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Non-Fermi liquid physics is ubiquitous in strongly correlated metals, manifesting itself in anomalous
transport properties, such as a T-linear resistivity in experiments. However, its theoretical understanding in
terms of microscopic models is lacking, despite decades of conceptual work and attempted numerical
simulations. Here we demonstrate that a combination of sign-problem-free quantumMonte Carlo sampling
and quantum loop topography, a physics-inspired machine-learning approach, can map out the emergence
of non-Fermi liquid physics in the vicinity of a quantum critical point (QCP) with little prior knowledge.
Using only three parameter points for training the underlying neural network, we are able to robustly
identify a stable non-Fermi liquid regime tracing the fans of metallic QCPs at the onset of both spin-density
wave and nematic order. In particular, we establish for the first time that a spin-density wave QCP
commands a wide fan of non-Fermi liquid region that funnels into the quantum critical point. Our study
thereby provides an important proof-of-principle example that new physics can be detected via unbiased
machine-learning approaches.
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Correlated electrons can give rise to a wide range of
different macroscopic quantum phenomena, yet there is one
recurring quantum many-body state of central importance
—the non-Fermi liquid (NFL), which is found in the
vicinity of such distinct states as quantum critical metals,
superconductors, and fractionalized quantum matter.
Conceptually, NFLs are systems of interacting electrons
that evade a description in terms of Landau’s Fermi liquid
theory of metals [1,2]. Experimentally, this is often estab-
lished via the observation of deviations from Fermi liquid
phenomenology, such as the absence of a constant specific
heat coefficient or, more typically, in transport measure-
ments that show a deviation from a T2 dependence of the
resistivity at low temperatures [3]. In fact, the almost
perfect T-linear resistivity above the superconducting dome
[which likely masks a quantum critical point (QCP)] in a
number of 3d transition metal oxides has been an exper-
imental hallmark of what is widely dubbed a “strange
metal” regime [4]. Developing a theoretical understanding
of such non-Fermi liquid physics and establishing its
microscopic origin(s) has, however, remained one of the
major outstanding challenges of condensed matter theory
for decades.
Conceptual difficulties in studying NFL physics near

QCPs have arisen along multiple fronts: (i) The interaction
of gapless modes of the bosonic order parameter with the
profusion of Fermi surface excitations has hampered efforts
toward a controlled analytical treatment [5–12]. (ii) The
numerical analysis of many-electron systems has seen
similar roadblocks—either in the form of the sign problem

[13] in fermionic quantumMonte Carlo (QMC) approaches
or the accelerated growth of entanglement [14,15] in tensor
network approaches. (iii) Even in models that permit some
exact understanding, the characteristic transport quantities
revealing NFL physics are notoriously difficult to calculate.
This is because they are nonequilibrium properties and,
therefore, require the analytical continuation of imaginary-
time correlations to real time in QMC approaches (a
numerically ill-posed problem). In addition, Green’s func-
tions, which are most straightforward to compute, cannot
yield transport information unless vertex corrections hap-
pen to vanish [16–18]. The conundrum is that it is the
transport experiments that strikingly anchor the NFL
regions to the QCPs in most experiments [4].
Recently, however, there has been significant progress in

numerical efforts. In a vanguard line of research, a new
family [19] of microscopic spin-fermion models has been
formulated, each of which is devoid of the infamous sign
problem by construction [20,21]. These models have
allowed numerically exact studies of quantum criticality
in metals undergoing a variety of phase transitions [19,
22–29]. The possibility of NFL physics in the vicinity of
such quantum critical behavior has been preliminarily
explored in numerical experiments using a variety of
imaginary-time proxy observables. While such proxies
suggest a breakdown of Fermi liquid behavior, more direct
measures of transport phenomena are desired to map out
the putative NFL regime in the phase diagrams of these
models. As a first step in this direction, it has recently been
argued that a combination of QMC sampling and quantum
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loop topography (QLT)—a physics-inspired machine-
learning algorithm—is capable of qualitatively probing
transport properties [30]. Proof-of-principle calculations
of this QMCþ QLT approach, probing the onset of
superconductivity in two microscopic models, have yielded
striking consistency with numerically exact results for these
systems [31].
In this Letter, we demonstrate that this combination of

machine-learning assisted analysis and sign-problem-free
Monte Carlo sampling (QMCþ QLT) can consistently
map out a non-Fermi liquid regime in the finite-temperature
phase diagram of two representative spin-fermion models
involving antiferromagnetic spin-density wave (SDW)
order and Ising nematic order, respectively. Both models
are found to exhibit a fanlike NFL regime above their
respective QCPs, which our QMCþ QLT approach iden-
tifies without any prior knowledge about NFL physics
per se, nor its rough location in parameter space. This is
accomplished by training the respective neural networks to
distinguish the quantum states at only three parameter
points—one in the ordered phase [32], one in the low-
temperature Fermi liquid on the disordered side of the QCP,
and one in the high-temperature regime. Our main results
for the observation of a broad NFL regime tracing out a fan
above the QCP are illustrated in Fig. 1 for the two
microscopic models exhibiting SDW and nematic order,
respectively. In what follows, we first describe our QLT-
based method of data analysis, then present the findings
upon applying the method to QMC data for both the SDW
and nematic models, and finally discuss the significance of
our findings in the contexts of both NFL physics and the
broader machine-learning effort in physics research.

Our study builds on work using neural networks to
identify quantum [33] and thermal [34] phase transitions in
systems of itinerant electrons. Here, we significantly
expand on these approaches to map out a non-Fermi liquid
regime by employing the QLT preprocessing method
[30,35] illustrated in Fig. 2. The neural network takes as
input samples of the equal-time Green’s function drawn
from QMC simulations. Green’s function values are multi-
plied together in triangular and quadrilateral chains involv-
ing nearest and next-nearest neighbors to form “loop”
variables. The ability of such loop correlations to capture
transport properties is explicitly demonstrated for a simple
model in the Supplemental Material, Sec. IV [36].
The entire set of these loop variables is then fed into a

fully connected feed forward artificial neural network
(ANN) with a single hidden layer of ten sigmoid neurons.
This network is then trained in order to, as best as possible,
output zero for input from within a FL regime and one for
NFL. The training is accomplished by labeling data from a
small number of points in parameter space (white squares
in Fig. 1 labeled 0, black circles labeled 1) and then
minimizing by stochastic gradient descent the binary cross
entropy between these labels and the output of the network.
The trained network is then used to classify the quantum
states at arbitrary points across the phase diagram, relying
only on the fermionic equal-time Green’s functions, a
choice that renders our approach universally applicable
to any itinerant fermion data.
QCPs in itinerant electron systems fall into one of two

classes, depending on how the Fermi surface changes upon
entering the ordered phase. In one class, a gap opens up at
select points on the Fermi surface due to an ordering with a

(a) (b)

FIG. 1. Machine learning of non-Fermi liquid physics. Phase diagrams of quantum critical metals overlaid with machine-learned
Fermi liquid to non-Fermi liquid crossover. The color maps show the output of neural networks trained to classify Fermi liquid (FL) and
non-Fermi liquid regimes of the SDW model: [(a) Eq. (1), with λ ¼ 1.5, c ¼ 3, u ¼ 1, μ ¼ −0.5] and the nematic (Nem.) model [(b)
Eq. (2), with α ¼ 1.5, V ¼ 0.5, μ ¼ −1]. A value of 1 (dark red) corresponds to the non-Fermi liquid, a value of 0 (dark blue)
corresponds to the Fermi liquid, and intermediate values represent the crossover region. The gray regions have been excluded from the
present Letter to minimize the confounding effects of superconducting fluctuations. The neural networks are trained on samples of the
equal-time Green’s function drawn from quantum Monte Carlo simulations, preprocessed using QLT, at the training points shown in the
figure: white boxes for the Fermi liquid [(a) r ¼ 0.3, T ¼ 0.05 and r ¼ 1.4, T ¼ 0.05; (b) h ¼ 1.9, T ¼ 0.17 and h ¼ 4.1, T ¼ 0.17]
and black circles for the non-Fermi liquid [(a) r ¼ 0.7, T ¼ 0.2; (b) h ¼ 2.7, T ¼ 0.5]. The red stars mark quantum critical value of the
tuning parameters [(a) rc ¼ 0.62; (b) hc ¼ 2.6]. The solid black lines show the phase boundaries, and the dashed black lines show the
superconducting Tc, from Refs. [23,26].
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finite wave vector Q. Density waves such as spin- and
charge-density waves belong to this class. In the other class,
no gap opens anywhere, but most of the Fermi surface, if
not all, is affected due to a uniform Q ¼ 0 ordering.
Nematic order and ferromagnetic order belong to this
latter class. We study representative examples from both
classes [19,37]. For the first class, we study a sign-problem-
free spin-fermion system, see Fig. 2(b), that has been
investigated by some of us in extensive, numerically exact
determinant quantum Monte Carlo (DQMC) studies
[22,23]. The action of the two-dimensional lattice model
is given by S ¼ Sψ þ Sφ þ Sλ, with

Sψ ¼
Z
τ;k

X
s;α

ψ†
αksð∂τ þ ϵαks − μÞψαks;

Sϕ ¼
Z
τ;r

�
r
2
ϕ2 þ 1

2c2
ð∂τϕÞ2 þ ð∇ϕÞ2 þ u

4
ϕ4

�
;

Sλ ¼ λ

Z
τ;r

eiQ·riϕr · ψ
†
arsσ⃗ss0ψbrs0 þ H:c:; ð1Þ

where α ¼ a, b is a fermion flavor index and s ¼ ↑;↓
denotes spin. Sψ describes the free kinetics of two flavors of
spin-1=2 fermions ψαrs with energy dispersion ϵαks situated
on a square lattice. The antiferromagnetic order parameter
ϕ is of easy-plane character and is governed by an O(2)
symmetric ϕ4 theory. The contribution Sλ is a Yukawa-like
spin-density coupling with an ordering wave vector
Q ¼ ðπ; πÞ, which connects different scattering hot spots
on the Fermi surface. As specific model parameters, we
choose λ ¼ 1.5, c ¼ 3, and u ¼ 1, which puts the QCP at a
critical coupling rc ¼ 0.62 [23], masked by the formation
of a superconducting dome, as indicated in the lower panel
of Fig. 1(a). We exclude from our Letter the range of
temperatures (gray region) comparable to the maximum
critical temperature in order to minimize the confounding
effects of superconducting fluctuations and also do so for
the nematic model in Fig. 1(b).

Turning to the numerical analysis of this model and to
contrast our QLT approach with a traditional QMC inves-
tigation, it is instructive to briefly discuss the results
obtained for this model in such a conventional approach
[23]. To locate the SDW phase transition of model (1), a
careful finite-size scaling analysis is employed using the
known properties of the Berezinskii-Kosterlitz-Thouless
type phase transition corresponding to the O(2) symmetric
SDW order. A superconducting transition, shown as a
dashed line in Fig. 1(a), is established by measuring the
superfluid density [38]. The nature of fermionic excitations
in the vicinity of this QCP (above the superconducting
dome) is examined using the Matsubara self-energy
extracted from the imaginary time-displaced Green’s func-
tion. For model (1), the self-energy at the hot spots is found
to be finite and only weakly dependent on Matsubara
frequency. This is contrary to the Fermi liquid prediction of
a quadratic frequency dependence of the self-energy and
indicates a loss of coherence [23]. Consequently, the
quasiparticle weight at the hot spots drops significantly
near the QCP [23]. While this method for detecting a novel
non-Fermi liquid state is theoretically appealing and
numerically exact, it is associated with considerable com-
putational cost: the calculation of time-displaced Green’s
functions. Importantly, this cost is incurred for every
parameter point of the phase diagram. For this reason, in
spite of the DQMC simulations of Ref. [23] having a scope
of Oð10 × 107Þ CPU hours on modern supercomputers,
non-Fermi liquid behavior could only be established at a
few discrete points, for example r ¼ 0.7, T ¼ 0.05.
Mapping out an extended quantum critical region has so
far been out of reach.
As we show in Fig. 1(a), our shallow, fully connected

neural network learns the full two-dimensional phase
diagram of the model of Eq. (1) when trained with 3200
input vectors from each of the three representative points.
The predictions are consistent among independently trained
networks, as shown in the Supplemental Material [36].
With just three points to anchor the phase diagram, it is

(a) (b) (c)

FIG. 2. Architecture of the quantum loop topography approach (a). A dimensional reduction of the full Green’s function data is
obtained by only considering correlations along (short) spatial loops. For illustration purposes, only four exemplary loops (yellow, red,
green, purple) are shown. The resulting quantum loop vector field (colored lattices) are fed into a maximally connected feed forward
neural network. Illustration of the lattice models of Eq. (1) featuring (b) a SDWQCP and Eq. (2) hosting (c) an Ising nematic QCP. In the
former case (b), two flavors of fermions ψx, ψy interact with an antiferromagnetic two-component order parameter ϕ described by a ϕ4

theory. In the latter (c), fermions interact with antiferromagnetically coupled Ising pseudospins (squares) situated on the lattice bonds
and subject to a transverse field. Based on Fig. 2 of Ref. [31] and Fig. 3 of Ref. [25], respectively.

PHYSICAL REVIEW LETTERS 127, 046601 (2021)

046601-3



particularly remarkable that the non-Fermi liquid state
(supported by the high-temperature training point) extends
to the lowest temperatures. Moreover, the formation of a
quantum critical fan recognized by the neural network
shows the steep rise of the NFL-FL crossover temperature
away from the QCP without explicit prior knowledge.
The narrowing of the quantum critical fan zooming into the
actual QCP is a highly nontrivial feature learned by the
network. Indeed, this work represents the first time a non-
Fermi liquid quantum critical fan has been firmly estab-
lished near any magnetic QCP. Even more remarkable is the
robustness of the phase diagram against the choice of
specific training point locations (see Supplemental
Material, Sec. IIA, Fig. 2 [36]). This remarkable robustness
should be contrasted with neural networks trained on
snapshots of classical order parameters, which require
training points also in the immediate vicinity of the phase
boundary [39] or otherwise fail.
To further investigate the neural network’s learning of

the NFL region and the quantum critical fan, we explore a
setup where the ANN learns only about the existence of the
SDW phase and the FL state by training with only two sets
of training data for each case. Even though QLT was
originally developed as a probe of transport [30], a binary
classification using the SDW and disordered phases
robustly captures almost the entire phase boundary of
the SDW state, as shown in Fig. 3(a). This level of
performance without explicit reference to the order param-
eter is somewhat surprising. We speculate that the gap
opened by the SDW order in the vicinity of only four
points on the Fermi surface may nonetheless be robustly
detectable in the (local) QLT input. A binary classification
targeting the FL and disordered states, shown in Fig. 3(b),
indicates that the NFL-FL crossover can also be independ-
ently learned, even without referencing the ordered phase.
The mapping of this crossover, both here and in Fig. 1,
represents a major advance, having not been accomplished
in the prior literature.

As a prototype of a QCP to a uniform (Q ¼ 0) order,
we consider a sign-problem-free lattice model for Ising
nematic quantum criticality [25,26]. As shown in Fig. 2(c),
the model’s degrees of freedom are fermions ci;σ that
live on the sites i of a square lattice and pseudospins that
live on the nearest-neighbor bonds hi; ji coupling to
the bond charge density of fermions. The Hamiltonian is
H ¼ Hf þHb þHint, where

Hf ¼ −t
X
hi;ji;σ

c†iσcjσ − μ
X
iσ

c†iσciσ;

Hb ¼ V
X

hhi;ji;hk;lii
τzi;jτ

z
k;l − h

X
hi;ji

τxi;j;

Hint ¼ αt
X
hi;ji;σ

τzi;jc
†
iσcjσ: ð2Þ

Here, fermion hopping is considered only between nearest-
neighbor sites, and the “antiferromagnetic” interaction V
between pseudospins on nearest-neighbor bonds drives the
nematic order: when the z components of pseudospins on
horizontal bonds, i.e., the white squares in Fig. 2(c), differ
from those on their neighboring vertical bonds (red
squares), the effective hopping of fermions becomes
anisotropic because of the spin-fermion coupling [third
line of Eq. (2)]. The “transverse field” h frustrates the
ordering tendency and introduces dynamics.
The traditional approach of investigating the phase

diagram of model (2) starts by determining the phase
boundary of the nematic order. Because the nematic order
parameter is discrete, any given simulation will be kineti-
cally trapped in one of the two degenerate minima, making
QMC snapshots incompatible among different parallel
branches. Traditionally this issue is avoided by turning
to the order parameter correlation function (i.e., the nematic
susceptibility) and its finite-size scaling [40] for the
determination of the ordered phase boundary, as it was
done in Ref. [26] using the known 2D Ising critical
exponents. While rigorous, this technique requires simu-
lations of numerous system sizes and involves some
guesswork in determining the phase transition using data
collapse.
Here, we take an alternate approach of a “cold start" [41]

for h below that of the non-Fermi liquid training point
(h ¼ 2.7). This kinetic bias proves sufficient to reproduce
the known phase boundary using a single system size and
without the computation of higher order fermion correla-
tion functions. Since nearest-neighbor Green’s functions
are conjugate to the order parameter, we provide nearest-
neighbor Green’s function data to the feature vector in
addition to QLT. As shown in Fig. 1, the ANN learns the
nematic phase boundary in remarkable agreement with the
conventional analysis [26], indicated by the solid line in
Fig. 1, down to the lowest temperatures [42].
NFL behavior in the quantum critical region has also

been suggested for this model. The self-energy extracted

(a) (b)

FIG. 3. Binary classification for the SDWmodel. (a) The neural
network is trained to distinguish the quasi-long-range ordered
phase (training point at the white box, r ¼ 0.3, T ¼ 0.05) from
the non-Fermi liquid regime (the black circle, r ¼ 0.7, T ¼ 0.2).
(b) The neural network is trained to distinguish the disordered
Fermi liquid regime (training point at the white box, r ¼ 1.1,
T ¼ 0.05) from the non-Fermi liquid regime [the black circle, as
in (a)].
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from the single-particle Green’s function has an imaginary
part that is both large and, as in the SDW model, frequency
independent. There is also evidence of non-Fermi liquid
transport from various proxies for the DC resistivity, but
these are all subject to the considerable ambiguities of all
known forms of analytic continuation. Our method iden-
tifies a broad NFL fan, similar to the result for the SDW
model and consistent with the much more computationally
expensive previous methods.
To summarize, we took a data-science approach to the

vast volume of data generated by QMC simulations of
quantum critical phenomena in models of itinerant fer-
mions coupled to both antiferromagnetic spin-density wave
order and Ising nematic order. By simply providing the
equal-time single-particle Green’s function data, processed
using a QLT machine-learning approach that is designed to
target transport, we obtained detailed features of the full
phase diagrams, including the formation of NFL physics in
a quantum critical fan above the QCP, from the raw data for
both models. Our analysis relied on the simulations for a
single system size and just three training points deep in the
relevant phases, but proved remarkably consistent with
the traditionally obtained phase boundaries for the
ordered phases. However, most notably, the NFL region
is clearly and robustly identified directly from the equal-
time data.
Our results prove that it is indeed possible to efficiently

extract the information relevant for identifying NFL phys-
ics encoded in the equal-time, position-space Green’s
function data directly. Indeed, the full exploration of the
quantum critical region from an exact simulation of the
SDWmodel (which in a conventional analysis turned out to
be prohibitively expensive) was accomplished for the first
time using the QMCþ QLT approach described in this
Letter. The phase diagram obtained clearly reveals the QCP
at T ¼ 0, unknown to the ANN, to be the singular anchor of
the NFL regime—perhaps the most subtle and mysterious
state that itinerant fermions can form. The simplicity and
the robustness of our approach, combined with its effec-
tiveness in detecting this subtle state, imply that data-
scientific approaches can enable discoveries from the
data readily accessible to QMC simulations in future
explorations.
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