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Deconfinement transition and bound states in frustrated Heisenberg chains:
Regimes of forced and spontaneous dimerization

Weihong Zheng* and Chris J. Hamer†

School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

Rajiv R. P. Singh
Department of Physics, University of California, Davis, California 95616

Simon Trebst‡ and Hartmut Monien
Physikalisches Institut, Universita¨t Bonn, Nußallee 12, D-53115 Bonn, Germany

~Received 24 October 2000; published 19 March 2001!

We use recently developed strong-coupling expansion methods to study the two-particle spectra for the
frustrated alternating Heisenberg model, consisting of an alternating nearest neighbor antiferromagnetic ex-
change and a uniform second neighbor antiferromagnetic exchange. Starting from the limit of weakly coupled
dimers, we develop high order series expansions for the effective Hamiltonian in the two-particle subspace. In
the limit of a strong applied dimerization, we calculate accurately various properties of singlet and triplet
bound states and quintet antibound states. We also develop series expansions for bound state energies in
various sectors, which can be extrapolated using standard methods to cases where the external bond alternation
goes to zero. We study the properties of singlet and triplet bound states in the latter limit and suggest a crucial
role for the bound states in the unbinding of triplets and deconfinement of spin-half excitations.
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I. INTRODUCTION

In recent years the subject of fractional excitations,
excitations with fractional quantum numbers compared to
noninteracting limit, has attracted considerable attent
Many experiments in high-temperature superconducting
terials have been interpreted in these terms, and many t
ries of high-temperature superconductors are built aro
such fractional excitations. However, fractional excitatio
in a closed system can only arise in groups that have the
quantum numbers of the noninteracting limit. Thus, their u
ambiguous identification in numerical calculations rema
difficult.

In this work we are interested in studying models, whe
as parameters in the Hamiltonian are varied, one goes fro
phase where the excitations have normal quantum num
to one where they have fractional quantum numbers.
would like to develop series expansion methods by wh
such transitions can be studied and the onset of fractio
excitations can be demonstrated. Although we work w
one-dimensional~1D! models, the basic methods we devel
can be applied in higher dimensions as well.

The best known example of a fractional excitation is
spinon in the spin-half antiferromagnetic Heisenberg cha1

It is well-known that the low-lying excitations of this Bethe
ansatz solvable model consist of a two-spinon continuu
Another simple example of a spin-half excitation is a solit
in the Majumdar-Ghosh model.2 It is a domain wall which
interpolates between the two dimerized ground states of
model. The low-lying excitations, for a closed system, in t
case also consist of a soliton-antisoliton continuum.3

Adding a bond-alternation to the exchange constants
the model leads to confinement of the spin-half excitatio
The elementary excitations now become triplets and
0163-1829/2001/63~14!/144411~13!/$20.00 63 1444
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spinons or solitons are bound into pairs. In the unfrustra
case, the role of bond-alternation has been studied by m
ping onto a massive Thirring model.4 The frustrated case
where the ground states are spontaneously dimerized,
been of considerable recent theoretical interest due to its
evance to spin-Peierls systems such as CuGeO3. An explicit
bond-alternating term in the Hamiltonian can be motiva
as a mean-field representation of the interchain ela
couplings.5 Uhrig et al.6 and Affleck and collaborators7 have
studied the confinement transition for the soliton-antisolit
pairs when such a term is added to the Hamiltonian.

Here, we approach these transitions from the opposite
rection. We study these systems in a strong-coupling per
bation theory, which begins with the limit of decoupled spi
dimers and treats the interdimer couplings as a perturbat
In the limit of weakly coupled dimers, the elementary ex
tations are triplets, which are weakly dispersive. In this lim
our strong coupling theory is highly accurate and we can fi
all details of various two-particle bound~and antibound!
states. The overall two-particle spectrum is much richer th
that obtained in previous studies. Several singlet and tri
bound states and quintet antibound states are found.
number of bound states depends on the coupling constan
well as the wave vector. We study the binding energy a
the coherence length associated with the bound states.
also study the singularity at the critical wave vectors wh
the binding energy goes to zero and the state merges into
continuum.

Using high order series expansions and extrapola
methods we also study the uniform limit, where the bon
alternation term in the Hamiltonian goes to zero. Thus
approach the limit where the triplet excitations break up a
spin-half excitations become deconfined. Series expan
results show that as the bond-alternation term goes to ze
©2001 The American Physical Society11-1
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ZHENG, HAMER, SINGH, TREBST, AND MONIEN PHYSICAL REVIEW B63 144411
the Hamiltonian, the spectral weights associated with trip
quasiparticles go to zero, and the lowest lying singlet a
triplet excitations become degenerate. These phenomena
vide a remarkably clear and simple confirmation of the ex
tence of free spin-half excitations in this limit.

In the frustrated system, the reorganization of the ma
body spectra as the system undergoes the deconfine
transition presents an interesting puzzle. Since there is a
D to triplet excitations, the two-triplet continuum begins
2D. Thus, in the confined phase, this continuum is separa
from the elementary triplet by a second gap. However, w
the spin-half excitations are liberated, the resulting lo
energy spectrum consists of a soliton-antisoliton continuu
which does not have such a second gap. The consistenc
the two pictures requires that in the confined phase, betw
the elementary triplet and the two-triplet continuum the
must be a large number of states, which upon deconfinem
turn into the continuum. On general grounds, these st
must include2,3,4, . . . , triplet bound states, i.e., states i
volving an arbitary number of triplets, which must corr
spond to a soliton-anitisoliton pair with arbitrary separatio
We discuss insights from studies of two-particle bound sta
on this issue.

Another interesting puzzle lies in the spectrum of t
Majumdar-Ghosh model (d50, a51/2) neark5p/2. For
bothS50 andS51, previous studies3,8,9 have emphasized
bound state below the soliton-antisoliton (s2 s̄) continuum.
To our knowledge, it has not been noticed that the two trip
continuum~the s- s̄-s- s̄ continuum! falls below the soliton-
antisoliton continuum around this wave vector. In our n
merical study, we find that except for a tiny region very ne
k5p/2, the latter continuum also falls below the bou
states. This raises questions about the stability of the bo
states away fromk5p/2.

Another puzzle in our studies is how the energy lev
might cross each other. On general grounds, one might
pect that the levels forn particles with varyingn cross each
other as the parameters are varied. For small values of
perturbation parameter, the energies are arranged in ord
increasingn. However, as one approachesl51, low-energy
states from eachn sector may appear even below the tw
particle continuum. Sincen is not a good quantum number,
is not clear how this will reflect itself in our perturbatio
theory. This deserves further attention.

The organization of the paper is as follows. In Sec. II,
describe the Hamiltonian studied and the various param
zations used. In Sec. III, we study the regime of forced
externally imposed dimerization. This is a regime where
series expansions are convergent and we present spe
binding energies, coherence lengths etc. in great detai
Sec. IV, we consider the regime of spontaneous dimer
tion, which requires the use of series extrapolation metho
In Sec. V, we present discussions and conclusions.

II. HAMILTONIAN

We wish to study the alternating Heisenberg chain w
frustration3,7,10–14,8
14441
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H5(
i

$@11~21! id#Si•Si 111aSi•Si 12%, ~1!

where theSi are spin-12 operators at sitei, a parametrizes a
next-nearest neighbor coupling andd is the alternating
dimerization. We rewrite the Hamiltonian as

H5~11d!(
i

@S2i•S2i 111l~S2i•S2i 211ySi•Si 12!#.

~2!

The parameter space (d, a) is equivalent to the paramete
space (l, y) with l[(12d)/(11d) andy[a/(12d). The
latter parametrization makes explicit that forl50, the
model consists of decoupled dimers: we take this to be
unperturbed HamiltonianH0. The rest of the Hamiltonian
can be treated as a perturbation, and we can expand va
physical quantities in powers ofl. The formalism for study-
ing n-particle sectors in perturbation theory is discussed
detail in a companion paper.15

The series expansions for the ground state energy
triplet excitation spectrum have previously been compute11

up to order 23. The two-particle excitations have been d
cussed using a leading order Brueckner ansatz calculatio13

a second order series expansion,14 and an RPA study.10 With
our new technique, we perform high-order series expans
in powers ofl for fixed values ofy.16 As discussed in a
companion paper,15 we first calculate an effective Hamil
tonian in the two-particle sector

E2~ i,j ;k,l!5^k,luHeffu i,j &, ~3!

and then calculate the irreducible two-particle matrix e
ment

D2~ i,j ;k,l!5E2~ i,j ;k,l!2E0~d i,kd j ,l1d i,ld j ,k!2D1~ i,k!d j ,l

2D1~ i,l!d j ,k2D1~ j ,k!d i,l2D1~ j ,l!d i,k , ~4!

whered refers to a Kronecker delta function andD1 is the
one-particle irreducible matrix element.

Here we will only concentrate on the expansions for t
following two lines in the parameter space:~i! a50, corre-
sponding to nearest neighbor interaction only and~ii ! a
5(12d)/2, which is a special line in the parameter spa
where the ground states are known exactly, also known
the Shastry-Sutherland line. The model atd50 (l51) is the
uniform Heisenberg chain in case~i! and the Majumdar-
Ghosh model in case~ii !.

III. BOUND STATES WITH FORCED DIMERIZATION

In this section we study the small-l regime, where our
strong coupling expansions are convergent. Thus a sim
truncation of the relevant power series expansions lead
highly accurate results. We discuss the number of bo
states with different quantum numbers as well as their bi
ing energies, the range ofk values where the bound state
exist, the coherence length associated with the bound pa
well as the singularities at the critical wave vector, where
binding energy goes to zero and the bound state merges
1-2
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TABLE I. Series coefficients for dimer expansions of the energy gapE/J(11d) of two singlet bound
states (S1 andS2), two triplet bound states (T1 andT2), two quintet antibound states (Q1 andQ2), and the
lower edge and upper edge of the continuum (Cl and Cu) at k5p/2 for the J1-J2-d chain with a50.
Nonzero coefficientsln up to ordern511 are listed.

n ES1
/J(11d) for S1 ES2

/J(11d) for S2 ET1
/J(11d) for T1 ET2

/J(11d) for T2

0 2.000000000 2.000000000 2.000000000 2.000000000
1 25.00000000031021 0.000000000 22.50000000031021 0.000000000
2 1.87500000031021 23.90625000031021 1.56250000031021 22.81250000031021

3 3.90625000031022 7.81250000031022 22.34375000031022 6.25000000031022

4 22.05078125031022 3.32458496131021 26.16861979231022 9.32617187531022

5 24.15445963531022 25.46442667631022 28.18956163231022 21.14325629331021

6 24.00407579231022 24.49904547831021 29.44230821431022 21.71645058531021

7 22.57396521431022 21.20047070531021 28.74092961531022 22.33230370131022

8 26.32266840831022 2.68189051731022

9 22.25031790131022 23.52376325431022

10 2.94132397031022 1.45032282731022

11 9.05953825031022 1.46769042731021

n EQ2
/J(11d) for Q2 EQ1

/J(11d) for Q1 ECl
/J(11d) for Cl ECu

/J(11d) for Cu

0 2.000000000 2.000000000 2.000000000 2.000000000
1 0.000000000 2.50000000031021 0.000000000 0.000000000
2 3.12500000031022 29.37500000031022 22.50000000031021 0.000000000
3 1.25000000031021 21.01562500031021 3.12500000031022 1.56250000031021

4 1.51367187531022 25.12695312531022 22.34375000031022 9.37500000031022

5 1.91650390631022 21.11490885431022 26.86848958331022 27.26996527831023

6 5.78687455931022 26.62909613731024 4.75735134531023 21.19662814731022

7 2.27089119531022 1.04469899831022 21.73078937331023 8.80983140731023

8 1.94773323931022 2.00729952431022 23.47805656031022 4.20195330331023

9 2.27767095331022 3.17719653831022 2.93606478831024 22.45784815131023

10 21.22532894731023 4.25149092131022 5.56081561531023 8.84268826031024

11 29.43531791031023 5.45494522331022 22.00422256931022 2.35555691231023
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the continuum. We first consider the model witha50 and
thena5(12d)/2.

~1! Casea50. For the case without the second neighb
interaction (a50), the series for the irreducible two-partic
matrix elementD2 have been computed up to order 7 f
singlet bound states, and to order 11 for triplet and quin
states.16 The reason why the singlet series is computed
only 7th order compared to 11th order for the triplet a
quintet states is that the singlet has the same quantum n
bers as the ground state. Thus a much more elaborate
thogonalization method is required to implement the clus
expansion.15

In this model, we find two singlet (S1 and S2) and two
triplet (T1 andT2) bound states below the two-particle co
tinuum, and two quintet antibound states (Q1 andQ2) above
the continuum. The existence of the second pair of bo
states has not been reported by previous calculations, m
likely due to a limited precision or a general incapability
deal with multiple bound states. The series for their energ
~and also the lower edge and upper edge of the continuum! at
band maximumk5p/2 are given in Table I. Note that ther
are some discrepancies for the energy of the lowest sin
bound state with the previous second order calculation13
14441
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Our second order results agree with the series results of
neset al.,14 but disagree with the results of the Brueckn
ansatz calculation.13 Although the Brueckner ansatz is a
expansion of the self-energy in terms of the density of ex
tations, it normally can recover the first few orders of t
series expansion inl exactly: it does give the correct secon
order result for the triplet bound state.13

In the limit l→0, the formation of bound/antiboun
statesS1 , T1, and Q1 is well known, due simply to the
interaction of two triplets on neighboring sites, and the wa
function for S1, for example, is

ucS1
~k!&5

1

A3N
(

j
e2ik( j 11/2)@ t1

†~ j !t21
† ~ j 11!

1t21
† ~ j !t1

†~ j 11!2t0
†~ j !t0

†~ j 11!#u0&, ~5!

whereu0& is the ground state atl50 consisting of nonover-
lapping spin singlets on each dimer, andta

†( j ) is a triplet
creation operator which excites the singlet atj th dimer into a
triplet state withSz5a, (a521,0,1).

It is interesting also to look at the structure of these n
bound statesS2 , T2, andQ2 in this limit. To compute their
1-3
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ZHENG, HAMER, SINGH, TREBST, AND MONIEN PHYSICAL REVIEW B63 144411
wave functions, one needs to diagonalize the second o
effective Hamiltonian in the two-particle sector, which c
be reduced to an infinite dimensional symmetric tridiago
matrix. Our calculations show that in this limit, the boun
antibound statesS2 , T2, andQ2 only exist atk5p/2, and
their wave functions are~we takeSz50 as an example!

ucS2
~k!&5

1

A3N
(

j
e2ik j (

n51

`

f n@ t1
†~ j 2n!t21

† ~ j 1n!

1t21
† ~ j 2n!t1

†~ j 1n!2t0
†~ j 2n!t0

†~ j 1n!#u0&,

~6!

ucT2
~k!&5

1

A2N
(

j
e2ik j (

n51

`

f n@ t1
†~ j 2n!t21

† ~ j 1n!

2t21
† ~ j 2n!t1

†~ j 1n!#u0&, ~7!

ucQ2
~k!&5

1

A6N
(

j
e2ik j (

n51

`

f n@ t1
†~ j 2n!t21

† ~ j 1n!

1t21
† ~ j 2n!t1

†~ j 1n!12t0
†~ j 2n!t0

†~ j 1n!#u0&,

~8!

where the amplitudef n for two triplets sitting atj 2n and
j 1n ~i.e., separated by distance 2n) is

f n5H 2A15~24!2n for S2 ,

2A3~22!2n for T2 ,

22nA3 for Q2 .

~9!

Thus the formation of these new bound/antibound state
due to an effective interaction between triplets separated
an odd number of singlet dimers. It appears thatS1 , T1, and
Q1 are fully ‘‘localized’’ states in this limit, with wave func-
tions extending only across a single pair of dimers, wher
the statesS2 , T2, andQ2 are ‘‘extended,’’ with the tail of
the wave functions decreasing exponentially with distan
Our calculations show that at finitel and for the particular
casek5p/2, the wave functions forS2 , T2, and Q2 still
only involve triplets separated by an odd number of sing
dimers, while the wave functions forS1 , T1, and Q1 only
involve triplets separated by an even number of sing
dimers. Thus the spectrum splits into two decoupled sec
at k5p/2. It would be interesting to explore the dynami
behind this phenomenon in more depth.

With the wave function, one can also compute the coh
ence lengthL defined by

L5
(d51

` d fd
2

(d51
` f d

2
, ~10!

where f d is the amplitude for two triplets separated by d
tanced. Note that the coherence lengthL defined here is
measured in units of 2a, wherea is the lattice spacing. At
the limit l→0, L51 for S1 andT1 as expected, while forS2
andT2 , L is 32/15 and 8/3, respectively.
14441
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The two-particle excitation spectrum and the inverse
the coherence length 1/L versus momentumk for a rather
large dimerizationd50.6 are shown in Figs. 1 and 2. On
can see that the singlet bound stateS1 exists for the whole
range of momenta~its coherence lengthL is finite also for

FIG. 1. The excitation spectrum of theJ1-J2-d chain with d
50.6 anda50. In addition to the two-particle continuum~gray
shaded!, there are two singlet bound states (S1 and S2) and two
triplet bound states (T1 and T2) below the continuum, and two
quintet antibound states (Q1 and Q2) above the continuum. The
inset enlarges the region neark5p/2 so we can seeS2 , T2, andQ2

below/above the continuum.

FIG. 2. The inverse of the coherence length 1/L versus momen-
tum k for two singlet (S1 andS2), two triplet (T1 andT2), and two
quintet (Q1 and Q2) bound/antibound states of theJ1-J2-d chain
with d50.6 and a50. The inset enlarges the region neark
5p/2.
1-4
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the whole range of momenta although the coherence le
at k50 is very large, about 6.7706!, while other bound/
antibound states exist only in a limited range of momentk
.kc . The ‘‘critical momentum’’kc for a given bound state
can be defined by the inverse of the coherence lengthL
tending to zero or by vanishing binding energy. Technica
the first approach may give more reliable results forkc . The

FIG. 3. The criticald versus momentumk for singlet, triplet,
and quintet bound/antibound states of theJ1-J2-d chain with a
50. The dotted lines are the results of Eq.~12!.
is

n

14441
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/
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results for the critical momentakc versusd are given in Fig.
3, where we can see that in the limitd→1, theS2 , T2, and
Q2 states exist only atk5p/2. We can also get the first few
terms in the series expansion forkc for T1 andQ1 states. Up
to orderl3, the dispersions for theT1 andQ1 states are

ET1
/J~11d!522

3l

4
2

9l2

32
1

89l3

128

1S 2
l

2
2

3l2

16
1

105l3

128 D cos~2k!

1S l2

4
2

3l3

16 D cos~4k!2
37l3 cos~6k!

128

1O~l4!, ~11a!

EQ1
/J~11d!521

3l

4
2

l2

32
1

21l3

128

1S l

2
2

3l2

16
1

37l3

128 D cos~2k!

1S 2
l2

4
1

13l3

64 D cos~4k!1
23l3 cos~6k!

128

1O~l4!. ~11b!

With this and the series for the one-particle triplet excitati
spectrum, one can getkc as
2kc5H 2p/315l/~4A3!2757l2/~192A3!1O~l3! for T1 ,

2p/31A3l/4115A3l2/641O~l3! for Q1

~12!
of
.
of

s

.

nce

cal

om
and in the limitk→kc , the behavior of the binding energy

Eb /Jl54~k2kc!
2@3/16211l/1281591l2/5121O~l3!#

18~k2kc!
3@A3/321113x/~256A3!

225l2/~768A3!1O~l3!#1O@~k2kc!
4# ~13!

for T1, and

Eb /Jl54~k2kc!
2F 3

16
2

21l

128
2

39l2

256
1O~l3!G

18A3~k2kc!
3F 1

32
1

37l

256
2

37l2

1024
1O~l3!G

1O@~k2kc!
4# ~14!

for Q1. Here one can see that the ‘‘critical index’’ forEb in
the limit k→kc is 2, independent of the order of expansio
so one expects that this isexact. The results of Eq.~12! are
also shown in Fig. 3. We can see that in the limitd→1, kc
,

5p/3 for T1 andQ1, and asd decreases,kc for Q1 increases,
while kc for T1 first increases, then decreases. A range
@p/3, 2p/3# for kc has been reported by Uhrig and Schulz10

Actually S1 does not always exist in the whole range
momenta: it does not exist atk50 whend→1. The inverse
of the coherence lengthL for S1 at k50 versusd is given in
Fig. 4, where we can see that asd approaches 1,L diverges.
Becausel50 is a critical point, we cannot get the serie
directly for the energy gap ofS1 at k50. We can only get
numerical results for it by solving the integral equation15

This makes it poorly convergent asl→1, as we will see in
the next section. In this figure, we also plot the cohere
lengthL at k5p/2 for Si andTi ( i 51,2).

In the limit l→0 (d→1), the binding energy atk5p/2
for S1 andT1 is proportional tol, as expected, while forS2
and T2, the binding energy is proportional tol2. The re-
scaled binding energiesEb /Jl i versusd for Si and Ti ( i
51,2) are shown in Fig. 5. We also show some numeri
exact diagonalization results14 in this figure, which are in
very good agreement with our series results. As evident fr
1-5
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Figs. 4 and 5 the bound stateT2 may disappear at aboutd
50.2.

~2! Case a5(12d)/2. Along the special linea5(1
2d)/2, the ground state is an exact product state, with
spins on each strongly coupled bond forming a singlet.
nonzerod, the elementary excitations for this system a
triplets. Whend→0, the system has two degenerate grou

FIG. 4. The coherence lengthL versusd for two singlet (S1 and
S2) and two triplet (T1 andT2) bound states of theJ1-J2-d chain at
k50, p/2 anda50. The inset plots 1/L versusd for S1 at k50.
The results of the three highest orders are plotted.

FIG. 5. The scaled binding energyEb /Jln at k5p/2 versus
dimerizationd for two singlet (S1 andS2) and two triplet (T1 and
T2) bound states of theJ1-J2-d chain witha50. The solid points
are the numerical exact diagonalization results~Ref. 14!. The inset
enlarges the region forT2. Several different integrated differentia
approximants to the series are shown.
14441
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states and the triplets unbind into a pair of free spin-h
excitations. These spin-half objects, which are domain w
between the two ground states, are called solitons and
become the elementary excitations of the system.

The series for the irreducible two-particle matrix eleme
D2 has been computed up to orderl19 for two-particle sin-
glet, triplet, and quintet states16,17 by using both orthogona
transformation~two block method! and similarity transfor-
mation methods.15 Hence one can compute the series direc
for the dispersion of the bound states using a degene
perturbation expansion. It turns out that both transformati
give identical series for the dispersion of the bound states
to the order computed, although the series for the irreduc
two-particle matrix elementsD2 are different~the basis states
are different in the two methods!. The energy gap atk
5p/2 for one of the singlet bound statesS1 is 113d
exactly.18,9 The series for the energy gaps of the other bou
states~and also the lower edge of the continuum! atk50 and
p/2 are given in Table II.

Here we find three singlet (S1 , S2, and S3) and three
triplet, (T1 , T2, andT3) bound states below the two-partic
continuum, and two quintet antibound states (Q1 and Q2)
above the continuum. The dispersions for these bound st
at d50.4 have been shown in Fig. 4 of a preceding pape19

To demonstrate the reliability of our results, we plot in Fig
the energy gap atd50.4 andk5p/2 for all bound states and
the two-particle continuum versus the inverse of the orden
up to n519. The results forS1 are not plotted, since this
case is known exactly. From this figure, we can see that
results are very well converged forn.10. In the limit ofl
→0, the binding energy atk5p/2 for S1 andT1 is propor-
tional to l, as expected, while forS2 , T2 , S3, andT3, the
binding energy is proportional tol2,l2,l4,l6 respectively,
as we can see from Table II.

In the limit l→0, the wave functions forSi and Ti ( i
51,2) are trivial, consisting of two triplets separated byi
21 singlet dimers, while the wave functions atk5p/2 for
S3 and T3 are ~here again we just takeSz50 for T3 as an
example!

ucS3
~k!&5

1

A3N
(

j
(
n51

`

e2ik( j 1n11/2)

3 f n@ t1
†~ j !t21

† ~ j 12n11!

1t21
† ~ j !t1

†~ j 12n11!2t0
†~ j !t0

†~ j 12n11!#u0&,

~15!

ucT3
~k!&5

1

A2N
(

j
(
n51

`

e2ik( j 1n11/2)

3 f n@ t1
†~ j !t21

† ~ j 12n11!

2t21
† ~ j !t1

†~ j 12n11!#u0&. ~16!

For S3, the amplitudef n for two triplets sitting atj and j
12n11 is

f n522nA3, ~17!
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TABLE II. Series coefficients for dimer expansions of the energy gapE/J(11d) of singlet bound states
(S1 ,S2 ,S3), triplet bound states (T1 andT2), and the lower edge of the continuum (Cl) at k50 andp/2 for
the J1-J2-d chain witha5(12d)/2. Nonzero coefficients ofln up to ordern519 are listed.

n S1 at k50 T1 at k50 Cl at k50 S2 at k5p/2

0 2.000000000 2.000000000 2.000000000 2.000000000
1 21.000000000 25.00000000031021 0.000000000 0.000000000
2 25.00000000031021 1.25000000031021 21.000000000 27.50000000031021

3 22.50000000031021 21.56250000031021 25.00000000031021 26.25000000031021

4 6.25000000031022 29.25781250031021 6.25000000031022 24.68750000031022

5 2.03125000031021 21.833007813 3.59375000031021 8.06640625031021

6 3.25520833331022 22.977783203 1.54296875031021 1.142822266
7 22.44411892431021 24.028717041 22.99262152831021 22.32476128531022

8 22.27389865531021 23.409357212 24.47506374831021 22.524002923
9 1.67737796031021 4.411956160 22.11970011431022 23.662303224

10 4.36762857631021 3.2842485773101 5.40615131231021 6.60096929831021

11 4.44749173431022 1.0646433993102 4.67873473331021 1.0298817293101

12 26.64965068831021 2.5375725723102 23.65097894331021 1.4204014693101

13 25.64753089731021 4.6012924203102 29.97655317631021 25.430672245
14 6.69291606931021 5.0891281723102 23.56829071331021 24.7532740803101

15 1.434455637 24.1984362993102 1.149565251 26.0502620513101

16 27.93236831431022 24.5309662023103 1.548592323 3.7842125293101

17 22.535956672 21.6380658073104 23.74949784831021 2.3500964183102

18 21.777648180 24.2392903993104 22.734332838 2.7101615513102

19 3.125549537 28.3052805193104 21.897635556 22.4942775283102

n S3 at k5p/2 T1 at k5p/2 T2 at k5p/2 Cl at k5p/2

0 2.000000000 2.000000000 2.000000000 2.000000000
1 0.000000000 25.00000000031021 0.000000000 0.000000000
2 25.00000000031021 21.25000000031021 26.25000000031021 25.00000000031021

3 22.50000000031021 0.000000000 24.37500000031021 22.50000000031021

4 27.42187500031022 23.90625000031023 22.14843750031021 26.25000000031022

5 1.12304687531022 26.83593750031023 2.92968750031023 3.90625000031022

6 5.10660807331023 25.77799479231023 1.78914388031021 4.23177083331022

7 24.11656697631022 28.44319661531024 3.24340820331021 23.36371527831023

8 26.97220872931022 24.64128564931023 4.08870131931021 24.21459056731022

9 25.54824136731022 2.43937527731024 3.23300929731021 24.34830277131022

10 21.61579641431022 25.09089089231023 27.41281240331022 21.64136431331022

11 1.39335833331022 2.28707976131023 27.77660899131021 9.83951786131023

12 1.62831551131022 26.72610456331023 21.459665977 1.40265600231022

13 1.09242164531023 4.89592806331023 21.501800181 21.56673198331023

14 27.49598012831023 29.64904582431023 23.33826979131021 21.83485774631022

15 4.10653988031023 8.95951269031023 2.080412782 22.05815000131022

16 2.75673778131022 21.46689465531022 4.898068211 28.45171810931023

17 4.30660301431022 1.55004762331022 6.361874618 4.99384086531023

18 3.91040744931022 22.30346495031022 4.129539836 7.61672135131023

19 2.23126507931022 2.62184214431022 23.7600121574 21.05597707931023
in

v
s

,

d

d

which decreases by a factor of 2 asn increased by 1. We
cannot obtain an analytic expression forf n for T3, but the
numerical results ford50.4, 0.6, and 0.9 are presented
Fig. 7: for smalll ~larged), f n is almost independent ofn,
so one has an infinite coherence length. From the above
sults, one can see that the bound statesS3 andT3 are due to
the effective attraction between triplets separated by an e
number~exclude 0! of singlet dimers. Thus we find in thi
14441
re-

en

case thatSi and Ti ( i 51,2) are fully localized states
whereasS3 andT3 are ‘‘extended,’’ with exponential tails to
their wave functions. As for the casea50, our calculations
again show that fork5p/2 and anyl, the wave functions
for S2 andT2 only involve two triplets separated by an od
number of singlet dimers, while wave functions forS1 , T1 ,
S3, and T3 only involve two triplets separated by an od
number of singlet dimers.
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The two-particle binding energies and the inverse of
coherence lengths 1/L for d50.4 are shown in Figs. 8 and 9
One can see that the singlet bound stateS1 and the triplet
bound stateT1 exist for the whole range of momenta, whi
other bound states exist only in a limited range of mome
is

2.
ee

e

e

14441
e

a

k.kc . The results for the critical momentak versusd are
given in Fig. 10, where one can see that in the limitd→1,
the S3 and T3 states exist only atk5p/2. For S2 and T2
bound states, as before, one can get the first few terms in
series expansion forkc :
2kc5H 21/2l10.53033l21O~l3!, for S2 ,

2p/327l/~8A3!1287l2/~768A3!1O~l3! for T2
~18!
gure
r

e

s
nd

,

ave

si-
and in the limitk→kc , the behavior of the binding energy

Eb /Jl254~k2kc!
2@l21O~l3!#/3218~k2kc!

3

3S l

32A2
10.107723l21O~l3!D 1O@~k2kc!

4#

~19!

for S2 and

Eb /Jl254~k2kc!
2S 3

32
1

97l

512
1

461l2

1024
1O~l3! D

18~k2kc!
3S A3

64
2

199l

1024A3
2

19273l2

24576A3
1O~l3!D

1O@~k2kc!
4# ~20!

for T2. Here again one can see that the ‘‘critical index’’ is
The results of Eq.~18! are also shown in Fig. 10. We can s

FIG. 6. The energy gapE/J at k5p/2 for two singlet (S2 and
S3) and three triplet (T1 , T2, and T3) bound states versus th
inverse of order 1/n for the J1-J2-d chain withd50.4 anda5(1
2d)/2. The results forS3 and T3 are shown in the inset, and th
gray shaded regions are the two-particle continuum.
that in the limitd→1, kc50 andp/3 for S2 andT2, respec-
tively, and asd decreases,kc for S2 first increases, then
decreases back to 0 at aroundd50.38, whilekc for T2 first
decreases, then increases. We also can see from this fi
that S3 andT3 only exist over a tiny range of momenta fo
all d.

As for S1 in the casea50, d→1 is also a critical point
for T3 at k5p/2. The inverse of the coherence lengthL for
T3 at k5p/2 andS2 at k50 versusd are given in Fig. 11,
where we can see that asd approaches 1, the coherenc
length forT3 at k5p/2 diverges, while the bound stateS2 at
k50 appears atd,0.38, consistent with Fig. 10. In thi
figure, we also plot the coherence length for other bou
states atk50 andp/2. L is exactly 1 forS1 at k5p/2, while
for T1 , S2 , and T2 at k5p/2, L is almost equal to 1,2,2
respectively, for alld. For S1 andT1 at k50, L is 1 in the
limit d→1, and asd decreases,L increases. ForS3 at k
5p/2, L is 11/3 in the limitd→1, and asd decreases,L
decreases.

IV. REGIME OF VANISHING BOND-ALTERNATION:
UNBINDING OF SPIN-HALF EXCITATIONS

In this section we turn to the regime of smalld or l near
unity. In this case, our results are less accurate and we h
to rely on series extrapolation methods. The limitd→0 is a
critical point, where we expect singularities in various phy

FIG. 7. The amplitudef n versusn for T3 with d50.4, 0.6, and
0.9, andk5p/2
1-8
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DECONFINEMENT TRANSITION AND BOUND STATES . . . PHYSICAL REVIEW B 63 144411
cal quantities. Hence, the convergence of the series br
down and a simple truncation does not lead to meanin
results. In this case, we use the Dlog Pade´ and integrated
differential approximants20 to extrapolate the series for th
single-particle energies and the two-particle binding en
gies. We present results based on these extrapolations.

We begin this section by making a few comments ab
the extrapolation of one- and two-particle energies to thd
→0 limit for the nearest-neighbor model (a50). In this
case the uniform system atd50 is the Bethe-ansatz solvab
nearest-neighbor Heisenberg model, with no gap in the e
tation spectrum. Furthermore, it is believed that the mapp
on to the massive Thirring model gives the exact spectrum
small k for small d.10 The latter model has a well define
singlet and a well defined triplet excitation whose energ
are in the ratio ofA3. There are no further bound states
that there are no triplet states between the single particle
D and the two-particle continuum gap 2D.

As evident from Figs. 2, 3, and 4 only one singlet bou
state exists asd goes to zero fork50. Its coherence length
appears large but finite in our calculations, though its bind
energy goes to zero. This, together with the elementary t
let whose energy also goes to zero asd goes to zero, gives
the two well defined states expected from the mass
Thirring model. As discussed in the previous section,
convergence of the singlet excitation energy atk50 be-
comes poor asl51, as it has to be gotten from a numeric
solution of the integral equation rather than from an extra
lation of a binding energy series. This ratio is plotted in F
12. It clearly stays close to 2 down tod50.2 and begins
decreasing for smaller values ofd. However, ford,0.1 the
extrapolations become completely unreliable and we can
tell if the ratio approachesA3 asd→0.

FIG. 8. The binding energyEb for three singlet (S1 , S2, andS3)
and three triplet (T1 , T2, andT3) bound states versus momentumk
for the J1-J2-d chain withd50.4 anda5(12d)/2. The inset en-
larges the region neark5p/2 so one can see the nonzero bindi
energy forS3 ,T3.
14441
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We now turn to the frustrated model witha5(12d)/2.
First, we show the dispersions of the single-particle trip
excitation, the lowest-energy two-particle singlet bound st
S1, and the bottom of the two-triplet continuum over the fu
Brillouin zone for various values ofd in Fig. 13. It is evident
that the triplet and the singlet spectra become degenera
d goes to zero. This is direct evidence for free spin-h
excitations, since a pair of free spin-half excitations w
form singlet and triplet states of equal energy. Note that p
vious series expansion studies have shown11 that the spectral

FIG. 9. The inverse of the coherence length 1/L versus momen-
tum k for three singlet (S1 , S2, andS3) and three triplet (T1 , T2,
andT3) bound states of theJ1-J2-d chain withd50.4 anda5(1
2d)/2. The inset enlarges the region neark5p/2.

FIG. 10. The criticald versus momentumk for singlet and trip-
let bound states of theJ1-J2-d chain witha5(12d)/2. The dotted
lines are the results of Eq.~18!.
1-9
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ZHENG, HAMER, SINGH, TREBST, AND MONIEN PHYSICAL REVIEW B63 144411
weight associated with the triplets does not vanish over
entire Brillouin zone. It remains finite in the vicinity ofk
5p/2 at d50. This result is consistent with the variation
calculations of Shastry and Sutherland,3 who had found a
soliton-antisoliton bound state neark5p/2. Shastry and
Sutherland had also found that the bound states were f
fold degenerate meaning that there are degenerate single
triplet bound states. Thus, our results are completely con
tent with their calculations. Sørensen and collaborators9 have
also given an exact demonstration of triplet and singlet st
with energies (11d)J and (113d)J at k5p/2, respec-

FIG. 11. The coherence lengthL at k50 andp/2 versusd for
three singlet (S1 , S2, andS3) and three triplet (T1 , T2, andT3)
bound states of theJ1-J2-d chain with a5(12d)/2. The inset
plots 1/L versusd for S2 at k50 andT3 at k5p/2. The results of
17th to 19th order series are plotted.

FIG. 12. Ratio of the lowest singlet excitation energyES1 to the
lowest triplet excitationE1, in the nearest neighbor model as
function of d1/3. Results at order 4~dotted line!, 5 ~short dashed
line!, 6 ~long dashed line!, and 7~solid line! are plotted.
14441
e

r-
and
is-

es

tively, and thus a splitting of 2dJ which vanishes asd→0.
Our results fit this pattern precisely.

Note further from this figure that asd goes to zero, in the
region not too far fromk5p/2, the two-triplet continuum
falls below the statesS1 and E1 ~where E1 is the single-
particle triplet excitation!. This is also true for the variationa
calculation of Shastry and Sutherland shown in Fig. 13~d!,
though, to our knowledge, it has not been noted before.
k5p/2, stable singlet and triplet states are rigorously kno
to exist. A plausible picture is that a stable state exists onl
or very near this wave vector, and even at this point
binding energy with respect to the multiparticle continuum
extremely small. It is also likely that the spectral weight
these states is only appreciable in this narrow region; furt
from k5p/2, these states will be lost in the continuum, a
their spectral weight will be neglible, in agreement with t
calculation of Singh and Zheng.11

In the series extrapolation for the figure above, we ha
made use of the fact that asd goes to zero~or l goes to 1!,
the energy gap approaches a constant with correction pro
tional to (12l)2/3,8 so in the series extrapolation we tran
form the series to a new variable

l8512~12l!2/3 ~21!

to remove the singularity atl51. Byrneset al.8 also predict
that the singlet-triplet splitting in the limitd→0 is

~ES1
2E1!/J5c1d1c2d5/3. ~22!

Our series analysis seem to favor these arguments, as ca
seen from Fig. 14. But our results givec152.25(5), rather
than 15/8 as given by Byrneset al.8; this difference is prob-

FIG. 13. Dispersion of the single-particle triplet excitationE1

~solid line!, the lowest two-particle singlet bound stateS1 ~dashed
line!, and the bottom of the two-triplet continuua~dotted line! for
d50.1 ~a!, 0.02 ~b!, and 0 ~c! for the Shastry-Sutherland mode
Window ~d! gives the variational results of Shastry and Sutherla
where only the continuua are shown.
1-10
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DECONFINEMENT TRANSITION AND BOUND STATES . . . PHYSICAL REVIEW B 63 144411
ably because we choosea5(12d)/2, while in the calcula-
tions by Byrneset al. a is fixed to be 1/2.

In Fig. 15 the binding energy for the lowest triplet boun
stateT1 is shown. It is clear that the extrapolation forT1
does not converge very well. Looking at the figure, it
plausible to suggest that asd goes to zero the triplet binding
energy also approachesD'0.24J, the single particle energy
gap. If true, this implies that this state also becomes deg
erate with the single particle state in this limit. This is co

FIG. 14. The 1-particle triplet gap (E1) and lowest singlet en-
ergy gapES1

at k50 ~upper window!, and (ES1
2E1)/Jd ~lower

window! versusd2/3 for the J1-J2-d chain witha5(12d)/2. The
results of several different integrated differential approximants
the series are shown.

FIG. 15. The binding energyEb /J of the lowest triplet bound
state (T1) at k50 as a function ofd. The results of several differen
integrated differential approximants to the series are shown.
14441
n-
-

sistent with the idea that there are an infinite number of sta
between the single particle gapD and the two-particle con-
tinuum, which begins at 2D. Thus the lowest of these state
must approachD in energy. However, we do not see a lar
number of two-particle bound states in our calculations. W
suspect that the other bound states may arise from
5, . . . , particle states. We hope to extend our methods
study such multiparticle bound states in the future.

We now turn to the bound states atk5p/2. We show the
rescaled singlet and triplet binding energies atk5p/2 in
Figs. 16 and 17. These results forSi ( i 51,2,3) andTi ( i
51,2) are obtained from the integrated differential appro
mants to the series, while the results forT3 are obtained from
the numerical solution of the integral equation15 at orders 14
to 19, since we cannot get the series directly forT3. We can
see from these figures that asd→0, the binding energies fo
all Si ( i 51,2,3) approach the same value, which is close
or equal to zero. AmongTi ( i 51,2,3), T1 has the largest
binding energy in the limitd→1, but atd50.092(3), the
binding energy forT1 becomes zero, while the binding en
ergies forT2 andT3 are still nonzero, i.e., there appears to
a level crossing betweenTi ( i 51,2,3) here: the level cross
ing betweenT1 and T2 happens atd50.221(1) where the
binding energy isEb /J50.11955(10). The reason thatT1
andT2 can cross smoothly is presumably that the bound s
for T1 only involves two triplets separated by an even nu
ber of singlet dimers, while the bound state forT2 only in-
volves two triplets separated by an odd number of sing
dimers, so that the two states lie in disjoint sectors.

V. CONCLUSION AND DISCUSSION

In this paper we have carried out an extensive investi
tion of the two-particle spectra of the frustrated alternat

o

FIG. 16. The rescaled binding energyEb /Jln at k5p/2 versus
dimerizationd for three singlet bound statesSi ( i 51,2,3) of the
J1-J2-d chain witha5(12d)/2. The inset enlarges the region ne
d50. Several different integrated differential approximants to
series are shown.
1-11



ion
ex
ita
a

rtie
co-
an
W

on

h
ate

igh

ded

alf
s.
e a
tral

e-
un-

ad-

on-
with
be
iton

al,
-
y

y-

n
lly,
m
n-
ture.

o-
by

94.
m

uth
is-

part
l-

and
he
y.
ov

r
r-

are
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Heisenberg chains using strong coupling series expans
In the regime of weakly coupled dimers, the elementary
citations of the system are triplets and the spin-half exc
tions are confined. In this regime our series expansions
convergent, and we have studied in great detail the prope
of the two-particle spectra, including binding energies,
herence lengths, and critical properties associated with v
ishing binding energies and diverging coherence lengths.
find in every case, just as for the spin ladder system,15 that
where a two-particle bound state emerges below the c
tinuum at a ‘‘critical momentum’’kc , the binding energy
behaves as (k2kc)

2 as k→kc1 , and the coherence lengt
diverges, as one would expect. Several distinct bound st
can be identified, particularly neark5p/2. Many of the
bound states can only be seen by going to sufficiently h

FIG. 17. The rescaled binding energyEb /Jln at k5p/2 versus
dimerizationd for three triplet bound statesTi ( i 51,2,3) of the
J1-J2-d chain witha5(12d)/2. The inset enlarges the region fo
T3. For T1 andT2, the results of several different integrated diffe
ential approximants to the series are shown, while forT3 the nu-
merical results from the integral equation at order 14 to 19
shown.
N

c

.

144411
s.
-
-
re
s

-
e

-

s

orders in the perturbation expansion, showing the exten
character of the pair attraction.

We have also studied the regime of deconfined spin-h
excitations (d→0) by using series extrapolation method
Several properties of one and two-particle spectra giv
clear indication of this deconfinement transition. The spec
weights of the triplets vanish at the transition~except near
k5p/2) and the singlet and triplet excitations become d
generate. These methods can be used to look for such
binding transitions in higher-dimensional models as well.

Our studies also raise several puzzles that need to be
dressed in the future. How does the spectrum betweenD and
2D get filled up as one goes from the confined to the dec
fined phase? We suspect that multiparticle bound states,
varying number of triplets are important. This needs to
further addressed. The picture is much clearer in the sol
language, as one might expect: at smalld, there is a discrete
spectrum ofs2 s̄ bound states confined by a linear potenti
which becomes continuous asd→0 and the confining poten
tial vanishes.5,6,8 Another puzzle is the crossing of energ
levels. As l goes from zero to unity along the Shastr
Sutherland line, one expects to see crossing ofn-particle
states, with differentn. How does this take place? How ca
this be accounted for within the perturbation theory? Fina
are the Shastry-Sutherland bound states stable away frok
5p/2, where they might decay into the four-soliton co
tinuum? We hope to address some of these issues in fu
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