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Quantum many-fermion systems give rise to diverse states of matter that often reveal themselves in distinctive
transport properties. While some of these states can be captured by microscopic models accessible to numerical
exact quantum Monte Carlo simulations, it nevertheless remains challenging to numerically access their transport
properties. Here, we demonstrate that quantum loop topography (QLT) can be used to directly probe transport
by machine learning current-current correlations in imaginary time. We showcase this approach by studying the
emergence of superconducting fluctuations in the negative-U Hubbard model and a spin-fermion model for a
metallic quantum critical point. For both sign-free models, we find that the QLT approach detects a change in
transport in very good agreement with their established phase diagrams. These proof-of-principle calculations
combined with the numerical efficiency of the QLT approach point a way to identify hitherto elusive transport
phenomena such as non-Fermi liquids using machine learning algorithms.
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Quantum many-body systems exhibit an intriguing di-
versity of collective states that have no classical counter-
part. Paradigmatic examples include the formation of Bose-
Einstein condensates and superfluids in bosonic systems [1],
the emergence of spin liquids and macroscopic entanglement
in magnetic systems [2], or the observation of superconduc-
tivity in many-electron systems [3]. The microscopic physics
giving rise to these phenomena is well understood for sys-
tems of many interacting bosonic or spin degrees of free-
dom, either via controlled analytical calculations for minimal
model Hamiltonians or via numerical simulations providing
even quantitative guidance. The fundamental understanding
of quantum many-fermion systems, however, has proved to
be more elusive. The distinct feature leading to a seemingly
unsurmountable complication for these systems arguably is
the profusion of gapless modes near the Fermi energy. On
the analytical side, the concurrent treatment of these gapless
degrees of freedom and their interactions with other (bosonic)
soft modes, e.g., in the vicinity of a quantum phase transition
[4,5], has remained a formidable challenge. On the numerical
side, many-fermion systems have long proved to resist a
solution via quantum Monte Carlo techniques due to the
occurrence of the so-called sign problem [6] that is closely
linked to the complex sign structure of the many-fermion
wave function (another consequence of the existence of a
multitude of gapless modes). Adding to this complexity, the
key features revealing the nature of collective many-fermion
states (such as superconductors, strange metals, or non-Fermi
liquids) are often their transport properties that are notoriously
difficult to calculate.

It is the purpose of this Rapid Communication to outline a
numerical scheme that allows for a direct quantitative probe
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of transport properties in interacting many-electron systems
by combining elements from machine learning and quan-
tum Monte Carlo (QMC) techniques. To do so, we build
on progress on two separate fronts advancing the numerical
description of many-fermion systems. First, it has been re-
alized that quantum criticality in itinerant fermion systems
can be studied in a numerically exact manner in sign-problem
free models [7] built around the effective action for multiple
fermion bands. However, to infer transport properties one
faces the problem that QMC simulations intrinsically provide
access to imaginary time correlations only, and the analytic
continuation to real time is numerically ill posed, yielding no
controlled framework to probe transport properties. Instead,
we resort to the recent development of machine learning
approaches in quantum statistical physics and demonstrate
that quantum loop topography (QLT), a numerical scheme
initially designed to identify the topological Hall response
of a system [8], can in fact be used to measure longitudinal
transport properties of itinerant many-fermion systems.

Here, we show that the QLT approach can be adapted to
extract the essential features of the imaginary time current-
current correlation function. One principle example which we
focus on is the study of superconductivity, whose onset can,
in principle, be tracked, e.g., via the superfluid density which
can be rigorously obtained from current-current correlations
[9,10]. We demonstrate that the QLT4+QMC approach suc-
ceeds in identifying the essential features of this transition
without any prior knowledge (e.g., about the explicit calcu-
lation of the superfluid density) and quantitatively matches
existing results for the onset of superconductivity for a num-
ber of microscopic model systems, but at a considerably lower
computational cost.

QLT for longitudinal transport. The recent foray of ap-
plying machine learning techniques to quantum many-body
systems can roughly be divided into two classes of gen-
eral approaches: (i) the representation of many-body wave
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FIG. 1. Neural network architectures. (a) QLT used as an input
to a feed-forward fully connected shallow neural network with one
hidden layer consisting of n = 40 sigmoid neurons. Only triangular
loops L/.Ak, are illustrated. (b) Deep convolutional neural network
that convolves and pools the unprocessed Green’s functions P(r, r')
before threading them through a fully connected layer of n = 256
hidden neurons.

functions using restricted Boltzmann machines allowing for
a new class of variational algorithms to efficiently find ground
states of quantum many-body systems [11-16], and (ii) the
use of artificial neural networks (ANNs), typically combined
with preprocessing steps, to allow for quantum state recog-
nition [8,17-30]. In the latter category, the QLT [8] stands
out as a preprocessing step that, by using loop topography
as a filter, selects and organizes the simulation data with the
physical response characteristic of the target phase in mind
[and thereby distinguishes itself from, e.g., the application of
convolutional neural networks (CNNs) whose motivation is
primarily rooted in image recognition techniques]. The QLT-
preprocessed data are then fed into a shallow ANN, which can
be trained to discriminate different quantum phases of matter.
This general setup is schematically illustrated in Fig. 1. The
QLT approach has so far been employed to the detection of
topological order in integer and fractional Chern insulators
[8] by targeting the Hall transport and to positively identify
a Z, spin liquid [25] by targeting Wilson loops. Targeting
the longitudinal transport for the purpose of the current study,
we build a vector at each site j consisting of all small loops
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FIG. 2. Illustration of the (i) triangular and (ii) quadrilateral loop
operators employed to calculate the longitudinal transport.

with three vertices Lﬁd and with four vertices Lj‘:,'dm including

the site j. The loops represent chained products of Green’s
functions, i.e., bilinear fermionic operators c}c i evaluated for

a given Monte Carlo sample o, Is}k las
A ~ o~ o~
ijlE jk|aPkl|ﬂPlj|y» (1)
and
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limiting the neighboring sites to be within a short-distance
cutoff d.. The loop operators associated with a site are illus-
trated in Fig. 2 for the shortest lengths, i.e., lengths 3 and 4.
To see how the loop operators LjDklm and LjAkl capture the
longitudinal transport, consider the zero-frequency current-
current correlation function

Autrirsio, =0)= [l D@00 O
where J(r;, 7) = €7 j.(r;)e "7 with the current density
operator fx(rl) = —i[H(ry),X]. Its Fourier transform is
well known to be related [9,10] to the superfluid density
ps through p; o A(ge — 0,9, =0, w, =0) — A (g =
0,9y - 0, w, =0).

To gain further analytical insight, consider a gapped mean-
field Hamiltonian with a single flat band which can be ap-
proximated as H' = —TI, where I1 = |G)(G] is the projection
operator for the ground state |G). At zero temperature we
can evaluate the current-current correlation function for the
system with the Hamiltonian H’,

A (r1, 120, = 0) = (Gl (r))(1 — ) ju(r2)|G) = Tr [TT](r;)(1 — M) (r2)]

= ZPr2r4Pr4r|Pr]r3Pr3rg (X1 — x4)(x2 — x3)— ZPrszmr]Prlrz (X1 — x4)(x2 — x1), “)

r3ry

where Py = (G|c:,cr|G) is the two-point function and x; is
the x coordinate of position r;. Here, we used the definition
of the current density operator for the third equality [31,32].
Hence for the approximate Hamiltonian H’, the current-
current correlation function at zero temperature consists of
an appropriately weighted combination of quadrilateral loops
and triangular loops of two-point functions.

Note that LjAkl and LEM defined in Egs. (1) and (2) involve

samples of the Green’s functions ﬁjk|a typically coming from

ry

(

a determinant quantum Monte Carlo (DQMC) calculation. By
processing the loop operators during the sampling process and
avoiding an a posteriori Monte Carlo averaging, we quickly
pass these fluctuation-laden data, which encode (partial) in-
formation of the current-current correlation function, to the
machine learning step [see Fig. 1(a)]. Clearly, the loop opera-
tors LjDklm and LjAkl built from individual Monte Carlo samples
and only for short-ranged loops, cannot replace a rigorous cal-
culation of the current-current correlation function, especially
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for a gapless system. But we anticipate the QLT consisting of
the triangular and quadrilateral loops to serve as a proxy for
the current-current correlation function containing qualitative
information regarding longitudinal transport directly in the
imaginary time data. Such a proxy is particularly desirable
since traditional approaches, based on an explicit construction
of time-displaced Green’s functions, are costly and frequently
require numerical stabilization [33,34], whereas QLT only
demands equal-time correlations, readily available in DQMC
simulations. To feature physical characteristics other than
transport, the QLT needs to be generalized accordingly.

Models and results. To test the potential of the QLT+QMC
approach for efficiently detecting qualitative differences in the
transport from equal-time Green’s function data, we consider
two paradigmatic model systems that host superconductivity
in parts of their respective phase diagrams—the attractive
Hubbard model and a spin-fermion model of a quantum
critical metal. Since both models are two-dimensional lattice
models, we note that there are two subtleties to detecting
superconductivity in two spatial dimensions (2D). First, the
superconducting order parameter is not readily accessible in
a QMC simulation and one has to follow a carefully defined
limiting process to obtain the superfluid density from current-
current correlation functions [9,10]. Second, the supercon-
ducting phase transition in 2D is of Kosterlitz-Thouless (KT)
type and hence the superconducting transition is signaled
by the superfluid density exceeding the critical KT value
[35]. Prior to this transition, the onset of superconducting
fluctuations and a regime of diamagnetism is indicated by a
sign change in the orbital magnetic response [36]. Given the
explicit tie between the QLT and the zero-frequency current-
current correlation functions discussed earlier for the simple
gapped Hamiltonian, one can readily anticipate that the QLT
approach will provide enough information on superconduct-
ing fluctuations so that the artificial neural network (ANN)
fed with these data will be able to recognize the onset of the
diamagnetic regime that precedes superconductivity.

We start by considering what is probably considered
the simplest model for superconductivity, the negative-U
Hubbard model on the square lattice [9,37],

H = —Z(C;JQ‘,X +clei0 - MZ(":’,T +n;)
i

(ij).s

1 1
#U (s = 5) (- ) 5)

where c;y is an electron creation operator at site i with spin
s=711] and n;; = c?sci_s is the electron density operator.
U=—-|U|<0is the attractive interaction strength and p
is the chemical potential. Without loss of generality, we set
U = —8 and tune the electron density (n) = (n4) + (n) =~
0.9 slightly below half filling. Numerically, we study a system
of 8 x 8 sites. For each site, we build and collect site-touching
quantum loops L& and L. The so constructed QLT data
forms a field of principle input vectors x for a shallow ANN
[see Fig. 1(a)].

In an initial training step, the ANN is optimized with a
training set consisting of about 20 000 samples obtained from
the superconducting phase at low temperature (8 = 20) and
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FIG. 3. Negative-U Hubbard model. The neural outputs of the
quantum loop topography (QLT) and convolutional neural network
(CNN) architectures (Fig. 1) for superconducting transport vs the
inverse temperature S. While the inputs for the deep CNN are
the unprocessed Green’s functions P(r,r’) from the square-lattice
negative-U Hubbard model in Eq. (5), we preprocess the input for
the shallow ANN of the QLT architecture in the form of the quantum
loops in Egs. (1) and (2). Both architectures are trained with samples
at low temperature = 20 representing superconducting transport
and high temperature B = 2 representing normal state transport.
Then the resulting architectures are applied towards the interpolating
temperatures. The vertical dashed line indicates 8. = 1/T. ~ 5.7
[37-39] and defines the s-wave superconductor phase (green shaded
region).

the normal phase at high temperature (8 = 2). For training,
we employ a cross-entropy cost function and L2 regularization
to avoid overtraining and a minibatch size of 10. We also
reserve an independent validation set of 10%—-20% of the
training data set for validation purposes (such as learning
speed control and termination [40]). After this training step,
the QLT input from a range of B interpolating between the
two training points is classified using the optimized ANN,
with the result summarized in Fig. 3. Clearly, the ANN
transport classification of the two phases is achieved with
a high confidence >99% in the low- and high-temperature
limits. In between, it indicates a smooth onset around the
temperature Ty = B! ~ 0.28, which we interpret as the
onset of superconducting fluctuations and therefore expect it
to be slightly higher than the reported critical temperature for
the KT transition 7, >~ 0.175 [37-39]. As we argued above,
the ANN has no means of determining the exact KT transition
temperature, and this is the best performance we can in fact
anticipate.

We benchmark our QLT approach against two alternative
approaches. First, we consider the mean-field theory of the
negative-U Hubbard model and compare our QLT-+QMC
approach for this mean-field model against exact analytical
results. Since the mean-field theory cannot capture fluctua-
tions, the change of transport properties and the superconduct-
ing transition strictly coincide within the mean-field theory.
Hence, we anticipate the assessment of superconductivity
within the QLT approach to coincide with the mean-field tran-
sition. To test this, we solve the self-consistent gap equations
at each inverse temperature 8 to obtain the s-wave pairing
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FIG. 4. Mean-field transition of the negative-U Hubbard model.
Comparison of the mean-field s-wave pairing gap A (red dots) and
the neural output from the QLT+QMC approach. The consistent
onset of both functions demonstrates that the machine learning
approach is indeed sensitive to the onset of superconductivity. The
vertical dashed line indicates the mean-field transition temperature
Be ~ 0.545.

gap A(B). We then sample via finite-temperature Monte
Carlo simulations, using the corresponding Bogoliubov—de
Gennes (BdG) mean-field model with the respective A(f),
and generate a Markov sequence of the quasiparticle occu-
pation number, which is then fed into the QLT approach. The
resulting phase diagram (for U = —8 and u = —0.5) is shown
in Fig. 4 where we used 8 = 0.3 and 8 = 0.8 as the high-
and low-temperature training points, respectively. Indeed, the
QLT assessment of superconductivity shows a sharp onset at
the mean-field superconducting transition.

Our second benchmark is to compare against an alternative
numerical approach where the entire, unprocessed Green’s
functions Py, for all j, k’s are used as input for a CNN
[Fig. 1(b)], akin to previous work [20] that demonstrated the
feasibility of such an approach to locate symmetry-breaking
phase transitions in quantum many-fermion systems. The
CNN is optimized with a training set of about 8000 samples of
unprocessed Green’s functions. Note that these sample inputs
are four dimensional, L? x L?, and hence considerably larger
than the condensed quasi-two-dimensional QLT loop vector
fields L? x D(d,), where D(d,) denotes the dimension of a
loop vector for given maximal loop length d,.. Figure 3 shows
the direct comparison of the QLT+shallow ANN approach
versus such a CNN setting. With the two techniques giving
essentially the same result, we conclude that both approaches
are indeed capable of detecting the onset of superconducting
fluctuations from raw data of equal-time Green’s functions.
The QLT approach, however, succeeds in doing so with a
significantly smaller input and data size, which is of enormous
practical advantage.

As a second principle example, we now turn to a model
in which superconductivity arises from the quantum critical
fluctuations in the vicinity of a spin-density-wave (SDW)
transition [7,36,41,42]. Specifically, we consider a square
lattice spin-fermion model § = Sy + S, 4+ S, [36], in which
two flavors of spin-1/2 fermions are coupled to an easy-plane

T T T T T
10 | —e— aiT i -
== CNN ;
08 F ____ i
*é- BC :
........ . 1
‘g’ 06 Baia : i
1
E L
204 i3 .
< -
1 Qo
02t | 8 1
: tuning parameter
1
OO 1 1 1 1
0 5 10 15 20

inverse temperature 8

FIG. 5. Neural network output for the superconducting transition
near a metallic quantum critical point. The training points were at
B =30 for superfluid transport and f = 5 for metallic transport.
The vertical lines indicate the superconducting transition temperature
B. ~ 12.5 (dashed) derived from the superfluid density measure-
ments and the onset of diamagnetic fluctuations By, ~ 6.9 (dotted)
where the orbital magnetic susceptibility changes sign [36]. The inset
(modified from Ref. [36]) illustrates the chosen finite-temperature
scan cutting into the superconducting dome.

SDW order parameter ¢ at wave vector Q = (7, 1),

Sx// = / Z [0 — )b — tarr’]w;rswar/m
7,r,r S0

S;\ = k/ eiQ.riEbr . (WJ-rsass’Wbrs/ + H~C-)7 (6)
7r
s - / L(a )P+ l(vgb)2 + I+ 2N’
¢ T,r 2C2 ! 2 2 4 ’

where o = a, b labels the two fermion flavors, and s = 4, |
denotes the spin. The nearest-neighbor fermion hopping am-
plitudes are chosen as t, x =1,y = 1 and #,, =1, = 0.5. We
further set the Yukawa coupling A = 3, chemical potential
w=0.5, u=1, and the bare bosonic velocity to be ¢ = 2.
Studying a system of size 8 x 8, we tune the dynamics of the
SDW order parameter to the vicinity of the SDW transition,
r = 10.35, around which a finite-temperature superconduct-
ing dome is found [36].

The results of a finite-temperature scan cutting into the
superconducting dome are shown in Fig. 5. It clearly confirms
that the QLT4+QMC approach can indeed correctly detect
the onset of superconducting fluctuations in this spin-fermion
model. This is evident by the fact that the neural network
output is turning on where earlier studies of current-current
correlations [36,43] as a proxy for superconductivity found
the onset of diamagnetic fluctuations (dotted line) [36]. We
also find very good agreement with the alternative numer-
ical approach of feeding the unprocessed Green’s function
data into a CNN—albeit using only the dimensionally re-
duced QLT data. Further note that the QLT+QMC approach
achieved the above detection of superconducting transport
using only O(10) uncorrelated samples of the QMC Markov
chain [44], a huge reduction over the number of samples used
in the traditional superfluid density calculation [36,45].
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Conclusions. To summarize, we have introduced a fea-
ture selection protocol for machine learning longitudinal
transport and demonstrated that such a QLT preprocess-
ing step allows one to identify the onset of superconduc-
tivity in quantum many-fermion systems at considerably
lower numerical cost than traditional approaches. Compar-
ing to other machine learning approaches, we showed that
the response theory guided QLT+QMC approach performs
just as well as the much more involved CNN approach
rooted in image recognition techniques while using only
a fraction of the Monte Carlo data. The major advan-
tage of the QLT+QMC approach is that it is motivated
by quantum statistical physics considerations and therefore
allows for a much better intuitive understanding of its ca-
pabilities. A further advantage is that the QLT is semilo-
cally defined and as such it does not require, e.g., trans-
lational symmetry. In an explicit application, we showed
that the QLT4+QMC approach can detect correctly transport

signatures of superconducting fluctuations by comparing the
neural network outcome to rigorous traditional measurements
of the superfluid density. Looking ahead, we anticipate that
QLT+QMC will be even more valuable in detecting states
without traditional representation that are nevertheless defined
through nontrivial transport properties such as non-Fermi
liquids.
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