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Abstract

Metallic quantum critical phenomena are believed to play a key role in many
strongly correlated materials, including high-temperature superconductors.
Theoretically, the problem of quantum criticality in the presence of a Fermi
surface has proven to be highly challenging. However, it has recently been
realized that many models used to describe such systems are amenable to
numerically exact solution by quantum Monte Carlo (QMC) techniques,
without suffering from the fermion sign problem. In this review, we examine
the status of the understanding of metallic quantum criticality and the recent
progress made by QMC simulations. We focus on the cases of spin-density
wave and Ising nematic criticality. We describe the results obtained so far
and their implications for superconductivity, non-Fermi liquid behavior, and
transport near metallic quantum critical points. Some of the outstanding
puzzles and future directions are highlighted.
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1. INTRODUCTION

One of the ubiquitous properties of strongly correlated materials is the presence of different
electronically ordered states in close competition with each other, which can be tuned by relatively
small changes in a tuning parameter such as pressure, material composition, or magnetic field.
Another common feature of these systems is an anomalous metallic state whose properties are
incompatible with Fermi liquid theory. An appealing scenario to account for the latter observation
is that it originates from an underlying quantum critical point (QCP) at which the metallic ground
state becomes unstable toward some form of order. In this scenario, the behavior of the anomalous
metallic state thus reflects its proximity to a non-Fermi liquid fixed point, which governs the
system’s properties over a broad range of temperatures and tuning parameters.

There is ample experimental evidence that some sort of quantum criticality is present in many
materials, such as heavy fermion compounds (1–10), iron-based superconductors (11–17), and
electron-doped cuprate superconductors (18, 19). In the hole-doped cuprates the situation is
less clear, although there is some evidence for a QCP underneath the superconducting (SC)
dome in these systems (20–22). In all these systems, a fan-shaped metallic regime emanates
from the (putative) QCP, often featuring, among other phenomena, anomalous power laws in the
temperature (T) dependence of the electrical resistivity. (Rather than the T2 behavior of Fermi
liquid theory, the resistivity in the putative quantum critical regime is often linear in T .1) In
almost all the above systems, an unconventional SC phase emerges with a maximum transition
temperature close to the apparent QCP, indicating an intimate connection between quantum
criticality and superconductivity.

The theory of quantum criticality in metals is a decades-old problem, dating back to the seminal
works of Hertz (24), Moriya (25), and Millis (26). The problem has proven challenging due to the
profusion of low-energy degrees of freedom. Unlike classical critical phenomena and QCPs in
insulators, in which the correlations typically become singular only at a single point in momentum
space, in the metallic case the low-energy degrees of freedom live on an entire extended manifold
of momenta—the Fermi surface.2 As we elaborate below, despite intense work on the topic and
significant technical progress (30–63), there is no accepted theory to describe quantum criticality
in systems with a Fermi surface.

In recent years, it has been appreciated that many paradigmatic models of metallic criticality can
be solved (64–74) by quantum Monte Carlo (QMC) simulations without suffering from the noto-
rious sign problem (75), which often hinders QMC simulations in systems of interacting fermions.
This opens the way for fully controlled and numerically exact solutions of models of quantum criti-
cal metals, providing a nonperturbative handle on the problem. Beyond their quantitative guidance,
these numerical solutions are useful both as a benchmark for existing theoretical descriptions and
as a guide for new ones. The purpose of this review is to examine the status of the theory of metallic
quantum criticality, focusing on the recent progress made and questions raised by sign-problem-
free QMC simulations and their implications for our current understanding of this problem.

2. SETUP OF THE PROBLEM

We start with a discussion of general theoretical considerations for the problem of metallic quan-
tum criticality. We present a (presumably) generic field theoretical description of such QCPs and

1Other power laws are seen in certain systems. See, for example, References 7, 8, and 23.
2The situation is different in semimetals, for instance, systems with a Dirac dispersion, where the Fermi surface consists of
only one point. In these systems, much theoretical progress has been made; see, e.g., References 27–29.
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review briefly the various analytical techniques applied to it before turning to the numerical QMC
approach in the next section.

2.1. General Considerations and Field-Theoretical Model

Consider a lattice model of fermions, coupled via a general short-range interaction. For a generic
dispersion of the fermions (i.e., without the Fermi surface fine-tuned to perfect nesting or a van
Hove singularity), the model is stable when interactions are infinitesimally weak except for a
possible SC instability. Thus, any QCP at which an ordered state forms out of the metal must
occur at finite strength of the coupling. From this perspective, the problem of metallic quantum
criticality is intrinsically an intermediate coupling problem and may be not accessible via methods
that are perturbative in the interaction strength.

To enable a perturbative approach to the critical point, we may introduce a fluctuating order
parameter field by hand, tune it to the vicinity of a symmetry-breaking transition, and consider the
effects of a small coupling between the order parameter fluctuations and the fermions. Schemati-
cally, the system is described by the following Euclidean action:

S = Sψ + Sφ + Sint, 1.

where

Sψ =
∫ β

0
dτ

∑
k

ψ
†
k (∂τ + εk − μ)ψk,

Sφ =
∫ β

0
dτ

∫
d d x

[
1
2

rφ2 + 1
2

(∇φ)2 + 1
2c2

(∂τφ)2 + u
4
φ4 + . . .

]
. 2.

Here, the fermionic action Sψ is given in terms of the fermionic operators, ψ † and ψ (which in
general may have spin and other indices, not displayed here), with dispersion εk and chemical
potential μ. The bosonic action, Sφ , is the usual Landau–Ginzburg–Wilson action, written as an
expansion in powers of the order parameter φ and its derivatives. The precise nature of φ depends
on the symmetry broken in the ordered state (see explicit examples below). The tuning parameter
r drives the system through a QCP. The interaction term, Sint, is of the Yukawa form, linear in the
order parameter and quadratic in the fermion operators, and includes a form factor that encodes
the symmetry of the order parameter (see Equations 3 and 4 below). We focus on the case of d = 2
spatial dimensions, which is relevant to many materials of interest.

Throughout this review, we focus on two types of paradigmatic QCPs: a spin-density wave
(SDW) QCP and an Ising-nematic QCP. An SDW QCP involves ordering at a nonzero wavevec-
tor Q. For simplicity, we focus on the case of a commensurate ordering wavevector (antiferro-
magnetic order). The coupling of the order parameter to the fermions has the form

Sint = λ

∫
d 2x

∫ β

0
dτ e iQ·x �φ(x) · ψ †(x)�σψ(x) + h.c., (SDW), 3.

where �σ are spin Pauli matrices, and �φ is the SDW order parameter, which may be a one-, two-,
or three-component vector (depending on whether the SDW order parameter has easy-axis,
easy-plane, or isotropic character, respectively). The SDW order parameter couples particularly
strongly to fermions in the vicinity of a discrete set of hot spots on the Fermi surface (or hot lines
in d = 3 dimensions) that are connected to each other by the magnetic ordering wavevector Q. At
these points, fermions can scatter off the low-energy order parameter fluctuations while remaining
on the Fermi surface. In the SDW ordered phase, a gap opens at and near the hot spots, causing
reconstruction of the Fermi surface, as shown in Figure 1a,b.
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Figure 1
Evolution of the Fermi surface across the SDW transition (a,b) and the Ising-nematic transition (d,e). Panel c shows the band structure
of the two-band model used in the quantum Monte Carlo simulations of an SDW transition (studied in References 67 and 68). The
dashed line is the blue Fermi surface shifted by Q = (π ,π ). In panels b and c, the locations of the hot spots, connected by the magnetic
ordering vector Q = (π ,π ), are indicated by the purple circles. In panels d and e, the blue line represents the Fermi surface in the
disordered phase, and the green and red lines show the two possible configurations of the Fermi surface in the nematic phase.
Abbreviation: SDW, spin-density wave.

A second type of QCP we consider is an Ising-nematic QCP, in which the point-group sym-
metry of the system is reduced from tetragonal to orthorhombic. This is a paradigmatic example
of a Q = 0 order parameter that preserves translational symmetry. The order parameter has two
inequivalent configurations and is represented by an Ising-like scalar field that changes sign under
rotation by 90◦. The interaction term in the action reads as

Sint = λ

∫
d 2x

∫ β

0
dτ φ(x)ψ †(x)(∂2

x − ∂2
y )ψ(x) (Ising nematic). 4.

In the ordered phase, φ �= 0, and the Fermi surface becomes elongated either along x or y (see
Figure 1d,e). Near the QCP, the small Q fluctuations of the order parameter couple strongly to
fermions along the entire Fermi surface (with the exception of a discrete set of cold spots along
the diagonals, where the coupling vanishes to leading order in φ).

2.2. Perturbative Expansions

In all cases, the coupling to the fermions λ is a relevant parameter in the sense that perturbation
theory in λ breaks down at sufficiently low energy scales. It is nevertheless useful to start from the
small λ limit, which can provide information about the crossover regime and give clues about the
nature of the ground state.

Let us focus on the case of an Ising-nematic QCP, which is somewhat simpler to analyze. To
leading order in λ, the bosonic field acquires a self-energy given by3

�(q, i�n) = −λ2 cos2(2θq)ν0

⎡
⎣1 − |�n|√

�2
n + (v2

Fq 2)

⎤
⎦ . 5.

Here, ν0 and vF are, respectively, the density of states of the fermions at the Fermi level and their
Fermi velocity, and θq is the angle between q and the x axis. For simplicity, we have assumed a cir-
cular, isotropic Fermi surface. The angular dependence of Equation 5 comes from the anisotropy

3Here, we set the units such that λ2 has dimensions of energy.

66 Berg et al.

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
9.

10
:6

3-
84

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

nt
a 

B
ar

ba
ra

 o
n 

03
/1

1/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



CO10CH04_Berg ARI 28 January 2019 12:41

of the Yukawa coupling (Equation 4). Note that Equation 5 vanishes along the diagonals qx = ±qy ;
this is a consequence of the cold spots, where the coupling constant between φ and the fermions
vanishes.

At sufficiently low frequency, the |�n| term in Equation 5 becomes dominant over the �2
n/c

2

term in Equation 2. The crossover scale where this occurs can be roughly estimated by equating
the frequency-dependent part of Equation 5 to the bare inverse φ propagator, assuming that
|q| ∼ �n/c. The resulting crossover scale is

�b = |λ|
√
ν0c3/vF. 6.

At frequencies below �b, the boson dynamics is dominated by the Landau damping term, which
is proportional to |�n|/(vFq ), and the dynamical critical exponent z increases from 1 to 3.

Next, we consider the lowest-order contribution of the boson on the fermion self-energy. We
focus on frequencies ωn � �b, where we should use the dressed form of the boson propagator,
including its self-energy (Equation 5).4 To order λ2, the self-energy on the Fermi surface is given
by

�(kF,ωn) ∼ −i (λ4 sin4 θkF/EF)1/3|ωn|2/3sgn(ωn), 7.

where EF ∼ ν0v
2
F is the Fermi energy, and θkF is the angle between the fermion’s momentum and

the x axis. The fermions thus become strongly damped by the coupling to the bosonic fluctuations
almost everywhere on the Fermi surface (except for the cold spots where θkF = ±π/4), with a
damping rate that scales asω2/3 [compared withω2 log(1/ω) in an ordinary two-dimensional Fermi
liquid].

From Equation 7, we can estimate the scale at which Fermi liquid behavior breaks down. As
for the bosons, this is done by equating the self-energy (Equation 7) to the iωn term in the bare
fermion inverse propagator. This procedure gives

�NFL = λ4

EF
. 8.

Note that for small λ, �NFL � �b. Thus, there is a parametrically broad window of energies be-
tween�NFL and�b in which the bosons are described by overdamped dynamics (with a dynamical
critical exponent z = 3), but the feedback of the bosons on the fermions is weak. This justifies the
use of the zeroth-order fermionic polarization bubble in the evaluation of Equation 5.

At frequencies below �NFL, one can no longer ignore the fermion self-energy. Higher-order
corrections to� are increasingly singular at low frequencies. Extending the problem to the case of a
large number N of fermion flavors does not solve this problem, because a large set of diagrams that
are naively subleading in powers of 1/N are in fact divergent and must be treated on equal footing
(45, 47). There is currently no understanding of the resulting fixed point. The 1/N expansion
similarly fails in the SDW QCP problem (48).

Other modifications of the problem have been devised to gain control of calculations (49, 51, 58,
76). These methods, which we do not review here, involve various large N limits, the introduction
of nonlocal terms in the action, and the extension of the problem to fractional dimensions. The
properties of the d = 2, finite-N problem remain unclear.

For the SDW problem, a strongly coupled fixed point has been found recently (60, 77). This
fixed point has many unexpected properties, such as a dynamical critical exponent z = 1; emergent
nesting at the hot spots; and a singular, anisotropic boson dispersion in the infrared.

4The existence of a well-defined intermediate regime where the bosons are strongly dressed but the fermions are only weakly
renormalized is formally justified if we take the limit of large N , where N is the number of fermion flavors.
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Finally, it is possible that near the critical point, the system becomes unstable to the formation
of some kind of ordered state (different from the primary order that onsets at the QCP). In
the presence of time reversal or inversion symmetry, it is natural to expect a SC instability—
the order parameter fluctuations induce an effective attractive interaction between the fermions,
which is enhanced upon approach to the critical point (78–83). However, the strong scattering
of the fermions off the fluctuations causes them to lose their coherence; the resulting SC Tc is
determined by the competition between these two effects. For weak coupling, and sufficiently far
away from the nematic QCP, superconductivity is enhanced in all symmetry channels (84, 85).
At the QCP, and for sufficiently small λ, one can estimate the SC susceptibility in the regime,
�NFL � T � �b, by solving the Eliashberg equation for the SC vertex using the form Equation 5
for the bosonic self-energy (but ignoring the fermionic self-energy, which is small in this regime).
For the Ising-nematic case, this predicts the SC susceptibility to diverge at a scale of

Tc,QCP ∼ λ4

EF
∼ �NFL. 9.

Thus, there is no parametric separation between the non-Fermi liquid and the SC scales, and both
of these effects have to be taken into account on equal footing.

Other types of secondary-order parameters have been considered. Close to a ferromagnetic
QCP in d = 2, an instability toward incommensurate spin order was proposed (86). Near an
SDW transition, instabilities toward charge-density wave (CDW) (52, 57, 81) or pair-density
wave (PDW) (87) orders were suggested to occur.

In summary, despite the valuable information provided by the perturbative treatments, there
is still uncertainty about the basic properties of metallic QCPs. Clearly, a nonperturbative, con-
trolled solution is highly desirable. In this review, we examine recent advances in numerical QMC
simulations of metallic QCPs, describe the picture that emerges from the existing results, and
point to some future directions and outstanding puzzles.

3. LATTICE MODELS AND QUANTUM MONTE CARLO TECHNIQUE

Arguably the most powerful numerical approach for solving quantum many-body problems is
the QMC technique (88), which, despite an exponentially growing Hilbert space, allows us to
sample the expectation values of arbitrary observables with polynomial effort in system size and
inverse temperature. Typically, the problem is formulated as a path integral, mapping it to an
effective (d + 1)-dimensional classical problem with Euclidean time playing the role of an ad-
ditional dimension. The classical problem is then simulated using the traditional Monte Carlo
method (89). Unfortunately, however, for generic models, the Boltzmann weight of the effective
classical problem can turn out negative (or complex). In general terms, this is because the weights
of the (d + 1)-dimensional system still represent quantum amplitudes rather than classical proba-
bilities. In the present context, the occurrence of negative weights can in fact be traced back to the
sign that arises in fermionic exchange statistics (90). Models that suffer from this problem can still
be simulated using QMC techniques, but the computational complexity now grows exponentially
with the system size and inverse temperature, thus obliterating the core advantage of the Monte
Carlo approach. This is the famous sign problem (75).

Fortunately, as we elaborate below, many models of metallic QCPs can be formulated without
a sign problem. Over the past several years, considerable progress has been made in establishing
symmetry criteria for sign-free problems (91–97). In particular, the presence of antiunitary sym-
metries of the action matrix play a crucial role (92, 98, 99). For the models of metallic QCPs at
hand, such an antiunitary symmetry is present and enables a sign-problem-free formulation. This
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opens the way to large-scale, numerically exact simulations of these systems. In this section, we
describe lattice models that realize metallic QCPs and the specific conditions for the lack of a sign
problem, and we discuss some merits and limitations of the applied numerical technique.

3.1. Ising-Nematic Quantum Critical Point

In order to perform QMC simulations, we first need to formulate the problem on a discrete
lattice. The microscopic model is then designed such that it realizes a quantum phase transition
in the presence of itinerant electrons. To the degree that universality holds, the properties of this
transition are independent of the particular lattice realization.

An Ising-nematic transition in a metal was studied using QMC in References 65 and 69. To
do so, these works introduced a microscopic model containing two sets of degrees of freedom:
fermions hopping on a two-dimensional square lattice and pseudospins that reside on the bonds.
The Hamiltonian is given by

Hnem = Hc + Hnem + Hint, 10.

where

Hc =
∑
r,r′ ,σ

[−tr,r′ − μδr,r′ ]c†rσ cr′σ ,

Hnem = −h
∑
〈r,r′〉

μx
r,r′ + V

∑
{r,r′},{r′ ,r′′}

μz
r,r′μ

z
r′ ,r′′ ,

Hint = αt
∑

〈r,r′〉,σ
μz

r,r′
(
c†rσ cr′σ + h.c.

)
. 11.

Here, c†r,σ=↑,↓ are fermion creation operators, tr,r′ are the hopping matrix elements,μ is the chemical
potential, μx,y ,z

r,r′ are Pauli matrices that act on the pseudospin degree of freedom at the bond
connecting sites r and r′, h is a “transverse field” that controls the quantum fluctuations of the
pseudospins, and V > 0 is the strength of an antiferromagnetic interaction between the nearest-
neighbor bonds {r, r′} and {r′, r′′}. The strength of the fermion-pseudospin coupling is set by α.
In the disordered phase, where 〈μz

r,r±x̂〉 = 〈μz
r,r± ŷ 〉, the system is symmetric under a C4 rotation

by π/2. For sufficiently small h, there is a transition into a phase in which the values of 〈μz
r,r′ 〉

on horizontal and vertical bonds become different. This phase spontaneously breaks the lattice
rotational symmetry down to C2. In this nematic phase, the dispersions of the fermions in the x
and y directions are different.

To set up the model (Equation 10) for a QMC treatment (100, 101), the partition function
is written as a discrete-time Euclidean path integral.5 For each space-time configuration of the
pseudospins, the fermions can be integrated out exactly, because their action is quadratic. The
fermionic contribution to the Boltzmann weight is written as a product of two fermion deter-
minants, det(M↑) × det(M↓), where M↑ and M↓ are the action matrices for spin up and down
electrons, respectively. Crucially, M↑ = M↓ and both matrices are real. Therefore, the effective
bosonic action is real and nonnegative, and hence it is amenable to QMC simulations without
suffering from the sign problem.

3.2. Spin-Density Wave Quantum Critical Point

In the case of a magnetic transition, we are not as fortunate; the magnetic order parameter couples
differently to spin up and spin down fermions, and hence integrating out the fermions generally

5The results described here are independent of the size of the time step chosen.
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does not produce a real, nonnegative Boltzmann weight. Nevertheless, one can formulate a lattice
model that realizes a metallic SDW transition and is free of the sign problem.

In field theoretic treatments of an SDW metallic transition, one usually focuses on the vicinity
of the hot spots, which are pairs of points on the Fermi surface connected by the magnetic
ordering wavevector Q. It is generally believed that any universal properties of the transition are
captured within a model that includes only a set of patches of the Fermi surface near the hot spots.
One therefore has the freedom to deform the Fermi surface away from the hot spots without
qualitatively changing the behavior near the QCP. Let us consider a model with two fermionic
flavors, c1 and c2, with different dispersions, such that Q connects points on the Fermi surface of
band 1 to points on band 2 but does not connect two points on the Fermi surface of the same
band (see Figure 1c). Then, to capture the coupling of the fermions to the SDW fluctuations near
the hot spots, it is enough to consider only the part of the fermion-boson interaction of the form
�φ · (c†1 �σ c2 + h.c.). The action, regularized on a lattice, then has the following form:

SSDW = Sc + Sφ + Sint, 12.

where

Sc =
∑

k,α=1,2,σ

∫
dτ c†k,α,σ

(
∂τ + εα,k

)
ck,α,σ ,

Sint =
∑

r

∫
dτ e iQ·r �φr · c†r,1 �σ cr,2 + h.c., 13.

and Sφ is a lattice version of the bosonic part of the action in Equation 2, and c†r,α = (c†r,α,↑, c†r,α,↓).
The order parameter �φr can be either a one-, two-, or three-component vector, corresponding to
an easy-axis, easy-plane, or isotropic magnetic order parameter.

The effective bosonic action obtained by integrating out the fermions in Equation 12 is real and
positive semidefinite, and therefore the model is sign-problem free (64). This is because for every
configuration of �φr(τ ), the fermion action matrix is symmetric under an antiunitary transformation
T̃ = iσyKU , whereK denotes complex conjugation, and U is a unitary transformation that changes
c1 → c1 and c2 → −c2. Note that T̃ 2 = −1. The existence of such an antiunitary symmetry is a
sufficient condition for the lack of a sign problem (92, 98, 99).

3.3. Determinant Quantum Monte Carlo Technique

We treat the models of Equations 10 and 12 using the standard determinant QMC method (102).
Even in the absence of a sign problem, the method is computationally costly: Its complexity
scales as βN 3, where β = 1/T , and N is the number of lattice sites. Nevertheless, one can
straightforwardly get to system sizes of 24 × 24 for the nematic case and 16 × 16 for the SDW
case,6 and temperatures as low as T = 0.025 in units of the hopping (about 1% of the Fermi
energy). Fortunately, these system sizes and temperatures are sufficient to extract much of the
physics of the QCP in both cases.

The details of the numerical implementations have been described in References 65 and 67. A
few technical tricks turned out to be crucial to improve the convergence of the algorithm: First,
global updates and parallel tempering schemes need to be introduced in the vicinity of the QCP to
overcome critical slowing down. Second, convergence to the thermodynamic limit is dramatically

6The reason for the difference in the maximum accessible L between the nematic and the SDW models is that in the nematic
model there is only one fermionic orbital per site, whereas in the SDW case there are two orbitals.
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accelerated by simulating systems with a small orbital magnetic field that corresponds to a single
flux quantum (103). The magnetic field is opposite for spin up and spin down fermions such that it
does not introduce a sign problem. Recently, several new directions have been proposed to speed
up QMC simulations that may allow access to larger system sizes (104–107).

Once converged, the simulations give numerically exact results, in the sense that they are devoid
of any bias—free of systematic errors—and have statistical errors that can be made arbitrarily small
by running the simulations longer. Thus, thermodynamic properties (such as the order parameter
susceptibility) and imaginary-time correlation functions (such as the fermion Matsubara Green’s
function) can be calculated to any desired precision. Unfortunately, because the simulations are
performed in imaginary time, one cannot directly access any real-time correlation functions. Com-
puting real-time (or real-frequency) quantities requires an analytic continuation of the imaginary
time data, which is a numerically unstable process and requires nontrivial additional assumptions.
However, much insight into the physics can be gained by analyzing imaginary-time correlation
functions directly, as we highlight below.

4. RESULTS

4.1. Phase Diagrams

We now review the results of the QMC simulations for the models describing a nematic (Equa-
tion 10; 67, 69) or easy-plane SDW (Equation 12; 65, 68) transition in a metal. The phase diagrams,
shown in Figure 2, are qualitatively similar: Upon increasing the tuning parameter, the order-
ing temperature7 (either nematic or SDW) decreases, extrapolating to zero at a quantum phase

15141312111098
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Figure 2
(a) Phase diagram of an easy-plane SDW model, with a fixed value of the Yukawa coupling, λ = 3. The shaded area marks coexistence
between superconductivity and SDW order. The gray line marks the onsets of diamagnetism above Tc (defined as the change of sign of
the magnetic susceptibility from paramagnetic to diamagnetic). The inset shows the structure of the superconducting order parameter
in k space. Q = (π ,π ) is the magnetic ordering vector. (b) Phase diagram of the nematic model, as a function of the tuning parameter h
and temperature T . The dashed lines indicate the value of h where the nematic susceptibility is half of its value at h = hc and the same
temperature. The color scale shows a proxy ρ1 to the DC resistivity (see Section 4.4). The following parameters were used: α = 1.5,
V = 0.5t, and μ = t. Abbreviation: SDW, spin-density wave. Panel a adapted from Reference 65, and panel b adapted from
Reference 69.

7In the SDW case, the thermal transition has Berezinskii–Kosterlitz–Thouless character, because the order parameter has
XY symmetry.
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transition. In the nematic case, the finite-temperature transition is continuous down to the lowest
temperature displayed.8 In the SDW case, there is some evidence that the transition becomes very
weakly first order at the lowest temperature, T ∼ 0.025, accessible in the numerics.9 (All energy
scales are in units of the hopping matrix element of the fermions on the lattice.) In both cases,
the putative QCP is covered by a SC phase (detected by measuring either the SC susceptibility or
the superfluid stiffness), with a maximum Tc occurring near (or slightly to the disordered side of)
the QCP. The symmetry of the SC order parameter is s wave in the nematic case, whereas in the
SDW case it is d wave. For the SDW problem, a regime of substantial SC fluctuations between Tc

and ∼2Tc is reported in Reference 65, as manifested by a reduction of the single-particle density
of states and an enhanced diamagnetic susceptibility.

It is interesting to ask what features of the models control the maximum Tc. In the SDW case,
this question has been addressed in some detail (68, 71). For a fixed band structure, the overall
phase diagram evolves smoothly with the strength of the Yukawa coupling λ, with the maximum
SC Tc being initially proportional to λ2; at larger λ, Tc saturates to a value of about 0.04EF.
Tc near the nematic QCP has not been studied at the same level of detail but seems to behave
similarly. Preliminary simulations (108) show that Tc in the isotropic [O(3)-symmetric] SDW
case has similar trends. In the planar SDW problem, the maximal Tc was found to be strongly
dependent on the angle at which the Fermi surfaces meet at the hot spot (71): Over some range
of the angle θhs and λ, Tc ∝ sin(θhs). At larger values of λ, Tc seems to be less dependent on θhs.

In both the Ising-nematic and the planar SDW case, the QCP is inside the SC phase. Because
the Fermi surface is fully gapped in the SC phase in both cases,10 we expect the QCP to be
of the d = 2 + 1 Ising or XY types, respectively. Hence, strictly speaking, a pristine metallic
QCP does not exist in either case. A metallic QCP may be stabilized by breaking both time-
reversal and inversion symmetries or by applying a magnetic field. However, in our numerical
QMC simulations, doing so would immediately introduce a sign problem, and this option has
not been explored. A model undergoing an Ising ferromagnetic transition (72) has shown no
superconductivity down to the lowest temperatures considered. However, as the Yukawa coupling
is increased, the SC correlations grow rapidly, indicating that the ground state is probably SC.

Finally, besides the primary order parameter (either planar SDW or nematic) and supercon-
ductivity, we do not find any substantially enhanced fluctuations of any other form of order
anywhere in the phase diagram. Specifically, we have computed CDW and PDW correlations.
The SC susceptibility is always peaked at Q = 0, with no secondary peaks at nonzero Q, in-
dicating no proximate PDW instability. The CDW susceptibility is very moderately enhanced
upon approaching the SDW QCP and then strongly suppressed upon entering the SC phase. If
particle–hole symmetry is present, the SDW model has an increased symmetry that relates the SC
and CDW order parameters, and the susceptibilities of the two order parameters are identical (52,
81). However, a recent QMC study found that even a small breaking of particle–hole symmetry
strongly lifts the degeneracy between the two types of order in favor of superconductivity (70).

4.2. Order Parameter Correlations

Next, we examine the correlations of the order parameter near the QCP. We focus on the metallic
regime above Tc.

8At smaller fermionic densities (not shown) the nematic transition may turn weakly first order.
9Simulations at T = 0 are possible; however, to the best of our knowledge, none have been performed to date for the easy-plane
case.
10Note that the SC state in the SDW case possesses a nodeless d-wave order parameter, having an opposite sign on the two
portions of Fermi surface that are related to each other by π/2 rotation. See the inset of Figure 2.
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Figure 3
(a) The inverse SDW susceptibility, χ−1, near the quantum critical point for different values of L, T , q − Q, ωn , and r . The horizontal
axis is the functional form χ−1

fit . The color indicates the density of data points for this value of χfit. (b) A slice through the same data as in
panel a, showing χ−1 versus ωn for different values of q̃ = q − Q and r . In both panels, λ = 1.5 and T = 0.025. Panel a adapted from
Reference 14.

Figure 3 shows the susceptibility, χ , of the planar SDW order parameter as a function of
temperature, tuning parameter, frequency, momentum, and system size. The value of the Yukawa
coupling, λ = 1.5, was chosen such that the lowest temperature displayed, T = 0.025, is just above
the SC Tc. Figure 3a shows that χ−1 can be remarkably well approximated by a simple functional
form over the entire regime: χ−1 ≈ χ−1

fit , where

χ−1
fit = a|q − Q|2 + b |ωn| + c(r − rc). 14.

The values of a , b , c, and rc are shown in Figure 3a. Figure 3b shows the dependence of χ−1 on
ωn for different values of q and r at T = 0.025. For other values of λ, χ is similarly well described
by χ−1

fit .
Equation 14 is precisely the form we expect from naı̈vely integrating out the fermions and

treating the resulting effective action at the Gaussian level, à la Hertz–Millis theory (24, 26).
There is one notable difference, however: This treatment (26) gives that the thermal mass (i.e., a
temperature-dependent additive constant to Equation 14) should scale as T log(1/T ). However,
in Equation 14, we did not include a thermal mass term at all, because it hardly affects the quality
of the fit within this resolution. A more careful analysis (68) shows that the thermal mass term is
nearly quadratic in T for T < 0.3 and nearly linear at higher temperatures.

Next, we turn to the order parameter susceptibility near the nematic QCP. We first focus on a
moderately small value of the Yukawa coupling, α = 0.5 in Equation 10. The static correlations,
D−1(ωn = 0), are well described (65) by a simple Curie–Weiss form:

D̃−1 = A[T + b |q|2 + c(h − hc)]. 15.

The dynamical correlations turn out to be more intricate and do not permit such a simple descrip-
tion. Figure 4a shows the inverse bosonic propagator D−1 as a function of Matsubara frequency
for different values of q near the QCP. D−1(ωn, q = 0) is markedly different from D−1(ωn, q �= 0),
as one may expect for a q = 0 order parameter from Hertz theory (24). D−1(ωn, q �= 0) has an
apparent “cusp” at ωn = 0, as expected for a bosonic mode Landau damped by the fermions.
However, we could not fit D−1 to a simple scaling form. As seen in the inset of Figure 4a, the
slope of D−1 near q = 0 increases with decreasing |q|. The q dependence of this slope is in the
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Figure 4
The inverse bosonic susceptibility, D−1 near the nematic quantum critical point for different values of the Yukawa coupling α
(Equation 10). (a) D−1 versus ωn for α = 0.5 and different values of q. Here, h ≈ hc, and different symbols represent different
temperatures: squares, stars, circles, and diamonds correspond to T = 0.025, 0.033, 0.05, and 0.1, respectively. Solid (open) symbols
correspond to points where vF|q| ≥ ωn (vF|q| < ωn), where vF is the minimal value of the bare Fermi velocity on the Fermi surface.
(Inset) the same data with the value of D−1(ωn = 0) subtracted. (b) D−1 versus ωn for different values of α at h ≈ hc and β = 20. In all
the simulations, V = 1 and μ = −0.5, except in the lower right panel of panel b), where V = 0.5 and μ = −1. The results are for
systems of size L = 20. Panel a adapted from Reference 65.

same direction as predicted by |ωn|/|q| Landau damping term, but it is much weaker. This may
be due to finite size and finite temperature effects (109, 110). A qualitatively similar behavior was
found near an Ising ferromagnetic transition (72), where the ferromagnetic propagator was fit to
a modified Hertz–Millis form.

At larger values of the Yukawa coupling, D−1 shows qualitatively different behavior. The
contrast between D−1(ωn = 0) and D−1(ωn �= 0) becomes less pronounced as the Yukawa coupling
increases. Most dramatically, for α = 1.5, D−1 loses its q dependence almost completely; this is
most pronounced when the value of the exchange coupling between the bosonic degrees of freedom
is decreased from V = 1 to V = 0.5 (see Figure 4b).

4.3. Single Fermion Properties

Near a metallic QCP, we expect the scattering of fermions off the order parameter fluctuations
to lead to a breakdown of Fermi liquid behavior. We now address the single-particle properties
upon approaching the SDW and Ising-nematic QCPs.

The imaginary time or Matsubara frequency properties can be computed directly from the
QMC simulations. In addition, some information about the properties of the fermion spectral
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Figure 5
Single-particle properties near an SDW QCP with λ = 1.5. (a–c) The Green’s function G(k, τ = β/2) as a
function of k, for different values of the tuning parameter r . The Green’s function is shown for one orbital
only; the location of the Fermi surface of the other orbital is indicated by a black dashed line in panel b.
(d,e) the imaginary part of the self-energy, Im�(kF ,ωn), near the QCP (d ) and away from it (e). The
self-energy is shown at one of the hot spots (k = khs) and at a Fermi surface point with kx = 0, away from
the hot spots. Abbreviations: QCP, quantum critical point; SDW, spin-density wave. Figure adapted from
Reference 68.

function at real frequencies of the order of T can also be obtained. This is possible through the
relation, valid for 0 < τ < β (111),

G(k, τ ) =
∫

dω
e−ω(τ−β/2)

2 cosh(βω/2)
A(k,ω), 16.

where A(k,ω) is the spectral function. From here, we see that G(k, τ = β/2) gives the integrated
spectral weight in a window of width ∼T around the Fermi level. Figure 5a–c shows a colormap
of this quantity versus k for one of the orbitals that forms the horizontal Fermi surface shown
in Figure 1c for different values of the tuning parameter r approaching an SDW QCP (68). In
the ordered state, r < rc (Figure 5a), the reconstruction of the Fermi surface is clearly visible,
and a gap opens at the hot spots. Near the QCP (Figure 5b), the gap at the hot spots fills in,
although G(k,β/2) is still significantly suppressed at the hot spots compared with other regions
of the Fermi surface. Finally, away from the QCP (Figure 5c), a full Fermi surface is recovered.

Next, we examine the fermion self-energy, �(k,ωn), at different points on the Fermi surface.
The imaginary part of �(k,ωn) is shown at the intersection of the Fermi surface and the y axis
(which is far away from the hot spots) and at the hot spot (khs), either near the QCP or away from
the QCP (Figure 5d,e, respectively). Away from the hot spots, �(k,ωn) tends linearly toward
zero, which is consistent with Fermi liquid behavior. At the hot spots, the self-energy is larger
than it is away from the hot spots; this is particularly pronounced in the vicinity of the QCP, where
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�(khs,ωn) is nearly frequency and temperature independent. This marks a strong deviation from
Fermi liquid behavior at the hot spots.

The near independence of the self-energy of ωn and T is surprising; most field-theoretical
models predict�(ωn) ∼ i sgn(ωn)

√|ωn| at the hot spots. It is not clear whether the behavior found
in the simulations represents a true asymptotic property of the QCP. The lowest temperature in
the simulations is intrinsically limited by the SC transition (Tc ≈ 0.025 for λ = 1.5). Note that for
all but the smallest temperature and frequency, T = 0.05 and ωn = π/T , the self-energy is smaller
in magnitude than ωn, and we can then identify a non-Fermi liquid scale �NFL ∼ 0.05 ≈ 2Tc.
Thus, there is no separation of scales between non-Fermi liquid behavior and superconductivity.

Next, we describe the single-fermion properties in the nematic case. Figure 6a–d shows a
colormap of G(k,β/2) for different parameters. In the noninteracting case (α = 0), this function is
strongly peaked at the Fermi surface. In the presence of interactions (α = 1.5, V = 0.5) but away
from the QCP (h = 5.5), a clear Fermi surface is still present, although some broadening is visible
near the hot regions around k = (π , 0) and (0,π ). In the vicinity of the QCP (h = 2.8 ≈ 1.1hc), a
dramatic reorganization of the low-energy spectral weight occurs. Although the Fermi surface near
the cold spots along the diagonal remains reasonably well defined (even though it is substantially
broadened), the Fermi surface in the hot regions is almost completely washed out, with spectral
weight distributed over a broad momentum range.
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Figure 6
Single-fermion properties near a nematic quantum critical point. (a) The imaginary time Green’s function G(k, τ = β/2) as a function
of k for noninteracting electrons (α = 0) and temperature T = 0.17. (b–d ) G(k, τ = β/2) for an interacting system with α = 1.5,
V = 0.5, μ = 1, and T = 0.17 for different values of the tuning parameter, h. In panel b, the system is in the nematic phase; a small
symmetry-breaking field was applied in order to pin one of the two configurations of the order parameter. (e,f ) Imaginary part of the
Matsubara self-energy at the Fermi surface, −ImkF ,�(k,ω) for two values of h, for the same parameters as in panels (b–d ). The
self-energy is shown at the cold spot on the diagonal, kF = kd ‖ (1, 1), and at a point in the hot region, kh, which is the intersection of
the Fermi surface with the segment from (0,π ) to (π ,π ). Similar data are shown in panels ( g,h) for a weaker coupling system with
α = 1.0, V = 1.0, and μ = 0.5.
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This dichotomy between the cold spots and the hot regions is also apparent in the behavior
of the fermionic self-energy, shown in Figure 6e–h. Figure 6e,f shows Im�(kF,ωn) for the
parameters used in Figure 6a (α = 1.5, V = 0.5, and μ = 1); Figure 6g,h shows the same
quantity for a smaller value of the Yukawa coupling, α = 1, V = 1, and μ = 0.5. Away from the
QCP, both Im�(k,ωn) in the hot region [k = kh, which is along the line from (0,π ) to (π ,π )] and
at the cold spot (k = kd, along the diagonal) depend approximately linearly on ωn.11 In contrast,
near the QCP, Im�(ωn) in the hot regions is much larger and does not seem to vanish as ωn → 0
and T → 0. The strong upturn of Im�(ωn) at low frequencies in Figure 6e is due to the onset of
a SC gap.12 At higher frequencies, Im�(kh,ωn) in Figure 6e is strikingly frequency and temper-
ature independent, which is reminiscent of the behavior found in the SDW case at the hot spot
(Figure 5d). Note that in the stronger coupling simulation of Figure 6e, Im�(kd ,ωn) has a
substantial ωn → 0 extrapolation even at the cold spot; in contrast, in Figure 6g it seems to
extrapolate to zero.

Thus, in both the SDW and nematic QCPs, strong deviations from Fermi liquid behavior are
found at temperatures T ≥ Tc, at least in some regions of the Fermi surface. The character of these
non-Fermi liquid regimes are different from those predicted by theories of metallic criticality;
in particular, the self-energy found in the numerical simulations is much less temperature and
frequency dependent than expected. The non-Fermi liquid regimes terminate at T = Tc, where
a gap opens on the entire Fermi surface.

4.4. Transport

The frequency-dependent conductivity near a metallic QCP is of particular interest. Unfortu-
nately, computing this quantity from QMC techniques is a highly nontrivial task. Because all
dynamical properties are defined in real frequency, they are not easily accessible in QMC simu-
lations performed in imaginary time. In principle, there is a one-to-one correspondence between
the correlation functions in real and imaginary times. However, such an analytical continuation
involves inverting a nearly singular matrix (with exponentially small eigenvalues). Hence, any un-
certainty in the QMC data (inevitably present because of statistical errors) gets strongly amplified
when one attempts to convert the data into real time.

The reverse procedure, of going from real-time spectral functions to imaginary-time correla-
tions, does not suffer from this problem. Therefore, the QMC data can be used to constrain the
behavior of the real-time spectral functions but cannot determine them uniquely. If additional
assumptions are made, one can extract model spectral functions that are consistent with the data.
For example, the maximum entropy method (112) attempts to find the least structured spectral
function that can reproduce the imaginary-time data.

Below, we describe the results for the imaginary-time current–current correlation function and
several methods that were used to analyze this data and extract information about the real-time
optical conductivity, σ (ω). The analysis is similar to the maximum entropy method and gives
similar results; however, it makes the physical assumptions more explicit.

The Matsubara frequency current–current correlation function�(ωn) is related to the real part
of the optical conductivity by

�(ωn) =
∫

dω
π

ω2σ (ω)
ω2

n + ω2
. 17.

11The small nonzero extrapolation of Im�(ωn) to ωn = 0 in Figure 6f is likely to be a finite temperature effect; it decreases
with decreasing temperature.
12Compare this behavior to that of the self-energy in the SC state within BCS theory, �BCS(kF,ωn) ∼ |�|2/(iωn), where �
is the gap.
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The QMC data for �(ωn) was found to be well described by the following simple ansatz (69):

�fit(ωn) =
n∑

j=1

Aj

ω2
n + γ j |ωn| +�2

j
. 18.

Here, n is the number of Lorentz oscillator components, and Aj , � j , and γ j ( j = 1, . . . , n) are
fitting parameters. Analytically continuing this to real frequency, we get the corresponding real
part of the conductivity:

σfit(ω) =
n∑

j=1

Ajγ j

(�2
j − ω2)2 + γ 2

j ω
2
. 19.

It turns out that the minimal number of components required to obtain a good fit to the QMC data
is n = 2: Essentially, σ (ω) is composed of a strongly temperature-dependent Drude-like peak and
a broad, weakly temperature-dependent background. This procedure yields a proxy for the DC
resistivity, ρ1 = 1/σfit(ω = 0). A more conventional maximum entropy analysis yields qualitatively
similar results (69). However, the resulting σ (ω) is not unique: Adding more components (n > 2)
gives a fit with a similar quality. This is the main source of possible systematic errors in this
analysis, as we discuss further below.

Another useful diagnostic of the low-frequency part of the optical conductivity is obtained by
examining the current–current correlation function as a function of imaginary time. �̃(τ ) is related
to the conductivity via

�̃(τ ) =
∫

dω
2π

ω cosh[ω(β/2 − τ )]
sinh(ωβ/2)

σ (ω). 20.

Thus, we see that derivatives of �̃(τ ) at τ = β/2 can be interpreted as moments of σ (ω) weighted
by a window function of width ∼T :[(

d
dτ

)2m

�̃(τ )

]
τ=β/2

=
∫

dω
2π

ω2m+1

sinh(ωβ/2)
σ (ω). 21.

If the low-frequency conductivity is characterized by a simple Drude-like peak, then Equation 21
can be used to extract information about its weight and its width. We define a second resistivity
proxy in terms of the moments in Equation 21 as

ρ2 = [(d 2�̃/dτ 2)/(2π�̃)2]τ=β/2. 22.

If σ (ω) has a Lorentzian form with width much less than T , then ρ2 asymptotically coincides with
the DC resistivity as T → 0. Furthermore, if σ (ω) has a single-peak structure at low frequency
and the width of the peak scales as Ta with a ≤ 1, then ρ2 is proportional to the DC resistivity
as T → 0. Using ρ2 as a diagnostic for σ (ω) has the advantage that it does not rely on any fitting
procedure. However, it suffers from the same uncertainty as ρ1: It is insensitive to fine structure
in σ (ω) on a scale of ω ∼ T or smaller. If such structure exists, then ρ2 does not serve as a good
indicator of the DC resistivity.

With these caveats in mind, Figure 7 shows the analysis of the transport properties near
the QCP, starting with the nematic model. The Matsubara frequency current–current correlation
function,�(ωn), near the nematic QCP is plotted in Figure 7a. The results of the two-component
fit (Equation 18) for different temperatures at h ≈ hc are shown in Figure 7b. As the temperature is
lowered, the Drude-like component becomes narrower and higher, whereas its integrated weight
is approximately constant. The corresponding proxy of the DC resistivity, ρ1 = 1/σfit (ω = 0), is
shown versus temperature in Figure 7c,d; it is also shown as a color map across the (h, T ) phase
diagram in Figure 2b.
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Figure 7
(a) Current–current correlator �(ωn) near a nematic QCP. In this simulation, T = 0.17, h ≈ 2.6, and the following parameters were
used: α = 1.5, V = 0.5, and μ = 1. The red line shows a fit to Equation 18. (b) Fitted optical conductivity σfit(ω) (Equation 19) in units of
e2/� for three temperatures. (c–f ) Temperature dependence of the resistivity proxies ρ1 and ρ2 (in units of �/e2) for parameters α = 1.5,
V = 0.5, and μ = 1 [(c,e), for h = 2.0 < hc, h = 2.6 ≈ hc, and h = 5.5 > hc] and α = 1.0, V = 1.0, and μ = 0.5 [(d,f ), for h = 4.0 < hc,
h = 4.6 ≈ hc, and h = 7.0 > hc]. For h < hc, a small symmetry-breaking field has been applied, such that the resistivity tensor is
anisotropic. Only the smaller component of the resistivity proxy is shown. ( g,h) Resistivity proxies versus T near an SDW QCP. Here,
we set λ = 3, as in Figure 2. ( g) The maximum entropy result ρ3, and (h) the proxy ρ2 shown near the QCP (r = 10.2) and deep in
the disordered side (r = 20). Abbreviations: QCP, quantum critical point; SDW, spin-density wave. Figure adapted from Reference 69.

Figure 7e,f shows the temperature dependence of the proxy ρ2. It is in qualitative agreement
with ρ1: Near h = hc, both ρ1 and ρ2 are significantly larger than they are away from the QCP, and
they depend nearly linearly on temperature, although for the larger coupling strength (α = 1.5)
the temperature range of this quasi-linear regime is small. The SC phase sets the lower limit on
the temperatures we can access. In the strongly coupled case, the resistivity proxies become large
at moderate temperatures, exceeding �/e2 at a temperature T ≈ 0.3t ∼ 0.1EF.

Similar results are obtained in the SDW model. The data are consistent with an optical con-
ductivity dominated by a Drude-like peak with a width of order ∼T and a nearly constant weight.
The maximum entropy analysis result, ρ3, shown in Figure 7g, is qualitatively consistent with the
resistivity proxy ρ2 shown in Figure 7h. With the limited temperature range accessible to us, it
is difficult to establish a power-law behavior for the temperature dependence of ρ2 and ρ3. If we
assume a power-law behavior ρ ∼ T x at low temperatures, we find x > 1 for r > rc, and x < 1
for r ≈ rc.

5. CONCLUSIONS AND OUTLOOK

The first batch of QMC simulations of metallic QCPs described in this review has yielded re-
markable and often unexpected insights and opened new questions for numerical and analytical
investigation. In this concluding section, we review and interpret the principal conclusions of these
studies and discuss their broader implications.
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The most basic fact about both the SDW and Ising-nematic models is that in both cases,
the thermal transitions remain continuous at least down to low temperatures (T � 0.01EF).
Both models exhibit domes of high-temperature superconductivity near their putative QCPs,
with a maximum Tc occurring near the QCP, confirming the notion that critical fluctuations are
conducive to superconductivity. Notably, in both types of QCPs, superconductivity is the only
contender other than the primary order parameter. Thus, the physics of competing orders, with
many ordered phases in a delicate balance with each other, does not appear to be a ubiquitous
feature of metallic QCPs. In addition, no pseudogap regime is found near the QCPs, in the sense
that there is no broad regime characterized by a gap in the fermionic spectrum that is not associated
with a nearby ordered phase (such as an SDW or a superconductor).

Consequently, these QCPs are not actually metallic, because they occur within SC phases.
Though the models can in principle be supplemented by repulsive interactions and/or symmetry
breaking (such as a magnetic field) to suppress superconductivity, the resulting sign problem
drastically limits the accessible system sizes and temperatures.

Nonetheless, the sign-free models exhibit interesting phenomenology in the region of their
quantum critical fans above Tc, much of which persists into the SC state, except at the lowest
frequencies. We can thus operationally call this metallic quantum critical behavior.

Some of the robust characteristics of this quantum critical regime, common to both the SDW
and Ising-nematic QCPs, include the following: (a) The order parameter correlations are strongly
affected by the coupling to the fermions, and are consistent with overdamped dynamics of the
bosons. (b) The single-particle fermionic correlator shows non-Fermi liquid behavior of an unex-
pected kind. Strikingly, the fermionic self-energy is nearly frequency and temperature independent
over a broad regime above the SC Tc. (c) The transport properties show strong anomalies, which
is consistent with a significant broadening of σ (ω) near the QCP. If the results are interpreted in
terms of a single Drude-like peak, then the data are consistent with a large DC resistivity that is
nearly linear in temperature.

The order parameter dynamics of the SDW model are in broad agreement with Hertz–Millis
theory, with the exception of the temperature dependence of the order parameter susceptibility
(the latter displays a crossover behavior from 1/T to 1/T 2 upon decreasing temperature). The
dynamical critical exponent is z = 2. In the Ising-nematic case, the static order parameter corre-
lations are well described by a simple mean field–like form, again in agreement with Hertz–Millis
theory. However, the order parameter dynamics do not admit such a simple description. Although
it is qualitatively similar to the |ωn|/|q| form expected from Hertz–Millis theory at relatively weak
values of the coupling, its form evolves substantially as the coupling strength is increased. At
stronger couplings, the ωn �= 0 propagator becomes increasingly momentum independent (i.e.,
the effective dynamical critical exponent increases). It is tempting to associate this behavior with
an emergent local quantum criticality, although the present studies of the Ising-nematic model
do not yet establish generic order parameter dynamics in the strong coupling regime.

The single fermion correlations in the quantum critical regime are simpler than the order
parameter correlations but also more unexpected. At weaker coupling, the fermionic correlations
are consistent with a renormalized Fermi liquid, whereas the order parameter correlations are
substantially altered, which is consistent with the conclusions of Section 2.2. At stronger coupling,
in both the SDW and Ising-nematic cases, there is a non-Fermi liquid regime above Tc.13 This
regime exhibits substantial loss of quasiparticle coherence in the hot regions of the Fermi surface:

13It remains to be seen whether the non-Fermi-liquid regime extends to temperatures parametrically higher than Tc in an
appropriate limit.
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the hot spots in the SDW case, and everywhere but the cold spots in the Ising-nematic case. At these
momenta, the imaginary part of the self-energy is nearly constant, with only weak dependence on
frequency and temperature. This violation of Fermi liquid behavior is stronger than predicted by
field theoretical methods, which predict a power-law dependence of the self-energy on frequency.

The origin of this behavior has yet to be clarified. It may well be a characteristic of a finite-
temperature crossover rather than being representative of the asymptotic infrared properties of
any QCP. (Note, however, that this behavior extends down to temperatures close to Tc.) In our
opinion, it is worth considering the more radical possibility that the metallic quantum critical
ground state is in fact characterized by a nonzero Im(�) in the ωn → 0 limit.

The transport signatures of the two models show unambiguously that the optical conductivity
is strongly affected by the proximity of the QCP. The implications for the DC transport, however,
merit both excitement and caution. The data in both models are consistent with T-linear resistivity
near the QCP; however, this analysis is subject to the usual uncertainties associated with analytical
continuation of imaginary time data. In particular, it relies heavily on the assumption that there
is no structure in σ (ω) at frequencies much smaller than T . Developing ways of independently
testing the consistency of this assumption within the simulations is desirable.

Future investigations of metallic QCPs will hopefully develop both the breadth and depth of
our understanding. The robustness of the behavior described in this review should be tested by
simulating microscopic models with different band structures and different kinds of broken sym-
metry. Further direct comparisons of the QMC data to perturbative analytical calculations, at least
in the weak to intermediate coupling regimes, can provide useful insights into the interpretation
of the results. Finally, sign-problem-free models, such as the ones often used to describe metallic
QCPs, form a zero-measure set in Hamiltonian space. It is important to study to what extent
the results presented here carry over in the presence of more generic interactions. Devising ways
to do this numerically is, of course, a highly challenging problem at the frontier of the field of
many-body quantum physics.
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17. Böhmer AE, Burger P, Hardy F, Wolf T, Schweiss P, et al. 2014. Phys. Rev. Lett. 112:047001
18. Motoyama E, Yu G, Vishik I, Vajk O, Mang P, Greven M. 2007. Nature 445:186
19. Armitage N, Fournier P, Greene R. 2010. Rev. Mod. Phys. 82:2421
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