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Abstract. We describe optimized parallel tempering simulations of the 46-residue B-fragment of protein
A. Native-like configurations with a root-mean-square deviation of ≈ 3 Å to the experimentally determined
structure (Protein Data Bank identifier 1BDD) are found. However, at biologically relevant temperatures
such conformations appear with only ≈ 10% frequency in our simulations. Possible shortcomings in our
energy function are discussed.

PACS. 87.14.Ee Proteins – 87.15.Aa Theory and modeling; computer simulation – 87.15.He Dynamics
and conformational changes – 87.15.Cc Folding and sequence analysis

1 Introduction

Rational drug design or the pathology of amyloid diseases
are only two problems whose solutions require a detailed
understanding of the relation between chemical composi-
tion and structure (and function) of proteins. Exploring
this relationship through numerical simulations is a com-
putationally hard problem. Two major factors limit our
ability to efficiently simulate large proteins and study their
folding transitions. First, statistically sampling the rough
energy landscape of a protein can be extremely slow even
at room temperature. Second, the present energy func-
tions are often insufficiently accurate in describing the in-
teractions between the atoms within a protein, and be-
tween protein and their surrounding solvent. It is often
not clear whether the failure of a computer experiment to
find the known structure of a protein results from poor
sampling or lack of accuracy in the energy function.

To overcome some of the limitations of statistical sam-
pling in the simulation of small proteins, sophisticated
simulation schemes such as parallel tempering [1,2] or
generalized ensemble methods [3,4] are now widely em-
ployed numerical methods [5–7] In a recent line of re-
search feedback-optimized algorithms have been devel-
oped that aim at further improving the statistical sam-
pling of these methods by systematically improving the
simulated statistical ensemble [8], e.g. the exact placement
of replicas in temperature space [9–11]. Recent simulations
of the 36-residue villin headpiece sub-domain HP-36 in
reference [10] demonstrated that optimizing the sampled
temperature distribution leads to qualitatively different
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results for the same force field, in this case a combina-
tion of the ECEPP/3 force field [12] with an implicit sol-
vent [13]. Previous simulations of HP-36 in reference [14]
had indicated that the native structure is not the global
free-energy minimum at room temperature for this force
field. However, with the optimized temperature distribu-
tion it was later found that the correct structure is sam-
pled with ≈ 90% frequency at room temperature [10].
Clearly, the earlier numerical simulations suffered from a
sampling problem and resulted in misleading conclusions
on the force field, while the energy function in fact accu-
rately described the interactions for HP-36 as shown in the
latter study with improved sampling. While this result is
promising, the observed sampling difficulties nevertheless
suggest that the energy landscape for HP-36 modeled by
this force field may be more rough than the one experi-
enced by the “real” protein. Given the complexity of the
energy landscape for this small protein, one would expect
that with increasing size and complexity of the molecule
the accuracy of the energy function will further decrease
as the energy landscape gains further complexity. This
would render it even more difficult (or simply impossible)
to pick the correct structure in the numerical simulation
of larger proteins. As stable domains in proteins usually
consists of 50–200 residues it is therefore important to
test the accuracy of current energy functions for proteins
of this size. As a first step in this direction we have ap-
plied the feedback-optimized parallel tempering scheme
to simulate the 46-residue fragment 10–55 of the B do-
main of protein A (Protein Data Bank identifier 1BDD)
which forms the three-helix bundle displayed in Figure 1
as determined in experiments [15]. This is one of the
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Fig. 1. The experimentally determined structure of the 46-
residue B-fragment of protein A as stored in the Protein Data
Bank (identifier 1BDD).

few small proteins with experimentally well-characterized
states. For this reason, it has raised some interest as a
model to test folding algorithms or energy functions [16–
22]. While our high-statistics simulations do find native-
like configurations with a root-mean-square deviation of
≈ 3 Å to the experimentally determined structure, these
configurations do not correspond to the lowest-energy con-
figuration and appear with only around 10% probability
at biologically relevant temperatures. Our results indicate
that this deviation from experiment is due to a bias in the
ECEPP/3 energy function toward helical structures. An-
other contributing factor is the use of an implicit solvent
model in our simulations. These models reduce dramati-
cally the numerical costs of protein simulations but can
lead to distorted free energy landscapes. This effect has
been observed earlier [23,24] even for more sophisticated
implicit solvents than used by us.

2 Methods

Our simulations of the protein-A fragment utilize the
ECEPP/3 force field [12] as implemented in the 2005 ver-
sion of the program package SMMP [25,26]. Here, the
interactions between the atoms within the protein are
approximated by a sum EECEPP/3 consisting of electro-
static energy EC, a Lennard-Jones term ELJ, a hydrogen-
bonding term Ehb and a torsion energy Etor:

EECEPP/3 = EC + ELJ + Ehb + Etor

=
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where rij is the distance between the atoms i and j, ξl
is the l-th torsion angle, and energies are measured in
kcal/mol. The protein-solvent interactions are approxi-
mated by a solvent-accessible surface term

Esolv =
∑

i

σiAi . (2)

The sum goes over the solvent-accessible areas Ai of all
atoms i weighted by solvation parameters σi as determined
in reference [13], a common choice when the ECEPP/3
force field is utilized.

The above-defined energy function leads to an energy
landscape that is characterized by a multitude of minima
separated by high barriers. In order to improve statisti-
cal sampling and speed up equilibration at low tempera-
tures we utilize a parallel tempering scheme [1,2] which
was first used in protein science in reference [27]. In this
scheme N non-interacting copies, or “replicas”, of the pro-
tein are simultaneously simulated at a range of temper-
atures {T1, T2, . . . , TN}. After a fixed number of Monte
Carlo sweeps (or a molecular dynamics run for a fixed
time interval) a sequence of swap moves, the exchange of
two replicas at neighboring temperatures, Ti and Ti+1, is
suggested and accepted with a probability

p(Ei, Ti → Ei+1, Ti+1) = min (1, exp(∆β∆E)) , (3)

where ∆β = 1/Ti+1 − 1/Ti is the difference between the
inverse temperatures and ∆E = Ei+1−Ei is the difference
in energy of the two replicas. The exchange of conforma-
tions considerably improves equilibration for all replicas,
especially those at low temperatures which can have ex-
tremely long equilibration times for conventional canoni-
cal simulations (at a fixed temperature).

The improved equilibration of the replica exchange
scheme is due to the random walks that individual repli-
cas can perform in temperature space allowing them to
move to higher temperatures where equilibration is fast
and then move back down to lower temperatures thereby
escaping barriers in the energy landscape. Obviously, the
number of round trips nrt between the lowest and highest
temperature, T1 and TN , respectively, is a lower bound for
the statistically independent visits at the lowest temper-
ature, and therefore a good measure for the equilibration
of the parallel tempering simulation. It is therefore desir-
able to maximize the number of round trips by optimizing
the position of temperature points in the interval [T1, TN ].
This can indeed be achieved in a systematic way by feeding
back the local diffusivity of the described random walk us-
ing the feedback algorithm described in references [9,10].
Technically, replicas are “labeled” according to which of
the two extremal temperatures, T1 or TN , they have vis-
ited last. Using this label we can define the number of
replicas nup(i) (ndown(i)) which at temperature Ti have
come from T1 (TN ). Then the fraction of replicas moving
in one direction,

fup(i) =
nup(i)

nup(i) + ndown(i)
, (4)
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Fig. 2. Time series of visited temperatures for one of the repli-
cas in the parallel-temperature simulation. Time is measured
in MC sweeps and starts with the beginning of measurements.

describes a stationary distribution of probability flow be-
tween temperatures T1 and TN with boundary conditions
fup(1) = 1 and fup(N) = 0. The local diffusivity D(T )
of the random walk which a single replica performs in
temperature is then given by D(T ) ∝ ∆T · (df/dT )−1,
where ∆T is the size of the temperature interval around
T . Feeding back this local diffusivity it was shown in refer-
ences [9,10] that for the optimal temperature distribution,
i.e. the one that maximizes the number of round trips nrt,
the fraction decreases linearly

f (opt)
up (i) =

N − i

N − 1
. (5)

For our simulations of the protein-A fragment such an op-
timized distribution can be found by applying the iterative
procedure described in references [9,10] and is given for
the 24 replicas in our simulations by 1000, 768, 673, 624,
574, 552, 539, 529, 521, 515, 509, 501, 490, 467, 441, 419,
401, 386, 374, 362, 350, 336, 317, 250. Our data are taken
from a simulation with 1000000 sweeps for each replica.
Here, a sweep consists of a sequential series of attempts
to update each of the 276 dihedral angles (the true de-
grees of freedom in our model) once. After each sweep, we
attempt an exchange move (swap) of configurations be-
tween neighboring temperatures which is accepted with
probability (3). The walk of one replica along the ladder
of temperatures is displayed in Figure 2. Measurements
are taken every ten sweeps and stored for further analy-
sis. These include the energy E, the radius of gyration rgy
as a measure of the geometrical size, and the number of
helical residues nH, i.e. residues where the pair of dihe-
dral angles (φ, ψ) takes values in the range (−70◦ ± 30◦,
−37◦ ± 30◦). Finally we recorded the configurations with
overall lowest energy obtained in our simulation.

3 Results and discussions

The biologically active state of a protein is thought to be
the global minimum of the free energy at room temper-
ature. Heating leads to unfolding that is reversible after

Fig. 3. The specific heat C(T ) as a function of temperature
T . A peaked signal is found at the helix-coil transition around
Tc = 515K where the helicity nH(T ) increases, see the inset.
Below the transition a shoulder emerges over a broad tempera-
ture regime in which the average end-to-end distance de-e of the
protein decreases rapidly as shown in the inset, an indication
that the helices form a secondary structure.

cooling. Hence, the folding transition should be marked
by a signal in the specific heat

C(T ) = β2(〈E2〉 − 〈E〉2)/N, (6)

with β = 1/kBT (kB is the Boltzmann constant) and N
the number of residues. For protein A we indeed find a
pronounced peak in the specific heat, displayed in Fig-
ure 3, at a temperature Tc = 515K. This peak is related
to the formation of α-helices as one can see from the inset
where the average number nH of residues which are part
of an α-helix is plotted versus temperature. Around the
transition temperature Tc the helicity rapidly increases.
The corresponding formation of hydrogen bond between
residues (i, i + 4) leads to a much lower energy of such
configurations, and the resulting fluctuation in the aver-
age energy as a function of temperature is measured by the
specific heat. Below this helix-coil transition a shoulder is
observed in the specific heat in a temperature range be-
tween 330–430K. Since the helicity varies only little in this
temperature range, but the typical end-to-end distance
de-e of the protein-A configurations decreases rapidly —as
shown in the inset of Figure 3— this temperature regime
is marked by the formation of a secondary structure of
the helical segments which we will discuss in detail below.
As the temperature is further decreased below T ≈ 330K,
the specific heat lowers again and the end-to-end distance
approaches a constant value.

A more detailed picture of the formation of a com-
pact secondary structure emerges when looking at the fre-
quency of configurations with typical end-to-end distances
de-e and their respective radius of gyration rgy, a mea-
sure for the compactness of a folded protein structure,
which are both plotted versus temperature in Figure 4.
At temperatures directly below the helix coil transition,
e.g. our data point at T = 440K, the histograms indicate
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Fig. 4. Frequency of (a) the radius of gyration rgy and (b) the
end-to-end distance de-e for various temperatures. Each data
point samples entries of a bin with 1 Å width. The histograms
are normalized.

that configurations still differ widely as seen from the
broad distributions found in both histograms, but with
a clear preference for extended structures with a radius
of gyration centered around rgy = 15 Å. In the shoul-
der region of the specific heat, e.g. at our data points
T = 400K and T = 387K, a double peak appears in his-
togram of the radius of gyration indicating the competion
between extended structures (rgy ≈ 15 Å) and compact

ones (rgy ≈ 11 Å). Further decreasing the temperature
we are finally left with compact configurations only (with
rgy ≤ 11 Å). The histograms in the radius of gyration seem
to indicate a compactification transition where distinct
secondary structures are formed at around 387–400K that
separates compact helical structures from extended heli-
cal structures immediately below the helix-coil transition
around Tc = 515K. Indeed, we find that two different com-
pact structures are primarily formed below this compact-
ification transition as becomes evident from our measure-
ments of frequencies of typical end-to-end distance for var-
ious temperatures. Above the compactification transition
and below the helix-coil transition the histogram of typical
end-to-end distances is first centered around de-e = 43 Å
for T = 440K and an almost flat histogram is observed

Fig. 5. Typical extended low-energy structure with high heli-
cal content (Type I).

at T = 400K for de-e = 9–40 Å. Below T = 387K two
additional peaks form around de-e = 9 Å and de-e = 23 Å,
while there is still a broad feature around de-e = 40 Å. Fur-
ther lowering the temperature, the two peaks de-e = 9 Å
and de-e = 23 Å further proliferate and become the domi-
nant feature in the histogram. Finally, towards the lowest
temperature T = 250K which we sampled, only configu-
rations with small end-to-end distance prevail with more
than 90% of all sampled configurations having a typical
end-to-end distance of de-e ≤ 10 Å.

The above analysis of the histograms of typical radius
of gyration and end-to-end distance indicate that below
the helix-coil transition temperature of Tc = 515K there
exist three different types of configurations which all have
high helix-content (nH ≈ 32–40) but differ strongly in
their respective arrangement of the helical segments. Two
of these structures are compact, while one is extended and
found only above the compactifcation transition around
T ≈ 387K. A typical example for the extended helical
structure —named “structure I”— is shown in Figure 5.
The illustrated configuration has a radius of gyration of
rgy = 13.5. Å, an end-to-end distance of de-e = 34.0 Å,

and a solvent-accessible surface area of ASAS = 4440 Å2.
All three helical segments are formed, but the total helic-
ity is with 39 helical residues higher than the one found
for the PDB structure where only 34 residues are part
of an α-helix. Accordingly, its root-mean square devia-
tion (rmsd) to the native structure (as deposited in the
Protein Data Bank under the identifier 1BDD) is 11.5 Å
(calculated over backbone atoms only). The total energy
after minimization is Etot = −643 kcal/mol, of which
Esolv = −186 kcal/mol result from the solvation energy
and EECEPP/3 = −457 kcal/mol from the intramolecular
interactions. Figure 6 displays the first of the two com-
pact structures found below the compactification transi-
tion. Named “structure II” it is the configuration with
lowest overall energy found in our extensive simulations.
After minimization we have Etot = −692 kcal/mol, with
the energy difference to the previous structure result-
ing from the more favorable intramolecular interactions
(EECEPP/3 = −510 kcal/mol) while there is little differ-
ence in the solvation term, Esolv = −182 kcal/mol. The
small end-to-end distance of de-e = 5.7 Å reflects a triangle
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Fig. 6. One of the typical triangle-shaped compact structures
characterized by small end-to-end distance de-e (Type II).

Fig. 7. Another typical compact structure, but with larger
end-to-end distance de-e (Type III). This structure resembles
the native structure as deposited in the PDB and shown in
Figure 1.

shape of this configuration which differs from the native
one by a rmsd of 7.5 Å and is with 41 residues maxi-
mal helical. The configuration is with rgy = 11.3 Å and

a solvent accessible surface area ASAS = 3950 Å2 more
compact than the extended structure (type I) but not as
compact as the native one which has rgy = 9.7 Å, and a

solvent-accessible surface area ASAS = 3333 Å2. A closer
resemblance to the native structure has the second type of
compact configurations found in our simulations, named
“structure III” and illustrated in Figure 7. This struc-
ture differs from the other compact, triangle-shaped struc-
ture (“structure II”) in that it is more compact but has a
smaller helicity with only 37 residues which are part of an
α-helix. For this configuration we have measured a radius
of gyration of rgy = 10.4 Å, a solvent-accessible surface

area ASAS = 3780 Å2, and an end-to-end distance de-e =
23.0 Å. Strikingly, the rmsd to the native structure is only
3.3 Å. However, the total energy Etot = −662 kcal/mol
is by about 30 kcal/mol higher than the one of the other
compact structure shown in Figure 6. This is similar to ref-
erence [22] where the best sampled structure has a rmsd of
2.33 Å to the native one, but the lowest-energy configura-
tion differs by 6.41 Å. In our case, the difference for the two
compact structures is primarily due to the ECEPP/3 en-
ergy which for the second compact structure is found to be
EECEPP/3 = −484 kcal/mol while both compact structure
have similar solvation energy, Esolv = −178 kcal/mol for
the second compact structure. This may indicate short-
comings of our implicit solvent. This conjecture is sup-
ported by reference [19] where native-like configurations

Fig. 8. Frequency of the three dominating helical low-energy
structures as a function of temperature.

are observed as free-energy global minimum in simulations
with an explicit solvent.

Note that the triangle-shaped compact configuration
(“structure II”) in Figure 6 has a total energy that is
≈ 30 kcal/mol lower than the lowest-energy configuration
found in previous simulations reference [28] with the same
force field. These simulations reported a lowest-energy
configuration where the middle helix is broken at residue
Gly21, i.e. the configuration is built out of four helical
segments. Similar configurations are also observed in our
simulations and are found to have energies comparable to
the ones found previously in reference [28]. Depending on
the arrangement of the helices they either resemble the
triangle shaped structure of type “II” or the other com-
pact structure of type “III”, and are grouped together
with those structures in our analysis of the distribution of
varying structures as a function of temperature.

Finally, we note that all three structures are built out
of helical segments and therefore only observed with sub-
stantial frequency at and below the helix-coil transition
at Tc. The extended structure (type I) is most frequent
at temperatures between 441–467K. Its probability de-
creases with temperature and at T = 317K only about 1%
of the configurations belong to type I. Compact configu-
rations (type II and III) apear with a frequency of more
than 1% only for temperatures below T = 490K. The
native-like configurations of type III are slightly more fre-
quent than the triangle-shaped of type II for a small tem-
perature window above T = 362K where their frequency
reaches with 23% a maximum, see Figure 8. Further de-
creasing the temperature the frequency of configurations
of type III diminishes while configurations of type II be-
come more frequent. At T = 317K only 12% of the config-
urations are native-like, but already 62% belong to type
II. While the entropy of the triangle shaped structure
(type II) is certainly lower than the entropy of the native
structure (which might explain the suppression of type-II
structures at higher temperatures), the entropic gain of
the native-like structure is compensated by an energetic
gain of the maximally helical triangle structure at lower
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temperatures making the triangle shaped structure the
predominant one. This observation clearly reflects a bias in
the ECEPP/3 energy function toward helical structures.
Growth of helices is energetically favored which in turn
strongly restricts the possible topologies the folded struc-
tures can assume. This leads to the observed dominance
of structures that while less compact and larger solvent-
accessible surface are more helical than the one observed in
experiment. Note that such a thermodynamic bias has not
been observed in reference [21] where also configurations
similar to the ones in Figures 5–7 were observed during the
simulation. This indicates that this coarse-grained model
employed in reference [21] (and the one of Ref. [18]) cap-
tures the effective interactions in protein A better than our
all-atom energy function. Hence, we should contemplate
possible corrections to our energy functions which should
decrease the helix-forming tendencies. We are currently
exploring this conjecture with a variant of the ECEPP
force field proposed by Abagyan and co-workers [29].

4 Conclusions

We have performed parallel tempering simulations of the
46-residue B-fragment of protein A with an optimized
temperature distribution and high statistics. Our goal was
to test the limitations set on protein simulations by our
energy function, the ECEPP/3 force field with an im-
plicit solvent. While we find native-like structures with
≈ 3 Å rmsd, these structures appear at room temperature
with only ≈ 10% probability. Energetically favored are
compact structures that are maximal helical, and more ex-
posed to the surrounding solvent while less compact than
the native structure. This observation suggests the need
for correction terms to the ECEPP/3 force field which de-
crease the helix-forming bias when using the force field in
combination with an implicit solvent.

This work is supported, in part, by a research grant (CHE-
0313618) of the National Science Foundation (USA).
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