π

∫
dω
∑

j

Γ̃d,Λi1j (t)Γ̃
d,Λ
ji2

(t)

×
(
SΛ
kat(ω)G

Λ(ω + t) + (ω ↔ ω + t)
)
,

(112)

which stays finite due to the rescaling by 2S in eq. (111)
and decouples from the spin vertex flow. Therefore, the
initially vanishing density vertex does not become finite
during the flow. Similarly, the self-energy will only
couple to the density vertex and therefore identically
vanish.

Hence, the flow equation for the remaining spin
vertex assumes a tractable form, when using the step-
like regulator introduced in section 5.5.1

Γ̃s,Λi1i2(t) =
1

π

∫
dω
∑

j

Γ̃s,Λi1j (t)Γ̃
s,Λ
ji2

(t)

×
(
δ(|ω| − Λ)

ω

θ(|ω + t| − Λ)

ω + t
+ (ω ↔ ω + t)

)
,

(113)

which allows for an anlytical solution of the frequency
integration. After Fourier transformation of the spatial

dependence, assuming a Bravais-lattice for convenience,
the flow equation reads

Γ̃s,Λ(k, t) =
2

πΛ(Λ + t)
Γ̃s,Λ(k, t)2, (114)

which is amenable to an analytic solution [138]

Γ̃s,Λ(k, t) =
J(k)/4

1 + J(k)
2πΛ ln

(
1 + t

Λ

) , (115)

where J(k) is the Fourier transform of the bare
Heisenberg interaction.

This flow features a leading divergence at frequency
t = 0 for

Λc = −mink J(k)

2π
, (116)

i.e., the spin vertex diverges at the point in reciprocal
space, where the Fourier transform of the initial
interaction is most negative. Following eq. (105) this
feature will also appear in the static susceptibility,
implying long-range order governed by this wave-vector.

Therefore, PFFRG in the S → ∞ limit is
equivalent to the Luttinger-Tisza method [139,140,141],
where the same finding is true. This means, on
Bravais lattices, PFFRG reproduces the exact classical
ground-state [53], whereas it is equivalent to a classical
O(N → ∞) mean-field in all other cases [142].

In case of a multi-site basis, the minimum in
eq. (116) has to be taken over the eigenvalues of the
matrix valued Fourier transform in sublattice space.

5.9.4. Symmetry enhanced SU(N) A second general-
ization of the pseudo-fermion approach is designed to
enhance quantum fluctuations in contrast to the large-S
generalization in the previous section which approached
classical behavior. To this end, the SU(2) symmetry
group of spins is promoted to SU(N) [138, 143], effec-
tively allowing for more quantum degrees of freedom to
the spin operators. This generalization is not uniquely
defined, and several implementations with possibly dif-
ferent ground-state properties exist [144], but all have
in common that quantum fluctuations are enhanced for
N > 2, rendering them dominant in the N → ∞ limit.

Following Refs. [138] and [143], we introduce the
generalization by introducing the generators Tα of
SU(N) in the fundamental representation of this group,
with α ∈ 1, 2, . . . , N2 − 1. These hermitian, traceless
N ×N matrices follow the su(N) Lie-algebra

[
Tα, T β

]
= i

N−1∑

γ=1

fαβγT
γ , (117)

where f are the structure constants of the group.
Replacing the Pauli matrices in eq. (3), we find the
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fermionic decomposition of SU(N) spins to be17

Sα =

N∑

µ,ν=1

c†µT
α
µνcν , (118)

where we have introduced N flavors of pseudo-fermions.
To render the operator mapping exact, we additionally
have to introduce the half-filling per site constraint

N∑

µ=1

c†µcµ =
N

2
, (119)

which immediately constrains this generalization to even
N . In the T → 0 limit, eq. (119) can be treated by an
average projection scheme, as discussed in section 5.8.
At finite temperatures, a Popov-Fedotov like scheme,
employing imaginary chemical potentials is possible,
however, it necessitates introducing distinct potentials
for every fermion flavor [145].

Employing a parameterization in terms of spin and
density like vertex components

Γ=,i1i2(1
′, 2′; 1, 2) = Γs,i1i2(ω

′
1, ω

′
2|ω1, ω2)T

α
µ′
1µ1

Tαµ′
2µ2

+ Γd,i1i2(ω
′
1, ω

′
2|ω1, ω2)δµ′

1µ1
δµ′

2µ2
,

(120)

for Heisenberg-like interactions independent of SU(N)
components, we immediately see that the general
structure of the flow equations will remain unchanged
by this generalization, which amounts to a mere change
of prefactors. For the full set of SU(N) equations we
refer the reader to Refs. [54] and [78]. In contrast,
the symmetries of Greens’ and subsequently vertex
functions discussed in section 3.4 do not all survive
the generalization. By promoting SU(2) to SU(N),
the pseudo-fermion mapping naturally looses its SU(2)
gauge symmetry. While the U(1) subgroup still remains
intact, rendering the Green’s functions multilocal, local
particle-hole transformations based on the Z2 subgroup
of SU(2) are no longer present. Inspecting table 3, this
especially affects the mapping between s- and u-channel,
which become independent for N > 2.

Indeed, in the N → ∞ limit, the only contribution
to the two-particle vertex is the u-channel diagram
of the spin vertex, which does not generate non-
local terms. Thus, the susceptibility will remain
finite throughout the whole RG flow, while the vertex
itself will diverge, signalling a transition into a spin
rotationally invariant ordered state (e.g., a valence
bond crystal or a spin liquid), but not a magnetically
ordered phase [138,143]. This reproduces the analytical
mean-field results for N → ∞, which are exact in this
limit. The Katanin truncation is a vital ingredient
in making this connection, a posteriori rationalizing
the necessity to include these corrections to obtain
magnetically disordered ground-states.

17 For the SU(2) case, Tα = 1/2σα.

6. Extension to finite temperature

6.1. Motivation

There are several reasons to study quantum spin
Hamiltonians like (1) also at finite temperatures T > 0:
(i) First, this is required if one desires quantitative
modelling of experiments which are never conducted
at T = 0. Note, however, that the assumption of
thermal equilibrium is mostly appropriate for solid-
state applications, whereas experiments on cold-atom
implementations of spin systems often operate with
quench protocols and thermalization is not necessarily
guaranteed within the available timescales. (ii) Second,
from a theoretical point of view it is significant that
spin S = 1/2 Hamiltonians like the spin model (1) do
not come with a small parameter and this does not
change if spins are represented by fermionic partons.
However, it is well known that the smallness of the
parameter J/T can control perturbative expansions
[146, 147], for example the high-temperature series
expansion for static properties [148] or the pseudo-
fermionic diagrammatic Monte Carlo technique [60,
61, 62]. Recently, this type of control has also been
implemented for the PFFRG, see section 6.2. Finally,
from a practical point of view, finite temperatures are
associated with discrete Matsubara frequencies which
are easier to handle numerically than the continuous
frequencies at T = 0. (iii) Third, on top of quantum
fluctuations present at T = 0, turning to T > 0 switches
on thermal fluctuations which might have interesting
consequences especially when they are competing. For
example, it is well known that in one- and two-spatial
dimensions thermal fluctuations melt any ordered phase
with a spontaneously broken continuous symmetry
[149]. For discrete symmetries or in three spatial
dimensions, finite critical temperatures Tc mark the
boundary between a fluctuation dominated disordered
regime and the ordered regime which survives to finite
T . Moreover, if a zero temperature quantum phase
transition [150] driven by quantum fluctuations is
present, the competition of quantum- and thermal
fluctuations in the vicinity of the critical point lead
to non-trivial scaling and power-laws with respect to T
that allow to infer information on the experimentally
inaccessible limit at T = 0, see Ref. [151] for a recent
experimental example on the triangular lattice. In
summary, it is a highly relevant task to access static
and dynamic properties of spin systems also at finite
temperature. In the following, we review the role of
pseudo-fermionic FRG-based methods in this endeavor.

6.2. Popov-Fedotov trick for PFFRG

As emphasized in section 3, the PF representation
of spin operators which forms the basis of PFFRG,
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introduces unphysical states in the Hilbert space. It
has been argued that these additional S = 0 states
reside at excited energies above the ground state and
at T = 0 cannot thus affect the physical observables
computed via the PF representation with PFFRG. On
the one hand, recently found explicit counterexamples
[59] question this lore at T = 0. On the other
hand, for T > 0, where unphysical excited states are
thermally populated, it is clear that PFFRG is certainly
inapplicable and additional measures must be taken in
order to project out the non-magnetic spin-0 PF states.

One way to achieve this is through the so-
called Popov-Fedotov trick [135]: An imaginary
valued chemical potential µPopov is added to the PF

Hamiltonian eq. (16), i.e., H̃ → H̃Popov = H̃ +

µPopov

∑
j(nj,↑ + nj,↓ − 1), where nj,σ = c†j,σcj,σ is

the PF density at site j. The value of µPopov = iπT/2
is then chosen such that the unphysical contributions
to the partition function cancel out when calculating
the partition function. Thermal expectation values are
also cleared of non-magnetic contributions and should
therefore resemble their counterparts in the original
spin Hamiltonian.

While the Popov-Fedotov trick is routinely
employed in PF based diagrammatic Monte Carlo
[60, 61, 62], the numerical implementation of the
PF trick in PFFRG was pioneered only recently
in Ref. [59] and comes at a price. Since µPopov

is purely imaginary, it will change sign under the
anti-unitary time-reversal transformation and also
hermitian conjugation. Furthermore, the term involving
µPopov is also odd under the global particle-hole
symmetry. Fortunately, pairwise combinations of the
above-mentioned transformations remain a symmetry
of the PF Hamiltonian H̃Popov and most symmetry
constraints of the vertices discussed above remain intact
[59]. The numerical effort for using the Popov-Fedotov
trick within PFFRG increases the runtime and memory
requirements by roughly a factor of four.

An important qualitative difference to T = 0
PFFRG is found in the behavior of the flow. For
T > 0, the flowing quantities are generally smooth and
convergent as Λ → 0 for any parameter choice. This is
related to the presence of a finite smallest Matsubara
frequency πT which avoids the zero-temperature pole in
the bare fermionic propagator 1/iωn. As a consequence,
at T > 0, the PFFRG with the Popov-Fedotov trick
generally produces quantitative results for desired
properties which are expected to be accurate for large
T/J . In fig. 7(top), these end-of-flow results for the
static spin correlation functions for the AFM Heisenberg
dimer H = JS1 · S2 are presented (orange markers)
and compared to exact results (solid black lines).
Most importantly, the FRG data is in quantitative
agreement with the exact results for intermediate and

T
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Figure 7. Finite-T results for the Heisenberg dimer. Black
lines indicate exact results for the unconstrained pseudofermion
Hamiltonian (H̃) and the original spin model (H). The equal-
time correlator Ci = 4⟨Szi Szi ⟩ should equal unity in an exact

representation of the spin- 1
2
algebra. Data reproduced from [59]

and [152].

high temperatures (T/J ≳ 0.3). If the Popov-Fedotov
trick is left out, the application of both the ED as
well as FRG approach to H̃ (dashed black lines and
blue symbols, respectively) disagree with the true spin
results due to the contribution of unphysical states. As
a signature of the contribution of unphysical states,
the equal-time correlator Ci = 4⟨S̃zi S̃zi ⟩ (bottom panel)
should equal unity in an exact representation of the
spin-1/2 algebra [128]. Without the Popov-Fedotov
trick, Ci approaches 1/2 at high-temperatures where
both physical and unphysical states contribute equally
to the partition function. In contrast, once the PF trick
is employed, Ci correctly converges to one at least for
large enough T . At low T , where the truncation of the
FRG flow equation degrades the quality of the results,
the spin constraint ceases to remain exactly fulfilled
and, instead, decreases from one. Simultaneously, the
PFFRG results for the dimer correlation functions start
to deviate from the ED result. This issue will be further
discussed in section 8.3.

6.3. Pseudo-Majorana FRG

6.3.1. Pseudo-Majorana representation for spin 1/2
Instead of relying on the Popov-Fedotov trick to project
out unphysical states, it is also possible to work with
an alternative fermionic representation of spin S = 1/2
devoid of unphysical states altogether. This however
requires real Majorana fermions (η) instead of complex
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Abrikosov fermions (c,c†). The pseudo-Majorana (PM)
representation [153,154,155] for spin S = 1/2 operators
at site j is defined in terms of three Majorana fermion
operators ηαj with α = x, y, z,

S̄xj = −iηyj η
z
j , S̄yj = −iηzj η

x
j , S̄zj = −iηxj η

y
j . (121)

The Majorana operators fulfil anti-commutation
relations {ηαi , η

β
j } = δijδαβ from which we derive the

normalization (ηαj )
2 = 1/2. Furthermore, it holds

(ηαj )
† = ηαj . From these rules it follows that the spin

algebra is fulfilled by the operators S̄αj and the spin
length is S = 1/2. As a consequence, no eigenstates at
energies different from the spin eigenstates can appear.

As two Majoranas η, η′ can be combined to form a
complex fermion via c = (η−iη′)/

√
2, c† = (η+iη′)/

√
2,

the Hilbert space dimension per Majorana is
√
2 and

the total dimension of the PM Hilbert space for N spins
is thus 23N/2, enlarged in comparison to the dimension
2N of the spin system by a factor 2N/2. This factor
is explained by an unphysical degeneracy of each spin-
system’s eigenstate required by the local Z2 gauge
symmetry of eq. (121), ηαj → −ηαj for all α. More
precisely, consider the operator Θj = iηxj η

y
j η
z
j which

commutes with all PM spin operators S̄αj′ , for both
j = j′ and j ̸= j′. Thus, the set {Θ1,Θ2, ...,ΘN}
contains N constants of motion. However, as this set
consists of Majorana operators, it is the fermion parities
p(i,j) ≡ 2iΘiΘj = ±1 for arbitrary but fixed pairing of
sites (i, j) that provide the N/2 eigenvalues ±1 which
distinguish the 2N/2 degenerate states.

The unphysical degeneracy of eigenstates in the
PM representation may seem problematic at first sight.
However, for a correlation-function based method like
the FRG, it is almost invisible. Indeed, consider the
relation between the physical partition function Z
and the pm partition function, Z̄ = 2N/2Z, by the
aforementioned degeneracy. Thus, the free energies per
site

f = f̄ +
T

2
log (2) (122)

are simply related by a temperature dependent but
trivial offset.

An expectation value of an arbitrary (time-evolved
or composite) spin operator denoted by O in a state ρ
of the spin system is defined as follows,

⟨O⟩ = trOρ

trρ
=

1∑
σ ⟨σ|ρ|σ⟩

∑

σ,σ′

⟨σ|O|σ′⟩ ⟨σ′|ρ|σ⟩ ,

(123)
where |σ⟩ denotes a basis of the spin system. In the PM
representation, the Hilbert space is enlarged by a factor
2N/2 that encodes the different parity configurations
p(i,j). However, the thermal PM state e−βH̄ takes the
form ρ̄ = ρ ⊗ 1p since H̄ commutes with all p(i,j).
The same is true for non-thermal states that only

depend on the PM spin operators {S̄αi }i,α. We split
off the trace over parity configurations tr = trσtrp and
note that spin observables in pm representation Ō also
do not depend on the parity configuration. We use
trpρ̄ = 2N/2ρ which cancels between numerator and
denominator to conclude that any expectation values
and correlation functions take their physical value in
the PM representation [156,157,158]

〈
Ō
〉
=

trσtrpŌρ̄

trσtrpρ̄
=

trσOtrpρ̄

trσtrpρ̄
= ⟨O⟩ . (124)

We conclude this exposition on the PM representation
by writing the Heisenberg spin Hamiltonian in PM
representation, where the sum is over bonds,

H̄ =
∑

(ij)

(−Jij)
(
ηyi η

z
i η
y
j η
z
j + ηxi η

z
i η
x
j η

z
j + ηxi η

y
i η
x
j η

y
j

)
.

(125)
Similar to the PF representation, we arrived at a purely
interacting fermionic Hamiltonian, now written in terms
of Majorana operators. In the following, we present the
diagrammatic PMFRG approach to this problem. To
keep the notation light, we limit ourselves to Heisenberg
systems, but generalizations to other bi-linear spin
couplings, e.g. of XXZ-type [71], are straightforward.

6.3.2. Pseudo-Majorana correlators and one-line
irreducible vertices We define the temporal Fourier
transform of the two-point imaginary time-ordered PM
correlation functions [58]

G(1, 2) =

∫ β

0

dτ1,2e
iω1τ1+iω2τ2

〈
Tτη

α1
j1
(τ1)η

α2
j2
(τ2)

〉
(126)

≡ βδω1+ω2,0G
α1α2
j1j2

(ω2) (127)

where 1 ≡ (j1, α1, ω1). The four-point func-
tion is defined analogously, Gα1α2α3α4

j1j2j3j4
(ω1, ω2, ω3) =∫ β

0
dτ1,2,3e

iω1τ1+iω2τ2+iω3τ3
〈
Tτη

α1
j1
(τ1)η

α2
j2
(τ2)η

α3
j3
(τ3)η

α4
j4

〉
.

Here, ω1 is shorthand for ωm1
= πT (2m1 + 1), m1 ∈ Z.

The Heisenberg imaginary time evolution is η(τ) =
eH̄τηe−H̄τ and the Fourier transform convention is such
that the n frequencies of the n-point vertex sum to zero.

An important consequence of the PM represen-
tation is that we are dealing with only one type of
operator, e.g., η instead of c, c†. This means that for
imaginary time-ordered correlation functions any pair
of index tuples 1, 2, ... can be exchanged for a minus
sign. This antisymmetry, in conjunction with the her-
mitian conjugation property ⟨O⟩ =

〈
O†〉⋆ ensures that

G(1, 2) ≡ −ig(1, 2) ∈ iR and G (1, 2, 3, 4) ∈ R.
The local Z2 gauge symmetry of the PM

representation ηαi → −ηαi ∀α ∈ {x, y, z} ensures that
each non-vanishing PM correlator is bi-local which
means that each site-index appears at least twice.
In the PM representation, time-reversal symmetry
is implemented as complex conjugation i → −i
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which indeed flips all spin operators in Eq. (121) and
implies that g(1, 2) and G(1, 2, 3, 4) are invariant under
multiplying all frequency arguments by −1. Spin
rotation symmetries act on the vector of Majorana
operators (ηx, ηy, ηz)T as on the vector of spin operators
(Sx, Sy, Sz)T [155]. If present, these symmetries further
restrict the flavor combinations α1,2,... of non-vanishing
correlation functions, for details see Ref. [58]. For
the Heisenberg case, the above symmetries lead to the
following parameterization of the two-point function,

g(1, 2) = βδω1+ω2,0δj1,j2gj1(ω2), gj(ω) =
1

ω + γj(ω)
(128)

with γj(ω) = −γj(−ω) ∈ R. The connected part of the
four-point correlation functions G(1, 2, 3, 4) are linked
to the one-line irreducible vertices Γ(1, 2, 3, 4) by the
tree expansion. For the Heisenberg case, there are only
three independent non-zero vertices, which, without
loss of generality, can be defined as

V aij(s, t, u) = βδωΓ(ixω1, ixω2, jxω3, jxω4), (129)

V bij(s, t, u) = βδωΓ(ixω1, ixω2, jyω3, jyω4), (130)

V cij(s, t, u) = βδωΓ(ixω1, iyω2, jxω3, jyω4), (131)

where δω ≡ δω1+ω2+ω3+ω4,0 and we defined the bosonic
frequencies as s = ω1+ω2, t = ω1+ω3 and u = ω1+ω4.
The most important frequency symmetries of the V ,
which allow to focus on non-negative s, t, u are

V a,b,cij (s, t, u) = V a,b,cij (−s, t, u) , (132)

V a,b,cij (s, t, u) = V a,b,cji (s,−t, u) , (133)

V a,b,cij (s, t, u) = V a,b,cji (s, t,−u) , (134)

and the exchange symmetries between u and t further
simplify the numerical effort,

V a,bij (s, t, u) = − V a,bij (s, u, t) , (135)

V cij (s, t, u) =
[
−V aij + V bij + V cij

]
(s, u, t) . (136)

As in PFFRG, spatial symmetries, both point-group
and translation, drastically reduce the number of
vertices in an actual calculation.

Finally, we provide the main observables of interest
for a spin system in terms of PM quantities. First, we
remind the reader that the free energy in eq. (122)
provides access to thermodynamic quantities like the
energy per site e = f − T df

dT , the specific heat c = de
dT

and even the entropy s = (e − f)/T , which is often
challenging to obtain from other methods. Moreover we
write the dynamic spin susceptibility on the Matsubara
axis in terms of PM propagators and vertices, again for

the Heisenberg case,

χzzij (iν) =

∫ β

0

dτ eiντ
〈
Szi (τ)S

z
j

〉
(137)

= δijT
∑

ω

gi (ω) gi(ω − ν) (138)

+T 2
∑

ω,ω′

gi (ω) gi (ω − ν) gj (ω
′ + ν) gj (ω

′)

×V cij (ν, ω − ω′ − ν, ω + ω′) .

6.3.3. Pseudo-Majorana path integral and FRG flow
equations Given the fact that Majorana operators
and complex fermionic operators are related by a
unitary rotation it is not surprising that there exists a
Grassmann field path integral for the partition function
of interacting Majorana systems. Calling the field ζa,
its action reads [159,160,161]

S[{ζa}a] =
∫ β

0

dτ
(∑

a

1

2
ζa(τ)∂τζa(τ) +H [ζa(τ)]

)
,

(139)
where, just like in the complex fermion case, each
occurrence of ηa in the Hamiltonian H is to be replaced
by ζa(τ). With a sufficiently general formulation of
the FRG at hand [113], it is a straightforward task to
derive flow equations for the interaction correction of the
free energy, self-energy and 4-point vertex [58]. Since
there is just a single field-type (ζ), the corresponding
diagrams do not feature incoming and outgoing lines
and all vertices are fully antisymmetric under exchanges
of all legs. Likewise, the s, t and u channels in the
vertex flow equations are related to each other by simple
permutations of indices.

In the following we will express these flow equations
directly in terms of the PM quantities defined in the
previous section 6.3.2. In analogy to PFFRG, we
use a multiplicative frequency cutoff, which in light
of the discrete Matsubara frequencies is chosen to be
smooth, G0(ω) → GΛ

0 (ω) = G0(ω)ϑΛ(ω). A standard
choice is a Lorentzian, ϑΛ(ω) = ω2/(ω2 + Λ2) with

∂ΛϑΛ(ω) = −2ω2Λ
(
ω2 + Λ2

)−2
.

We first give the initial conditions for Λ → ∞. The
free PM energy per site f̄ starts at its non-interacting
value −3T/2 log2 and the vertex V cij(s, t, u) initially is
−Jij . All other vertices and the self energy vanish
initially. The flow equations for the PM free energy per
site and the self-energy are

∂Λf̄
Λ =

−3T

N

∑

k

∑

Ω>0

∂ΛϑΛ(Ω)

ϑΛ(Ω)
γΛk (Ω)g

Λ
k (Ω), (140)

∂Λγ
Λ
i (ω) = − T

∑

Ω>0

∑

k

[
gΛk (Ω)

]2 Ω∂ΛϑΛ (Ω)

ϑ2Λ (Ω)
(141)

×
[
V a,Λki + 2V b,Λki

]
(0,Ω− ω,Ω+ ω) .
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The flows of the 4-point vertices are provided by

∂ΛV
a,Λ
ij (s, t, u) = Xa,Λ

ij (s, t, u)− X̃a,Λ
ij (t, s, u) (142)

+ X̃a,Λ
ij (u, s, t) ,

∂ΛV
b,Λ
ij (s, t, u) = Xb,Λ

ij (s, t, u)− X̃c,Λ
ij (t, s, u) (143)

+ X̃c,Λ
ij (u, s, t) ,

∂ΛV
c,Λ
ij (s, t, u) = Xc,Λ

ij (s, t, u)− X̃b,Λ
ij (t, s, u) (144)

+ X̃d,Λ
ij (u, s, t) .

Here, the objects denoted by X and X̃ are bubble
functions. In the case of X, they are defined by

Xa,Λ
ij (s, t, u) = T

∑

Ω,k

ΠΛ
k (s,Ω) (145)

× V a,Λki (s,Ω+ ω1,Ω+ ω2)V
a,Λ
kj (s,Ω− ω3,Ω− ω4)

+ 2× (a→ b) ,

and

Xb,Λ
ij (s, t, u) = T

∑

Ω,k

ΠΛ
k (s,Ω) (146)

× V a,Λki (s,Ω+ ω1,Ω+ ω2)V
b,Λ
kj (s,Ω− ω3,Ω− ω4)

+ (a↔ b) + (a→ b) ,

and

Xc,Λ
ij (s, t, u) = T

∑

Ω,k

ΠΛ
k (s,Ω) (147)

× V c,Λki (s,Ω+ ω1,Ω+ ω2)V
c,Λ
kj (s,Ω− ω3,Ω− ω4)

+ (ω1 ↔ ω2, ω3 ↔ ω4) ,

where ΠΛ
k (s,Ω) = ġΛk (Ω) gΛk (Ω + s). The single-scale

propagator is ġΛj (ω) =
(
gΛj (ω)

)2 [
ω
ϑ′
Λ(ω)

ϑ2
Λ(ω)

− ∂Λγ
Λ
j (ω)

]
.

The second term in the brackets represents the Katanin
truncation [119]. The local bubble functions X̃ii are
by definition equivalent to the local Xii. They are
given as X̃µ,Λ

ii (s, t, u) ≡ Xµ,Λ
ii (s, t, u) for µ = a, b, c

and X̃d,Λ
ii (s, t, u) ≡ −Xc,Λ

ii (s, u, t). In the nonlocal
case, they are defined by

X̃Λ
a;ij (s, t, u) = T

∑

Ω

ΠΛ
ij(s,Ω) (148)

× V Λ
a;ji (Ω + ω1, s,Ω+ ω2)V

Λ
a;ji (Ω− ω3, s,Ω− ω4)

+ 2× (a→ c) ,

and

X̃Λ
b;ij (s, t, u) = T

∑

Ω

ΠΛ
ij(s,Ω) (149)

× V Λ
a;ji (Ω + ω1, s,Ω+ ω2)V

Λ
c;ji (Ω− ω3, s,Ω− ω4)

+ (c↔ a) + (a→ c) ,

and

X̃Λ
c;ij (s, t, u) = T

∑

Ω

ΠΛ
ij(s,Ω) (150)

× V Λ
b;ji (Ω + ω1,Ω+ ω2, s)V

Λ
b;ji (Ω− ω3,Ω− ω4, s)

+ (b→ c) ,

and

X̃Λ
d;ij (s, t, u) = T

∑

Ω

ΠΛ
ij(s,Ω) (151)

× V Λ
b;ji (Ω + ω1,Ω+ ω2, s)V

Λ
c;ji (Ω− ω3,Ω− ω4, s)

+ (b↔ c) .

In these equations, ΠΛ
ij(s,Ω) = ġi,Λ (Ω) gj,Λ (Ω + s) +

ġj,Λ (Ω + s) gi,Λ (Ω). The symmetries of the X-terms
under frequency flip or exchange are the same as
for the vertices V . For the X̃-terms, they are
slightly different. For µ ∈ {a, b, c, d} it holds that

X̃µ,Λ
ij (s, t, u) = X̃µ,Λ

ji (−s, t, u) = X̃µ,Λ
ij (s,−t, u) =

X̃µ,Λ
ji (s, t,−u) and we also have X̃d,Λ

ij (s, t, u) =[
X̃a,Λ
ij − X̃b,Λ

ij − X̃c,Λ
ij

]
(u, t, s).

This concludes the description of the PMFRG flow
equations for the most elementary case of a Heisenberg
spin S = 1/2 system. We emphasize again that the
numerical implementation is greatly simplified by the
fact that Matsubara frequencies are discrete and we
usually use a frequency box with Nω = 20...60 positive
frequencies for the self-energy and the vertices. Of
course, for a given T/J , one should check that the
results are converged with respect to Nω. However, in
practice, this is never a problem, since it turns out that
the truncation of the FRG hierarchy of flow equations
is usually the main bottleneck. This can be seen in the
example of fig. 7 which shows the PMFRG results (grey
symbols) for the static spin susceptibility of the AFM
Heisenberg dimer. The deviations from the exact results
(black lines) starting below T/J ≃ 0.4 are not caused
by any approximation in solving the flow equations
but are only due to the neglect of the flow of higher-
order vertices, i.e. the truncation of the flow equation
hierarchy.

6.3.4. Perturbative control and intrinsic consistency
checks As mentioned in section 6.1 under point (ii), a
crucial technical advantage in working at T > 0 is the
ability to control the PMFRG with the smallness of the
parameter J/T . For example, the contribution of the
neglected six-point vertex scales as Γ6 ∼ O

(
J3/T 2

)
in

the standard one-loop truncation, which means that the
four-point vertex V (s, t, u) is accurate up to O(J3/T 2).
Checking this scaling explicitly is an excellent test
of any PMFRG implementation. However, since the
(PM)FRG is beyond plain perturbation theory by
incorporating infinite-order resummations, the question
is how to decide down to which T/J the results can
be trusted. Ideally, in the absence of an exact solution
as for the dimer case, some method-intrinsic quality
check, similar to the check of the spin-magnitude in
PFFRG [127] or similar developments in the Hubbard
model community [147], is desired.

Generally speaking, any quantity that can be
computed alternatively from the two-point and the
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four-point functions γ and V , respectively, can be used
for such an internal consistency check. Consider, for
instance, the energy per site which is defined as

e =
1

N
⟨H⟩ = 1

N

∑

(i,j)

Jij⟨Si · Sj⟩.

On the one hand, the equal-time spin correlators ⟨Si·Sj⟩
can be computed from the PM four-point vertex V via
a Matsubara sum of eq. (138). On the other hand, as
discussed above, the energy can also be computed from
the free energy f that flows according to section 6.3.3
where only γ enters. Without the truncation of the
hierarchy of flow equations, the exact vertices would be
obtained and the two approaches have to produce the
same result. In practical terms, this statement can be
used in reverse to conclude that an observed consistency
of both results for the energy signals that the truncation
of the flow equations is innocuous. Heuristically,
our experience with exactly solvable models indeed
supports this point of view and leads us to discard
PMFRG results once the difference grows beyond ≃ 5%.
Formally, however, the conclusion is not quite correct
as even a perfect consistency between 2- and 4-point
vertices would not be a guarantee for the exactness
of a many-body calculation as such a consistency is a
general feature of a conserving approximation.

An alternative consistency check specific for the
PM case can be derived from the local constant of
motion Θi = −2iηxi η

y
i η
z
i , introduced in section 6.3.1.

Since S̄αi = Θiη
α
i and Θ2

i = 1
2 , we may write

the local spin-spin correlator as ⟨S̄zi (τ)S̄zi (0)⟩ =
⟨Θiη

z
i (τ)Θiη

z
i (0)⟩ = 1

2 ⟨η
z
i (τ)η

z
i (0)⟩. Therefore, for the

local case i = j, the (static) susceptibility of eq. (138)
can be alternatively computed via

χzzjj (iν = 0) =
∑

n

1

π (2n+ 1)
gzj (ωn) (152)

which only involves the self-energy. Again, if the FRG
truncation matters, one expects a sizeable difference
between eq. (138) and eq. (152).

6.4. Popov-Fedotov trick vs PM-representation

We have now discussed two alternative approaches to
avoid the unphysical states associated to the PF rep-
resentation in the context of FRG, namely the Popov-
Fedotov trick and the PM representation. While the
Popov-Fedotov trick can be implemented without many
changes in existing PFFRG codes, the PM represen-
tation has a number of advantages: First, even with
truncations in the hierarchy of the flow equations, the
PM representation fulfills the spin-length constraint
S = 1/2 exactly by construction, while this is not the
case with the Popov-Fedotov trick. Technically, this
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Figure 8. Nearest-neighbor antiferromagnet on simple cubic
lattice with J = 1: PFFRG flow of the spin susceptibility at
the dominant wave-vector kN = (π, π, π) for different maximal
correlation lengths L taken into account. Increasing L sharpens
the flow breakdown, which happens at Λc/J ≈ 0.939. Inset:
Susceptibility profile in reciprocal space showing Bragg peaks at
the corners of the Brillouin characteristic for the Néel ordered
state.

is rooted in the frequency symmetries of the PM ver-
tex function which cancels its contribution to Ci so
that only the bare bubble contributes unity. A second
advantage of the PM approach is that it remains well-
defined for T = 0, where the Popov-Fedotov trick is
inapplicable. Third, the Majorana Hamiltonian is again
Hermitian, allowing for a numerically more feasible im-
plementation.

7. Applications of PFFRG and PMFRG

7.1. Magnetic order

One of the most elementary characteristics of (quantum)
magnets is their potential tendency to develop magnetic
long-range order breaking the global spin rotation
symmetry, e.g. SU(2) for a Heisenberg model. The
PFFRG and PMFRG are perfectly suited to detect
magnetic ordering since they provide access to the spin-
spin correlation function which is related to the four-
fermion correlator. Physically, this object takes the role
of a spin-susceptibility which is expected to peak at a
magnetic ordering transition. Before we embark into
details, we remind the reader of an important no-go
theorem by Mermin-Wagner [149] which forbids the
spontaneous breaking of a continuous symmetry [as,
e.g. SU(2) or U(1)] at non-zero temperature for short-
range interacting systems below three dimensions. In
PFFRG, the parameter Λ, however, plays a similar
role as the temperature T , since both act like a low-
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energy cutoff (the latter via the existence of a minimal
Matsubara frequency). Although this implies that there
should be no sign of order in the PFFRG flow of the
spin susceptibility for two-dimensional systems, still
a divergence is found for non-vanishing RG scale. In
contrast to the flow breakdown in three dimensions,
which is determined by the phase transition of the
system, in the two-dimensional case it is an artefact of
the truncation of the flow equations.

In practice, the detailed protocol to detect
magnetic order is different for PFFRG and PMFRG.
As the former focuses on T = 0, only magnetic ordering
tendencies in the the ground state can be assessed. In
the following, for concreteness we focus on the nearest-
neighbor antiferromagnet (NNAF) on the simple cubic
lattice. Historically this was the first three-dimensional
system investigated with PFFRG [38]. In the classical
S → ∞ limit, the spins form a Néel ordered ground
state, where neighboring spins align antiparallel to each
other. Although not an eigenstate of the quantum
model, the dominant correlations of this state carry
over to the spin 1/2 model, where Bragg peaks appear
at the corners of the Brillouin zone, i.e. at kN = (π, π, π)
and symmetry related points [162].

The PFFRG flow of the maximum of the static
susceptibility for this system in fig. 8 shows a smooth
behavior up to a spike at Λc. This signals a long-
range ordered ground state, the formally expected
divergent susceptibility is regularized by both the finite
size of the numerically treated correlations and the finite
frequency resolution. Increasing the former leads to
an increasingly faster and earlier divergence, which
converges towards Λc/J ≈ 0.939. Evaluating the
static susceptibility just before this peak in reciprocal
space indeed reveals the expected Bragg peaks on the
(equivalent) corners of the Brillouin zone (see inset of
fig. 8). Note that the susceptibility peak could also be
regularized by a small but finite magnetization which
would then grow below Λc. However, so far this has
not been implemented in PFFRG due to the ensuing
breaking of time-reversal and spin-rotation symmetries,
see the discussion below in section 8.1.

As the PMFRG focuses on finite temperatures,
it is complementary to PFFRG also in the search
for magnetic order. However, as PMFRG flows
converge in the temperature regime where the method is
controlled we can expect quantitative results for critical
temperatures which are to be extracted from end-of-flow
PMFRG results. To discuss the required workflow that
applies to continuous phase transitions we return to the
cubic lattice NNAF, where error controlled quantum
Monte Carlo determined Tc/J = 0.946(1) [162]. This
was done for a finite-size system with periodic boundary
conditions using the concept of finite-size scaling
of the magnetic susceptibility at the ordering wave-

vector [163]. As periodic boundary conditions are
inconvenient for PMFRG which preferably is applied to
infinite and translational invariant lattices, it was shown
in Ref. [164] that scaling in the vertex cutoff length L
can be used as a practical alternative. Other than that,
the finite-size scaling program continues in a standard
way: One possibility [164] is to determine the critical
temperature by the pure power law-scaling of the Néel
susceptibility, χN (T = Tc, L)/L

2 ∼ L−η. Here, η is the
anomalous dimension, known to take on the small value
η = 0.035 for the classical three-dimensional Heisenberg
universality class that governs the finite-temperature
magnetic transition even for quantum S = 1/2 models.
Another possibility is to use the so called correlation
ratio to determine the ratio of magnetic correlation
length ξ and L,

ξ/L =
1

2π

√
χ(kN )

χ(kN + 2π
L ex)

− 1. (153)

This relation essentially relates the sharpness of the
momentum-space susceptibility peak at the ordering
wave-vector to the correlation length of the infinite
system, see Ref. [163] for a detailed discussion. The
critical temperature is reached when ξ → ∞, e.g. when
ξ/L does not depend on L. From the data in fig. 9 we
read off Tc = 0.92J , less than 3% away from the error
controlled calculation. It is also possible to attempt a
scaling collapse of the data by changing the horizontal
axes to L|T − Tc|ν . The collapse [164] is almost
perfect with ν = 0.71 the known correlation length
critical exponent of the three-dimensional Heisenberg
universality class, while the mean-field value νMF = 1/2
is clearly rejected.

In summary, we have used the cubic lattice NNAF
to discuss how magnetic ground state order or ordering
temperature as well as critical exponents can be
detected within PFFRG or PMFRG, respectively. The
strength of the methods now rely in the fact that the
same studies can be applied to almost arbitrary bilinear
spin systems, especially those which are frustrated
by competing interactions. Such systems can harbor
multiple exotic magnetic ordering patterns in the
ground state, see for example the rich phase diagram of
the J1−J2−Heisenberg model on the pyrochlore lattice
studied by PFFRG in Ref. [41]. As a recent application
of the PMFRG, the two-dimensional interacting XY-
model relevant to dipolar Rydberg atom tweezer arrays
was studied [71]. In this case a finite Tc > 0 is allowed
in the ferromagnetic case due to the long-range nature
of the interactions. Of particular interest, however, are
paramagnetic regions in the magnetic phase diagram
where no magnetic order is detected. We dedicate the
following subsection to this topic.
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Figure 9. Nearest-neighbor antiferromagnet on simple cubic
lattice: PMFRG results for the correlation ratio eq. (153) using
a one-loop + Katanin flow. The crossing of the data for various
system size indicates a critical temperature Tc = 0.92J close to
the quantum Monte Carlo result Tc/J = 0.946(1) [162] (dashed
lines). We re-defined L = [3/(4π)N ]1/3 using the number N of
sites correlated to the reference site instead the maximum of the
treated vertex range. Empirically, this yields smoother results
especially in the small-N case.

7.2. Paramagnetic phases

A paradigmatic model where frustration prevents the
formation of magnetic order is the nearest-neighbor
pyrochlore antiferromagnet which, in the classical case,
famously realizes a spin liquid [165]. The four sites in
the unit cell are arranged each at half the fcc lattices
vectors ai/2, i = 1, 2, 3, i.e. b0 = (0, 0, 0),bi = ai/2
such that the lattice realizes an arrangement of corner-
sharing tetrahedra. Establishing an understanding of
the nature of its apparently nonmagnetic quantum
ground state has motivated a plethora of numerical
studies employing various non-FRG methods [166,167,
168, 169,170, 171, 172]. In fig. 10 we show a comparison
of the uniform static susceptibility χ(k = 0) between
PMFRG and error-controlled methods. It can be
seen that PMFRG produces quantitatively reliable
results even at low temperatures, without sharing
the limitations of other methods, which are often
hamstrung by low momentum-space resolution. We
note that due to the rather small values of χ(k = 0)
for antiferromagnets, the effect of two-loop corrections
appears more significant.

One of the advantages of PM and PFFRG methods
is the implementation of fully translationally invariant
lattices. Moreover, only the maximal correlation length
is limited such that in disordered systems, where the
physical correlation length is finite, size effects are
effectively absent.

The static susceptibility can therefore be obtained
in high resolution at the end of the flow. As can
be seen in fig. 6, the Katanin-corrected PFFRG flow
shows no sign of a divergency, as expected for a
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Figure 10. Comparison PMFRG in one-loop (ℓ = 1) and two-
loop (ℓ = 2) with high-temperature series expansion (HTSE,
red) [169], DMC (light green) [62], and DMRG for 32 (dark
green) and 48 site (orange) clusters [167]. Reproduced from
Ref. [58].
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Figure 11. (a) Momentum resolved susceptibility of the NNAF
on the Pyrochlore lattice in the hhl-plane calculated from
PFFRG at the lowest simulated Λ = 0.05J . Broadened pinch
points are visible at (4π, 0, 0) and symmetry related points. (b)
Susceptibility in the Brillouin zone (truncated octahedron) of
the Pyrochlore lattice. Results obtained via PMFRG at low
temperatures are observed to be qualitatively equivalent [49,164].

magnetically disordered ground state. In fig. 11(a)
the value of the susceptibility obtained from PFFRG
at the lowest simulated RG scale in the hhl-plane
(kx = ky). It shows the expected broadening of the
pinch points at (0, 0, 4π), resulting from violations of
the spin ice rule in the quantum limit (see also [49]
where a similar broadening of higher-fold pinch-points
is investigated). fig. 11(b) shows the same susceptibility
in the extended Brillouin zone of the Pyrochlore lattice.
In accordance with both the featureless flow and the
broad susceptibility in the hhl-plane, no Bragg peaks
are visible in reciprocal space, only broad maxima of
the static susceptibility, strengthening the perception
of a magnetically disordered ground state.
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7.3. Probes for symmetry breaking in paramagnets

The results in the previous section establish an absence
of long-range order in the ground state of the NNAF on
the Pyrochlore lattice. The FRG equations, however,
respect all symmetries of the microscopic Hamiltonian,
in particular both spin-rotational invariance and lattice
symmetries. Recent studies employing the density
matrix renormalization group [171] and variational
Monte Carlo [170], however, find an inversion symmetry
breaking and combined inversion and rotation symmetry
breaking ground state, respectively.

To find such tendencies in an unbiased way, a
dimer-dimer correlation function of the form Dij,kl =
⟨(Si · Sj)(Sk · Sl)⟩ − ⟨(Si · Sj)⟩ ⟨(Sk · Sl)⟩ would have
to be calculated [42]. The divergence of this
quantity then would signal the onset of nematic
order. In PFFRG, however, this would necessitate
the calculation of a four-particle vertex, which, while
formally accessible in the formalism, is numerically too
demanding.

To probe for specific symmetry breaking patterns,
however, one can resort to the introduction of a small
perturbation δ in accordance with the pattern. For
this procedure, the nearest neighbor bonds are grouped
into weakened (W ) and strengthened (S) bonds. The
perturbation δ then modifies the Heisenberg couplings
Jij → Jij ± δ for ⟨i, j⟩ ∈ S/W . The flow of the dimer
response function

ηΛdim =
J

δ

χΛ
S − χΛ

W

χΛ
S + χΛ

W

, (154)

where χΛ
S/W is the spin-spin correlator according to

eq. (102) on strong/weak bonds, then signals the
tendency of the system to accept/reject the symmetry
breaking.

If the initial ηΛ→∞
dim = 1 grows larger during the

RG flow, the symmetry breaking likely is present in the
true ground state of the system, whereas a diminishing
susceptibility implies a rejection of the pattern. This
method has been used to confirm the spatial symmetry
breaking on the Pyrochlore lattice from a PFFRG
perspective [47].

Similar prescriptions were used to probe for valence-
bond crystal orders on the simple cubic lattice [38]
as well as plaquette order in the Shastry-Sutherland
model [173]. Introducing the symmetry breaking term
in spin-space, i.e. breaking SU(2) symmetry, allows
accessing spin-nematic tendencies, as has also been
investigated on the Pyrochlore lattice [42].

Although this approach can only probe for the
specific symmetry breaking patterns assumed to exist
a priori, it is an important diagnostic for quantum
paramagnetic states complementing the pure magnetic
long-range order analysis from the flow of the spin-
susceptibility.

8. Challenges and future directions

In this section, we review the current challenges and
limitations of the PFFRG and PMFRG methods. We
combine this discussion with an outlook to possible
future methodological improvements and propose novel
areas of application.

8.1. Magnetic fields

In all previous sections, the PFFRG and PMFRG have
been developed under the assumption that time reversal
symmetry is intact, which excludes external magnetic
fields. In the most general case a magnetic field would
give rise to an extra term in the Hamiltonian of the
form

H → H+
∑

i

Bi · Si . (155)

Indeed, all currently published applications of the
PFFRG and PMFRG have made the assumption of
vanishing external magnetic fields. The only reason for
the community’s reluctance to include magnetic fields is
the increased numerical cost which has various different
origins. First, even when ignoring the complications
from time-reversal symmetry breaking, the presence of
a magnetic field breaks spin-rotation symmetry from
SU(2) for a Heisenberg system down to at least U(1).
In PFFRG this generates additional contributions to
the two-particle vertex besides the spin and density
terms in eq. (83).

The main complicating effect of magnetic fields,
however, comes from time-reversal symmetry breaking
which was used extensively in the above calculations
to simplify the flow equations and the parametrization
of vertex functions. For example, the simple form of
the self-energy in PFFRG [see eq. (78)] which is purely
imaginary and proportional to the identity in spin space
would no longer hold. Instead, magnetic fields give
rise to additional contributions proportional to Pauli
matrices in spin space, which correspond to the terms
Σα(ω)σαµ′

1µ1
with α = 1, 2, 3 in eq. (74). Since Σα is

found to be real for α = 1, 2, 3 this also means that
the self-energy and, consequently, the Green’s functions
are generally composed of a finite real and imaginary
part. This doubling of terms becomes a quadrupling
when products of two Green’s functions are involved
such as in the flow equations for the two-particle
vertex. Another source of increased numerical costs
is that the symmetries in the frequency dependence of
the two-particle vertex, listed in table 3, are reduced.
Altogether, these complications lead to significantly
longer numerical runtimes for the solution of the flow
equations. This certainly does not generally prohibit the
application of the PFFRG or PMFRG in the presence
of finite magnetic field but makes it more challenging
to obtain numerically stable and converged outcomes.
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At the time of writing of this review it was not yet
entirely clear how severe these complications are in
practice, i.e. how much they come at the expense of
accuracy/stability or, more generally, how large the
impact of the truncation of flow equations is in the
presence of finite magnetic fields.

Apart from these challenges, the opportunities of
implementing magnetic fields for future applications
should also be explained. One can, generally, pursue
two strategies when adding magnetic fields. The first
is the inclusion of small fields (e.g. on the order of a
percent of the exchange couplings) which regularizes the
breakdown of the flow in magnetically ordered phases.
This enables one to continue the RG flow down to the
small Λ limit such that magnetically ordered phases
can be investigated in the physical limit where the Λ-
regulator is absent. Another interesting question for the
PMFRG is if the treatment of a finite magnetization
allows for the detection of 1st order magnetic phase
transitions. The second strategy is to add finite fields
(e.g. on the order of the exchange couplings) to identify
phases and phenomena that require magnetic fields.
An obvious application would be the investigation
of magnetization plateaux in magnetization curves
which are known to occur in a variety of frustrated
spin systems [174, 175, 176]. In the high-field limit
the approach would even be strictly error controlled
in a perturbative sense since the interacting part
of the Hamiltonian is small compared to the field
term, where the latter is only quadratic in the pseudo
(Majorana) fermions, i.e. non-interacting. In that case,
the method has certain conceptual similarities with an
FRG approach for fermionic Hubbard models, where,
likewise the case of small ratio of Hubbard interactions
and hopping constitutes a controlled limit.

Besides the advantages of adding magnetic fields
for theoretical purposes, such an extension would also
lead to further possibilities to connect to experiments
since adding a magnetic field is one of the simplest and
most straightforward ways to manipulate a quantum
magnet.

8.2. Accessing real frequency data

When comparing both PFFRG and PMFRG data to
experiments, the most striking limitation of the methods
is their formulation on the Matsubara (imaginary
frequency) axis. As shown in section 5.7, this only
allows to access the static (ω = 0) physical quantities
directly, although in principle all physical information
is already encoded in the vertex. Inelastic neutron
scattering experiments, in contrast, directly access
the frequency resolved spin-structure factor, which is
related to the imaginary part of the dynamical spin
susceptibility.

One way to obtain information on the real fre-

quency axis is analytical continuation of susceptibilities
in terms of Matsubara frequencies. Performing this pro-
cedure numerically, however, is a notoriously difficult
problem and so far has only been applied in special
situations [23].

An alternative approach is to reformulate the whole
renormalization procedure in terms of real frequencies
directly, utilizing the Keldysh formalism [177].
Originally formulated for non-equilibrium problems,
it is also applicable to systems in thermal equilibrium.
The complication in porting FRG to the real axis stems
from the fact that under time-evolution of a system the
initial and final states at t = ±∞ do not necessarily
have to be the same. This prevents the formulation of
a path integral akin to the ones discussed in section 4
and therefore the whole formalism as discussed there is
not applicable.

The Keldysh formalism circumnavigates this
complication by performing the time evolution both
forward and backward, leading to a doubling of degrees
of freedom by introducing a positive and negative
evolving time contour branch. The formulation of the
flow equations stays unchanged, up to an additional
Keldysh index per external leg of a vertex, labelling
the respective branch of the time contour [178,179,180].
This means that the self-energy becomes a 2×2 matrix,
whereas the two-particle vertex acquires four Keldysh
indices and therefore 16 components. Additionally
all these quantities are not necessarily real-valued
anymore, leading to an additional increase in numerical
complexity.

Further complications arise from the regulators
discussed in section 5.5: In the Keldysh context
they violate causality, which makes them unsuitable
for use in a real-frequency setup. Additionally, the
symmetries listed in table 3 acquire additional Keldysh
structure. Both points have only been explored for
general fermionic models so far [181], but not for pseudo-
fermionic or pseudo-Majorana degrees of freedom in
particular, which is, however, vital for a numerically
performant implementation of the method.

So far, it is not clear, if the additional run time cost
will be outweighed by the potential physical insights
from the method, or if PFFRG or PMFRG is suited to
be treated in the Keldysh formalism at all.

8.3. Low temperature problem

From the discussions in section 6 as well as the
data presented in fig. 7, we have seen that reaching
low temperatures is a major problem for PM and
finite-temperature PFFRG: The one-loop + Katanin
truncation of the flow equations introduces an error
O(J3/T 2) to the vertex. Although this is an asymptotic
statement for large T/J , it explains why benchmark
comparisons and method-inherent consistency checks
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are likely to fail if T ≪ J . This is unfortunate since
some of the most pressing questions about quantum
spin models, such as the formation of exotic low-
temperature states remain unanswered from the FRG
perspective. Similarly, one could argue that the cutoff Λ
perturbatively controls the error for the FRG truncation
in the T = 0 PFFRG formalism and, thus, the
association of instabilities in the flow with magnetic
order might only be sensible for Λ ≳ J . However, solid
numeric evidence for this statement is currently lacking.

The straightforward attempt to improve the
quantitative accuracy of the FRG are multiloop
extensions, see the discussion above in section 4.3.
Indeed, even the inclusion of two-loop 2ℓ corrections
can improve the accuracy of the results as demonstrated
in fig. 10 for the Pyrochlore NNAF. However, even loop-
converged multiloop FRG can at best reproduce the
truncation error of the parquet approximation, which
is O(J4/T 3) on the vertex level. Moreover, there is no
guarantee that the additional diagrams which improve
the error scaling at large T/J also systematically
improve the accuracy in the low temperature case.
Taking the Heisenberg dimer or the simple-cubic AFM
as an example, truncations of the flow equations beyond
one-loop + Katanin do not seem to systematically
improve the quality of the results [59]. At the time
of writing, therefore, the role of multiloop extensions
of PFFRG and PMFRG remains unclear.

A promising avenue for future research is the fusion
of pseudofermion FRG with non-perturbative strategies,
such as the direct enforcement of Ward identities [182] or
the use of local vertex quantities in the initial condition
of the flow, similar to the DMF2RG [183] method, where
the result of a DMFT calculation is used to initialize the
FRG flow. To make the latter approach feasible, it is
crucial to find a representation of the flow equations in
terms of well-conditioned objects which (a) do not lead
to double-counting of diagrams [23] and (b) are non-
divergent [184]. Recent progress in this direction has
been made by rewriting the flow equations in terms of
single and multiboson scattering processes [185,186,187],
mitigating the need to compute two-particle irreducible
vertices from the (inverse) Bethe-Salpeter equation.

The low-Λ or low-T problem of PF- or PMFRG
is closely related to the ignorance of (most of the)
higher order fermionic vertices with more than four
legs corresponding to correlators of more than n = 2
spins. However, an unbiased study of competing non-
magnetic phases (e.g. dimerized or spin liquid states),
might require the calculation of n = 3 (chiral), n = 4
(dimer-dimer) or even higher correlators. One idea to
circumvent the daunting numerical cost associated with
these objects in the PF- or PMFRG is to abandon a
parton spin representation altogether and instead work
with the spin operators themselves. This approach,

dubbed spin-FRG is discussed further in the following
section 8.4.

8.4. Working without partons: Spin-FRG

In 2019 Kopietz and coworkers [188] suggested a
paradigm change in the application of the FRG to
spin systems: Instead of computing vertex functions of
auxiliary and as such unobservable fermionic partons,
their scheme termed spin-FRG is applied directly to
correlation (and vertex-) functions of spin operators〈
TτS

α1
i1

(τ1)S
α2
i2

(τ2)...S
αn
in

(τn)
〉
without the need of any

intervening representation. This builds on the earlier
insight [189] that FRG flow equations do not necessarily
require an unconstrained Grassmann (or real) functional
integral representation of the partition function, which
does not exist for spin. Instead, flow equations can
be derived for a generating functional written in terms
of a time ordered exponential of operators. In the
Heisenberg case, for example, this functional in terms
of source-fields hαi (τ) is given by

G[h] = lnTrTτ exp

∫ β

0

dτ [−
∑

(i,j)

JijSi(τ) · Sj(τ) (156)

+
∑

i

hi(τ) · Si(τ)].

The flow parameter Λ : 0 → 1 is introduced via Jij →
ΛJij (G[h] → GΛ[h]) increasing the coupling Jij from
zero to its final value. The resulting flow equations for
the connected imaginary time-ordered spin correlation
functions obtained by functional derivatives with
respect to source fields δGΛ[h]/[δh

α1
i1
(τ1)...δh

αn
in

(τn)]h=0

take on a standard bosonic form. However, for the
free spin case encountered at the beginning of the flow
at Λ = 0 the Legendre transform to the generating
functional of vertex functions ΓΛ[m] is not defined for
source fields with non-trivial time dependence. Kopietz
and coworkers bypassed this problem by defining a non-
standard hybrid functional [190] which treats finite and
vanishing frequency cases on unequal footing. Despite
this technical complication, the flow equations for
the one-line irreducible vertex functions finally take
a relatively simple form. Up to now, performant
numerical approaches treating the system of resulting
flow equations in its full complexity have not yet been
implemented. Instead, several approximations were
employed which however lead to promising results
[190,191,192,193,194,195,196] which will be reviewed
in the following.

One of the features of spin-FRG is efficiency.
In FRG approaches to the Hubbard model, the
full parametrization of frequency and momentum
dependence for vertices with up to 4 legs is by now
standard [197]. Hence, once implemented within spin-
FRG, the flows of 3- and 4-point spin correlators should
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be equally accessible numerically, giving simplified
access to dimer-susceptibilities when compared to
PF- and PMFRG, see the discussion in section 7.3.
Moreover, one can hope that the low-temperature
problem can be alleviated to a certain extent by the
flow of such higher-order spin vertices. In part, this
optimism is fueled by the percent-range accuracy for
critical temperatures of classical [188] and quantum
[196] spin models achieved by the Kopietz group
with vertex parametrization approximated even at
the 2-point level. Also the inclusion of magnetic
fields seems possible at a moderate numerical effort
within spin-FRG. Kopietz and coworkers have already
demonstrated magnetization calculations and magnon
dynamics [192, 193] in rather simple non-frustrated
settings and with limited numerical ambition.

Due to the SU(2) spin algebra, even local free-spin
correlation functions

〈
TτS

α1
i (τ1)S

α2
i (τ2)...S

αn
i (τn)

〉
c,0

are non-trivial at every order n but can still be
computed [196, 198]. The spin-FRG takes advantage
of this non-trivial information by starting the flow at
the free-spin limit Λ = 0. Moreover, the correlation
functions along the spin-FRG flow are physical at
every Jeff = ΛJ and a single flow produces correlation
functions for the full accessible range of T/Jeff . As
another benefit, the spin-FRG formalism is applicable
for general spin length S, which merely enters as a
parameter in the initial condition. For completeness,
we also mention the earlier work by Rançon who used
a non-perturbative variant of the FRG to study the
XY-spin model [199].

In summary, while the spin-FRG seems attractive
for various reasons reviewed above, further work and
comparisons to PF- and PMFRG are necessary to gauge
its full potential, especially in the framework of three-
dimensional frustrated quantum magnets.

9. Conclusions

Frustrated quantum magnets which evade any analyti-
cal or quasi-exact numerical solution pose a many-body
problem with two complementary ways to address them.
First, guided by symmetry and topology, one develops
a theory to characterize the suggested ground state of
the problem. This motif includes, but is not exhausted
by, approaches as diverse as mean field theory, vari-
ational Monte Carlo, projected entangled pair states
encodings, density matrix renormalization group, and
tensor network methods in general. Its ultimate goal is
to not only learn about the magnetic quantum ground
state, but also elementary excitations whose structure
is inherited by the given ground state. Second, inspired
by reducing the bare model Hamiltonian problem to
an effective model where the competing ordering and
disordering tendencies are more clearly expressed, one

seeks to distill a low-energy model upon exploiting the
scale separation between bare exchange couplings and
eventual ordering strength or paramagnetic incompress-
ibility. Both ways are intertwined, as the former can
readily be applied to the effective model resulting from
the latter. Functional renormalization group serves
both purposes in one go. Upon the renormalization
flow procedure explicated in the review and as such
rendered accessible to everyone, one produces an ef-
fective spin exchange model at a lower energy scale
dependent on the respective cutoff value. Furthermore,
the renormalization group procedure allows to investi-
gate the flow of the susceptibility as function of cutoff,
and as such picks up any symmetry breaking propen-
sity along the flow. This means that even though the
method is first of all an attempt to retrieve effective
Hamiltonians / many-particle vertices at low energies,
it also provides a largely unbiased access to explore the
landscape of symmetry breaking in a quantum mag-
net. Characterized by an exceptional flexibility, i.e.,
not limited by either sign problem, dimensionality, lat-
tice geometry, or interaction range, the pseudo-particle
functional renormalization group promises to become
an indispensable tool in contemporary research on frus-
trated quantum magnetism, and has already proven
so in the past decade. With further improvements on
their way to increase their quantitative predictability,
there is substantiated hope that PFFRG and PMFRG
will eventually help to close the circle of cognition in
frustrated magnetism composed of experimental obser-
vation, theoretical conceptualization, and mathematical
abstraction.
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[46] Živković I, Favre V, Salazar Mejia C, Jeschke H O, Magrez
A, Dabholkar B, Noculak V, Freitas R S, Jeong M,
Hegde N G, Testa L, Babkevich P, Su Y, Manuel P,
Luetkens H, Baines C, Baker P J, Wosnitza J, Zaharko
O, Iqbal Y, Reuther J and Rønnow H M 2021 Phys. Rev.
Lett. 127(15) 157204 URL https://link.aps.org/doi/

10.1103/PhysRevLett.127.157204

[47] Hering M, Noculak V, Ferrari F, Iqbal Y and Reuther J
2022 Phys. Rev. B 105(5) 054426 URL https://link.

aps.org/doi/10.1103/PhysRevB.105.054426
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Appendix A. Multi-local PFFRG flow equations
in asymptotic frequency parametrization

For reference, in this appendix we list the multi-local
flow PFFRG flow equations as well as the expression for
the spin-spin susceptibility in the asymptotic frequency
parametrization for the three channels individually.
The frequency arguments of the channel derivatives
are taken to be in natural parametrization, while the
arguments of the vertices on the right-hand side of the
equations always list all three parametrizations, as they
can be decomposed in a sum of channel contributions.
For this, we use the convention

Γµ1234

i1i2



ωs νs ν′s
ωt νt ν′t
ωu νu ν′u


 , (A.1)

where we also introduce the shorthand µ1234 =
µ1µ2µ3µ4 for spin indices. We refrain from specifying
the parametrization in spin space, as the remaining
degressof freedom in this space are highly dependent
on the Hamiltonian.

Furthermore, the symmetric Katanin substituted
bubble derivative

P (ω, ν) = GΛ(ω)SΛ
kat(ν) + SΛ

kat(ω)G
Λ(ν) (A.2)

is used.

Appendix A.1. Self-energy

The multilocal self-energy flow reads

d

dΛ
γ(ω) =

∫
dω′

∂
∂ΛR(ω

′,Λ)

ω′ + γ(ω′)

{

Γµ1111

i1i1



ω + ω′ ω′/2− ω/2 ω′/2− ω/2
ω − ω′ ω′/2 + ω/2 ω′/2 + ω/2

0 ω′ ω




−
∑

j,µ2

2Γµ1212

i1j



ω + ω′ ω/2− ω′/2 ω′/2− ω/2

0 ω ω′

ω − ω′ ω/2 + ω′/2 ω/2 + ω′/2



}

(A.3)

where i1 and µ1 are arbitrary site and spin indices,
respectively, due to the the self-energy being local and
diagonal in spin.

Appendix A.2. S-channel

ġ
µ1′2′12
si1i2

(s, νs, ν
′
s) =

1

2π

∫
dω
∑

µ3µ4

P (
s

2
+ ω,

s

2
− ω)

× Γµ3412

i1i2




s ω ν′s
−ν′s − ω (s+ ω − ν′s)/2 (s− ω + ν′s)/2
−ν′s + ω (s+ w + ν′s)/2 (s− ω − ν′s)/2




× Γ
µ1′2′34
i1i2




s νs −ω
ω − νs (s+ ω + νs)/2 (s− νs − ω)/2
ω + νs (s+ νs − w)/2 (s− νs + ω)/2




(A.4)

Appendix A.3. T-channel

ġ
µ1′2′12
i1i2

(t, νt, ν
′
t) =

1

2π

∫
dω
∑

µ3µ4

P (ω +
t

2
, ω − t

2
)

{

−
∑

j

Γ
µ1′413
i1j



νt + ω (νt − t− ω)/2 (ω − νt − t)/2
t νt ω

−ω + νt (w + νt − t)/2 (w + t+ νt)/2




× Γ
µ32′42
ji2



ν′t + ω (ω − t− ν′t)/2 (ν′t − t− ω)/2
t ω ν′t

−ν′t + ω (ν′t − t+ ω)/2 (t+ ω + ν′t)/2




+ Γ
µ1′413
i1i2



νt + ω (νt − t− ω)/2 (ω − t− νt)/2
t νt ω

−ω + νt (ω − t+ νt)/2 (t+ νt + ω)/2




× Γ
µ32′24
i2i2



ν′t + ω (ν′t + t− ω)/2 (ν′t − t− ω)/2
w − ν′t (ν′t + t+ ω)/2 (ν′t − t+ ω)/2
t ν′t ω




+ Γ
µ1′431
i1i1



νt + ω (t+ ω − νt)/2 (ω − t− νt)/2
νt − ω (t+ νt + ω)/2 (νt − t+ ω)/2
t ω νt




× Γ
µ32′42
i1i2



ν′t + ω (−t− ν′t + ω)/2 (ν′t − t− ω)/2
t ω ν′t

−ν′t + ω (ν′t − t+ ω)/2 (ν′t + t+ ω)/2




}

(A.5)

Appendix A.4. U-channel

ġ
µ1′2′12
i1i2

(u, νu, ν
′
u) =

1

2π

∫
dω
∑

µ3µ4

P (ω − u

2
u, ω +

u

2
)

× Γ
µ2′413
i1i2



νu + ω (νu + u− ω)/2 (−u+ νu − ω)/2
ω − νu (ω + u+ νu)/2 (−u+ νu + ω)/2
u νu ω




× Γ
µ31′42
i1i2



ν′u + ω (ω + u− ν′u)/2 (−u+ ω − ν′u)/2
ν′u − ω (ν′u + ω + u)/2 (−u+ ω + ν′u)/2
u ω ν′u




(A.6)



Pseudo-fermion functional renormalization group for spin models 40

Appendix A.5. Spin-spin correlator

χαβ,Λij (ω) = − 1

4π

∫
dωG(ω − ν/2)G(ω + ν/2)δijδαβ

− 1

16π2

∫
dω

∫
dω′σαµ1µ′

1
σβµ2µ′

2

×G(ω − ν/2)G(ω + ν/2)G(ω′ − ν/2)G(ω′ + ν/2)

× Γ
µ1′2′12
ij



ω + ω′ (ω − ω′ − ν)/2 (ω′ − ω − ν)/2
ν ω ω′

ω′ − ω (ω + ω′ − ν)/ (ω + ω′ + ν)/2




(A.7)

Appendix B. Numerical implementation

Appendix B.1. Lattice symmetries

Vertices within the PM- and PFFRG take the form
Γa,ij(s, t, u) where a indicates the type of vertex (i.e.
a = s, d for the PFFRG in Heisenberg systems), i, j
refer to sites that are “effectively interacting” by means
of higher-order interactions and s, t and u are frequency
arguments.

Here, we are not interested in frequency arguments
and will push them into the definition of the vertex
type a → (a, s, t, u), ΓΛ

a,ij(s, t, u) → ΓΛ
a (ri, rj) to save

digital ink and highlight the spatial dependence. In
both the PM- and PFFRG each contribution in the site
summations can be written in the form

∂ΛΣ
Λ
sum(ri) =

∑

k

ΓΛ
a (ri, rk)S(rk)

∂ΛΓ
Λ
sum(ri, rj) =

∑

k

ΓΛ
a (ri, rk)Γ

Λ
b (rk, rj)P (rk, rk),

(B.1)

where S(rk) is the single-scale propagator and
P (rk, rk) = S(rk)G(rk) the usual bubble propagator.
In particular, the order of indices kj ̸= jk, is not
generally interchangeable.

For infinitely large systems, we would have
infinitely many equations and an infinite site summation
for each of them. However, in magnetically disordered
phases, the effective interaction between two sites is
expected to decay with their distance, so we may neglect
vertices with sufficiently large |ri−rj | ≫ L, where L is
a numerical parameter corresponding to a system size.
Effectively, this corresponds to a maximum correlation
length ξL ∼ L. We may also make use of lattice
symmetries to further reduce the number of vertices we
need to consider. These lattice symmetries are global
transformations ri → L(ri) which leave the lattice (and
hence vertices) invariant

ΓΛ
a (ri, rj) = ΓΛ

a (L(ri),L(rj)). (B.2)

As an example, all lattices are by definition invariant
under translations along any of the lattice vectors al.

This is most important, as it allows us to only consider
vertices in which the first site argument, ri, lies in
the first unit cell. Together with the assumption of
finite length vertices, we may restrict ourselves to a
finite number of Nsites sites surrounding this reference
unit cell. Here, it is convenient refer to a site by an
integer combination of lattice vectors together with one
of the unit cell’s basis vectors Ri = [n1, n2, n3, b] ≡
n1a1 + n2a2 + n3a3 + bb. Beside translation, there can
also be other symmetries, such as rotations or mirror
symmetries, which may in particular transform a site
from one sublattice to another. This further reduces the
number of reference sites ri that we need to consider,
see for example fig. B3. Usually, many (or even all)
sites in the unit cell are equivalent. Therefore, it suffices
to identify a number NUnique ≤ max(b) of inequivalent
sites in our reference unit cell that are distinct by all
symmetries. Where neccessary, we will then use an
index xi = 1, 2, . . . , NUnique which shall label the type
of site i.

The implementation of these symmetries is as
follows: First, given a reference site ri, we identify
all pairs of sites within the maximum correlation
distance Rkj ≡ (ri, rj) and subsequently reduce this
set to a minimum set of inquivalent pairs Rinv

ij which
can be used to reconstruct all other pairs via lattice
symmetries.

Subsequently, we pre-compute all the terms that
appear in the site summation for each inequivalent
vertex ΓΛ

a (ri, rj) on the lhs. of eq. (B.1) and perform
lattice symmetries such that each term contains only
the symmetry inequivalent vertices. In short, the steps
that are needed are summarized below, with me detailed
descriptions following in the remainder of this section.

• Generate inquivalent pairs: We need to
first generate a minimal list of sites which
are in inequivalent pairs to each reference site
{Rinv

ij } = R1,R2, . . .. In the FRG, we then
solve differential equations for vertices represented
as four-dimensional arrays, where each index
corresponds to a particular pair Rinv

ij and the other
three are for frequency arguments. At this step, we
also generate a list {(xi, xj)} of the types of sites i
and j which will be needed to index the propagators
in the FRG. It is recommended to save both lists in
order to re-identify the inequivalent pairs with the
real-space structure after FRG results are obtained.

• Compute the site summation: For each
of these pairs Rinv

ij we need to evaluate the
site-summation and apply lattice symmetries to
express the pairsRki andRkj through inequivalent
pairs computed via FRG. Here, we will save
the corresponding indices of each inequivalent
pair in an abstract matrix Mkl with dimensions
Nsum ×NPairs, i.e. the number of terms appearing
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in the summation Nsum and the number of
inequivalent pairs NPairs. Each matrix element will
contain a tuple of four positive integers: Mkj =
(iki, ikj , x,m)kj . The first two, iki, ikj ≤ NPairs,
are the indices of inequivalent pairs corresponding
to Rki and Rkj , or in other words the indices
of the vertices appearing in a term in the sum
when computed in the FRG. x refers to the type
of site k which is needed for P (rk, rk) ≡ Pxk,xk

and S(rk) ≡ Sxk
in eq. (B.1). The integer m is

the multiplicity of the term, i.e. the number of
times the term appears in the sum. Initially these
multiplicities are set to one. After the matrix is
constructed, we may identify duplicate entries for
each column index j, and reduce them by adding
the multiplicities.

• Construct mapping arrays: Some positive
and negative frequency arguments of vertices
are related by exchanges of sites ΓΛ

a (ri, rj) ↔
ΓΛ
x′(rj , ri). As we only compute positive values

of the frequencies in the spin FRG, we need to
provide a list of indices that maps an inequivalent
pair Rinv

ij to its corresponding site-swapped pair

invpairs[Rinv
ij ] = Rji. Likewise, we need to

determine an array containing our couplings Jij →
JRinv

ij
for each inequivalent pair, as our main

program will not have any information about the
actual geometry. Finally, there are a few terms in
the flow equations which contain local, or onsite
vertices ΓΛ

a (ri, ri), so the FRG needs to know the
positions of onsite pairs in our pair list. This can
be either fixed by a suitable sorting convention,
or by providing a short list with the appropriate
indices.

Step 1: generation of inequivalent pairs

At the heart of any efficient implementation lies an
identification of a list of inequivalent pairs {Rinv

ij } which

characterizes all the vertices ΓΛ
a (ri, rj) that are needed

for a complete treatment of the flow equations.
Starting from each reference site i, we may generate

a list of paired sites, which are within a given distance
to site i. One unbiased approach is to progressively
add nearest neighbors to the list, starting from site
i, such that in the end distances up to NLen nearest
neighbor pairs are included, but other choices are also
possible such as including all sites within a sphere of
radius L. We simply append all those for the other
reference sites to the same list, such that is is of the form
[R11,R12, . . . ,R21,R22, . . . ])! In order to keep track
of the types of sites corresponding to the pairs, we
simultaneously generate a list “PairTypes” with equal
length which contains the corresponding types of sites
(xi, xj). As a result, the arrays representing vertices

within FRG need four dimensions (one for real space
pairs and three for frequencies) and whenever we need
to evaluate propagators we look up the types of sites i
and j. Afterwards we reduce all parts of this list that are
redundant by one of the symmetries. We have already
made use of several symmetries by fixing ri, so not all of
them will be of further use. To be more precise, we are
now only interested in transformations which leave our
reference site invariant, as this allows for symmetries
ΓΛ
a (R

inv
ij ) = ΓΛ

a (r1, rj) = ΓΛ
a (r1,L(rj′)) = ΓΛ

a (R
inv
ij′ ). A

simple example of this step is given in fig. B1.
To treat the case of more than one site per unit

cell, let us consider the pyrochlore lattice: As shown in
fig. B3, we can fix our reference site i to be the white
site, located at the origin. For NLen = 1, there are
seven pairs in our initial list, one for each corner of
the tetrahedra and the onsite pair. Inversion leaves
the white site invariant, but it maps the coordinates of
all other sites to negative ones, reducing the number
of inequivalent pairs to four. In the same way, the
white site does not transform under C3 rotations and
mirror reflections around the x = y-plane. We may thus
systematically find our inequivalent pairs by iterating
over the list of all pairs, and deleting all pairs that are
obtained by applying a symmetry transformation to
the current element. For the pyrochlore lattice, this
means we may divide our paired sites into 2×3×2 = 12
equivalent sectors and only consider one of them which
by itself reduces numerical effort by a factor of 12.

It is advisable to sort this list, for instance after
the separation distance of each pair so that the onsite
pair will always be the first element of this list. In the
FRG, we may compute the susceptibility χij → χRinv

ij

for each inequivalent pair. When evaluating the results,
it is thus necessary to save which number corresponds
to which pair of sites, so it is advisable to save the list
of inequivalent pairs in lattice or real-space coordinates
that was generated in step 1. It is necessary to
generate a mapping between a given arbitrary pair
of sites and the corresponding inequivalent one. This
mapping is easily represented by a dictionary, which
can be generated similar to the previous step, i.e. by
applying the full list of point group symmetries to each
inequivalent pair, such that the inequivalent pairs give
the values and the generated pairs are the keys, as
shown in algorithm 1.

Step 2: computing the site summation

After the inequivalent pairs Rinv
ij are identified, we

may perform perform the site summation for each
corresponding vertex Γa(R

inv
ij ). For instance, selecting

the onsite pair Rinv
ii for the simple system of four sites
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Figure B1. Displayed in different colors are all inequivalent
pairs. All other possible pairings are equivalent, i.e. the pair
(4, 2) is equivalent to (1, 3) by a C4 rotation around the center.

5.0 2.5 0.0 2.5 5.0
x

5.0

2.5

0.0

2.5

5.0

y

Reference site
inequivalent pairs to ref site

Figure B2. Blue circles: Sites correlated to the reference site
at the origin (star), and inequivalent sector of pair sites (green
circles) that are found relative to the reference site.

Figure B3. Sites of the pyrochlore lattice within a finite
number of nearest neighbor bonds to the reference site at (0, 0, 0).
Highlighted in green are the sites that correspond to the symmetry
inequivalent pairs Rinv

0,j with respect to the reference site. Using
translation and point group symmetries, each other pair occuring
in the flow equations can be mapped onto this selection.

in fig. B1 we obtain from eq. (B.1)

∂ΛΓ
Λ
sum(R

inv
ii ) =

∑

k

ΓΛ
a (ri, rk)Γ

Λ
b (rk, rj)P (rk, rk)

= ΓΛ
a (r1, r1)Γ

Λ
b (r1, r1)P (r1, r1)

+ ΓΛ
a (r1, r2)Γ

Λ
b (r2, r1)P (r2, r2)

+ ΓΛ
a (r1, r3)Γ

Λ
b (r3, r1)P (r3, r3)

+ ΓΛ
a (r1, r4)Γ

Λ
b (r4, r1)P (r4, r4)

∂ΛΓ
Λ
sum(1) = ΓΛ

a (1)Γ
Λ
b (1)P (1) + ΓΛ

a (2)Γ
Λ
b (2)P (1)

+ ΓΛ
a (3)Γ

Λ
b (3)P (1) + ΓΛ

a (2)Γ
Λ
b (2)P (1),

(B.3)

Figure B4. Selection of inequivalent pairs in the pyrochlore
lattice. Using the C3 rotation symmetry (green) and the mirror
symmetry (red) together with inversion at the origin, only 1/12
of all sites are needed to reconstruct arbitary pairs Rij .

Algorithm 1 Find inequivalent pair from pair of sites

Require: sites Rk,Rj //in lattice coords with basis
Rk = [k1, k2, k3, bk]

Require: Symmetries[] // Array of symmetries
Require: RefSites[] // Array of sublattice indices for
reference sites
for Sym ∈ Symmetries && Rk.b /∈ Refsites do
Rk = Sym(Rk) // there might also be several
distinct symmetries to use here
Rj = Sym(Rj)

end for
Rk = [0, 0, 0, bi] // global translation of Rk to first
unit cell
Rj = [j1 − k1, j2 − k2, j3 − k3, bj ]
return (Rk,Rj)

where in the last step symmetries were used so that
each pair of sites could be replaced by its corresponding
inequivalent pair. Due to the equivalence of sites, all
propagators are equal and, hence, so are the second and
fourth term in this sum. Doing this step for all other
pairs allows us to implement the site summation in the
FRG as

∂ΛΓ
Λ
sum(l) =

Npairs∑

k

mk(l)Γ
Λ
a (ik)Γ

Λ
b (jk)Pxk

. (B.4)

Here, i and j and l do not label the distinct sites
but rather inequivalent pairs. These indices are found
by mapping each pair of sites to the corresponding
inequivalent pair using the dictionary generated in the
previous step. During this step it is thus also necessary
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to save xk, ideally in a matrix Mkl together with the
site pairs and the multiplicity. As demonstrated in
eq. (B.3), due to point-group symmetries certain terms
ΓΛ
a (ik)Γ

Λ
b (jk) will appear several times, meaning they

may be added up to a multiplicity mk(l). This is not
strictly neccessary but it is easy to implement and will
reduce the time that is spent in the k summation of
the FRG.

With this at hand, the site summation may be
easily computed: We first prepare a “matrix” of size
NPairs × Nsites. Then, for each j = 1, 2, . . . NPairs we
sum over all sites in the system, map the pairs (i, k) and
(k, j) inequivalent pairs with at indices ik and jk in our
list of inequivalent pairs and finally write these indices
in our matrix. One can then search for multiplicities of
these pairs in each row of the matrix and further reduce
the number of columns by saving the multiplicity for
each pair of vertices. This matrix can then simply be
passed as an argument to the FRG code, which can then
evaluate the sum by inserting its elements as indices to
vertex functions without any further information about
the particular lattice geometry. Note that the site
summation in the self energy is also contained within
this matrix, as the summation of the onsite pair will
contain a simple summation of all sites in the system,
which can be seen from eq. (B.3).

Constructing mapping arrays

The final step is simple: In general we have Γij ≠ Γji.
Since we want to swap signs of frequency arguments
when evaluating vertices, we need to give our program a
list which maps an inequivalent pair Rinv

i,j to its inverted

pair Rj,i = Rinv
i,j′ for some j′. This is actually just a

special case of the operations we have done within
the site summation and thus we may make use of
the dictionary in algorithm 1 to generate an array
“invpairs[j] = j′”. This array is also passed to the FRG
and consequently used whenever we need to change
the sign in either the s or u frequency. Similarly, the
initial couplings Jij should be passed to the FRG. If we
have sorted our pairs according to the distance to the
reference site, we may easily set nearest, next- nearest
and further couplings. More complicated couplings can
also be set as long as we know which physical pair of
sites a particular inequivalent pair index corresponds
to.

Appendix B.2. Frequency content of vertex functions

Not only the numerical treatment of the spatial, but
also the frequency dependence of both the self-energy
and the vertex function need some consideration. As
all frequency arguments can take on countably (in case
of finite-T Matsubara frequencies) or over–countably
(in the T = 0 case) many values, any numerical

implementation has to approximate the Matsubara
frequency axis.

In the finite T case, considering only the first Nω
discrete Matsubara frequencies, i.e. all iωn with |n| <
Nω has proven to be most effective citeNiggemann2021a.
If the flow equations require a quantity at a larger
frequency than considered in the grid, constant
extrapolation is used as a zero-order approximation
to the asymptotic behavior of the vertex discussed
in section 5.3. Additionally, energy conservation
excludes some combinations of Matsubara indices for
the three frequency arguments of the vertex for being
unphysical. Using the parametrization in terms of
transfer frequencies s, t, u, as used in section 6.3, e.g.,
requires ns + nt + nu to be odd. As unphysical
combinations will never occur in the FRG flow, these
can be excluded [58].

At T = 0, Matsubara frequencies become
continuous. Therefore a discrete frequency meshing
has to be imposed on all frequency-dependent functions.
The structure of the vertex function, as illustrated in
section 5.3 is such that there is more structure around
the origin in frequency space, while larger frequencies
are dominated by asymptotic with less features. To
efficiently capture all information in the vertex, denser
mesh points are needed for low frequencies compared
to higher ones [128].

To achieve this, purely logarithmically spaced
meshes [15, 38, 56] or combinations of linear spacing
around zero frequency and logarithmic tails [55,127,136]
have been used. As the location of the features in
frequency space shifts with Λ, adapting the meshes
to the current form of the vertex leads to improved
numerical accuracy. Sophisticated scanning routines
have been put forward to achieve low numerical errors,
which is especially needed in multiloop implementations,
as due to the iterative nature of the multiloop
corrections errors will proliferate [127,128,136].

The frequency integration on the right hand-side
of the FRG flow equations for T = 0 combined with the
non-equal spacing of the frequency meshes necessitates
a means to extract vertex values at an arbitrary point
(ω, ν, ν′) in three-dimensional frequency space. To this
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end, a multi-linear interpolation scheme

Γ(ω, ν, ν′) =
[

Γ(ωi< , νi< , ν
′
i<)(ωi> − ω)(νi> − ν)(ν′i> − ν′)

+Γ(ωi< , νi< , ν
′
i>)(ωi> − ω)(νi> − ν)(ν′ − ν′i<)

+Γ(ωi< , νi> , ν
′
i<)(ωi> − ω)(ν − νi<)(ν

′
i> − ν′)

+Γ(ωi< , νi> , ν
′
i>)(ωi> − ω)(ν − νi<)(ν

′ − ν′i<)

+Γ(ωi> , νi< , ν
′
i<)(ω − ωi<)(νi> − ν)(ν′i> − ν′)

+Γ(ωi> , νi< , ν
′
i>)(ω − ωi<)(νi> − ν)(ν′ − ν′i<)

+Γ(ωi> , νi> , ν
′
i<)(ω − ωi<)(ν − νi<)(ν

′
i> − ν′)

+Γ(ωi> , νi> , ν
′
i>)(ω − ωi<)(ν − νi<)(ν

′ − ν′i<)

] 1

(ωi> − ωi<)(νi> − νi<)(ν
′
i>

− ν′i<)
,

(B.5)

is used, where the indices i>(i<) indicate the
nearest larger (smaller) frequency in the grid on
the respective frequency axis. This scheme can be
used for the full vertex in the transfer frequency
parametrization or, turning to the asymptotic frequency
paramatrization, in the three different diagrammatic
channels separately. The vertex function asymptotics
as well as the self-energy are interpolated using the two-
and one-dimensional version of this scheme.

For an efficient implementation of the asymptotic
parametrization, the kernel functions K defined in
eq. (90) are not the most suitable choice, as in
this formulation calculating the value of a single
channel at a specific frequency point amounts to the
interpolation and subsequent summation of all three
functions. Therefore, one can define computationally
more favorable functions Q according to [125,136]

Qc3(ωc, νc, ν
′
c) = ġc(c, νc, ν

′
c) (B.6)

Qc2(ωc, νc) = lim
|ν′

c|→∞
ġc(ωc, νc, ν

′
c) (B.7)

Q̄c2(ωc, ν
′
c) = lim

|νc|→∞
ġc(ωc, νc, ν

′
c) (B.8)

Qc1(ωc) = lim
|νc|,|ν′

c|→∞
ġc(ωc, νc, ν

′
c). (B.9)

Depending on the exact value of the frequencies,
only a single evaluation of Qc3 or, if one or two
freuqencies are outside of the mesh, Qc2 orQ

c
1 is required,

respectively.
These new functions can be related to the original

kernels according to

Qc3(ωc, νc, ν
′
c) = Kc

1(ωc) +Kc
2(ωc, νc)

+ K̄c
2(ωc, ν

′
c) +Kc

3(ωc, νc, ν
′
c)

(B.10)

Qc2(ωc, νc) = Kc
1(ωc) +Kc

2(ωc, νc) (B.11)

Q̄c2(ωc, ν
′
c) = Kc

1(ωc) + K̄c
2(ωc, ν

′
c) (B.12)

Qc1(ωc) = Kc
1(ωc). (B.13)

Numerically, the asymptotic parts can be calcu-
lated setting the according frequencies to a large value.
The numerical advantage of the Q functions defined
here, however, comes at a price: in the parametrization
using the kernels K, the frequency discretization on
all axes for all asymptotic classes, i.e. K1, K2, K̄2

and K3 can be chosen independently, such that the
numerically cheaper to calculate K1 class can be aug-
mented by a higher resolution mesh. Using the sum
of these kernels in form of the Qs defined above, we
do not have this choice anymore. Although one would
naively expect that the same split can be done for the
limiting functions, i.e. Q1, Q2, Q̄2 and Q3, in a real
implementation, this will lead to interpolation artifacts
at the boundaries of the frequency mesh, which lead
to unphysical errors in the flow. The reduced accuracy
in the kernel functions with lower frequency degrees of
freedom, however, turned out to not alter the accuracy
of the calculation as a whole, cf. Ref. [128].

Therefore, the only split we introduce in the
frequency meshes is to allow for different meshes for
the bosonic and fermionic axes, with the latter being
the same for both ν and ν′. The reason for this is the
symmetry under exchange of ν and ν′, as discussed in
section 5.3. We also allow the t-channel contributions
to be defined on a different set of meshes than the
s- and u-channel, with the latter utilizing the same
discretization, again due to the symmetry between both
under exchange of the two fermionic arguments. This
split in the diagrammatic channels turns out to be
crucial for tracking the interplay between magnetic
ordering tendencies in the t channel and paramagnetic
behavior stemming from the s- and u-channels at low
RG scale Λ. Additionally, spin- and density-part of the
vertex are allowed to be defined on possibly different
meshes, as their frequency content qualitatively differs.

Appendix B.3. Frequency integration

The evaluation of the loops on the right-hand side
of the FRG equations in the T = 0 case calls for a
quadrature rule to be used. In early implemenations,
simple trapezoidal quadrature using the mesh points
as integration points was used [56]. As discussed in
Appendix B.2, this leads to a good resolution only
around the origin of the integration domain. As the
integrand at 1ℓ level always includes a propagator GΛ

and a single-scale propagator Sλ and the latter is more
sharply peaked, this leasds to remarkably accurate
results, when the integration domain is shifted, such
that the single-scale propagator is peaked at the origin.

Using a more symmetric frequency parametrization,
as in Appendix A, this is no longer the case and adaptive
routines have to be implemented, see e.g. Ref. [128].
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Appendix B.4. Differential equation solver

As for numerical quadrature, the integration of the FRG
flow has to be done numerically. As multiple orders of
magnitude in Λ have to be covered, the step-size during
the flow should be adapted, with initially larger steps
becoming smaller while approaching either Λ = 0 or
a flow breakdown. While an adaptive step-size Euler
method performs quite well [15,38,56], adaptive Runge-
Kutta methods have proven themselves to decrease
numerical cost while maintaining numerical control
over the integration error [128, 164]. Lately, in a model
study on itinerant FRG, adaptive step-size multi-step
methods have been found to outperform even these
methods by requiring a lower number of evaluations
of the right-hand side [200]. Similar results should
hold true for PF/PMFRG applications as long as the
tolerances are high enough. For solutions with low
tolerance, higher-order methods are favourable in which
case the stability region of multi-step methods shrinks
while standard higher order Runge-Kutta solvers benefit
from their growing stability region, allowing for larger
stepsizes [201].
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