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Deconfinement transition and bound states in frustrated Heisenberg chains:
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We use recently developed strong-coupling expansion methods to study the two-particle spectra for the
frustrated alternating Heisenberg model, consisting of an alternating nearest neighbor antiferromagnetic ex-
change and a uniform second neighbor antiferromagnetic exchange. Starting from the limit of weakly coupled
dimers, we develop high order series expansions for the effective Hamiltonian in the two-particle subspace. In
the limit of a strong applied dimerization, we calculate accurately various properties of singlet and triplet
bound states and quintet antibound states. We also develop series expansions for bound state energies in
various sectors, which can be extrapolated using standard methods to cases where the external bond alternation
goes to zero. We study the properties of singlet and triplet bound states in the latter limit and suggest a crucial
role for the bound states in the unbinding of triplets and deconfinement of spin-half excitations.
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[. INTRODUCTION spinons or solitons are bound into pairs. In the unfrustrated
case, the role of bond-alternation has been studied by map-
In recent years the subject of fractional excitations, oming onto a massive Thirring mod&lThe frustrated case,
excitations with fractional quantum numbers compared to thavhere the ground states are spontaneously dimerized, has
noninteracting limit, has attracted considerable attentionbeen of considerable recent theoretical interest due to its rel-
Many experiments in high-temperature superconducting maevance to spin-Peierls systems such as CuGéa@ explicit
terials have been interpreted in these terms, and many thebend-alternating term in the Hamiltonian can be motivated
ries of high-temperature superconductors are built arounds a mean-field representation of the interchain elastic
such fractional excitations. However, fractional excitationscouplings® Uhrig et al® and Affleck and collaboratof$ave
in a closed system can only arise in groups that have the fuitudied the confinement transition for the soliton-antisoliton
quantum numbers of the noninteracting limit. Thus, their un-pairs when such a term is added to the Hamiltonian.
ambiguous identification in numerical calculations remains Here, we approach these transitions from the opposite di-
difficult. rection. We study these systems in a strong-coupling pertur-
In this work we are interested in studying models, wherebation theory, which begins with the limit of decoupled spin-
as parameters in the Hamiltonian are varied, one goes fromdimers and treats the interdimer couplings as a perturbation.
phase where the excitations have normal quantum numbets the limit of weakly coupled dimers, the elementary exci-
to one where they have fractional quantum numbers. Weéations are triplets, which are weakly dispersive. In this limit
would like to develop series expansion methods by whichour strong coupling theory is highly accurate and we can find
such transitions can be studied and the onset of fractionalll details of various two-particle bounthnd antiboung
excitations can be demonstrated. Although we work withstates. The overall two-particle spectrum is much richer than
one-dimensionallD) models, the basic methods we developthat obtained in previous studies. Several singlet and triplet
can be applied in higher dimensions as well. bound states and quintet antibound states are found. The
The best known example of a fractional excitation is anumber of bound states depends on the coupling constants as
spinon in the spin-half antiferromagnetic Heisenberg chain.well as the wave vector. We study the binding energy and
It is well-known that the low-lying excitations of this Bethe- the coherence length associated with the bound states. We
ansatz solvable model consist of a two-spinon continuumalso study the singularity at the critical wave vectors where
Another simple example of a spin-half excitation is a solitonthe binding energy goes to zero and the state merges into the
in the Majumdar-Ghosh mod@llt is a domain wall which  continuum.
interpolates between the two dimerized ground states of the Using high order series expansions and extrapolation
model. The low-lying excitations, for a closed system, in thismethods we also study the uniform limit, where the bond-
case also consist of a soliton-antisoliton continutim. alternation term in the Hamiltonian goes to zero. Thus we
Adding a bond-alternation to the exchange constants ofipproach the limit where the triplet excitations break up and
the model leads to confinement of the spin-half excitationsspin-half excitations become deconfined. Series expansion
The elementary excitations now become triplets and th&esults show that as the bond-alternation term goes to zero in
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the Hamiltonian, the spectral weights associated with triplet ,
quasiparticles go to zero, and the lowest lying singlet and H=2> {[1+(-1)'6]S-S;1+aS-S.2}, 1)
triplet excitations become degenerate. These phenomena pro- '
vide a remarkably clear and simple confirmation of the exiswhere theS; are spins operators at sit¢, « parametrizes a
tence of free spin-half excitations in this limit. next-nearest neighbor coupling andl is the alternating
In the frustrated system, the reorganization of the manyeimerization. We rewrite the Hamiltonian as
body spectra as the system undergoes the deconfinement
transition presents an interesting puzzle. Since there isa gap ,,
A to triplet excitations, the two-triplet continuum begins at H=(1+ 5)2 [S2i-Szi 1+ M(Sei S2i-17YS - S 2)]-
2A. Thus, in the confined phase, this continuum is separated 2)
from the elementary triplet by a second gap. However, when
the spin-half excitations are liberated, the resulting low- The parameter spacé«) is equivalent to the parameter
energy spectrum consists of a soliton-antisoliton continuumspace §, y) with \=(1—6)/(1+ 6) andy=a/(1—-6). The
which does not have such a second gap. The consistency @itter parametrization makes explicit that far=0, the
the two pictures requires that in the confined phase, betwegmnodel consists of decoupled dimers: we take this to be our
the elementary triplet and the two-triplet continuum thereunperturbed Hamiltoniatd,. The rest of the Hamiltonian
must be a large number of states, which upon deconfinemegan be treated as a perturbation, and we can expand various
turn into the continuum. On general grounds, these statgghysical quantities in powers af. The formalism for study-
must include2,3,4 . . ., triplet bound states, i.e., states in- ing n-particle sectors in perturbation theory is discussed in
volving an arbitary number of triplets, which must corre- detail in a companion papér.
spond to a soliton-anitisoliton pair with arbitrary separation. The series expansions for the ground state energy and
We discuss insights from studies of two-particle bound statetfiplet excitation spectrum have previously been comptited
on this issue. up to order 23. The two-particle excitations have been dis-
Another interesting puzzle lies in the spectrum of thecussed using a leading order Brueckner ansatz calcufgtion,
Majumdar-Ghosh model&=0, a=1/2) neark=/2. For  asecond order series expanstdand an RPA study’ With
bothS=0 andS=1, previous studi€é$°have emphasized a our new technique, we perform high-order series expansions

. . 16 . .
bound state below the soliton-antisolitos(s) continuum. N Powers of\ for fixed values ofy.™ As discussed in a
To our knowledge, it has not been noticed that the two triple€0MPanion papef; we first calculate an effective Hamil-

continuum(the s-s-s-s continuum falls below the soliton- tonian in the two-particle sector
antlgollton continuum around this wave vector. In our nu- Eu (i, k1) = (k,I|HEMi,j), &)
merical study, we find that except for a tiny region very near
k= /2, the latter continuum also falls below the boundand then calculate the irreducible two-particle matrix ele-
states. This raises questions about the stability of the bourigent
states away fronk= 7/2. . . ,
Another puzzle in our studies is how the energy levels 22(hi;K\D=Ea(i,j;k,1) = Eo( 88,11 6116 ) — Ax(i,K) &,
might cross each other. Or) gene(al grou.nds, one might ex- —Ag(i,1) 8= A1, K) 8= AL (1D Sy, (4
pect that the levels fon particles with varyingh cross each
other as the parameters are varied. For small values of thehere 6 refers to a Kronecker delta function aid is the
perturbation parameter, the energies are arranged in order ofie-particle irreducible matrix element.
increasingn. However, as one approaches: 1, low-energy Here we will only concentrate on the expansions for the
states from eacln sector may appear even below the two- following two lines in the parameter spade; «=0, corre-
particle continuum. Sinceis not a good quantum number, it sponding to nearest neighbor interaction only diid o
is not clear how this will reflect itself in our perturbation =(1—5)/2, which is a special line in the parameter space
theory. This deserves further attention. where the ground states are known exactly, also known as
The organization of the paper is as follows. In Sec. Il, wethe Shastry-Sutherland line. The modebatO (A=1) is the
describe the Hamiltonian studied and the various parametridniform Heisenberg chain in cage) and the Majumdar-
zations used. In Sec. lll, we study the regime of forced orGhosh model in caséi).
externally imposed dimerization. This is a regime where our
series expansions are convergent and we present spectray;. BOUND STATES WITH FORCED DIMERIZATION
binding energies, coherence lengths etc. in great detail. In
Sec. IV, we consider the regime of spontaneous dimeriza- In this section we study the small-regime, where our
tion, which requires the use of series extrapolation methodstrong coupling expansions are convergent. Thus a simple
In Sec. V, we present discussions and conclusions. truncation of the relevant power series expansions leads to
highly accurate results. We discuss the number of bound
states with different quantum numbers as well as their bind-
Il HAMILTONIAN ing energies, the range &fvalues where the bound states
exist, the coherence length associated with the bound pair as
We wish to study the alternating Heisenberg chain withwell as the singularities at the critical wave vector, where the
frustratiory"10-148 binding energy goes to zero and the bound state merges into
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TABLE I. Series coefficients for dimer expansions of the energy BA[{1+ §) of two singlet bound
states §; andS;), two triplet bound statesT(; andT,), two quintet antibound state®¢ andQ,), and the
lower edge and upper edge of the continuu@ and C,) at k= /2 for the J;-J,-8§ chain with a=0.
Nonzero coefficienta" up to ordem=11 are listed.

=]

Es /J(1+08) forS,  Eg/I(1+8)forS,  Er /3J(1+8)for Ty  Eg /3(1+0) for T,

0 2.000000000 2.000000000 2.000000000 2.000000000
1 —5.00000000610 * 0.000000000 —2.500000006 10 * 0.000000000
2 1.87500000810° 1 —3.906250006 10 * 1.562500006¢ 10"t —2.812500006 10 *
3 3.906250008 102 7.81250000610 2  —2.343750008 10 2 6.250000006 102
4  —2.050781256 10 2 3.32458496k 107t —6.16861979% 10 2 9.32617187% 10 2
5 —4.15445963%10 2 —5.46442667&10 2 —8.18956163X10 2 —1.14325629%10 !
6 —4.00407579%10 2 —4.49904547& 10 % —9.44230821%10 2 —1.71645058%10 *
7 —2.57396521%10 2 —1.20047070%10 % —8.74092961%10 2 —2.33230370k 10 2
8 —6.322668408 10 2 2.68189051% 10 2
9 —2.25031790k 10 2 —3.52376325% 10 2
10 2.941323978 10 2 1.45032282¥% 10 2
11 9.059538258 10" 2 1.46769042% 101
n EQZIJ(1+ 6) for Q, EQl/J(1+ 6) for Q, Ec, 1J(1+ 6) for C, ECU/J(1+ 8) for C,
0 2.000000000 2.000000000 2.000000000 2.000000000
1 0.000000000 2.5000000800 * 0.000000000 0.000000000
2 3.125000008 10 2 —9.37500000610 2 —2.500000006 10 * 0.000000000
3 1.250000008 10! —1.015625008 10 * 3.125000006 102 1.562500006 10 ¢
4 1.51367187%10 > —5.12695312%10 > —2.343750008 10 ? 9.375000006 102
5 1.916503908 10 > —1.11490885%10 > —6.86848958%10 2 —7.26996527&10 °
6 5.78687455%10 2 —6.62909613% 10 * 4.75735134% 10 ° —1.19662814% 10 2
7 2.27089119% 102 1.044698998 1072 —1.73078937% 10 ° 8.80983140% 10~ °
8 1.94773323%10 2 2.00729952% 1072 —3.478056566 10 2 4.20195330% 102
9 2.277670958 102 3.177196538& 102 2.93606478& 10 4 —2.45784815k 10 °
10 —1.22532894% 103 4.25149092% 10 2 5.56081561% 10 3 8.842688266 10 4
11  —9.43531791610 2 5.45494522% 102 —2.00422256% 10 2 2.35555691% 10 2

the continuum. We first consider the model witt=0 and  Our second order results agree with the series results of Bar-
thena=(1-6)/2. neset al.}* but disagree with the results of the Brueckner
(1) Casea=0. For the case without the second neighboransatz calculatiol® Although the Brueckner ansatz is an
interaction @=0), the series for the irreducible two-particle expansion of the self-energy in terms of the density of exci-
matrix elementA, have been computed up to order 7 for tations, it normally can recover the first few orders of the
singlet bound states, and to order 11 for triplet and quinteseries expansion ik exactly: it does give the correct second
states'® The reason why the singlet series is computed toorder result for the triplet bound staté.
only 7th order compared to 11th order for the triplet and In the limit A—0, the formation of bound/antibound
quintet states is that the singlet has the same quantum nurstatesS;, T,, and Q; is well known, due simply to the
bers as the ground state. Thus a much more elaborate dnteraction of two triplets on neighboring sites, and the wave
thogonalization method is required to implement the clustefunction forS;, for example, is

expansiort®
In this model, we find two singlet§; and S,) and two 1 . ) )
triplet (T; andT,) bound states below the two-particle con- s, (K)) = NEN > 2RIt (j+1)
tinuum, and two quintet antibound stat&3;(andQ,) above .
the continuum. The existence of the second pair of bound +tT (Dl +1)—t$(j)t$(j+1)]|0>, (5)

states has not been reported by previous calculations, most

likely due to a limited precision or a general incapability to where|0) is the ground state at=0 consisting of nonover-
deal with multiple bound states. The series for their energielapping spin singlets on each dimer, ati;(j) is a triplet
(and also the lower edge and upper edge of the contiflaim creation operator which excites the singleftatdimer into a
band maximunk= 77/2 are given in Table |. Note that there triplet state withS,=«, («=—1,0,1).

are some discrepancies for the energy of the lowest singlet It is interesting also to look at the structure of these new
bound state with the previous second order calculatidns. bound states,, T,, andQ, in this limit. To compute their
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wave functions, one needs to diagonalize the second order
effective Hamiltonian in the two-particle sector, which can
be reduced to an infinite dimensional symmetric tridiagonal
matrix. Our calculations show that in this limit, the bound/
antibound state$,, T,, andQ, only exist atk= /2, and

PHYSICAL REVIEW B53 144411

their wave functions aréwe takeS,=0 as an examp)e

1 I
lvs,00)= 75 2 e 3 folti(i—mtly(+n)

+th (=i +m—td(—nth +n)]|0),
(6)

—mt’y(j+n)

|y (K)) = FE ez'kJE faltl(]

—th,(j—mti(j+n)]l0), (7)

|, (K)) = FE ez'kIE faltl(G—mth (j+n)

+t1 (=Mt +n)+ 2t —mty(j+m1]0),
€S)
where the amplitudé,, for two triplets sitting atj—n and
j+n (i.e., separated by distancaRis
—J15(—-4)7" for S,,
—\3(=2)™" for T,
2°"J3 for Q,.

9

fo=

E,(k)/J

0 0.2 04 0.6 0.8 1
2k/m

FIG. 1. The excitation spectrum of thh-J,-& chain with §
=0.6 anda=0. In addition to the two-particle continuuifgray
shadeg, there are two singlet bound stateS; (and S,) and two
triplet bound statesT; and T,) below the continuum, and two
quintet antibound state); and Q,) above the continuum. The
inset enlarges the region ndar 7/2 so we can se8,, T,, andQ,
below/above the continuum.

The two-particle excitation spectrum and the inverse of
the coherence length L1/versus momentunk for a rather
large dimerizations=0.6 are shown in Figs. 1 and 2. One
can see that the singlet bound st&eexists for the whole
range of momentdits coherence length is finite also for

Thus the formation of these new bound/antibound states is
due to an effective interaction between triplets separated by
an odd number of singlet dimers. It appears BatT,, and
Q. are fully “localized” states in this limit, with wave func-
tions extending only across a single pair of dimers, whereas
the statesS,, T,, andQ, are “extended,” with the tail of
the wave functions decreasing exponentially with distance.
Our calculations show that at finite and for the particular
casek= /2, the wave functions fos,, T,, and Q, still
only involve triplets separated by an odd number of singlet
dimers, while the wave functions f&,, T4, and Q4 only
involve triplets separated by an even number of singlet
dimers. Thus the spectrum splits into two decoupled sectors
at k=/2. It would be interesting to explore the dynamics
behind this phenomenon in more depth.

With the wave function, one can also compute the coher-
ence length. defined by

g-4d g

S "o
wheref is the amplitude for two triplets separated by dis-
tanced. Note that the coherence lengthdefined here is
measured in units of & wherea is the lattice spacing. At
the limitA\—0, L=1 for S; andT, as expected, while fd8,
andT,, L is 32/15 and 8/3, respectively.
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FIG. 2. The inverse of the coherence length ¥rsus momen-
tum k for two singlet &, andS,), two triplet (T, andT,), and two
quintet (Q; and Q,) bound/antibound states of tlg-J,- & chain
with 6=0.6 and «=0. The inset enlarges the region nédar
=7/2.
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FIG. 3. The criticalé versus momentunk for singlet, triplet,
and quintet bound/antibound states of theJ,-§ chain with «
=0. The dotted lines are the results of Etj2).

the whole range of momenta although the coherence length
at k=0 is very large, about 6.77Q6while other bound/
antibound states exist only in a limited range of moménta
>k.. The “critical momentum”k. for a given bound state

PHYSICAL REVIEW B 63 144411

results for the critical momenta. versusé$ are given in Fig.
3, where we can see that in the lindit- 1, theS,, T,, and
Q,, states exist only dt=7/2. We can also get the first few
terms in the series expansion fqrfor T, andQ; states. Up
to order\3, the dispersions for th§; andQ, states are

3N 9\% 8a\°
ETl/J(1+6)=2_7_§+E
A 3>\2+1o5>\3 ol
2~ 16 128042k
A2 3\ " 37\% cog 6k)
T Y A S A DT R
+0O(\%), (118
Eo /J(1+8)=2 3N 20
QN+ o)=2+ 7===5+ 178
. A 3>\2+37>\3 ol
2 16 128092k
. >\2+13>\3 " +23)\3cos(6k)
7 T | Cco%4K) 128
+0O(\Y. (11b

can be defined by the inverse of the coherence lendth 1/
tending to zero or by vanishing binding energy. Technically,With this and the series for the one-particle triplet excitation

the first approach may give more reliable resultskior The

2m/3+ 5N/ (44/3) — 757\2/(192/3) +O(\3) for T4,
© | 2m/3+ 3N /4+15V3\64+ O(\3) for Q,

spectrum, one can g&t as

(12

and in the limitk— k., the behavior of the binding energy is =#/3 for T; andQ4, and asd decreaseg, for Q, increases,

Ep/IN=4(k—ko)q[3/16— 11\/128+ 591\ 2/512+ O(\3)]
+8(k—k¢)3[ 3/32+ 113x/(256//3)

—250%/(768\3)+ O(A\3)]+O[(k—ko)*] (13
for T,, and
Ep/IN=4(k— kC)ZP— ﬂ—&\: 0(>\3)}
16 128 256
+83(k—k)® 3i2+ 2—:;— ig;:-l— ooﬂ}
+O[(k—kc)*] (14

for Q;. Here one can see that the “critical index” f&, in

while k. for T, first increases, then decreases. A range of
[#/3, 27/3] for k, has been reported by Uhrig and Schtilz.
Actually S; does not always exist in the whole range of
momenta: it does not exist &0 whend— 1. The inverse
of the coherence lengthfor S; atk=0 versusé is given in
Fig. 4, where we can see that dspproaches 1, diverges.
Becausen =0 is a critical point, we cannot get the series
directly for the energy gap db; at k=0. We can only get
numerical results for it by solving the integral equation.
This makes it poorly convergent as—1, as we will see in
the next section. In this figure, we also plot the coherence
lengthL atk= /2 for S, andT; (i=1,2).
In the limit \—0 (6—1), the binding energy &= /2
for S; and T, is proportional tox, as expected, while fd8,
and T,, the binding energy is proportional to?. The re-
scaled binding energieg,/J\' versusé for S and T; (i

the limit k—k; is 2, independent of the order of expansion,=1,2) are shown in Fig. 5. We also show some numerical

S0 one expects that this é&xact The results of Eq(12) are
also shown in Fig. 3. We can see that in the lidit- 1, k.

exact diagonalization resulfsin this figure, which are in
very good agreement with our series results. As evident from
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FIG. 4. The coherence lengthversussé for two singlet G, and
S,) and two triplet T; andT,) bound states of th&,-J,- § chain at
k=0, 7/2 anda=0. The inset plots 1/ versusé for S; atk=0.
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6

The results of the three highest orders are plotted.

Figs. 4 and 5 the bound stale may disappear at about

=0.2.

(2) Case a=(1-0)/2. Along the special linea=(1
—6)/2, the ground state is an exact product state, with th
spins on each strongly coupled bond forming a singlet. Fo
nonzerod, the elementary excitations for this system are
triplets. Whené— 0, the system has two degenerate groun

3

2

E,/I\"

FIG. 5. The scaled binding enerds;, /J\" at k= /2 versus
dimerizationé for two singlet G, andS,) and two triplet T, and
T,) bound states of th;-J,- § chain witha=0. The solid points
are the numerical exact diagonalization res(Ref. 14. The inset
enlarges the region foF,. Several different integrated differential
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approximants to the series are shown.
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states and the triplets unbind into a pair of free spin-half
excitations. These spin-half objects, which are domain walls
between the two ground states, are called solitons and they
become the elementary excitations of the system.

The series for the irreducible two-particle matrix element
A, has been computed up to ordel® for two-particle sin-
glet, triplet, and quintet stat¥s'” by using both orthogonal
transformation(two block method and similarity transfor-
mation methods® Hence one can compute the series directly
for the dispersion of the bound states using a degenerate
perturbation expansion. It turns out that both transformations
give identical series for the dispersion of the bound states, up
to the order computed, although the series for the irreducible
two-particle matrix elementa, are different(the basis states
are different in the two methoflsThe energy gap ak
=1/2 for one of the singlet bound state% is 1+36
exactly*®® The series for the energy gaps of the other bound
stateqand also the lower edge of the continuuaihk=0 and
/2 are given in Table II.

Here we find three singletS;, S,, and S;) and three
triplet, (T4, T», andT3) bound states below the two-particle
continuum, and two quintet antibound stat&3, (and Q,)
above the continuum. The dispersions for these bound states
at 5=0.4 have been shown in Fig. 4 of a preceding paper.
To demonstrate the reliability of our results, we plot in Fig. 6
the energy gap ai=0.4 andk= /2 for all bound states and
the two-particle continuum versus the inverse of the order
&p to n=19. The results foiS; are not plotted, since this
fase is known exactly. From this figure, we can see that the
results are very well converged far>10. In the limit of A

FO' the binding energy d= =/2 for S; and T, is propor-

tional to\, as expected, while fo®,, T,, S;, and T3, the
binding energy is proportional th? \? \* \® respectively,
as we can see from Table II.

In the limit A—0, the wave functions fof5; and T; (i
=1,2) are trivial, consisting of two triplets separated iby
—1 singlet dimers, while the wave functions ket /2 for
S; and T3 are (here again we just tak8,=0 for T5 as an
example

1 S
k)= —— eZ|k(J+n+1/2)
Wss( % V3N 2 nZl

X folti(th,(j+2n+1)
+th (D] +2n+ 1) —th(Htd(j +2n+1)]]0),

(15
Kz (M)ZLE i e2ik(j+n+1/2)
E \/m j n=1
X[ttty (j+2n+1)
—tL ()i +2n+1)]]0). (16

For S5, the amplitudef,, for two triplets sitting atj and j
+2n+1is

f,=2""\3, (17)

144411-6



DECONFINEMENT TRANSITION AND BOUND STATE . .. PHYSICAL REVIEW B 63 144411

TABLE II. Series coefficients for dimer expansions of the energy Bal{1+ &) of singlet bound states
(S1,S,,S,), triplet bound statesT; andT,), and the lower edge of the continuui@,j atk=0 and#/2 for
the J;-J,- 6 chain witha=(1— 6)/2. Nonzero coefficients of" up to ordem=19 are listed.

n S, atk=0 T, atk=0 C, atk=0 S, atk=m/2

0 2.000000000 2.000000000 2.000000000 2.000000000

1 —1.000000000 —5.000000006¢ 10 * 0.000000000 0.000000000

2  —5.000000006 10 * 1.250000006:10°*  —1.000000000 —7.500000006 10 *

3 —2.50000000610° ' —1.56250000610 ' —5.00000000610 ' —6.250000006(10 *

4 6.250000008 102 —9.257812506 10 * 6.250000006 1072  —4.687500006 102

5 2.03125000810°1 —1.833007813 3.593750080L0° 1 8.06640625¢ 10 ¢

6 3.255208338 1072 —2.977783203 1.5429687500 * 1.142822266

7  —2.44411892%10° ' —4.028717041 —2.992621528 101  —2.32476128% 10 2

8 —2.27389865%10 ' —3.409357212 — 4475063748101  —2.524002923

9 1.67737796810 * 4.411956160 —2.11970011%10 2 —3.662303224
10 4.367628578 10 * 3.28424857% 10 5.40615131x 10! 6.600969298& 10!
11 4.447491734 10 2 1.06464339% 107 4.67873473% 10! 1.02988172% 10t
12  —6.649650688 10 * 2.53757257X 107 —3.650978943% 10 ¢ 1.42040146% 10*
13 —5.64753089% 107! 4.601292426 10? —9.97655317610 1 —5.430672245
14 6.692916068 101 5.08912817X 1(? —3.56829071% 101 —4.75327408% 10
15 1.434455637 —4.19843629% 107 1.149565251 —6.05026205% 10
16 —7.93236831%10°2 —4.53096620% 10° 1.548592323 3.784212529.0"
17 —2.535956672 —1.63806580% 10" —3.749497848 10 ¢ 2.350096418 107
18 —1.777648180 —4.23929039% 10* —2.734332838 2.710161551.0°
19 3.125549537 —8.30528051% 10" —1.897635556 —2.494277528& 107
n S; atk= /2 T, atk=x/2 T, atk=7/2 C, atk=m=/2

0 2.000000000 2.000000000 2.000000000 2.000000000

1 0.000000000 —5.000000006 10~ ¢ 0.000000000 0.000000000

2 —5.000000006¢10°* —1.250000006¢10°' —6.25000000610°* —5.000000006 10!

3 —2.500000006 10 * 0.000000000 —4.375000006¢10°*  —2.500000006 10 *

4  —7.42187500610°% —3.906250006(10° 2 —2.14843750 101 —6.250000008 10 2

5 1.12304687%10°%> —6.835937508 103 2.929687506 102 3.906250006 10~ 2

6 5.106608078 10" % —5.77799479% 103 1.789143886:10 ¢ 4.23177083% 10 2

7 —4.11656697610 2 —8.44319661%10 4 3.24340820% 10! —3.363715278& 103

8 —6.97220872%10 %2 —4.64128564%10 ° 4.08870131% 10! —4.21459056% 10 2

9 —5.54824136%10°2 2.43937527% 10°4 3.23300929% 10! —4.34830277k 1072
10 —1.61579641%10°2 —5.09089089%10° % —7.41281240%10° 2 —1.64136431%10 2
11 1.3933583338 102 2.28707976k10°% —7.77660899k 10! 9.83951786k 102
12 1.62831551%10 2 —6.72610456%10 % —1.459665977 1.402656082L0 2
13 1.092421645 10 3 4.89592806% 10 ° —1.501800181 —1.566731983% 10 2
14 —7.495980128 103 —9.649045824% 10 % —3.33826979k10° ! —1.83485774&10 2
15 4.106539888 10 2 8.959512696 103 2.080412782 —2.05815000% 102
16 2.75673778%10° %2 —1.46689465% 10 2 4.898068211 —8.45171810% 10 °
17 4.306603014 10 2 1.550047623 102 6.361874618 4.993840865.0 3
18 3.91040744810° %2 —2.303464956 10 2 4.129539836 7.61672135110°°
19 2.231265078 10 2 2.62184214%10° 2 —3.7600121574 —1.05597707% 103

which decreases by a factor of 2 adncreased by 1. We case thatS, and T; (i=1,2) are fully localized states,
cannot obtain an analytic expression fgr for T3, but the  whereasS; andT; are “extended,” with exponential tails to
numerical results fo=0.4, 0.6, and 0.9 are presented in their wave functions. As for the cage=0, our calculations
Fig. 7: for small\ (large §), f, is almost independent @f,  again show that fok= /2 and anyA, the wave functions
so one has an infinite coherence length. From the above réor S, and T, only involve two triplets separated by an odd
sults, one can see that the bound st&eandT; are due to  number of singlet dimers, while wave functions 8y, T4,
the effective attraction between triplets separated by an eve®;, and T; only involve two triplets separated by an odd
number(exclude 0 of singlet dimers. Thus we find in this number of singlet dimers.
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The two-particle binding energies and the inverse of thek>k.. The results for the critical momentaversusé are
coherence lengthsl1for §=0.4 are shown in Figs. 8 and 9. given in Fig. 10, where one can see that in the ligit 1,
One can see that the singlet bound st&feand the triplet the S; and T; states exist only ak=/2. ForS, and T,
bound stateT, exist for the whole range of momenta, while bound states, as before, one can get the first few terms in the
other bound states exist only in a limited range of momentaeries expansion fd{. :

2Y2\ +0.53033.2+0(\%), for S,,
2k.= (18

27/3—7NI(8+/3)+287\2/(7683)+O(\3) for T,

and in the limitk— k., the behavior of the binding energy is that in the limité—1, k.=0 and=/3 for S, andT,, respec-
tively, and asd decreasesk. for S, first increases, then
Ep/IN?=4(k—ke)? [N+ O(N?)]/32+8(k—k)® decreases back to 0 at arousigt0.38, whilek, for T, first
decreases, then increases. We also can see from this figure
+0[(k—ko)*] g;latﬁsg andT; only exist over a tiny range of momenta for
As for S; in the casen=0, §—1 is also a critical point
(19 for T3 atk= /2. The inverse of the coherence lengtlior
for S, and T, atk= /2 andS, at k=0 versusé are given in Fig. 11,
where we can see that a% approaches 1, the coherence
3 97\ 461\? 3 length forT5 atk= /2 diverges, while the bound sta$s at
3—2+5—12+m+0()\ )) k=0 appears a®<0.38, consistent with Fig. 10. In this
figure, we also plot the coherence length for other bound
T 8(k—k )3< J3 199\ 19273\2 +O()\3)) states ak=0 and#/2. L is exactly 1 forS; atk= /2, while
—Ke)\ a4 - for T4, S,, andT, at k==/2, L is almost equal to 1,2,2,
64 1024/3 245763 respectively, for alls. ForS; andT, atk=0, L is 1 in the
+0[(k—ko)*] (20) limit 6—1, and asé decreasesl. increases. FofS; at k

) o ~=ml2, Lis 11/3 in the limit6—1, and asé decreases.
for T,. Here again one can see that the “critical index” is 2. decreases.

The results of Eq(18) are also shown in Fig. 10. We can see

IV. REGIME OF VANISHING BOND-ALTERNATION:
UNBINDING OF SPIN-HALF EXCITATIONS

A
x(—+0.1077232+ O(\?%)

322

Ep/IN2=4(k—k)?

T, saskssbebmamy .
2 ke ———

In this section we turn to the regime of smallor N near
unity. In this case, our results are less accurate and we have

S —— to rely on series extrapolation methods. The li$it:0 is a
2.55 - n critical point, where we expect singularities in various physi-
2.642 F | T LI B S B B B —T T T
- B . 1 F \ E
~ L \

& L 2.8415 | - 0.6 - -
: - ;
2.641 [ . i S .
2.5 |- E o ] . N .
28405 [ T 04 S\ .
r [ Sy mmenna " 1 o | \b\ |
L P TS POV PR T b | L \ J
284 005 0.1 015 02 02 I X \"\n5=0.6 |

- T Asessssdob b mm ] 0.2 \‘s\
2 a -1
I |1| PR S N IS N A A N S A A A A | L e e '"'"X'--w-\»gkb'{x--»*-~-x...x-~-x.<.:§=0.9 i
0 0.05 0.1 015 02 025 - *elq
1/n i .- oo ]
L =04 -\'\‘* 0o 4
— H (Ve PRI S T AT SN S MR ‘I_ 1 1 '?' b dm ¢

FIG. 6. The ener af/J at k= /2 for two singlet S, and
9y gak glet &, 0 5 10 15 20

S;) and three triplet T, T,, and Tg) bound states versus the
inverse of order I for the J;-J,- 6 chain with §=0.4 anda=(1
—6)/2. The results foiS; and T; are shown in the inset, and the FIG. 7. The amplitudd,, versusn for T; with §=0.4, 0.6, and
gray shaded regions are the two-particle continuum. 0.9, andk= /2

n
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05 _— S1
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[ e Ta] L E E
[ - 2 o L L 3
02 I Ll T T R - 04 [ 0985 099 0995 T
0.985 0.99 0.995 1 - E. 1 F
,/’ 1
01 F =77 - _ 02
Sz A
........... e T,
...................... T |
0 T T T T 1 0 L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1
RK/m 2K/n
FIG. 8. The binding energk, for three singlet§,, S,, andS;) FIG. 9. The inverse of the coherence length ¥érsus momen-

and three triplet Ty, T,, andT3) bound states versus momentém tum k for three singlet §;, S,, andS;) and three triplet Ty, T,
for the J;-J,- & chain with §=0.4 anda=(1-6)/2. The inset en- andT;) bound states of thé,;-J,-§ chain with §=0.4 anda=(1
larges the region ned=7/2 so one can see the nonzero binding — §)/2. The inset enlarges the region néaf /2.
energy forS;,Ts.

We now turn to the frustrated model with=(1— 6)/2.

cal quantities. Hence, the convergence of the series brealﬁrst’ we show the dispersions of the single-particle triplet

down and a simple truncation does not lead to meanmgfuexcitation the lowest-energy two-particle singlet bound state
results. In this case, we use the Dlog Pauel integrated ' 9y b 9

: . ) . S;, and the bottom of the two-triplet continuum over the full
differential approximantS to extrapolate the series for the Brillouin zone for various values af in Fig. 13. It is evident
single-particle energies and the two-particle binding M€l ihat the triplet and the singlet spectra b%corﬁe degenerate as
gies. We present results based on these extrapolations. 0es topzero This is c?irect pevidence for freegs in-half
We begin this section by making a few comments abougxgitations sin(;e a pair of free spin-half excitatioFr)]s will
the extrapolation of one- and two-particle energies to dhe N anp P
form singlet and triplet states of equal energy. Note that pre-

—0 limit for the nearest-neighbor modek&0). In this X : . ; 1]
case the uniform system &t=0 is the Bethe-ansatz solvable vious series expansion studies have s tthe spectral

nearest-neighbor Heisenberg model, with no gap in the exci-
tation spectrum. Furthermore, it is believed that the mapping
on to the massive Thirring model gives the exact spectrum at
small k for small 6.2° The latter model has a well defined
singlet and a well defined triplet excitation whose energies
are in the ratio ofy3. There are no further bound states so 08 F
that there are no triplet states between the single particle gap
A and the two-particle continuum gap\2

As evident from Figs. 2, 3, and 4 only one singlet bound
state exists a® goes to zero fok=0. Its coherence length
appears large but finite in our calculations, though its binding 06
energy goes to zero. This, together with the elementary trip-
let whose energy also goes to zerod&goes to zero, gives
the two well defined states expected from the massive
Thirring model. As discussed in the previous section, the
convergence of the singlet excitation energykatO be-
comes poor ad =1, as it has to be gotten from a numerical .
solution of the integral equation rather than from an extrapo- P U U P W B £
lation of a binding energy series. This ratio is plotted in Fig. 0 02 04 2K/n°'6 08 !
12. It clearly stays close to 2 down #®=0.2 and begins
decreasing for smaller values 6f However, for6<0.1 the FIG. 10. The criticald versus momenturk for singlet and trip-
extrapolations become completely unreliable and we cannaét bound states of thi;-J,- & chain witha=(1— 8)/2. The dotted

tell if the ratio approache§3 as5—0. lines are the results of E18).
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15 - —

E/J
T l T T

051 (a) 6=0.1

Pl el v ben e e o 149

_|||||||||||||||||||||_

Fo T ST, (k=m/2) B i 1 s

\'\\[ - : :

s, _ = [ ]

7 0.5 ~
S, (keg) T~ i T )
W L 4 i
Ll R T T T e = - r c) 6=0 T d) 6=0 1
.sl.’Tll(k.=1T(2). L ) L 1 s L L -|||||||(||)||||||||||||--|||||||(||)||||||||||||-
0.4 0-66 0.8 1 0 0.5 1 1.5 20 0.5 1 1.5 2

2k/m 2k/m

FIG. 11. The coherence lengthat k=0 and /2 versusé for
three singlet §;, S,, andS;) and three triplet T, T,, andT3)
bound states of thd;-J,-§ chain with a=(1-6)/2. The inset
plots 1L versusé for S, atk=0 andT; atk= 7/2. The results of
17th to 19th order series are plotted.

FIG. 13. Dispersion of the single-particle triplet excitatifp
(solid ling), the lowest two-particle singlet bound st&g (dashed
line), and the bottom of the two-triplet continuydotted ling for
6=0.1 (a), 0.02 (b), and 0(c) for the Shastry-Sutherland model.
Window (d) gives the variational results of Shastry and Sutherland,
where only the continuua are shown.

weight associated with the triplets does not vanish over thgyely, and thus a splitting of 8 which vanishes ag—0.
entire Brillouin zone. It remains finite in the vicinity df Our results fit this pattern precisely.
=q/2 at 5=0. This result is consistent with the variational  Note further from this figure that a8 goes to zero, in the
calculations of Shastry and Sutherlahdho had found a region not too far fromk= /2, the two-triplet continuum
soliton-antisoliton bound state ne&r= m/2. Shastry and falls below the state$, and E; (where E; is the single-
Sutherland had also found that the bound states were fouparticle triplet excitation This is also true for the variational
fold degenerate meaning that there are degenerate singlet apglculation of Shastry and Sutherland shown in Fig(d1,3
triplet bound states. Thus, our results are completely consishough, to our knowledge, it has not been noted before. At
tent with their calculations. Sgrensen and collabordfoase = /2, stable singlet and triplet states are rigorously known
also given an exact demonstration of triplet and singlet stateg exist. A plausible picture is that a stable state exists only at
with energies (¥ 6)J and (1+36)J at k=m/2, respec- or very near this wave vector, and even at this point its
binding energy with respect to the multiparticle continuum is

e L L LA L extremely small. It is also likely that the spectral weight of
2 [ 7 these states is only appreciable in this narrow region; further
i 1 from k= /2, these states will be lost in the continuum, and
- . their spectral weight will be neglible, in agreement with the
15 L ] calculation of Singh and Zherlg.
P ] In the series extrapolation for the figure above, we have
g" - . made use of the fact that @sgoes to zerdor A goes to },
N/ ] the energy gap approaches a constant with correction propor-
r ] tional to (1—\)?3,® so in the series extrapolation we trans-
r 1 form the series to a new variable
o ] N'=1—(1-\)28 (21)
N N S R B I to remove the singularity at=1. Byrneset al® also predict
0 0.2 0.4 0.6 0.8 1 that the singlet-triplet splitting in the limié—0 is

61/3
(Es,—Ey)/J=c16+cp8™" (22
FIG. 12. Ratio of the lowest singlet excitation enefgy to the
lowest triplet excitationE,, in the nearest neighbor model as a Our series analysis seem to favor these arguments, as can be

function of 6. Results at order 4dotted ling, 5 (short dashed seen from Fig. 14. But our results givg=2.255), rather
line), 6 (long dashed ling and 7(solid line) are plotted. than 15/8 as given by Byrnex al® this difference is prob-
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FIG. 14. The 1-particle triplet gapE() and lowest singlet en-
ergy gapEs at k=0 (upper window, and Es —E;)/J& (lower
window) versuss?” for the J;-J,- 8 chain witha = (1— 8)/2. The
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FIG. 16. The rescaled binding enerBy/J\" at k= /2 versus
dimerization § for three singlet bound state¥ (i=1,2,3) of the
J4-J5- 6 chain witha=(1— 6)/2. The inset enlarges the region near

results of several different integrated differential approximants tod=0. Several different integrated differential approximants to the

the series are shown.

ably because we choose=(1— 6)/2, while in the calcula-
tions by Byrneset al. « is fixed to be 1/2.

In Fig. 15 the binding energy for the lowest triplet bound
stateT, is shown. It is clear that the extrapolation fog
does not converge very well. Looking at the figure, it is
plausible to suggest that @sgoes to zero the triplet binding
energy also approachds~=0.24J], the single particle energy

series are shown.

sistent with the idea that there are an infinite number of states
between the single particle gdp and the two-particle con-
tinuum, which begins at 2. Thus the lowest of these states
must approach in energy. However, we do not see a large
number of two-particle bound states in our calculations. We
suspect that the other bound states may arise from 3,4,
5,..., particle states. We hope to extend our methods to
study such multiparticle bound states in the future.

gap. If true, this implies that this state also becomes degen- We now turn to the bound stateslat /2. We show the

erate with the single particle state in this limit. This is con-

0.3

E,/J

1 1 1 | 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 .‘"
0.2 0.4 0.6 0.8 1
S

FIG. 15. The binding energf,/J of the lowest triplet bound
state ;) atk=0 as a function ob. The results of several different
integrated differential approximants to the series are shown.

rescaled singlet and triplet binding energieskat /2 in
Figs. 16 and 17. These results 8y (i=1,2,3) andT; (i
=1,2) are obtained from the integrated differential approxi-
mants to the series, while the results Tarare obtained from
the numerical solution of the integral equafioat orders 14

to 19, since we cannot get the series directlyTgr We can
see from these figures that 8s-0, the binding energies for
all S; (i=1,2,3) approach the same value, which is close to
or equal to zero. Among; (i=1,2,3), T; has the largest
binding energy in the limitd— 1, but at6=0.0943), the
binding energy forT,; becomes zero, while the binding en-
ergies forT, andTj are still nonzero, i.e., there appears to be
a level crossing between (i=1,2,3) here: the level cross-
ing betweenT; and T, happens av=0.221(1) where the
binding energy isE,/J=0.11955(10). The reason tha&t
andT, can cross smoothly is presumably that the bound state
for T, only involves two triplets separated by an even num-
ber of singlet dimers, while the bound state oy only in-
volves two triplets separated by an odd number of singlet
dimers, so that the two states lie in disjoint sectors.

V. CONCLUSION AND DISCUSSION

In this paper we have carried out an extensive investiga-
tion of the two-particle spectra of the frustrated alternating
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L L L I L BN BN orders in the perturbation expansion, showing the extended
IS AL N7 character of the pair attraction.
\“/ We have also studied the regime of deconfined spin-half
S excitations §—0) by using series extrapolation methods.

Several properties of one and two-particle spectra give a
clear indication of this deconfinement transition. The spectral
weights of the triplets vanish at the transiti¢except near
k=/2) and the singlet and triplet excitations become de-
generate. These methods can be used to look for such un-
binding transitions in higher-dimensional models as well.
Our studies also raise several puzzles that need to be ad-

dressed in the future. How does the spectrum betweand

2A get filled up as one goes from the confined to the decon-
fined phase? We suspect that multiparticle bound states, with
varying number of triplets are important. This needs to be

further addressed. The picture is much clearer in the soliton
language, as one might expect: at snélthere is a discrete

spectrum ofs—s bound states confined by a linear potential,
5 ' which becomes continuous &s-0 and the confining poten-
tial vanishes:®® Another puzzle is the crossing of energy
levels. As\ goes from zero to unity along the Shastry-
Sutherland line, one expects to see crossingr-garticle
. ; ) states, with differenh. How does this take place? How can
Z?]'ti;();g;rz?(?n:;’mt:?Jiﬁ:'tie?{eie;ia;gc')f\r;r:ermri}f%ifed :lfer' this be accounted for within the perturbation theory? Finally,
. ; ! ’ are the Shastry-Sutherland bound states stable awaykrom
merical results from the integral equation at order 14 to 19 are . - .
Shown. = /2, where they might decay into the four-soliton con-
tinuum? We hope to address some of these issues in future.

0.2

FIG. 17. The rescaled binding enerBy/J\" atk= /2 versus
dimerization § for three triplet bound state§; (i=1,2,3) of the
Ji-J5-6 chain witha=(1— 6)/2. The inset enlarges the region for

Heisenberg chains using strong coupling series expansions.
In the regime of weakly coupled dimers, the elementary ex-
citations of the system are triplets and the spin-half excita- This work was initiated at the Quantum Magnetism pro-
tions are confined. In this regime our series expansions argram at the ITP at UC Santa Barbara which is supported by
convergent, and we have studied in great detail the propertidd.S. National Science Foundation Grant No. PHY94-07194.
of the two-particle spectra, including binding energies, co-The work of Z.W. and C.J.H. was supported by a grant from
herence lengths, and critical properties associated with varithe Australian Research Council: they thank the New South
ishing binding energies and diverging coherence lengths. We/ales Center for Parallel Computing for facilities and assis-
find in every case, just as for the spin ladder systethat  tance with the calculations. R.R.P.S. was supported in part
where a two-particle bound state emerges below the corby NSF Grant No. DMR-9986948. S.T. gratefully acknowl-
tinuum at a “critical momentum”k., the binding energy edges support by the German National Merit Foundation and
behaves ask(—k,)? ask—Kk¢., and the coherence length Bell Labs, Lucent Technologies. H.M. wishes to thank the
diverges, as one would expect. Several distinct bound stateéikawa Institute for Theoretical Physics for hospitality.
can be identified, particularly nede=7/2. Many of the Z.W. and C.J.H. would like to thank Professor Oleg Sushkov
bound states can only be seen by going to sufficiently higtior some very useful discussions.
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