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Teleportation is a facet where quantum measurements can act as a powerful resource in quantum physics, as
local measurements allow to steer quantum information in a non-local way. While this has long been established
for a single Bell pair, the teleportation of a fault-tolerant logical qubit presents a fundamentally different chal-
lenge as it requires the teleportation of a many-qubit state. Here we investigate a tangible protocol for teleporting
a long-range entangled surface code state using elementary Bell measurements and its stability in the presence of
tunable coherent errors. We relate the underlying threshold problem to the physics of anyon condensation under
weak measurements and map it to a variant of the Ashkin-Teller model of statistical mechanics with Nishimori
type disorder, which gives rise to a cascade of phase transitions. Tuning the angle of the local Bell measure-
ments, we find a continuously varying threshold. Notably, the threshold moves to infinity for the X + Z angle
along the self-dual line – indicating an optimal protocol that is fault-tolerant even in the presence of coherent
noise. Our teleportation protocol, which can be readily implemented in dynamically configurable Rydberg atom
arrays, thereby gives guidance for a practical demonstration of the power of quantum measurements.

The basis for fault-tolerant quantum computation platforms
are logical qubits that, built from many physical qubits,
leverage long-range entanglement and topological protection
to store quantum information [1, 2]. One widely adopted
blueprint for their implementation is the surface code [1, 3],
which like the toric code employs two commuting stabilizer
measurements to induce a topological state of matter [4]. Its
fault-tolerance arises from the ability to perform quantum er-
ror correction based on the measurement outcomes of the
stabilizers (the so-called syndromes) and is embodied in a
finite error threshold against incoherent noise such as non-
deterministic Pauli errors [5]. Going beyond a protected quan-
tum memory, one of the most elementary building blocks for
quantum information processing will be the teleportation of
a logical qubit, e.g. to spatially transfer quantum information
non-locally such that it can be employed in a quantum cir-
cuit, akin to loading a classical bit into a processor register.
But while the teleportation of a single physical qubit is well
studied both theoretically [6] and experimentally [7–9], the
teleportation of a logical state [10] supported through many
qubits is a non-trivial challenge. In fact, if this task would be
confined to the teleportation of a pristine many-qubit wave-
function, any source of decoherence would immediately make
it unattainable. So the real question should be how one can
preserve not the wavefunction but the associated (topological)
phase, such that the quantum information of a logical qubit
remains protected during teleportation even in the presence of
decoherence.

In this manuscript, we address this question by introducing
a protocol for the teleportation of a many-qubit surface code
state and demonstrate its ability to transfer a logical qubit. In-
troducing a tunable source of coherent errors (by weakening
the Bell measurements) we determine its robustness, threshold
behavior, and optimal perfomance. We recast these results in
a many-body context by connecting the error threshold to an
anyon condensation transition out of a topologically ordered
quantum phase, which also gives an intuitive understanding to

the remarkable robustness for certain Bell measurement an-
gles. We provide additional analytical insights via a mapping
of the problem to a classical Ashkin-Teller model [11] with
random (non-Hermitian) couplings whose statistical mechan-
ics is reminiscent of Nishimori physics [12] in the random-
bond Ising model (RBIM). On a conceptual level, our work
goes beyond the widely studied phenomenology of Clifford
decoherence and highlights the effect of non-Clifford deco-
herence on the quantum many-body physics of a long-range
entangled state, thereby shedding light on the stability of topo-
logical order in mixed states [13–16], making a connection
to the physics of coherent errors [17–19] and weak measure-
ments [20–32], as well as generalized wave function deforma-
tions [33–35]. With an eye towards experimental realization,
we believe that configurable Rydberg atom arrays [36–38] can
readily implement our protocol, tune the coherent errors, and
establish its fault-tolerance.

Teleportation protocol.– Any protocol for quantum state
teleportation [6] between two points in space requires three
principal ingredients: First, it needs Bell pairs to establish en-
tanglement at arbitrary distance. Second, quantum measure-
ments enter with two consequences, steering the flow of quan-
tum information from source to target and collapsing the ini-
tial wavefunction into a classical state. Finally, it requires a
classical communication channel to transfer the measurement
outcomes from source to target location, necessary to perform
a round of corrections on the transferred quantum state (such
as local qubit/basis rotations).

A schematic of our protocol for teleporting the quantum
many-body state underlying a logical qubit is illustrated in
Fig. 1(a), where we employ N Bell pairs to steer the infor-
mation between the spatially separated N -qubit systems A
(Alice) and B (Bob). A more concise formulation is given
in the quantum circuit of Fig. 1(b). In the initialization stage,
we prepare (i) a surface code state by an encoder for Alice’s
qubits A, and (ii) a bunch of N Bell pairs, between the ancilla
system A′ and Bob’s qubits B. Concerning the degeneracy
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FIG. 1. Teleporting a logical qubit / surface code phase. (a) Schematics of our teleporting protocol from N -qubit systems A to B. Starting
from a surface code state in A, it requires preparation of N Bell pairs between auxiliary system A′ and B, followed by subsequent Bell
measurements for A and A′. The shaded arrow indicates the flow of information. (b) Quantum circuit. An encoder prepares a surface code
state for A qubits, whose logical qubit is maximally entangled with a reference qubit R (via the green wire), while preserving the logical
information. A′ and B are initialized in Bell pairs. The Bell measurement is performed by entangling A and A′ via a unitary gate RXX

gate, and subsequent measurements of A and A′. A tunable coherent error is introduced via the parameter t, which depends on the Bell
measurement angle θ, ϕ induced by single qubit rotations in the Bloch sphere (orange circle). The shaded arrow corresponds to the shaded
information flow in (a), if below the threshold t < tc(θ, ϕ). (c) Phase diagram in the XZ plane with a cascade of transitions. The origin is
the fixed point surface code state. Duality is equivalent to a Hadamard transformation that swaps the Z and X axes, which yields a symmetric
phase diagram. The blue shaded phase stands for the topological surface code phase with protected code space maintaining 1-bit of second
Rényi coherent information (7). The red phase boundaries falls into Ising universality class until the limit θ = π/4, t = π/4. The lines inside
the blue shade mark the phase boundary of the post-selected s = +1 pure state among the ensemble, which is a cleanly deformed surface code
state. At its phase boundary, the two Ising critical lines merge into a Kosterlitz-Thouless critical point at t = π/8, θ = π/4, and opens up a
gapless critical line for θ = π/4, t ≥ π/8. The third transition line (in blue) outside the shade serves as the optimal phase boundary, beyond
which the von Neumann coherent information (4) decays exponentially with the code distance. The dots are analytical or numerical data
points. (d) The phase diagram not only describes a tunable teleportation protocol but also surface code under weak measurement, and wave
function deformation topological transitions.

of the surface code states, we maximally entangle the logical
state with a reference qubit R [39], such that when R is traced
out, the surface code becomes maximally mixed in the log-
ical space. To perform the teleportation, we (spatially) align
Alice’s qubitsAwith the ancilla qubitsA′ one-to-one and per-
form a rotated Bell pair measurement for each pair, which is
carried out by first applying a unitary RXX = e−i(π/4−t)X1X2

gate (Ising interaction evolution) and then measuring in the
Pauli Z basis. It is in this entangling step where we introduce
an additional tuning knob in our protocol indicated by the or-
ange circle: a tunable coherent error, induced by imperfect
rotations 0 ≤ t ≤ π/4. In addition, one can rotate the angle of
the Bell measurements between the Pauli X , Y , and Z basis
by rotating the physical qubits on the Bloch sphere, character-
ized by angles θ, ϕ (prior to the entangling gate). In total, this
teleportation block is equivalent, up to a local unitary correc-
tion [40], to the following weak measurement gates

Ms = exp(
β

2
sσ̂θ,ϕ) /(2 cosh(β)) , (1)

where s = ±1 indicates Alice’s measurement outcome and
β = tanh−1 sin(2t) characterizes the effective measurement
strength. On a conceptual level, these measurement gates im-
plement a non-unitary, local wave function deformation of the

underlying topological state [33–35, 41–44].
Due to the quantum no-cloning theorem [45], the logical

information either successfully flows toB or leaks to the mea-
surement outcomes of A. When t = 0, a perfect Bell measure-
ment is performed (which does not extract the logical informa-
tion) and the surface code state is successfully teleported toB,
visualized as an information flow through the wire of the cir-
cuit from A to B. When t = π/4, A is decoupled from B, and
the measurement collapses every qubit in the surface code,
such that the information gets pumped out to the measurement
outcomes of A and cannot flow into B. When 0 < t < π/4,
the variable strength can turn on and off the teleportation of
the surface code, which will be shown to exhibit topological
quantum phase transitions. However, the post-teleportation
state depends on the measurement outcomes s (bitstring of A
qubits):

∣Ψ(s)⟩ ∶= Ms ∣Ψ⟩√
P (s)

, (2)

where ∣Ψ⟩ ∶= 1
√

2
(∣ψ+⟩B ∣+⟩R+∣ψ−⟩B ∣−⟩R) with ψ+(−) denot-

ing the two degenerate surface code states, as eigenstates for
the logical X̂L operator. The normalization constant P (s) =
⟨Ψ∣M †

sMs ∣Ψ⟩ is the probability of measurement outcome ac-
cording to Born’s rule [20]. When all possible measurement
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outcomes are collected, with A′ traced out, the global state is
a block-diagonal mixed state

ρRAB = ∑
s

P (s) ∣Ψ(s)⟩⟨Ψ(s)∣ ⊗ ∣s⟩⟨s∣A . (3)

Under such effective decoherence induced by coherent error,
the state remains topologically ordered iff it maintains a pro-
tected 2-dimensional code space, which means there exist 2
locally indistinguishable but global orthogonal states (akin to
the degenerate ground states of a topological Hamiltonian [1])
in the thermodynamic limit of large code distances d → ∞.
The size of the protected code space can be detected by the
coherent information [13, 39, 46–48], which for ρRAB is

Ic = SRA − SA = SAB − SRAB = ∑
s

P (s)SB(s) . (4)

One can put physical meaning to this formula in three differ-
ent ways: (i) SRA − SA as a conditional entropy expresses
the quantum information of R being subtracted by the leak-
age into A, where A plays a role analogous (but not identi-
cal) to the environment; (ii) SAB −SRAB expresses the quan-
tum information that B can decode with the assistance of
classical information (measurement outcomes) from A; (iii)
SB(s) = SR(s) is the von Neumann entropy of the logi-
cal qubit for each measurement outcome, which quantifies
the size of uncorrupted quantum code space, whose average
yields the coherent information. To calculate this quantity,
note that the reduced density matrix of R can be derived by
projecting M †

sMs onto the logical space of B

ρR(s) =
1

2P (s)
(P++(s) P+−(s)
P ∗
+−
(s) P−−(s)

) ≡ 1 + κ⃗(s) ⋅ σ⃗R
2

, (5)

where Pµν(s) ∶= ⟨ψµ∣M †
sMs ∣ψν⟩ is the overlap between two

logical states being connected by the weak measurement oper-
ators, and P (s) = (P++(s) +P−−(s))/2. Notably, Eq. (5) can
be interpreted as a qubit subject to a polarization field vec-
tor κ⃗. It expresses the precise logical error based on a fixed
“syndrome” s

E(ρL) =
√
ρR(s)ρL

√
ρR(s) , (6)

for any state ρL in the logical space. A finite κx(z) compresses
the logical Bloch sphere along the X(Z) axis (Fig. 1), with
density eigenvalues (1 ± κ(s))/2. For sufficiently large field
strength, this shrinks the Bloch sphere to a classical bit, which
is read out by Alice – indicating the teleportation phase tran-
sition mapped out in Fig. 1(c).

Topological degeneracy and anyon condensation.– To un-
derstand the general shape of the phase diagram in Fig. 1(c), it
is helpful to relate the breakdown of teleportation to the field-
induced transition of the Z2 gauge theory description under-
lying the surface code [35, 49–56]. In this language, the sur-
face code allows two types of elementary excitations: electric
charge e and magnetic flux m particles, which due to their
mutual semion statistics are referred to as anyons. For the sur-
face code open boundary condition (Fig. 1(a)), one can cre-
ate two e particles and separate them away from each other

FIG. 2. Coherent information and teleportation transition.
Shown are two sets of traces for θ = 0 (Z direction) in blue, and
θ = π/4 (X + Z self-dual direction) in red. Vertical gray lines in-
dicate the thresholds, obtained from finite-size scaling analysis, with
data collapses shown in the insets. (i) θ = 0: tc/π = 0.143(1),
ν = 1.6(1), consistent with Nishimori criticality. The gauge sym-
metry of the Nishimori line allows us to uncorrelate the disorder and
perform random sampling, where for each sample we perform tensor
network contraction for the coherent information, simulating code
distances up to d = 32 (1,985 qubits), averaged over 1000-10000
random samples. (ii) θ = π/4: tc/π = 0.25(1), ν = 1.8(1). With-
out explicit gauge symmetry for the disorder ensemble, we Monte
Carlo sample the disorder and subsequently contract out the tensor
network [20]. This hybrid approach allows us to simulate codes up
to d = 16 (481 qubits), averaged over 200-1000 random samples.

disappearing into the left and right e-boundaries [57], which
transforms the surface code state ψ+ into ψ−, that are locally
indistinguishable but globally orthogonal, yielding a 2-fold
topological degeneracy – this is the logical qubit space. Un-
der small deformations (2), the states Ms ∣ψ+⟩ and Ms ∣ψ−⟩
remain asymptotically orthogonal despite their anyon exci-
tations starting to fluctuate. For large deformations, how-
ever, they become indistinguishable and the topological order
breaks down. This phase transition is driven by the conden-
sation of the anyons [58]. When an e-particle is condensed,
M †

sMs can map ψ+ to ψ− leading to nonzero κz , which quan-
tifies the e condensation fraction. When an m-particle is con-
densed, the e-particles must be confined due to destructive in-
terference with m. As a result, either Ms ∣ψ+⟩ or Ms ∣ψ−⟩
has exponentially decaying norm and is ill-defined, which is
signalled by nonzero κx. In this aspect, the coherent infor-
mation (4) serves as a single order parameter that collects the
deconfinement and uncondensation contribution.

Tunable teleportation and Born average.– In Fig. 1(c), the
thresholds / critical points are shown as the blue dots form-
ing the blue line, inside which the entire inner blue shaded
region stands for the topological phase, where the average
post-measurement state maintains the protected code space /
topological degeneracy and constitutes a coherent superposi-
tion of loops [1]. In contrast, the states above the threshold
decohere into a classical loop gas [15], whose loops are indi-
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cated by the negative measurement outcomes {s = −1}. The
two phases are separated by a phase transition whose precise
location is obtained by a finite-size scaling collapse [59] of
the coherent information (4), which we computed using a hy-
brid Monte Carlo/tensor network technique for shallow cir-
cuit sampling [20], see Fig. 2. Changing the Bloch angle
θ, the threshold tc is found to vary from a (Nishimori) tran-
sition with threshold tc ≈ 0.143π [12, 20] for θ = 0 off to
tc = π/4, (β = ∞, an “∞-threshold”) for θ = π/4, i.e. along
the X + Z Bloch projection. To understand this, notice that
for finite θ both e and m particles are fluctuating and compete
with each other. As a result, it takes stronger deformation
to achieve anyon condensation, which explains the enhance-
ment of the threshold by deviating θ from 0 or π/2. When
θ = π/4, a higher symmetry emerges as the state remains in-
variant under Hadamard transformations that swap Z ↔ X
for every physical qubit – this is the electric-magnetic self-
duality [35, 50, 53, 60], which along this line is respected not
only by the pristine surface code (t = 0) but also all deforma-
tions (t > 0). As a consequence, the frustration from com-
peting anyon condensation is strongest along this line and, as
revealed in our calculations, pushes the threshold all the way
to infinity. This implies a remarkable robustness of the tele-
portation protocol along this line. In reverse, it means that
teleportation of the topologically ordered many-qubit state be-
tween Alice and Bob is successful for even for infinitesimally
weak coupling. For any experimental realization of surface
code teleportation this is thus the optimal angle. When re-
cast in terms of weak measurement, this result tells us that a
self-dual surface code is most robust against decoherence.

Replicas and cascade of transitions.– To shed light on the
ensemble of post-teleportation states, consider a Rényi variant
of the coherent information

I(n)c = 1

1 − n
ln

tr(ρnRA)
tr(ρnA)

= 1

1 − n
ln[trρR(s)n]n , (7)

which on the r.h.s. is given as the logarithm of the average
n-th order purity of the reference qubit. The n-replica aver-
age [⋯]n ∶= ∑s P (s)n⟨⋯⟩/ (∑s P (s)n) can be viewed as lin-
ear average over n replicas of the system carrying the same
disorder. Compared with the Born (1-replica) average dis-
cussed above, the n-replica average enhances the contribu-
tion of states with higher probability. The numerically com-
puted 2-replica threshold is shown as the outer red line/dots in
Fig. 1(c), which is generally smaller than the 1-replica thresh-
old for varying angles – with exception of the ∞-threshold
at the self-dual angle θ = π/4, which is preserved in the 2-
replica system. As the Rényi entropy is non-increasing un-
der increasing n, this implies that the 2-replica phase bound-
ary will lower-bound the 1-replica and upper-bound the higher
replica phase boundaries.

In the∞-replica limit, P (s)n distills out only those config-
urations s that have the highest probability [13, 61], which
is usually post-selects the clean, frustration-free configura-
tion s = +1 so as to minimize the energy, in the language
of statistical mechanics. This reduces Eq. (1) to a clean de-

TABLE I. Quantum classical correspondence between wavefunc-
tion and statistical model [35]. The ordering of classical spins σ or
their dual spins µ corresponds to the Higgs or confinement phase
transition for the quantum wave function, respectively.

(2+0)D ∣ψ(s)⟩ 2D Ashkin-Teller model (1+1)D XXZ chain

e σ
m µ

P−−/P++ ⟨σ0τ0σdτd⟩ −⟨Z0Z2d+1⟩

P+−/P++ ⟨σ0σd⟩ ⟨X0X2d+1⟩

formation operator, which can be treated analytically [35] and
yields the inner phase boundaries marked by red/purple lines
in Fig. 1(c). The ∞-replica generally exhibits the smallest
threshold compared with n = 2 and n = 1, pointing to a cas-
cade of phase transitions where higher probability states gen-
erally have smaller thresholds. Note that along the self-dual
line θ = π/4, the∞-replica stands out. It does not exhibit the
same level of robustness as found for n = 1,2, but exhibits a
finite threshold at tc = π/8, beyond which the system exhibits
a critical line (described by a c = 1 conformal field theory with
varying critical exponents) [35].

Statistical model.– To gain insight into the nature of the
phase transition for generic n, we now proceed to map the
quantum mechanical problem to a classical statistical model,
akin to Ref. [20]’s approach (for Nishimori cat states). Fol-
lowing Born’s rule, the probability function of the measure-
ment outcome P (s) is identical to the wave function ampli-
tude, which here can be cast into a classical statistical model
for two layers of spins (residing at the vertices) – dual to
the surface code wave function ket and bra, respectively. As
P ≡ ∑σ,τ exp(−∑⟨ij⟩Eij), the pairwise spin interactions are

−Eij = Jsij
σiσj + τiτj

2
+ iϕ

σiσj − τiτj
2

+ (2K + iπ
1 − sij

2
)
σiσjτiτj − 1

2
,

(8)

with coupling strengths tanh(J) = sin(2t) cos(θ) and e−2K =
sinh(J) tanh(θ) [40]. This is an Ashkin-Teller model [11]
with generalized intra- and interlayer couplings. First, there
is a non-Hermitian term for finite Bloch angle ϕ, i.e. when we
consider a general deformation with Pauli Y operators. We
defer a discussion of this case to future work. Second, the
interlayer coupling exhibits random bond disorder introduced
by the random measurement outcomes sij . For a general dic-
tionary of the underlying quantum-classical correspondence,
we refer to Tab. I.

In the classical model, the electro-magnetic duality of the
quantum model turns into a Kramers-Wannier duality. This is
most transparent in the 8-vertex representation of the Ashkin-
Teller model, see Fig. 3(a) where it is equivalent to swap-
ping the horizontal and vertical gates. For the Hermitian case
(ϕ = 0), only 6-vertex configurations appear (Fig. 3b), and
the transfer matrix of each slice describes a quantum XXZ
chain of 2d+2 spins with randomness. In such an XXZ repre-
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s

s sin(2t)tan(θ)cos(ϕ)

1

s sin(2t)

is sin(2t)tan(θ)sin(ϕ)
X X X XX

X X X XX

(a) (1+1)D random circuit (b) 8-vertex model

FIG. 3. Effective (1+1)D non-unitary circuit and 2D statisti-
cal model. (a) The surface code state under decoherence can be
mapped to a non-unitary (1+1)D circuit, by viewing one spatial di-
mension as fictitious “time”. Each physical qubit in the surface code
is mapped to a gate, where the gate elements depend on the measure-
ment outcome at the same location. Their rectangle shape allows
to distinguish the gates on the horizontal vs. verticals bonds. When
tan(θ) cos(ϕ) = 1, the gate is self-dual: rotating the gate by 90
degree leaves it invariant and the network becomes invariant under
vertex-plaquette duality, consistent with the electric-magnetic self-
duality of the surface code. (b) The eight nonzero gate elements for
the corresponding input and output spin configurations, which define
a random 8-vertex model. The duality swaps the second and third
row of vertices. When ϕ = 0, the bottom two elements drop out, and
the system reduces to a random 6-vertex model.

sentation, the logical operator becomes simply the correlation
between the boundary spins (Tab. I).

These general quantum-classical mappings offer several
merits. For one, the numerical exploration of the phase dia-
gram is considerably more affordable in the Ashkin-Teller and
particularly the XXZ representation. Second, by recasting the
various thresholds/phase boundaries in terms of classical tran-
sitions we can infer their universality classes. For the single-
component Z (X) transitions along the θ = 0, π/2 directions
in our phase diagram, we can rigorously identify the 1-replica
transition to be the Nishimori transition [12, 20, 21, 24] of
the 2D RBIM, while the 2-replica and ∞-replica transitions
are non-random 2D Ising transitions [13, 35]. In the asymp-
totic limit t→ π/4 the n-replica model is, for all Bloch angles
θ, an S2n permutation symmetric model (see SM [40]) with
Kramers-Wannier duality, driven by the one-parameter cou-
pling constant J = tanh−1 cos(θ). At θ ≪ π/4, every layer is
ordered independently and S2n is spontaneously broken. For
the 2-replica case this leads us to conjecture that the Ising lines
emanating from the θ = 0 transitions meet in a 4-state Potts
point (at θ = π/4, tc = π/4), akin to what happens in the ∞-
replica case at finite threshold (θ = π/4, tc = π/8). This con-
jecture is corroborated by numerical simulations yielding a
central charge estimate c ≈ 1 from entanglement scaling [40].

Discussion and outlook.– Zooming out, when the error pre-
serves the self duality of the surface code, the mutual frustra-
tion of anyon condensation points to a general guiding prin-
ciple to dramatically enhance the code threshold. Beyond
our work here, this is corroborated by the “ultrahigh thresh-
old” of the surface code under incoherent Y noise [62, 63]

and that under random projective Pauli measurements [64–
70] where self-duality is fulfilled on average [71, 72]. The
connection between percolation criticality for the latter case
and the Nishimori transition reported here is left for future
study [73].

Finally, let us mention that an experimental realization of
many-qubit teleportation [74] can benefit from implementing
an error correction scheme. For this one can follow two differ-
ent paths, which we dub “active” versus “passive” teleporta-
tion: To decode Bob’s deformed surface code one can use Al-
ice’s information s as syndrome – this is what we call “active
teleportation”. Here one can then implement a tensor-network
decoder [75], i.e. one can run our tensor network calculation
for the random circuit in Fig. 3 to compute the precise logical
error in Eq. (6), which can then be inverted by feedback op-
eration or post-processing. The teleportation transition can be
alternatively diagnosed by investigating whether Alice learns
the logical information from s [40], similar to the scalable
decoder for measurement-induced entanglement phase transi-
tions [47] or learnability transition [76].

Alternatively, if we do not use Alice’s information s as syn-
drome – a scenario which we dub “passive teleportation”, dif-
ferent pure states Ψ(s) mix together, equivalent to an inco-
herent Pauli noise channel (where the off-diagonal terms are
erased akin to the Pauli twirling for coherent errors [17, 18]):
N(ρ) = (1 − p)ρ + pσ̂θ,ϕρσ̂θ,ϕ with p = sin2(t). Such
“ignorance” of the measurement outcomes is generally ex-
pected to lead to smaller thresholds. Take θ = 0 for instance:
with Alice’s knowledge, the RBIM with disorder probability
p = sin2(π/4− t) gives a threshold at tc ≈ 0.143π; in contrast,
without Alice’s knowledge the mixture is subjected to dephas-
ing noise [5] described by a RBIM with disorder probability
sin2(t), which yields a threshold of tc ≈ 0.107π instead. The
cascade of transitions for such passive teleportation is thus an
example of the recently explored notion of mixed-state topo-
logical order transitions [13, 14, 16] driven by anyon con-
densation in the double-Hilbert space – as opposed to anyon
condensation in the single-Hilbert space for active teleporta-
tion. By tuning the “degree of ignorance”, one can join the ac-
tive and the passive teleportation transitions unifying the two
anyon condensation mechanisms, which we leave to future in-
vestigations.
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Appendix A: Supplementary data for self-dual line X +Z

1. 2-replica model

Here we investigate the 2-replica XXZ quantum spin
chains. Along the self-dual X + Z line, sinh(J) = e−2K ,
which simplifies each local transfer matrix into

T (2) ∝ (
1 −ZjZj+1

2
)
⊗2

+ sin2(2t)
2

(
1 + σ⃗j ⋅ σ⃗j+1

2
)
⊗2

,

(A1)

for both horizontal and vertical gates (Fig. 3 in main text).
Note that (1 + σ⃗i ⋅ σ⃗j)/2 is a swap operator, whose eigen-
states are the spin singlet and triplets with eigenvalues ∓1,
respectively. As shown in Fig. 4, the 2nd Rényi coherent in-
formation is computed by the 2-replica average of the purity
I
(2)
c = − ln[trρ2R]2 = ln 2 − ln(1 + [κ2]2), as a function of the

two point correlation of the 2-replicated XXZ chain

[κ2]2 =
∑s(P++ − P−−)2 + 4∣P+−∣2

∑s(P++ + P−−)2

=⟨(1 − σ0τ0σdτd)
⊗2⟩ + 4⟨(σ0σd)⊗2⟩

⟨(1 + σ0τ0σdτd)⊗2⟩

=⟨(1 +Z0Z2d+1)⊗2⟩ + 4⟨(X0X2d+1)⊗2⟩
⟨(1 −Z0Z2d+1)⊗2⟩

,

(A2)

where from the second line to the third line we use the op-
erator map (B6) and conserved quantity ∏X = +1, ∏Z =
(−1)d+1 of the spin chain for both copies. At asymptotic
limit t → π/4, the entanglement entropy of the bound-
ary state conforms to the Calabrese-Cardy formula SvN =
c
6
ln sin(πl/(2d)) + ⋯, consistent with the c = 1 CFT, which

combined with the S4 permutation symmetry points to the 4-
state Potts CFT. Numerical details for Fig. 4b: we elongate the
depth of the circuit from d rows to 4d rows to ensure steady
boundary state, and drop the leftmost and rightmost dangling
qubit leaving a chain of 2d qubits under the conventional open
boundary condition. The entanglement cut is performed on
the even cuts through the vertical gates.

2. ∞-replica model (post-selection)

The local transfer matrix describes a clean XXZ spin chain

T (∞) ∝ (
1 −ZjZj+1

2
) + sin(2t)√

2
(
1 + σ⃗j ⋅ σ⃗j+1

2
) . (A3)

The critical point lies at tc = π/8 which opens a continuously
varying critical line for t ≥ π/8 [35]. While the Kosterlitz-
Thouless transition usually does not show clear level crossing
for the spin wave stiffness, we find that the von Neumann co-
herent information does show a perfect crossing here (Fig. 5),
which means −⟨Z0Z2d+1⟩ = ⟨∏2d

j=1Zj⟩ has zero scaling di-
mension. Ic approaches 1 exponentially fast for t < tc = π/8
below the threshold, but converges quickly to a continuously
varying finite constant for t > tc.

FIG. 4. 2-replica model along self-dual line X +Z. (a) Second
Rényi coherent information sweeps of the phase diagram. MPS vir-
tual bonds are truncated by dropping density eigenvalues ≤ 10−10,
and bounded by maximal bond dimension χ = 256. (b) Criticality
at t → π/4 by von Neumann entanglement entropy of the (1+1)D
boundary MPS (χ = 1024). Data points are shows as dots, lines in-
dicate a fit that reveals a central charge c ≈ 0.94.

FIG. 5. Post-selection (∞-replica) model along self-dual line
X +Z. The gray lines indicate (t = π/8, I∞c = 0.6 ln 2). Note
the clear level crossing for different code distances in the plotted co-
herent information occurring for the Kosterlitz-Thouless transition at
the 4-state Potts point tc = π/8. MPS cutoff 10−10 and χ = 1024.
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Appendix B: Supplementary derivations

1. Teleportation circuit block

To understand the tunable teleportation, first consider a
two-qubit RZZ rotation gate followed by measurement in X
basis

e−iαZ⊗Z

X X
s s′￼

= Z 1 − ss′￼
2 (e−iα seiα

seiα e−iα)/2

,

where theRZZ and theX-measurement outcomes all play the
role of attaching a phase factor to the four possible input and
output states, framed in a non-unitary 2-by-2 matrix. This
matrix transports the input qubit wire from the bottom left
to the output qubit wire at the top right. Next we perform
a Hadamard rotation that swaps X ↔ Z:

e−iαX⊗X

s s′￼

= X 1 − ss′￼
2

e−iα + seiαZ
2

.

Finally, we perform the simple on-site correction conditioned
on the measurement outcomes (without need for decoder)

e−iαX⊗X

s s′￼ = e−i π
4 (cos(α) 1 + sZ

2 + sin(α) 1 − sZ
2 )e−i π

4 Z

X

∝ e
tanh−1 cos(2α)

2 sZ

X

,
(B1)

that leads to a real non-unitary matrix as purely imaginary
time evolution. This is equivalent to the weak measurement
in the Z basis [20]

+
e−itZ⊗Z ∝ etanh−1 tan(t)sZ

Y
s

,

which can be summarized as normalized Kraus operator
exp(β

2
sZ)/(2 cosh(β)) where tanh(β) = cos(2α) = sin(2t)

QR

encoder

coupler

E

m − condensed

Z Z Z Z

X

X

X

X

σσ
e − condensed

(a) (b)

FIG. 6. Surface code PEPS. Each solid dot denotes the diagonal
delta tensor: Tijkl = 1 iff i = j = k = l (which represents a virtual
GHZ state); and each cross node denotes the off-diagonal tensor:
Tijk = 1 iff i + j + k mod 2 = 0 (which represents a virtual GHZ
state in X basis: ∣+ + +⟩ + ∣− − −⟩). The left and right rough bound-
aries captured by removing the dangling physical leg, such that the
boundary forms a ferromagnetic GHZ chain, consistent with e con-
densation. The Z string acting on the physical legs can be pulled
through to the virtual leg reduced into a two-point σ − σ operator
connecting the two boundaries. Thus the logical qubit of the surface
code that is changed by Z-string corresponds to the total Ising sym-
metry charge of the left and right GHZ chains. The top and bottom
boundaries are smooth boundary, where m particle is condensed.

stands for the effective measurement strength. Here we de-
fine t = π/4 − α to characterize the deviation from the perfect
teleportation protocol, because α = π/4 corresponds to a per-
fect Bell pair measurement that teleports the input qubit state
into the output qubit without decoherence, which is consistent
with t = 0 zero measurement strength that decoheres the state.
Note that the randomness of s′ is simply corrected and drops
out from the formula, but the randomness of s cannot be fully
undone. As the Ising evolution gate can be decomposed into
a single-body rotation sandwiched by CNOT gates:

e−iαX⊗X e−iαX=
,

the 2-body coherent error t can result from the single-body
rotation.

2. Tensor network representation

The surface code can be written as a projected entangled
pair state as illustarted in Fig. 6. By stacking two layers of
PEPS together and tracing out the physical legs, we obtain a
2D classical tensor network composed of delta tensor at each
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vertex, joined by bond matrices as follows: First, we write
down and simplify the doubled Kraus operator matrix:

M †
sMs = eβs(Z cos θ+sin θ(cosϕX+sinϕY ))/(2 coshβ)

= 1

2 coshJ
( esJ se−2Ke−iϕ

se−2Ke+iϕ e−sJ
) ,

, (B2)

where we introduce J , K as functions of t and θ:

tanh(J) = sin(2t) cos(θ) , e−2K = sinh(J) tan(θ) .
(B3)

Then we introduce the wave function ket and bra:

∣ψ⟩ = ∑
{σ=±1}

⊗
ij

∣Zij = σiσj⟩ , ⟨ψ∣ = ∑
{τ=±1}

⊗
ij

⟨Zij = τiτj ∣ ,

(B4)
expressed as a dual paramagnet of classical spins σ and τ . As
a result,

⟨ψ∣M †
sMs ∣ψ⟩ ∝ ∑

σ,τ

exp
⎛
⎝
−∑
⟨ij⟩

Eij

⎞
⎠
, (B5)

up to an s independent constant prefactor, where Eij is the
generalized Ashkin-Teller model shown in the main text.

To further reduce the bilayer model into a single layer ver-
tex model / XXZ chain, there are two alternative ways. One
way is to perform duality for one layer only, resulting in the
8-vertex model discussed in the main text. An alternative way
is to take a slice of the network as a quantum transfer ma-
trix for 2(d+ 1) spins subjected to Ashkin-Teller interactions,
which can be rewritten in terms of XXZ interactions under the
mapping

σz
jσ

z
j+1 =X2jX2j+1, σx

j = Y2j−1Y2j ,
τzj τ

z
j+1 = Y2jY2j+1, τxj =X2j−1X2j ,

(B6)

which preserves all Pauli commutation relations. Conse-
quently, the interaction for the horizontal gates (see Fig. 3 of
the main text) is

−E2j,2j+1

=Js
2
(X2jX2j+1 + Y2jY2j+1) + i

ϕ

2
(X2jX2j+1 − Y2jY2j+1)

− (K + iπ
2

1 − s
2
)(Z2jZ2j+1 + 1) ,

=Js(c†
2jc2j+1 + h.c.) + iϕ(c2jc2j+1 + h.c.)

− 2(K + iπ
2

1 − s
2
)(2n2jn2j+1 − n2j − n2j+1 + 1)

(B7)

which is an antiferromagnetic anisotropic Heisenberg chain
with PT symmetric non-Hermitian interactions, that is
mapped to a complex fermion chain cj with non-hermitian
pairing term. Here nj = c†

jcj denotes fermion density. The
matrix elements of exp(−E) in the Z basis yields the Boltz-
mann weight for the corresponding vertex configuration, as
shown in the right panel of Fig. 3 in the main text. The vertical
gate can be obtained by rotating the horizontal gate employing
the duality of the model.

3. Rényi coherent information and replica symmetry

The n-th order Rényi coherent information in the main text
can be easily derived by tracing outB resulting in the reduced
density matrices for RA and A:

ρRA = ∑
s

P (s) ⋅ ρR(s) ⊗ ∣s⟩⟨s∣ , ρA = ∑
s

P (s) ∣s⟩⟨s∣ , (B8)

whose conditional n-th order Rényi entropy is determined
by the n-replica of the classical random Ashkin-Teller model
composed of 2n layers of Ising spins, denoted by a flavour
index α = 1,⋯,2n. For the asymptotic limit ϕ = 0, t → π/4
for any θ (the circular edge of our phase diagram in Fig. 1 c),
the Ashkin-Teller coupling between every two layers vanishes

K → 0, leaving only by the phase factor s
1−σiσjτiτj

2 . Conse-
quently, there is an emergent S2n permutation symmetry in
the flavor space:

∑
s

P (s)n =

∑
σ
∑
s

exp

⎧⎪⎪⎨⎪⎪⎩
∑
⟨ij⟩

J

2
sij

2n

∑
α=1

σα
i σ

α
j + iπ

1 − sij
2

1 −∏2n
α=1 σ

α
i σ

α
j

2

⎫⎪⎪⎬⎪⎪⎭
,

(B9)

where the 2n Ising layers are only coupled by an S2n sym-
metric interaction. The S2n symmetric model is self-dual at
θ = π/4. For example, the 2-replica model has emergent
S4 permutation symmetry and self-duality at (t = π/4, θ =
π/4, ϕ = 0), which is expected to be described by the 4-state
Potts conformal field theory, the same as the post-selection
∞-replica at (t = π/8, θ = π/4, ϕ = 0).

Appendix C: Experiment and quantum error correction

We believe that our protocol is amenable to a direct im-
plementation in reconfigurable Rydberg atom arrays [36–38].
In this appendix, we address how to decode the teleportation
transition in such experimental implementations.

As the logical qubit cannot be cloned, the basic idea is to in-
vestigate whether it falls into Alice’s hand or Bob’s hand. The
teleportation succeeds if Bob has the key, and fails if Alice has
it. This teleportation of a single logical qubit is in one-to-one
correspondence with teleporting the many-body Z2 topolog-
ical order, quantified by the topological degeneracy. When
there is no other eavesdropper, detecting Alice and detecting
Bob shall show the same transition. The difference between
Alice and Bob, however, is that Alice has a classical ensemble
of measurement bit strings {s}, while Bob has an ensemble
of quantum wave functions {ψ(s)} that come along with the
message s shared from Alice.

1. Decoding Alice

Here we investigate whether Alice’s measurement out-
comes are sufficient to infer the information stored in the ref-
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erence qubit [47]. To make the teleportation transition observ-
able we will follow a three-step protocol:

First, we projectively measure the reference qubit R in
the Z basis together with projective measurements of Alice’s
qubits A in every run of the experiment. As a result, we get
an ensemble of bit-strings capturing s for Alice qubits and
k = 0(1) for the reference qubit.

Second, to see the statistical correlation between R and A,
we use a standard diagnostic, the classical Shannon relative
entropy. This quantity is equivalent to the entropy of R aver-
aged over the A measurement outcomes:

Izc = [Sz
R(s)] = [⟨ln

P (s)
Pk(s)

⟩] , (C1)

which is to take ln P (s)
Pk(s)

(calculated by a classical com-
puter) being averaged over all the experimentally obtained
bit-strings. Here for the Shannon entropy, we need a classi-
cal decoder (running the same tensor network calculation as
we do here) that computes the non-linear part lnPk(s), cor-
responding to each important sample bit-string obtained from
the experiment.

Finally, we make use of the symmetry for the protocol to
reconstruct the full coherent quantum information:

1. θ = 0: the logical space is compressed only in the X
direction, and thus the Z-basis measurement directly
leads to the full coherent information: Ic = Izc .

2. θ = π/4: the model maintains self-duality, such that the
X contribution is equal to the Z contribution. And thus
when we consider only the diagonal entry, the density
eigenvalues of the reference qubit (for each s) reduces
from (1 ± κ)/2 ↦ (1 ± κ/

√
2)/2, which would rescale

the coherent information: Ic ↦ Izc . We can revert this
map to obtain the full coherent information from each
bit-string (for only θ = π/4).

2. Decoding Bob

Besides guiding the simple local correction as in the stan-
dard few-body teleportation experiment, Alice’s measurement
outcome s can additionally serve as many-body syndrome.
In the active teleportation protocol, where Bob has access to
these syndromes, he can deduce the underlying errors by run-
ning our classical calculation to contract out the tensor net-

work of Fig. 3 in main text, see Fig. 7. Such a decoder works
for general angles.

Let us comment on the active teleportation versus passive
teleportation protocol in the following. For the active tele-
portation along θ = 0 (ϕ = 0) the quantum wave function is
mapped to the RBIM from high to low temperature, as visu-
alized as in Fig. 7(b) “hot” to “cool” regimes. Here “tem-
perature” describes the uncertainty of the measurement out-
comes. Consequently, it exhibits a finite threshold at the
Nishimori critical point at tc ≈ 0.143π. The passive tele-
portation protocol, in contrast, does not use a classical de-
coder on the way to process the information, but instead
mixes the pure states into a noisy surface code mixed state:
N(ρ) = cos2(t)ρ + sin2(t)ZρZ, which can be mapped to
the RBIM from low to high temperatures. In this case, “tem-
perature” describes the fluctuations induced by noise. Con-
sequently, its optimal threshold lies at the opposite location
tc ≈ 0.107π = π/4 − 0.143π.

hot cool

cool hot0.107π

t
Nishimori

passive

0.143π
Nishimori

active

Alice Bob

tensor
network ⃗κ(s)s

syndrome error

(a) active teleportation

(b) thresholds

FIG. 7. Active vs. passive teleportation. (a) Active teleportation:
Alice sends her measurement outcome s to a classical computer that
is designed to deduce the error on the logical qubit, which can be
done by our tensor network calculation. The result is fed to Bob such
that Bob can correct the code accordingly. (b) Threshold comparison
between active and passive teleportation protocols.


	Robust teleportation of a surface code and cascade of topological quantum phase transitions
	Abstract
	Acknowledgments
	References
	Supplementary data for self-dual line X+Z
	2-replica model
	-replica model (post-selection)

	Supplementary derivations
	Teleportation circuit block
	Tensor network representation
	Rényi coherent information and replica symmetry

	Experiment and quantum error correction
	Decoding Alice
	Decoding Bob



