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2 Computational Laboratory, ETH Zentrum, CH-8092 Zürich, Switzerland
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Abstract. We introduce an algorithm for systematically improving the
efficiency of parallel tempering Monte Carlo simulations by optimizing the
simulated temperature set. Our approach is closely related to a recently
introduced adaptive algorithm that optimizes the simulated statistical ensemble
in generalized broad-histogram Monte Carlo simulations. Conventionally, a
temperature set is chosen in such a way that the acceptance rates for replica
swaps between adjacent temperatures are independent of the temperature and
large enough to ensure frequent swaps. In this paper, we show that by
choosing the temperatures with a modified version of the optimized ensemble
feedback method we can minimize the round-trip times between the lowest and
highest temperatures which effectively increases the efficiency of the parallel
tempering algorithm. In particular, the density of temperatures in the optimized
temperature set increases at the ‘bottlenecks’ of the simulation, such as phase
transitions. In turn, the acceptance rates are now temperature dependent in the
optimized temperature ensemble. We illustrate the feedback-optimized parallel
tempering algorithm by studying the two-dimensional Ising ferromagnet and the
two-dimensional fully frustrated Ising model, and briefly discuss possible feedback
schemes for systems that require configurational averages, such as spin glasses.
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1. Introduction

The free energy landscapes of complex systems are characterized by many local minima
that are separated by entropic barriers. The simulation of such systems with conventional
Monte Carlo methods is slowed down by long relaxation times due to the suppressed
tunnelling through these barriers. Extended ensemble simulations address this problem
by broadening the range of phase space which is sampled in the respective reaction
coordinate. Recently, an adaptive algorithm [1] has been introduced that explores
entropic barriers by sampling a broad histogram in a reaction coordinate and iteratively
optimizes the simulated statistical ensemble defined in the reaction coordinate to speed
up equilibration. The key idea of the approach is to measure the local diffusivity along
the reaction coordinate, thereby identifying the bottlenecks in the simulations and then
using this information to systematically shift statistical weights towards these bottlenecks
in a feedback loop. The optimized histogram converges to a characteristic form exhibiting
peaks at the bottlenecks of the simulation, e.g., in the vicinity of the entropic barriers. The
simulation of an optimized ensemble results in equilibration times that can be substantially
lower compared to those for other extended ensemble simulations that aim at sampling
a flat histogram in the respective reaction coordinate [1, 2]. Flat-histogram algorithms
include the multicanonical method [3, 4], broad histograms [5] and transition matrix Monte
Carlo [6] when combined with entropic sampling, as well as the adaptive algorithm of Wang
and Landau [7, 8].

Parallel tempering Monte Carlo [9] has proven to be a strong ‘workhorse’ in fields as
diverse as chemistry, physics, biology, engineering and materials science [10]. Like replica
Monte Carlo [11], simulated tempering [12] and extended ensemble methods [13], the
algorithm aims to overcome entropic barriers in the free energy landscape by simulating
a broad range of temperatures. This allows the system to escape metastable states when
wandering to higher temperatures and subsequently relaxing at lower temperatures again
on timescales that are substantially smaller than for conventional simulations at a fixed
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temperature. In this paper, we maximize the efficiency of parallel tempering Monte Carlo
by optimizing the distribution of temperature points in the simulated temperature set such
that round-trip rates of replicas between the two extremal temperatures in the simulated
temperature set are maximized. The optimized temperature sets are determined by an
iterative feedback algorithm that is closely related to the previously mentioned adaptive
ensemble optimization method for broad-histogram Monte Carlo simulations [1]. The
feedback method concentrates temperature points near the bottleneck of a simulation,
typically in the vicinity of a phase transition or the ground state of the system. As
a consequence, we find that for the optimal choice of temperatures the acceptance
probabilities for swap moves between neighbouring temperature points show a strong
modulation with temperature and are not independent of temperature as suggested in
several recent approaches [14]–[19].

The paper is structured as follows. In section 2 we present a detailed introduction of
the parallel tempering Monte Carlo method. In section 3 we generalize the feedback
method of [1] to the parallel tempering Monte Carlo algorithm. Results on two
paradigmatic models, the two-dimensional Ising ferromagnet and the two-dimensional
fully frustrated Ising model, are presented in section 4, as well as a discussion on how
to proceed with systems that require configurational averages, such as spin glasses.
Concluding remarks follow in section 5.

2. Parallel tempering Monte Carlo

In the parallel tempering Monte Carlo algorithm [9], [11]–[13], M non-interacting replicas
of the system are simulated simultaneously at a range of temperatures {T1, T2, . . . , TM}.
After a fixed number of Monte Carlo sweeps a sequence of swap moves, the exchange of
two replicas at neighbouring temperatures, Ti and Ti+1, is suggested and accepted with a
probability

p(Ei, Ti → Ei+1, Ti+1) = min{1, exp(∆β∆E)}, (1)

where ∆β = 1/Ti+1 − 1/Ti is the difference between the inverse temperatures and
∆E = Ei+1 − Ei is the difference in energy of the two replicas. At a given temperature,
an accepted swap move effects a global update as the current configuration of the system
is exchanged with a replica from a nearby temperature. For a given replica, the swap
moves induce a random walk in temperature space. This random walk allows the replica
to overcome free energy barriers by wandering to high temperatures where equilibration is
rapid and return to low temperatures where relaxation times can be long. The simulated
system can thereby efficiently explore complex energy landscapes that can be found in
frustrated spin systems [20], spin glasses [21]–[23] or proteins [24]. While the simulation of
M replicas takes M times more CPU time, the speedup attained with parallel tempering
Monte Carlo can be orders of magnitude larger. In addition, one often wishes to measure
observables as a function of temperature. Thus parallel tempering Monte Carlo delivers
already several measurements at different temperatures in one simulation. In order to
maximize the number of statistically independent visits at low temperatures, we want to
maximize for each replica the number of round-trips between the lowest and highest
temperature, T1 and TM , respectively. The rate of round-trips of a replica strongly
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depends on the simulated statistical ensemble, that is the choice of temperature points
{T1, T2, . . . , TM} in the parallel tempering simulation.

In this paper, we present an algorithm that systematically optimizes the simulated
temperature set to maximize the number of round-trips between the two extremal
temperatures T1 and TM for each replica and thereby substantially improve equilibration
of the system at all temperatures. Conventional approaches assume that to achieve this
goal, the simulated temperature set should be chosen in such a way that the probability for
replica swap moves at neighbouring temperatures should be ‘flat’, that is approximately
independent of temperature. If the specific heat of the system is assumed to be constant,
then a good approximation for such a temperature set can be attained with a geometric
progression [17]. Given a temperature range [T1, TM ], the intermediate M−2 temperatures
can be computed via

Tk = T1

k−1∏

i=1

Ri Ri = M−1

√
TM

T1
. (2)

The geometric progression peaks the number of temperatures around the minimum
temperature T1 where a slower relaxation is assumed. This is not optimal when the
system has a diverging specific heat (at an intermediate temperature), because in order
to ensure enough overlap between the energy distributions of neighbouring temperatures
∆Ti,i+1 ∼ CV Ti/

√
N , where CV is the specific heat per spin and N the number of spins,

the acceptance probabilities are inversely correlated with the functional behaviour of CV

via the inverse beta function law [17]. Thus, for example at a phase transition where the
specific heat diverges, the acceptance probabilities for a geometric temperature set will
show a pronounced dip (cf section 4.1). More complex methods such as the approach by
Kofke [14, 15], its improvement by Rathore et al [16], as well as the method suggested
by Predescu [17, 18] aim to obtain acceptance probabilities for the parallel tempering
moves that are independent of temperature by compensating for the effects of the specific
heat. In particular, Kone and Kofke [19] suggest that an acceptance probability of 23%
is optimal. In this work we show that this is not necessarily the optimal case.

3. Temperature set optimization

Our goal is to vary the temperature set {Ti} of a parallel tempering simulation in such a
way that for a given system we speed up equilibration at all temperatures. To accomplish
this, we maximize the rate of round-trips that each replica performs between the two
extremal temperatures Tmin = T1 and Tmax = TM following a similar approach to the
ensemble optimization technique presented in [1]. For a given temperature set, we can
measure the diffusion of a replica through temperature space by adding a label ‘up’ or
‘down’ to the replica that indicates which of the two extremal temperatures, Tmin and
Tmax respectively, the replica has visited most recently. The label of a replica changes
only when the replica visits the opposite extreme. For instance, the label of a replica
with label ‘up’ remains unchanged if the replica returns to the lowest temperature Tmin,
but changes to ‘down’ upon its first visit to Tmax. This is illustrated in figure 1. For
each temperature point in the temperature set {Ti}, we record two histograms nup(Ti)
and ndown(Ti). Before attempting a sequence of swap moves, we increment that histogram
at temperature Ti which has the label of the respective replica currently at temperature
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τrt

Tmin

Tmax

τ
τup τdown

Figure 1. Sketch of the random walk that a given replica performs in temperature
space in the course of the simulation. Ideally, the replica will wander up (τup) and
down (τdown) in the simulated temperature range [Tmin, Tmax]. The goal of the
feedback method is to maximize the number of round-trips each replica performs
in this temperature range, and thereby minimize the average round-trip time
τrt = τup + τdown.

Ti. If a replica has not yet visited either of the two extremal temperatures, we increment
neither of the histograms. This allows us to evaluate for each temperature point the
fraction of replicas which have visited one of the two extremal temperatures most recently
(e.g., Tmin) as

f(Ti) =
nup(Ti)

nup(Ti) + ndown(Ti)
. (3)

The labelled replicas define a steady-state current j from Tmin to Tmax that is
independent of temperature, e.g., the rate at which ‘up’ walkers are created at Tmin and—
in equilibrium—absorbed at Tmax. In the following we assume that T is a continuous
variable, independent of the temperature points in the current temperature set. We can
then determine the current j to first order in the derivative as

j = D(T )η(T )
df

dT
, (4)

where D(T ) is the local diffusivity at temperature T and the derivative df/dT is estimated
by a linear regression based on the measurements in equation (3); η(T ) is a density
distribution indicating the probability for a replica to reside at temperature T . We
approximate η(T ) with a step function η(T ) = C/∆T , where ∆T = Ti+1 − Ti is the
length of the temperature interval around temperature Ti < T < Ti+1 for the current
temperature set. The normalization constant C is chosen such that

∫ TM

T1

η(T ) dT = C

∫ TM

T1

dT

∆T
= 1. (5)

Rearranging equation (4) gives a simple measure of the local diffusivity D(T ) of a replica
at temperature T

D(T ) ∼ ∆T

df/dT
, (6)
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where we have dropped the normalization constant C and the current j which is constant
for any specific choice of temperature set.

To increase the efficiency of the algorithm, we maximize the current j in temperature
space by varying the simulated temperature set {Ti} and thus varying the probability
distribution η(T ) between the two extremal temperatures, Tmin and Tmax, which are not
changed. In [1] it has been shown that the optimal probability distribution ηopt(T ) is
inversely proportional to the square root of the local diffusivity D(T ):

ηopt(T ) ∝ 1√
D(T )

. (7)

For the optimal distribution of temperature points the fraction f opt(T ) then decays as

df

dT

opt

= ηopt(T ) ∝ 1

∆T opt
, (8)

which implies that for any given temperature interval ∆T = Ti+1 − Ti of the optimal
temperature set the fraction has a constant decay

∆f opt = f opt(Ti) − f opt(Ti+1) = 1/(M − 1), (9)

where M is the number of replicas.
In our algorithm we approach the optimal temperature set and its respective

probability distribution by iteratively feeding back measurements of the local diffusivity.
After measuring the diffusion of replicas for a given temperature set an improved
probability distribution η′(T ) is found as

η′(T ) =
C ′

∆T ′ = C ′
√

1

∆T

df

dT
, (10)

where the normalization constant C ′ is again chosen so that the normalization condition in
equation (5) is met. The step function η′(T ) is still defined for the original temperature
set, that is the jumps in the function occur at the temperature points in {Ti}. The
optimized temperature set {T ′

i} is then found by choosing the kth temperature point T ′
k

such that
∫ T ′

k

T ′
1

η′(T ) dT =
k

M
, (11)

where 1 < k < M and the two extremal temperatures T ′
1 = T1 and T ′

M = TM remain
fixed.

We summarize the feedback algorithm by the following sequence of steps:

• Start with a trial temperature set {Ti}.
• Repeat.

* Reset the histograms nup(T ) = ndown(T ) = 0.
* For the current temperature set perform a parallel tempering simulation with

Nsw swap moves. After each sequence of swap moves:
Update the labels of all replicas.
Record histograms nup(T ) and ndown(T ).
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* For the given temperature set estimate an optimized probability distribution
η′(T ) via

η′(T ) = C ′
√

1

∆T

df

dT
.

* Obtain the optimized temperatures {T ′
i} via

∫ T ′
k

T1

η′(T ) dT =
k

M
.

* Increase the number of swaps Nsw ← 2Nsw.

• Stop once the temperature set {Ti} has converged.

The initial number of swaps Nsw should be chosen large enough that a few of round-
trips are recorded, thereby ensuring that steady-state data for nup(T ) and ndown(T ) are
measured. The derivative df/dT can be determined by a linear regression, where the
number of regression points is flexible. Initial batches with the limited statistics of only a
few round-trips may require a larger number of regression points than subsequent batches
with smaller round-trip times and better statistics.

4. Results

4.1. Ferromagnetic Ising model

In order to illustrate the feedback method, we start with a simple test model, the two-
dimensional ferromagnetic Ising model (FM). The Hamiltonian for the model is given by

HFM = −J
∑

〈i,j〉

SiSj , (12)

where J = 1 and Si = ±1 represent Ising spins on a square lattice with N = L2 spins.
In our simulations we apply periodic boundary conditions and consider nearest-neighbour
interactions only. The simple Ising model with uniform couplings has no frustration or
disorder, and exhibits a second-order phase transition at Tc = 2/ ln(1 +

√
2) ≈ 2.269 from

a magnetically ordered to a paramagnetic phase.
For simplicity, we define an initial temperature set {Ti} with M = 21 temperature

points performing a geometric progression, equation (2), for a temperature interval
[T1 = 0.1, TM = 10.0]. The minimum temperature T1 is chosen low enough that the
system can approach the zero-temperature ground state of the model, and the maximum
temperature TM is chosen well above the critical region of the phase transition. For a
short parallel tempering simulation (Nsw = 1.6 × 107, one parallel tempering swap after
each lattice sweep) using this initial temperature set, we measure the diffusive current of
replicas wandering from the lowest to the highest temperature using an additional label
for each replica as described above. In figure 2 we show the fraction of replicas diffusing
‘up’ in temperature space. For the geometric temperature set a sharp drop between
two temperature points is observed close to the critical region of the phase transition
at Tc ≈ 2.269. Similar results are also found for a ‘flat’ temperature set where the
acceptance rates are approximately constant around ∼40% (with fluctuations of ∼10%)
and independent of temperature, although the drop is not as pronounced.
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Figure 2. Fraction f(T ) of replicas diffusing from the lowest to the highest
temperature as a function of the temperature index for the ferromagnetic Ising
model. For the initial temperature set based on a geometric progression (filled
squares), the fraction shows a sharp drop between two temperature points. A
similar behaviour is found for a temperature set where the acceptance rates
are constant ∼40% independent of temperature (temperature set with ‘flat’
acceptance rates, open squares). In contrast, for the optimized temperature set
(triangles) the fraction constantly decreases. The inset shows the fraction as a
function of temperature T . The dashed line in the inset represents the critical
temperature of the two-dimensional Ising model, Tc ≈ 2.269.

Calculating the local diffusivity D(T ) for the random walk in temperature space
using equation (6), we find a strong suppression around this critical region as illustrated
in figure 3. When increasing the size of the simulated system, the dip in the local
diffusivity further proliferates, an additional indicator that the slowdown of the random
walk in temperature space is dominated by the occurrence of a phase transition. Note the
logarithmic scale of the ordinate axis in figure 3.

When applying the feedback, equation (11), to define a new temperature set, this
suppression in the local diffusivity leads to a concentration of temperature points near
the critical temperature as shown in figure 4. The feedback thereby tries to compensate
for the reduced mobility of replicas in the critical region by reallocating resources towards
this temperature range. In contrast, the density of temperatures close to the lowest
temperature is greatly reduced, thereby suppressing constant swapping of replicas at low
temperatures where for the initial temperature set multiple replicas converged to the fully
polarized ground-state configuration.

This effect becomes even more evident when measuring the acceptance probabilities
for swap moves as illustrated in figure 5. The acceptance probabilities for the initial
temperature set based on a geometric progression saturate close to unity for temperatures
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Figure 3. Local diffusivity D(T ) of the random walk a replica performs in
temperature space for the ferromagnetic Ising model as a function of temperature
T after the feedback optimization for several system sizes L. Notice the
logarithmic vertical scale. The vertical dashed line represents Tc ≈ 2.269.

below T � 0.7, whereas they show a pronounced dip already for small system sizes
(L = 20) around the critical temperature (marked by a vertical dashed line). In contrast,
the feedback-optimized temperature set shows a pronounced peak in the acceptance
rate A(T ) near the critical temperature where temperature points are accumulated by
the feedback. Away from the critical temperature region the acceptance probabilities
drop. The inset of figure 5 shows the acceptance probabilities A(T ) for the optimized
temperature sets for a fixed number of replicas and varying sizes of the simulated system.
While the acceptance probability around the critical temperature remains nearly constant,
the exact value away from the critical region decreases with increasing system size. This
‘mean’ acceptance probability away from the bottleneck of the simulation can be tuned
by varying the number of simulated replicas.

The fact that for the optimized temperature set the acceptance probabilities vary with
temperature contradicts various alternative approaches in the literature [15]–[19] that aim
at choosing a temperature set in such a way that the acceptance probability of attempted
swaps becomes independent of temperature. Naively, one might assume that the choice
of constant acceptance rates produces an unbiased random walk in temperature space.
This assumption is similar to the idea underlying generalized-ensemble algorithms that
aim to sample a flat histogram in the energy such as the multicanonical method [3, 4] or
the Wang–Landau algorithm [7, 8]. For these flat-histogram algorithms, it has been shown
that they cannot reproduce the scaling behaviour of an unbiased Markovian random walk
in energy space, but experience critical slowing down [2]. This slowdown can be overcome
by optimizing the simulated statistical ensemble by a similar feedback algorithm [1] as
presented here and sampling an optimized histogram that in general is not flat, but
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Figure 4. Temperature sets for the ferromagnetic Ising model for different
feedback steps. Starting from a geometric progression temperature set (step
0), we apply a feedback loop until the temperature set converges. While the
geometric progression places many temperatures at low temperatures, the density
of temperatures after the feedback optimization is highest at the bottleneck of the
simulation around the critical temperature (marked by a vertical dashed line).
Rapid convergence of the optimized temperature set is found after 3–4 feedback
steps and a total of Nsw ≈ 1.6 × 107 swap moves in our parallel tempering
simulations.

reallocates resources towards the bottleneck of the simulation, e.g., in the vicinity of a
phase transition or close to the ground state of the system.

Measuring the diffusion of replicas in a subsequent simulation for the optimized
temperature set, we find that the current of replicas wandering from the lowest to the
highest temperature is now characterized by a constantly decreasing fraction f(T ) in
agreement with equation (9) as shown in figure 2 (triangles). In addition, we find that for
the optimized temperature set the replicas wander evenly up and down in temperature
space, that is τup ≈ τdown.

In figure 6 we show the ratio between the mean round-trip times τ rt before
optimization from a geometric and ‘flat’ temperature set divided by the mean round-
trip times τ opt

rt after optimization in order to illustrate the speedup in replica diffusion
attained by the feedback procedure. The data show clearly for all system sizes that the
round-trip times after the optimization of the temperature set do not increase as fast as
for a geometric progression or ‘flat’ temperature set. Note that for these temperature sets
with a fixed number of temperature points the average round-trip times before and after
the feedback optimization scale ∼ exp(aLb) for the system sizes studied. It is important
to note that our algorithm identifies the bottleneck of the parallel tempering simulation
that in this model occurs in the form of critical slowing down at the phase transition
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Figure 5. Acceptance probabilities A(T ) as a function of temperature T for the
ferromagnetic Ising model. The inset shows the acceptance rates as a function of
temperature in the optimized case for varying system sizes L and a fixed number
of temperature points. The vertical dashed line marks the critical temperature.

Figure 6. Average round-trip times τ rt before the optimization divided by the
average round-trip times after the feedback optimization (τ opt

rt ) as a function
of system size. The data for the filled squares are for a system starting from
a geometric progression and represent the speedup obtained by the feedback
method. The open symbols correspond to a temperature set which initially has
‘flat’ acceptance probabilities. The dashed lines are guides to the eye.
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solely based on measurements of the local diffusivity. The feedback then allows to shift
additional resources towards this bottleneck in a quantitative way. In the next section,
we apply the algorithm to a more complex model with frustration and a different type of
phase transition at zero temperature.

4.2. Fully frustrated Ising model

The Hamiltonian of the fully frustrated (FF) Ising model is given by

HFF = −
∑

〈i,j〉

JijSiSj, (13)

where the spins lie on the vertices of a two-dimensional square lattice with periodic
boundary conditions. The bonds Jij are chosen such that |Jij| = 1, but with the constraint
that the product of the bonds around all plaquettes of the system is negative, i.e.,

∏

��
Jij = −1. (14)

The model does not order at finite temperatures, but exhibits a critical point at zero
temperature. In the vicinity of this transition to a highly degenerate ground-state
manifold, the system relaxes very slowly.

In this section, we discuss our feedback optimization algorithm for two choices of the
initial temperature set. First we start from the temperature set introduced in section 4.1
computed with a geometric progression, equation (2), which has Tmin = 0.1, Tmax = 10.0
and M = 21 temperatures. In this first approach, we keep the number of temperature
points constant for all system sizes L. In the second approach, we choose an initial
temperature set where we fix again Tmin and Tmax to the aforementioned values but
tune the number of temperatures M as well as their position in such a way that we
obtain acceptance probabilities for swap moves that are approximately independent of
the temperature (‘flat’) with a mean value of A(T ) ∼ 40% and deviations around this
mean value of maximally 10%.5

We show the fraction f(T ) of replicas diffusing from the lowest to the highest
temperature as a function of the temperature index in figure 7. Like for the Ising model,
the data for the geometric progression temperature set deviate considerably from a straight
line which is expected for the optimal temperature distribution. A similar behaviour is
found when starting from a temperature set that initially has temperature-independent
acceptance probabilities. The local diffusivity in temperature space calculated from the
measured diffusive current is plotted in figure 8. There is a pronounced dip in the
diffusivity around T ≈ 0.5 that we can identify as the temperature region where the
system enters the highly degenerate ground-state manifold, e.g., by calculating the energy
of the system, as plotted in figure 9. Again we find that the diffusivity points to a strong
bottleneck of the simulation at the critical point which for the fully frustrated Ising model
is at the transition to the zero-temperature ground-state manifold. The general shape of

5 Due to the discrete energy space for the fully frustrated Ising model the tuning of the temperature points
is extremely difficult. Small changes to one of the temperature points can change the acceptance probabilities
drastically. Thus the ‘flat’ temperature sets, computed with an approximate method due to Predescu [32] exhibit
acceptance probabilities for swap moves which are approximately constant and independent of temperature within
10–20%.

doi:10.1088/1742-5468/2006/03/P03018 12

http://dx.doi.org/10.1088/1742-5468/2006/03/P03018


J.S
tat.M

ech.
(2006)

P
03018

Feedback-optimized parallel tempering Monte Carlo

Figure 7. Fraction f(T ) of replicas diffusing from the lowest to the highest
temperature for the fully frustrated Ising model. Displayed are data for an initial
‘flat’ temperature set with M = 21 temperature points that yields temperature-
independent acceptance probabilities for swap moves (open squares). In addition,
data for a geometric progression (M = 21) are also shown (filled squares). After
the optimization, the change in the fraction is independent of the temperature
index (triangles). The inset shows the fractions as a function of temperature T .
Data for Nsw = 2 × 106.

Figure 8. Local diffusivity D(T ) of a random walk in temperature space for the
fully frustrated Ising model as a function of temperature T after the feedback
optimization for several system sizes L. Notice the logarithmic vertical scale.
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Figure 9. Energy per spin e(T ) = (1/N)[〈H〉]av as a function of temperature T
for the fully frustrated Ising model for several system sizes. The data show that
already for T � 0.5 the energy is independent of temperature, thus signalling that
the system has reached the ground state. The inset zooms into the temperature
range around T = 0.

the diffusivity in the vicinity of this bottleneck remains unchanged with respect to the
feedback. By applying the feedback method, additional temperature points are shifted
towards this bottleneck which is illustrated in figure 10 for the geometric progression
(full symbols) as well as the ‘flat’ temperature set (open symbols). For moderately large
system sizes, we again find rapid convergence of the generated temperature sets within 3–4
feedback steps and a total of Nsw ≈ 7.5×106 swap moves. For the optimized temperature
set, the diffusive current is again characterized by a fraction of replicas drifting from the
lowest to the highest temperature that linearly decreases with the temperature index; see
figure 7 (triangles).

The acceptance probabilities A(T ) for replica swap moves are shown in figure 11 for
simulations with a geometric progression and the optimized temperature set. While the
acceptance probabilities peak at unity close to zero and dramatically drop in the geometric
progression temperature set, in the optimized set most temperatures are reshuffled to
the low temperature region slightly above zero temperature where the system enters the
highly degenerate ground-state manifold. The inset to figure 11 shows the acceptance
probabilities as a function of temperature for a fixed number of temperatures, as well
as Tmin = 0.1 and Tmax = 10.0 fixed. As in the case for the ferromagnet, the ‘mean’
acceptance probability away from the ground-state bottleneck seems almost independent
of temperature and settles at a value that is determined by the number of temperatures
used for a given system size L.

In order to test the efficiency of the feedback method on the FFIM, in figure 12 we
show the ratio between the mean round-trip times τ rt before optimization divided by the
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Figure 10. Temperature sets for the fully frustrated Ising model for different
feedback steps. Starting from a temperature set where the acceptance
probabilities are independent of temperature with M = 21 temperature points
(open symbols) and a temperature set obtained by a geometric progression also
with M = 21 temperature points (filled symbols), we apply repeated feedback
steps until the temperature sets converge to the optimal distributions. Also shown
are data for an initial temperature set with M = 21 equidistant temperature
points (stars). Independent of the initial temperature set, an optimal temperature
distribution is found after 3–4 iterations and ∼7.5 × 106 swaps. After the
successful feedback, temperature points accumulate near the transition to the
ground state slightly above zero temperature.

mean round-trip times τ opt
rt after optimization in order to illustrate the speedup in replica

diffusion attained by the feedback procedure. The data show clearly for all system sizes
that the round-trip times after the optimization of the temperature set do not increase
as fast as for a geometric progression or ‘flat’ temperature set. For these temperature
sets where the number of temperature points increases with system size we find that the
average round-trip times scale ∼a + bxc.

Finally, we discuss the effects of varying the number of temperatures M in the
temperature set. Figure 13 shows the average round-trip times for the fully frustrated
Ising model (L = 20) as a function of the number of temperatures M . For M � 12, the
average round-trip times show only moderate variations with the number of temperature
points M , whereas for a smaller number of temperatures the average round-trip times
increase drastically. This can be understood by keeping in mind that a parallel tempering
swap will only be accepted with a high probability if the energy distributions between
neighbouring temperatures overlap. If the minimum and maximum temperatures are
fixed and M is reduced, the energy distributions will cease to overlap, which accounts
for the increased average round-trip times. Factoring in the total CPU time, which we
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Figure 11. Acceptance probabilities A(T ) for replica swap moves as a function
of temperature T for the fully frustrated Ising model. While the acceptance
probabilities for a geometric progression temperature set show a pronounced dip
close to T = 0, the optimized ensemble shows a peak close to zero temperature
where the system enters the ground-state manifold. The inset shows, for a
fixed number of temperatures, the acceptance rates as a function of temperature
for different system sizes L. As for the Ising model, the ‘mean’ value away
from the bottlenecks can be tuned by increasing the number of temperatures.
This illustrates that in order to obtain higher acceptance rates away from the
bottlenecks of the simulation, the number of temperatures has to be increased
with increasing L.

define as the product of the average round-trip time and the number of temperatures,
the minimum is more pronounced (inset to figure 13) and clearly illustrates that while
a larger number of temperatures has little effect on the round-trip times, the total CPU
time increases drastically with increasing M .

Because the data for the average round-trip times versus M have an optimal value, it is
conceivable to develop a feedback optimization method that optimizes both the position
of the temperatures and the number of temperatures M . Furthermore, in addition to
optimizing the number and locations of the temperature points, we have also explored
varying the ratio of the number of sweep moves attempted to the number of replica swap
moves attempted, since this is yet another parameter one must set in a parallel tempering
simulation. This ratio can be adjusted globally (the same ratio at all temperatures) or
locally (the ratio optimized independently at each temperature). This will be discussed
in more detail in a subsequent communication.

4.3. Spin glasses

Since the optimization of temperature sets improves the sampling for the two paradigmatic
spin models discussed above, it is a natural step to ask how this feedback optimization
technique can be applied to improve state-of-the-art parallel tempering simulations of
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Figure 12. Average round-trip times τ rt before the optimization divided by the
average round-trip times after the feedback optimization (τopt

rt ) as a function of
system size for the fully frustrated Ising model. The data for the filled squares are
for a system starting from a geometric progression temperature set and represent
the speedup obtained by the feedback method. In addition, we show data for
a temperature set with ‘flat’ temperature-independent acceptance rates (open
squares). The dashed lines are guides to the eye.

Ising spin glass models, such as the three-dimensional (3D) Edwards–Anderson Ising spin
glass [21, 25]:

HSG = −
∑

〈i,j〉

JijSiSj . (15)

Here the spins lie on the vertices of a cubic lattice with periodic boundary conditions. The
bonds Jij are chosen according to a Gaussian distribution with zero mean and standard
deviation unity. The system undergoes a spin glass transition at Tc = 0.951(9) [26]–[28].

For the spin glass there is the additional complexity that different disorder realizations
can lead to strong sample-to-sample variations. Thus one could also surmise that strong
sample-to-sample variations exist for the time it takes to equilibrate individual samples.
This becomes evident when measuring the round-trip times for replicas in a standard
parallel tempering simulation with a fixed temperature set, as illustrated in figure 14 for
the Edwards–Anderson Ising spin glass. We find that the measured round-trip times follow
a fat-tailed Fréchet distribution [29]6 (solid line, fit performed with R7). The integrated
generalized extreme value distribution is given by:

Hξ;µ;β(τ) = exp

[
−

(
1 + ξ

τ − µ

β

)1/ξ
]

. (16)

6 The deviations of the data from the fitting function for large average round-trip times can be ascribed to the
limited statistics used.
7 R Core Team (R Manuals), http://cran.r-project.org
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Figure 13. Average round-trip times τ rt as a function of the number of
temperatures M for the fully frustrated Ising model with L = 20 after the
feedback optimization. The data show that the round-trip times only depend
moderately on the number of temperatures M , provided that there is sufficient
overlap of the energy distributions. For a small number of replicas, this is no
longer the case and the round-trip times increase drastically, e.g., for M � 12
in this plot. The inset shows the CPU time which is the product of the average
round-trip time and the number of temperatures M . The data show a more
pronounced minimum.

Here µ represents a generalized most probable value (location parameter) and β a standard
deviation (scale parameter). The value of the shape parameter ξ determines whether
the distribution is thin-tailed (ξ < 0, Weibull), Gumbel (ξ = 0), or fat-tailed (ξ > 0,
Fréchet) [29]. Note that when ξ > 0, the mth moment of the Fréchet distribution exists
only if |ξ| < 1/m, e.g., if ξ > 1/2 the variance of the distribution is not properly
defined. Our results are in agreement with similar observations for broad-histogram
simulations [2, 30, 31]. Note that the distribution is increasingly more fat-tailed as the
system size increases (see the inset to figure 14).

The measurement of the round-trip times thus allows one to classify individual spin
glass samples as ‘typical’ with round-trip times in the bulk of the distribution or ‘hard’
with round-trip times in the tail of the distribution. Such a classification can be very
useful for shifting computational resources towards the ‘hard’ samples in the course of
a simulation as these samples potentially might require substantially longer simulation
times in order to equilibrate. Preliminary tests suggest correlations between round-trip
and equilibration times. The observation of strong sample-to-sample variations in the
distribution of round-trip times also raises the general question of whether previous spin
glass studies have properly equilibrated the ‘hardest’ samples in their simulations. It
remains to be verified whether this introduces a systematic error in the analysis of spin
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Figure 14. Distribution of average round-trip times for 5000 different samples
of the 3D Edwards–Anderson Ising spin glass with Gaussian disorder and fixed
system size L = 4 in the temperature range from Tmin = 0.10 to Tmax = 2.0. The
data follow a fat-tailed Fréchet distribution (solid line) with a shape parameter
ξ = 035(1). The inset shows the shape parameter ξ as a function of system size
L. Already for L � 5, the shape parameter becomes ξ � 1/2, indicating that
the variance of the distribution is no longer properly defined. The simulations
have been performed using a fixed temperature set with M = 27 temperature
points distributed such that, on average, replica swap moves have a nearly flat
acceptance rate.

glass systems. Specifically, the finite-size scaling should be sensitive to such systematic
errors, as it has been observed that the number of ‘hard’ samples significantly increases
with system size; see the inset in figure 14 and [2, 30], and [31].

On the other hand, we can ask whether we can optimize the simulated temperature
set and generate a ‘common’ temperature set for samples from the various parts of the
distribution. To do so, we apply the feedback optimization outlined above in such a way
that we generate a common probability distribution η̄(T ) for a set of samples that are
each characterized by their own diffusivity Di(T ), steady-state fraction fi(T ) and current
ji, which are related by

ji = Di(T )η̄(T )
dfi

dT
, (17)

where the index i indicates the samples in the given set. Rearranging this equation, the
local diffusivity of an individual sample can be expressed as

Di(T ) =
ji

η̄(T ) · dfi/dT
. (18)
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To ensure equilibration of all samples we want to simulate each sample for a fixed number
of round-trips, despite the strong sample-to-sample variations. In order to minimize the
overall computer time spent on simulating such a set of samples, we then minimize the
sum of round-trip times

∑
i τi. This is equivalent to minimizing the sum of the inverses of

all currents, i.e., j−1
i , since the current ji is inversely proportional to the round-trip time τi.

Following a line of argument similar to that for the original temperature set optimization,
we find that the optimal common temperature distribution η̄opt(T ) is proportional to the
square root of the sum of inverse local diffusivities

η̄opt(T ) ∝
√∑

i

1

Di(T )
. (19)

Again we can use a feedback loop to find an optimized common temperature set by feeding
back the measured local diffusivities

η̄opt(T ) = C

√
η̄(T )

∑

i

(
τi ·

dfi

dT

)
, (20)

where C is a normalization constant. The common optimized temperature set is then
found using a partial integration as given in equation (11).

5. Conclusions

We have introduced an approach for systematically optimizing temperature sets for
parallel tempering Monte Carlo simulations using an adaptive feedback method that is
motivated by a recently developed ensemble optimization technique for broad-histogram
Monte Carlo simulations [1]. We have applied the method to two paradigmatic spin
models, the ferromagnetic Ising model and the fully frustrated Ising model in two
dimensions. For both models we have shown that the feedback technique improves
sampling of the phase space by reducing the average round-trip time of replicas diffusing
in temperature space.

Probably our most important result is the insight that the common wisdom that
temperature sets in parallel tempering Monte Carlo should yield temperature-independent
acceptance probabilities for the swap moves is not necessarily an optimal choice. Our
feedback algorithm shifts temperature points in the optimized temperature sets towards
the bottlenecks of the simulation, typically in the vicinity of a phase transition, where
equilibration is suppressed. In particular, this has the effect that the acceptance
probabilities for replica swap moves are higher around the bottlenecks and are not
temperature independent for the so-optimized temperature sets.

We also outline an approach to define ‘common’ temperature sets for systems that
require configurational averages, such as spin glasses. In addition, we have briefly
discussed the effects of sample-to-sample fluctuations with respect to equilibration times
of individual spin glass samples, thus pointing towards a potential source of systematic
errors in previous numerical studies of spin glasses.

Clearly a deeper analysis of feedback-optimized parallel tempering Monte Carlo is
needed, in particular in the context of spin glasses, as well as the questions raised at the
end of section 4.2.
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A P Young for stimulating discussions. ST acknowledges support by the Swiss National
Science Foundation.

References

[1] Trebst S, Huse D A and Troyer M, Optimizing the ensemble for equilibration in broad-histogram Monte
Carlo simulations, 2004 Phys. Rev. E 70 046701
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