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Quantum measurements can be employed to induce decoherence in a restricted segment of a larger quantum
many-body state, while simultaneously engineering long-range entanglement for its remaining constituents.
Though this two-fold character of measurements in open quantum systems has been appreciated, e.g., in the
context of state preparation, a deeper conceptual understanding is called for, particularly with regard to sym-
metry as an organizing principle for such entangled states of matter. Here we discuss the role of self-dual
symmetry – a fundamental notion in theoretical physics – in mixed states, showing that the decoherence of elec-
tric (e) and magnetic (m) vortices from the 2D bulk of the toric code, or equivalently, a 2D cluster state with
symmetry-protected topological order, can leave a (1+1)D quantum critical mixed state on the boundary pro-
tected by a weak Kramers-Wannier self-dual symmetry. The corresponding self-dual critical bulk is described
by the N → 1 limit of the 2D Non-linear Sigma Model in symmetry class D at Θ-angle π, with target space
SO(2N)/U(N). We establish that this is a “measurement-version” of the Cho-Fisher model in which uncor-
related quenched disorder is replaced by the intrinsic randomness of Born measurement outcomes, resulting in
distinct universal critical properties some of which we obtain numerically (and the known absence of a Majo-
rana metal). An explicit breaking of the self-duality, by incoherent noise amounting to fermion interactions or
(non-interacting) coherent deformation, is shown to induce an RG crossover from this self-dual critical state to
Nishimori criticality or to it from a novel type of “Ising+ criticality”, respectively, both of which are related
to the random-bond Ising model in different replica limits and are described by non-unitary conformal field
theories of non-interacting fermions, as is the self-dual point. Using an unbiased numerical approach combin-
ing tensor network, Monte Carlo, and Gaussian fermion simulations, we chart out a global phase diagram as
witnessed by coherent information and entanglement entropy measures. On a conceptual level, our protocol can
be viewed as a non-unitary extension of the measurement-based quantum computation scheme that results in an
imaginary-time evolved quantum Ising chain, subjected to measurement-induced randomness. Our results point
a way towards a general understanding of mixed-state criticality in open quantum systems in terms of symmetry
and topology, while also providing a concrete protocol amenable to simulation on near-term quantum devices.

Since the early days of quantum mechanics, Born’s rule
has been providing a link connecting quantum measurements
to the probabilistic dynamics they induce. Its generalization
from few-body to many-body quantum systems allows to con-
nect quantum many-body dynamics to (classical) statistical
mechanics with strong disorder. A well-studied example of
this link is the connection of noisy topological quantum mem-
ories [1] to the random bond Ising model (RBIM) and the
emergence of an error threshold described by Nishimori criti-
cality [2] as the disorder-induced generalization of Ising crit-
icality. Such a link to Nishimori physics has recently been
uncovered also in the context of monitored quantum circuit
dynamics [3–5], many-body teleportation thresholds [6], and
mixed-state phase transitions in open quantum systems [7–
9]. From a symmetry perspective, the most striking differ-
ence between clean Ising and disordered Nishimori criticality
is their relation to Kramers-Wannier self-duality [10], which
is an idiosyncratic symmetry for the clean Ising transition,
while for Nishimori criticality it is inevitably and strongly
broken [11, 12]. Self-duality has long been appreciated as
one of the most elegant symmetries for a many-body system
to exhibit, often serving as a guiding light to deeper under-
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standing, such as Wegner’s seminal insight [13] connecting
spin to gauge-invariant models and, subsequently, the inter-
play of gauge and matter shaped by t’Hooft [14], and the
Fradkin/Shenker phase diagram [15]. Today, self-duality is
again providing a spotlight in the exploration of quantum cir-
cuits where its non-invertible algebraic character, its relation
to anomalies and fractionalization are broadly discussed [16–
25]. This has led us to question whether in the context of
monitored circuit dynamics there is a way to twist Born’s rule
into preserving self-duality, what kind of criticality this might
induce, and how decoherence or coherent deformations might
then break it down, e.g., to Nishimori criticality.

In this manuscript, we show that self-duality can naturally
appear (even at zero temperature) in the form of an average
“weak” symmetry [26–28] when decohering (i) a short-range
entangled symmetry protected topological state (SPT [29]),
(ii) a long-range entangled toric code [30], or (iii) a mea-
surement prepared cat state [3, 31], either by projective mea-
surement or by maximal dephasing noise. Specifically, we
demonstrate that the bulk decoherence of a cluster state [32–
35], which on a Lieb lattice exhibits Z(0)2 ×Z

(1)
2 (0-form and

1-form) SPT [36–39], can lead to a mixed quantum critical
state on its boundary, described by a self-dual random bond
Ising model. The same boundary state can appear upon deco-
hering a toric code or a mixed Greenberger-Horne-Zeilinger
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FIG. 1. Decoherence schematic, circuit protocol, and phase diagram. (a) Schematic of the setup: a Z(0)2 × Z(1)2 SPT can be realized as a
cluster state on a Lieb lattice (with site and bond qubits), which can be viewed as a lattice gauge state with matter electric charge e- and gauge
magnetic flux m-vortices, that are dual to each other. Dephasing the site qubit uncondenses e resulting in average or correctable topological
order as a deconfined gauge state that spontaneously breaks the 1-form Z

(1)
2 symmetry. Dephasing the bond qubit uncondenses m and leads

to the GHZ-like state as an average Z(0)2 spontaneous symmetry breaking order. When both e and m are uncondensed, it can leave a boundary
critical state with weak self-dual symmetry and weak Z(0)2 symmetry. (b) Protocol: preparing a cluster state on a Lieb lattice, and measure
the site qubit in X basis, and the bond qubit in cos(θ)Z + sin(θ)X basis with a tunable angle θ, leaving a boundary chain untouched. The
bulk can also be viewed as a “register” that records all the measurement outcomes. In the schematic, we deduce the e and m-vortices from the
measurement outcomes. (c) The phase diagram. When the bond measurement angle θ is tuned to the symmetric angle π/4, the system exhibits
the weak self-dual criticality, described by the SO(2N)/U(N) Non-linear Sigma Model (NLSM) at topological Θ-angle π in N → 1 limit.
Changing the measurement angle θ at the microscopic level has the same effect as changing the topological Θ-angle in the long-wave-length
theory. Different perturbations can be used to tune the e-vortices away from duality: the upper panel uses the (measurement) noise to mask
and blur the existence of an e-vortex, while the lower panel uses the deformation to damp it. Within the phase diagram, the white region
is the trivial state; the dark gray region indicates the strong-to-weak spontaneous-symmetry-breaking (SW-SSB) of Z2 ordered phase with
long-range glassy correlation [∣⟨ZiZj⟩∣] ≠ 0 and [⟨ZiZj⟩] = 0 (easily verfied at θ = π/2); the light gray region has only weak Z2 symmetry
due to the noise, but exhibits the same long-range correlation. There are 3 paradigmatic critical points in this phase diagram: the Nishimori
critical point, the weak self-dual critical point, and the Ising+ critical point. The arrows in the phase diagram outline the RG flow indicated
by our numerical results. Here we unfold the two perpendicular phase diagrams (by tuning ps and pη , respectively) into the plane, and their
crossing line ps = 0 = pη is not a phase transition generically.

(GHZ [31]) state (dubbed “Nishimori’s cat” state in Refs. 3
and 5). This trio of states is, of course, not incidental as all
three of them – the cluster state on a Lieb lattice, the toric
code on one of its sublattices, and the GHZ/cat state on the
other sublattice – can be unified via a Z2 lattice gauge the-
ory [13, 15, 36, 40, 41], where the site and bond qubits in
the underlying Lieb lattice are interpreted as matter and Z2

gauge fields, respectively. When the matter field is decohered
in a first step, one obtains a deconfined gauge theory as an in-
termediate state, which is the topological toric code [30], see
Fig. 1(a). If, on the other hand, the gauge field is first deco-
hered, then one obtains a gauge-symmetrized Z2 ferromag-
netic order, i.e. the state dubbed Nishimori’s cat [3]. Finally,
if both the matter and the gauge degrees of freedom are de-
cohered in the bulk, one might naively expect a trivial state.
However, the emergence of self-dual symmetry prohibits triv-
iality and protects criticality: a vestigial quantum critical state
persists at the boundary – this is the aforementioned critical
boundary state that reveals itself upon close inspection of the
mixed-state ensemble after bulk decoherence.

From a symmetry perspective, the boundary state inherits
the strong Z2 symmetry from the bulk

⎛

⎝
∏
j

Xj

⎞

⎠
ρ = ρ .

However, a strong KW self-dual symmetry, KWρ ∝ ρ, is

explicitly broken by the measurement-induced disorder in the
bulk. Nevertheless, a weak KW self-dual symmetry

KW ρKW = ρ

can be preserved on average, which can protect the mixed crit-
ical state, forbidding a flow into the trivial state or a strong-to-
weak spontaneous symmetry breaking phase [8, 9] with spin
glass order parameter [3, 5].

Before going into the details of our study, we want to pro-
vide a brief overview of our main findings. Fig. 1 summarizes
the conceptual idea of decohering the SPT order of a cluster
state via the quantum circuit schematically illustrated in panel
(b). Introducing both incoherent noise (parametrized by ps)
and a coherent deformation (parameterized by pη) we have
explored the phase diagram of panel (c), which centers around
a line where self-duality is preserved as a weak symmetry
(parametrized by the measurement angle θ for ps = pη = 0)
and which exhibits a critical point whose universality and field
theoretical description is distinct from both the Nishimori crit-
icality induced by incoherent noise and yet another type of
critical behavior, dubbed “Ising+” induced by the coherent de-
formation – both of which break the weak self-duality along
the center line of our phase diagram.

Using extensive numerical simulations that combine ele-
ments from tensor network, Gaussian fermion, and Monte
Carlo sampling, we estimate the critical exponents of this
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TABLE I. Overview of the mixed-state criticality originating
from Ising. Shown is a characterization of the three mixed-state crit-
ical theories of the phase diagram in Fig. 2(c), and a comparison to
the pure-state Ising universality class. The asterisk indicates results
with system size Lx > 1000 taken from Ref. 42. Critical exponents:
cvNent and c

(∞)

ent characterize the scaling dimensions of the bound-
ary condition changing operators that govern the Born-averaged von
Neumann and the∞-Rényi entanglement entropies of the boundary
1+1D quantum states. cCasimir is the effective central charge that
governs the Shannon entropy density of the 2D bulk. ∆m is the typ-
ical m-vortex scaling dimension that governs the change of the bulk
entropy upon changing the boundary condition.

criticality Nishimori weak self-dual Ising+ Ising

1D quantum mixed mixed mixed pure

self-dual broken weak broken strongsymmetry

2D stat mech disordered disordered disordered clean

disorder Z(m) Z(em)2 Z(m)2 0probability

ν 1.52(2)∗ 1.72(8) 1.00(5) 1

conformal non-unitary non-unitary non-unitary unitarysymmetry

central charge 0 a 0 0 1/2
cvNent 0.410(1)∗ 0.795(1) 0.310(2) 1/2
c
(∞)

ent — 0.484(1) — 1/4
cCasimir 0.464(4)∗ 0.447(1) — 1/2
∆m 0.341(1)∗ 0.156(1) — 1/8

a See Sec. III B for a discussion of the definition of the free energy.

novel self-dual quantum critical point as well as the other two
critical theories, relying primarily on Shannon entropy, en-
tanglement entropy, and coherent information measures. A
summary of the three types of criticality is given above in Ta-
ble I. Having established that these three critical theories fall
into distinct universality classes, we explore the renormaliza-
tion group (RG) flow between them by tracking the changes
of critical exponent and central charge estimates as we break
the self-dual symmetry upon moving away from the center
line of our phase diagram. Notably, we find clear numerical
evidence that incoherent noise initiates an RG flow from self-
dual to Nishimori criticality. On the other hand, upon intro-
ducing a coherent wave function deformation that breaks the
self-duality, we discover another critical theory (in the limit of
infinitely strong deformation) that can be described by a non-
unitary conformal field theory (CFT) that can analytically be
shown to retain the unitary Ising CFT in a subset of its oper-
ators, which is why we have dubbed it “Ising+” criticality. In
our phase diagram, we find that this critical point is an unsta-
ble fixed point with numerical evidence for an RG flow back
to the weak self-dual criticality (Table I.)

The remainder of this manuscript provides a detailed ac-
count of this physics, with Sec. II introducing our mixed-
state preparation protocol and its decoherence channels. We
also briefly point out the underlying Z2 gauge symmetry and

its tensor network representation. In Sec. III we then pro-
ceed to introduce four alternative model representations in
terms of a (1+1)D monitored circuit, a 2D classical stat mech
model, followed by a (1+1)D Majorana circuit and a (2+1)D
Chalker-Coddington network model, along with a discussion
of Kramers-Wannier self-duality in all four formulations. The
self-dual critical state is discussed in detail in Sec. IV based on
its coherent information, bulk Shannon entropy, and boundary
entanglement entropy. In Sec. V we then discuss the entire
phase diagram of Fig. 1(c) in detail with a particular empha-
sis on the RG flows between the various critical theories. We
close with a broader discussion and an outlook in Sec. VI.

II. MODEL

A. Protocol: preparation and decoherence

Our protocol comprises two principal steps: (i) the prepara-
tion of an entangled resource state – the cluster state, which,
in step (ii), is subject to decoherence by either projective mea-
surements or 50% Pauli noise in some orientable basis direc-
tion. For the first step we prepare a short-ranged entangled
cluster state [32]: ∏CZ ∣+⟩⊗N using a finite-depth circuit on
a (square) Lieb lattice as illustrated in Fig. 1(b), where we
discriminate between the bond qubits Zij and the site qubits
Zj with i(j) denoting sites of the square lattice. Secondly,
we dephase all the qubits in the bulk in a designated basis, by
projectively measuring the site qubits in the X direction and
the bond qubits in a tilted direction

σθ
= cos(θ)Z + sin(θ)X .

The “measurement angle” θ can also be understood as the an-
gle of a coherent unitary rotation error around the Y -axis right
before a measurement in the Z-basis [3, 4, 43] (not to be con-
fused with the topological Θ-angle of the NLSM). Schemati-
cally, an elementary building block of this circuit for a given
bond then takes the form

Z

+ + +

CZ

XX

CZ

Z ZRY(θ)

.

Here the qubits are originally initialized in X-basis eigen-
states ∣+⟩ = X ∣+⟩, then subjected to a controlled-Z (CZ) gate
CZ = diag(1,1,1,−1) that (maximally) entangles the two
neighboring qubits into a cluster state. Before the final round
of measurements in the X and Z bases, respectively, the bond
qubit is rotated via RY (θ) = exp (iθY /2) by the measure-
ment angle θ. The measurement channel can be viewed as a
maximally dephasing channel: N = Ns ○Nb where Ns(⋅) =

(⋅) +X(⋅)X acts on the site qubits and Nb(⋅) = (⋅) + σ
θ(⋅)σθ

acts upon the bond qubits. If the measurement outcome on a
bond is negative Zij = −1, we perform a feedback ZiZj to its
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adjacent site qubits, which equivalently flips the site measure-
ment outcome and can be done in a post-processing manner.
Note that, from a symmetry perspective, there is a distinction
of the site versus bond qubits – the SPT order of the cluster
state on the underlying Lieb lattice is protected by a 0-form
Z2 symmetry for the site qubits and a 1-form magnetic Z(1)2
symmetry for the bond qubits [36]. Due to this inequivalence
of the symmetry forms, the decoherence of the site and the
bond qubits Ns ○Nb leads to two distinct intermediate states
when decomposing it into two steps:

(i) Nb: If first the bond qubits are measured and de-
phased [3, 4], this leaves a 2D state which can be
tuned between a product state and the “Nishimori cat”
state [3], i.e. a glassy GHZ state exhibiting strong-to-
weak spontaneous symmetry breaking (SW-SSB) or-
der [8, 9] [44]. This state can also be viewed as a ran-
domized version of a Rokhsar-Kivelson state [45–47],
which can be cast as a 2D projected entangled pair state
(PEPS) [48].

(ii) Ns: If the site qubits are measured first instead, this
leaves a 2D toric code with e anyons at random but
known locations, as eigenstates of the toric code Hamil-
tonian [49]. Therefore one can apply conditional Pauli
string operators to pair up and remove the e anyons
to correct any post-measurement state into the clean
toric code [50–52]. The toric code is then subjected
to a coherent “error” – a unitary rotation by RY (θ) =
exp(iY θ/2) on the bond qubits [6, 53–64], which pre-
serves the electric-magnetic self-duality of the toric
code [6, 65–69] for θ = π/4.

Given these two routes through distinct intermediate states,
the final state of our protocol can be equally interpreted as the
vestigial boundary quantum state after the bulk decoherence
of a cluster state with Z(0)2 × Z

(1)
2 SPT, a Nishimori cat state

with SW-SSB, or a toric code with topological order.

B. Z2 gauge perspective for the intermediate state

For our later discussion it is useful to connect the states
prepared by our protocol to the fundamental physics of a Z2

gauge theory [40]. To do so, let us start by noting that the
cluster state on the Lieb lattice satisfies the following two sets
of stabilizers

X ZZ
Z

Z
= 1 , X ZZ = 1 ,

for the site and the bond qubits of the square lattice, respec-
tively. The vertex stabilizers can be interpreted as a Z2 Gauss
law, where ∣Xj = −1⟩ for the site qubit denotes a Z2 mat-
ter charge usually labeled as e-vortex, and Zij operator for
the bond qubit denotes a corresponding electric field. Conse-
quently, ∣Xij = −1⟩ labels a nonzero gauge field, and the bond

stabilizer ZiXijZj = 1 describes the minimal coupling be-
tween matter and charge, where the matter hopping is coupled
with the gauge connection Xij operator [40]. When the mat-
ter charge hops around a plaquette, it picks up a negative sign
factor if the Wilson loop ∏⟨ij⟩∈◻Xij = −1, which is usually
dubbed an m-vortex, denoting a magnetic vortex.

When one projectively measures the matter qubit in the X
basis, the matter charge is frozen into a classical configuration,
leaving the bond qubits to form a pure gauge theory with ran-
dom background charges but free of magnetic vortices. This
is a random topological toric code state, see the top path in
Fig. 1(a). When one instead projectively measures the gauge
qubit in a tilted basis, it is the gauge field that is quenched,
leaving the site qubits as matter degrees of freedom forming a
Nishimori’s cat state [3].

C. Tensor network state representation

We can label the bulk classical bits after measurement in the
following way: ej = 0(1) if the site qubit at site j is measured
to beXj = ±1 (after absorbing the Z conditioned upon the ad-
jacent bond qubit measurement outcomes); if the bond qubits
at the center of the bond between site i and j are measured
(after having been rotated by an angle θ) to be Zij = −1, we
associate that with an m string crossing the bond, and the end
point of a string with Zij = −1 all along the way is denoted by
an m-vortex, mp = 1 (where p denotes the plaquette).

This post-measurement state exhibits, at its boundary, a 1D
quantum state ∣ψ(em)⟩, which can be represented as an exact
tensor network state of the form

|ψ(em)⟩ =

Z

X X X
m

e

= ⋯=

Z

X

X

X
m

e

X
X

⋯
⋯

⋯
⋯

,
(1)

where each node at the vertex is a diagonal delta tensor, and
each box on the bond is a 2-by-2 matrix eβ/2 + e−β/2X , with
tanhβ = sin θ. A negative measurement outcome on the bond
qubit injects an X to the bond, while a negative measure-
ment outcome on the site qubit injects a Z to the vertex. Note
that this tensor network state is un-normalized, since its norm
P (em) = ⟨ψ(em)∣ψ(em)⟩ captures the measurement proba-
bility dictated by Born’s rule.

Because of the underlying Z2 gauge symmetry, one can
fluctuate the m-string across the lattice [3], without altering
the post-measurement boundary state. The latter is only de-
termined by the gauge invariant m-vortex configuration [1].
This can be explicitly verified by propagating the X-string
through the tensor network [70]. Since a gauge transforma-
tion can be independently generated by creating a local X
loop around any vertex, one can count a total number of 2LxLy

gauge-equivalent configurations that share the same boundary
quantum state ∣ψ(em)⟩. We will therefore label the bulk bits



5

only by their em-vortex configuration for brevity. The final
state can then be compactly written as

ρ =∑
em

∣em⟩⟨em∣C ⊗ ∣ψ(em)⟩⟨ψ(em)∣Q , (2)

where ∣em⟩ refers to the classical state of the bulk bits, de-
noted by C, corresponding to the measurements record. The
remaining quantum bits at the boundary are denoted by Q. If
the 2D state is placed on a cylinder, i.e. one applies a peri-
odic boundary condition in the vertical direction, then there is
one additional (very big) plaquette at the left boundary with
Lx number of edges (see Fig. 4a inset for a schematic), where
the absence (presence) of an m-vortex labels the even (odd)
sector of the mixed state.

D. Symmetries

The state (2) possesses a strong Z2 Ising symmetry that acts
on the qubits on the boundary

⎛

⎝
∏
j∈Q

Xj

⎞

⎠
ρ = ρ = ρ

⎛

⎝
∏
j∈Q

Xj

⎞

⎠
, (3)

which will be shown to exhibit a SW-SSB transition by tuning
the measurement angle θ. The duality symmetry is inherited
from the pre-measurement state, which in the toric code or
gauge theory is an electric-magnetic duality [6, 65]

KW ∶ e↔m , θ↔ π/2 − θ , (4)

where the operator KW will be explicitly written in the next
section. The presence of the KW duality dictates a KW sym-
metric critical state at θ = π/4, which is invariant under the
duality transformation and can be interpreted as the gapless
phase of matter protected by such a symmetry [16, 23]. Un-
der such a KW transformation, each post-measurement pure
state at the boundary is mapped to its duality counterpart

KW ∣ψ(em; θ)⟩ = ∣ψ(me;π/2 − θ)⟩ , (5)

which means the presence of em disorder breaks the duality as
a strong symmetry for the pure state. Nonetheless, the mixed
state that encapsulates all the weighted quantum trajectories is
invariant under a weak symmetry [26–28] version of the self-
duality at θ = π/4

KWρ ≠ ρ , KWρKW = ρ . (6)

Note that the weak symmetry of the density matrix is also
sometimes referred to as an “average” symmetry common in
open quantum systems described by a Lindbladian or density
matrix [7, 8, 26–28, 71–74]. As its strong symmetry counter-
part, the weak self-duality here has the same predictive power:
that it maps the SW-SSB phase at θ > π/4 to the trivial phase
at θ < π/4, and thus the mixed quantum state at the self-dual
θ = π/4 point must remain critical, despite the presence of
randomness. Namely, the otherwise pure Ising critical state
with strong self-duality is turned into an intrinsically mixed
quantum critical state with weak self-duality.

E. Mixed state dynamics

Finally, note that the object of interest in the following is the
total mixed state of the bulk and the boundary, Eq. 2, – we will
show that this bulk-boundary mixed state can exhibit long-
range entanglement. If, on the contrary, one considers only
the boundary mixed state by simply tracing out the bulk (and
thereby throwing out all bulk measurement outcomes), the re-
sulting boundary density matrix ∑em ∣ψ(em)⟩⟨ψ(em)∣ = I
is a short-range entangled maximally-mixed state. Such a
distinction between monitored dynamics (keeping the mea-
surement outcomes) versus dissipative dynamics (averag-
ing over measurement outcomes) is related to the fact that
measurement-induced phase transitions [75, 76] are only vis-
ible in the ensemble of quantum trajectories, but not in the
associated quantum channel [77, 78]. So it is crucial to keep
a record of the measurement outcomes, which in our case are
represented by the bulk qubits of the system.

III. EQUIVALENT MODEL REPRESENTATIONS

To understand the unusual phenomenon of our mixed-
state criticality and particularly its manifestation in a critical
boundary state, we enumerate four distinct, but mathemati-
cally equivalent models that all capture this physics: a moni-
tored (1+1)D quantum Ising chain, a 2D disordered classical
statistical mechanics model, a monitored (1 + 1)D Majorana
fermion chain, and the (2+ 1)D Chalker Coddington network
model. We discuss the Kramers-Wannier duality in these rep-
resentations of the problem.

A. (1+1)D monitored quantum circuit

Our first representation follows the spirit of measurement-
based quantum computation (MBQC) [79, 80], where one
views one spatial dimension of a resource quantum state (prior
to any measurement) as a fictitious time dimension and a
subsequent sequence of spatial measurements then allows to
effectively induce a unitary evolution (which implements a
quantum computation) along this fictitious time. Here, in
analogy, we can also view one spatial dimension of our bulk
quantum state (prior to the measurements) as a fictitious time
dimension, which then evolves under measurement and builds
up the entanglement in the boundary quantum state (corre-
sponding to the final time). Our circuit protocol, recast as
tensor network diagram, can then be derived to be equiva-
lent to a (1 + 1)D imaginary-time evolving transverse-field
Ising model. The bulk classical bits serve as the “register”
that record the measurement outcomes, which determine the
evolution of the quantum state, i.e. its quantum trajectory.

Clean Ising in a uniformly post-selected trajectory

To discuss the physics of our protocol in this representation,
let us first consider the post-selected case where all measure-
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FIG. 2. Four equivalent model perspectives and their respective duality transformations. (a) (1+1)D monitored quantum circuit, with
Lx qubits and circuit depth Ly , where each gate is an imaginary time evolution with random sign. The temporal kink of sign change of the
ZZ evolution defines an m-vortex, while that for the X evolution defines an e-vortex. The duality transformation can be expressed in terms
of a cluster matrix-product operator (MPO), with Hadamard gate matrix sandwiched by the diagonal delta tensors. (b) 2D classical statistical
model with defect strings pulled by the e and m-vortices. The red defect string runs along the dual lattice and flips the sign of the Ising
coupling from ferromagnetic to anti-ferromagnetic coupling, while the blue defect string stretches along the original lattice and inserts an Ising
spin operator at the end of the string (the location of the e-vortex) to the Boltzmann weight changing its sign. Both strings can fluctuate across
the lattice by gauge transformation, and do not change the gauge invariant partition function that is determined only by the e and m locations.
The duality transformation replaces the vertex variable σ by the plaquette variable µ. (c) (1+1)D Majorana quantum circuit, by Jordan
Wigner transforming (a). The duality transformation is a translation of the Majorana lattice. (d) (2+1)D Chalker Coddington (CC) network
model for symmetry class D. The underlying dashed line illustrates the spin lattice as in (b). The solid lines with arrows denote the fermion
propagator, where the vertex denotes the scatterer. There are two representative CC network models: (e) RBIM along Nishimori line that has
only them-vortices, which undergoes the Nishimori transition from a paramagnetic phase to the ferromagnetic phase, as shown schematically;
(f) The CF model that has e and m vortices, whose schematic phase diagram comprises a metal phase upon finite vortex density. Despite the
equivalence under a fixed vortex configuration, the conventional CF model takes N → 0 replica limit which is fundamentally distinct from our
case where the N → 1 replica limit is taken.

ment outcomes are positive. By viewing each column slice of
the network as a time step, the evolution, schematically illus-
trated in Fig. 2(a), is generated by the following non-unitary
transfer operator

M =
√
MXMZ

√
MX , MX = e

β′
2 ∑j Xj , MZ = e

β
2 ∑j ZjZj+1 ,

as an imaginary-time evolution of the transverse-field Ising
model, with tanhβ = sin θ and tanhβ′ = cos θ. Note that the
square root ofMX is necessary to maintain the Hermitian [81]
property of the transfer matrix M . This transfer matrix evo-
lution is rigorously a discrete brickwall circuit, without any
Trotterization approximation.

The KW duality transformation operator can be written as

a cluster MPO [20, 82, 83] in the Fig. 2(a), which transforms

KW ∶ ZjZj+1 →Xj+1/2 , Xj → Zj−1/2Zj+1/2 .

It is equivalent to θ ↔ π/2 − θ or β ↔ β′, which are indeed
related by the KW dual relation [10]: tanh(β′/2) = exp(−β).
At θ = π/4, β = ln(1 +

√
2) = β′, the model is (KW) self-

dual and the 1D quantum state evolves towards the ground
state of the clean critical Ising model, with linear depth of the
(1 + 1)D circuit i.e. Ly = O(Lx). In the absence of e and
m random vortices, such a pure state has the strong KW self-
dual symmetry. That is, in the long wavelength limit, the re-
sulting critical (boundary) state is effectively described by the
2D Ising CFT, protected by the strong Z2 symmetry and the
KW self-dual symmetry. The non-invertibility [17, 21] of the
transformation can be deduced when the MPO in Fig. 2(a) is
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closed in periodic boundary condition, which inevitably maps
∏jXj+1/2 = 1 and thus carries a global parity projector.

Notably, the transfer operatorsMZ andMX above are non-
unitary operators, which can be interpreted as the Kraus oper-
ators of effectively weak measurements of the ZjZj+1 andXj

operators in the (1 + 1)D dynamics. Note that these tunable
effective weak measurements should not be confused with the
projective measurements of the 2D bulk.

Measurement-induced random trajectories

Due to the uncertainty principle and the probabilistic na-
ture of quantum measurement, our effective Ising circuit is
subject to both bit-flip X and phase-flip Z errors, manifesting
themselves in the random measurement outcomes of the bond
and the site qubits, respectively. Using a gauge transforma-
tion as illustrated in Eq. (1), these random Paulis can be prop-
agated to the final times, leaving an Ising circuit where each
imaginary-time evolution step is characterized by a position-
dependent binary random number, see Fig. 2. The locations of
these gates with negative evolution time-steps form a string,
whose end points correspond to fixed e and m-vortices [84],
see Fig. 2(b). In other words, an e-vortex necessarily pulls
a string that changes the sign of β′, while m pulls a string
that changes the sign of β. The Ising evolution gates are then
coupled to the random bond variables

MZ = exp
⎛

⎝

β

2
∑
j

sj,yZjZj+1

⎞

⎠
, MX = exp

⎛

⎝

β′

2
∑
j

tj,yXj

⎞

⎠
,

(7)
where the negative sign sx,y = −1 occurs when an m string
goes across the bond, and tx,y = −1 when an e string goes
along the bond, determined by the configuration ∣em⟩, see
Fig. 2(a) [85].

Non-unitary measurement-based quantum computation

We started our discussion of the (1 + 1)D monitored quan-
tum circuit model with an analogy to the framework of
measurement-based quantum computation (MBQC) [79, 80].
Let us close this discussion by pointing out some additional
connections and distinctions in this context. Similar to the
MBQC approach, we initiate our protocol from a cluster state
as the principal entanglement resource and perform projective
measurements in the bulk to propagate a 1D quantum state on
the edge by means of quantum teleportation, trading time with
space [86–90]. In the standard MBQC approach, the transfer
matrix that evolves the quantum state was shown to be uni-
tary and can be universal when the measurement angles are
carefully chosen to lie along the Z direction or restricted to
within the XY plane [80]. Then the measurement outcome
is maximally random because each post-measurement unitary
trajectory shares equal probability, as in the standard exam-
ple of quantum teleportation with perfect entanglement re-
source [91]. In the absence of noise one can always correct the

measurement outcomes to obtain the same pure state. In con-
trast, in our protocol we tilt the measurement angle between
Z and the XY plane [4, 92] (equivalent to an imperfectly pre-
pared cluster state [3]), which turns the effective spatial prop-
agation into a probabilistic non-unitary [93] circuit. The mea-
surement outcome is no longer maximally mixed but follows a
highly correlated distribution. Not all post-measurement ran-
dom pure states are guaranteed to be able to be corrected to
the same pure state.

B. 2D Classical statistical model

The probability distribution function of the boundary 1D
states ∣ψ(em)⟩, conditioned upon a given bulk classical con-
figuration ∣em⟩ in Eq. (2), follows from Born’s rule

P (em) = ⟨ψ(em)∣ψ(em)⟩∝ Z(em)2 , (8)

where we map the norm of the (1 + 1)D quantum state to the
partition function of a doubled 2D classical statistical model

Z(em) =∑
σ

e
β
2 ∑ij sijσiσj∏

ij

(σiσj)
1−tij

2 . (9)

It expresses an Ising model with random bond disorder on
both the original lattice and its dual lattice (or imaginary cou-
pling strength), indicated by the dashed line in Fig. 2(b). Here
i, j denote the sites, and σ = ±1 corresponds to the 0 and
1 of the site qubit, which has been projected to the ∣±⟩ =
(∣0⟩ ± ∣1⟩)/

√
2 state with a measurement-outcome-dependent

sign factor. The sign factor is given by the e-vortex at the site,
which is the end point of the string with tij = −1. On the
other hand, sij = ±1 is the random measurement outcome on
the bond, and a string of sij = −1 on the dual lattice terminates
at the m-vortex. The square ∣ ⋅ ∣2 is because of the norm that
contracts the ket and bra layers, or the forward and backward
propagation of spacetime, which also guarantees the positive-
ness of the probability. Upon a KW duality transformation for
the 2D model that exchanges vertex and plaquette, one can
verify that sij ↔ tij , and β ↔ β′ [94]. Upon a vertex plaque-
tte duality [40], this random Ising model remains invariant.

If we now trace out half of the vortices, we are left with a
random-bond Ising model (RBIM) in both cases

P (m) =∑
e

P (em)∝∑
σ

eβ∑ij sijσiσj ,

P (e) =∑
m

P (em)∝∑
µ

eβ
′
∑pq tpqµpµq ,

(10)

each of which describes the standard RBIM with gauge sym-
metrized random bond disorder [2, 3]. Here µp is the dual
Ising spin residing at the plaquette center, and with tpq = tij
(where ij and pq share the same link) this turns into a random-
bond Ising model on the dual lattice. One can derive the den-
sity of vortices by:

1 − 2⟨m⟩ = ⟨ ∏
⟨ij⟩∈◻

sij⟩ = tanh
4 β = sin4 θ ,

1 − 2⟨e⟩ = tanh4 β′ = cos4 θ .

(11)
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Namely, at the self-dual point (θ = π/4) we expect the two vor-
tex densities to cross, i.e. ⟨e⟩ = ⟨m⟩, which is precisely what
we find also in our numerical sampling as shown in Fig. 3(a)
below.

Free energy and central charge

All the classical statistical models that capture the transi-
tions discussed in this paper exhibit transitions described by
conformal field theories (CFTs) with central charge c = 0 [95–
97]. To explain this vanishing central charge, it is important
to define precisely how a suitable notion of free energy is to
be defined for such models. For the Born probability mea-
sure P (em), one natural way to do so is to define a family
of replicated partition functions by summing over trajectories
(measurement outcomes) and their corresponding free energy

ZN =∑
em

P (em)N ,

FN = − lnZN .
(12)

Physical quantities are obtained in the replica limit N → 1,
corresponding to a Born weighting of the trajectories associ-
ated with the trivial partition function

ZN=1 =∑
em

P (em) = 1 . (13)

Different replica numbers N have transitions described (for
replica number small enough) by CFTs with central charge
c(N), with c(N → 1) = 0 since the free energy in
the replica limit FN=1 = 0 has trivial finite-size scal-
ing. This central charge c = 0 is a general feature of all
mixed state (measurement-induced) phase transitions studied
in this paper, even the so-called Ising+ transition we will
encounter below where for some observables, averages like
∑em P (em)Oem reduce to Ising correlators (a CFT with cen-
tral charge c = 1/2).

In analogy with classical disordered systems described by
logarithmic-CFTs [95–101] with central charge c = 0, a more
useful quantity is the effective central charge

cCasimir = lim
N→1

dc(N)

dN
, (14)

which governs the finite-size scaling of the quenched average
free energy

F = lim
N→1

dFN

dN
= −∑

em

P (em) lnP (em)

= const ⋅LxLy − cCasimir ⋅
π

6

Ly

Lx
+ . . . ,

(15)

when being placed on a length-Ly long cylinder of finite width
Lx ≪ Ly [102] (see the inset of Fig. 4(a) for a schematic).
This formula follows from the general scaling form of the
free energy FN at criticality expected from conformal invari-
ance [102]. The universal number cCasimir captures how the
vacuum energy responds to the finite scale of the system,

which is analogous to Casimir effect where the finite width
of the system can reduce the ground state energy. In this con-
text, the free energy F then acquires physical meaning as the
Shannon entropy of the bulk of the mixed 2D state Eq. (2),
also called the entropy of the measurement record of the 1+1D
monitored dynamics [96], or the frustration entropy of the ran-
dom classical statistical model [2].

C. (1+1)D monitored Majorana circuit

The random Ising circuit introduced in the previous Section
can be mapped to a Majorana quantum circuit via a Jordan-
Wigner transformation, see Fig. 2(c). In detail, the Lx qubits
can be Jordan-Wigner transformed to 2Lx Majoranas γj , ac-
cording to Xj = iγ2j−1γ2j and Zj = ∏

j−1
k=1(iγ2k−1γ2k)γ2j−1.

The non-unitary gates are transformed to the Gaussian evolu-
tion generated by the Majorana bilinears ZjZj+1 = iγ2jγ2j+1
and Xj = iγ2j−1γ2j . Then the GHZ state at θ = π/2 in
the spin representation is mapped to the topologically non-
trivial Majorana state with Majorana zero modes γ1 and
γ2Lx on the edges [49]. The problem is then mapped to a
measurement-only Majorana fermion chain weakly monitored
by local fermion parity measurements of the nearest-neighbor
Majorana fermion bilinears above [103]. The global Ising
symmetry is mapped to the total fermion parity ∏jXj ∝

∏j iγ2j−1γ2j , and the KW dual transformation is mapped to
a single-site Majorana fermion translation

KW ∶ γj → γj+1 ,

see the box in Fig. 2(c). The corresponding self-dual criti-
cal point is a monitored Majorana chain with statistical (“av-
eraged”, or “weak”) translational invariance which separates
trivial and topological phases upon dimerization [49] of the
measurements, and is described by the N → 1 limit of the
2D Non-linear Sigma Model (NLSM) in symmetry class D
with target space SO(2N)/U(N) and topological angle-θ =
π [11, 104]. For a more detailed discussion of the descrip-
tion of this self-dual critical point in terms of this particular
NLSM, see the third paragraph in part (b) of the following
subsection. This critical point was also studied numerically in
the context of a continuously weakly-monitored [105] Majo-
rana chain in Ref. [106] [107].

The replica limit N → 1 arises [108, 109] because of the
Born probability weighting: the case of generic uncorrelated
quenched disorder, corresponding to a replica limit N → 0,
is dramatically different and moreover exhibits a Majorana
metallic phase [110, 111] which is absent in the N → 1 limit
– see the following Section.

D. (2+1)D Chalker-Coddington network model

Making contact with the body of previous work on Ander-
son localization [11, 110, 111], the (1+ 1)D Majorana circuit
can be described [112], for any fixed configuration of e and
m “vortices”, equally as the ground state of a system of non-
interacting Majorana fermions in two spatial dimensions, i.e.
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in (2+1)D spacetime dimensions at zero energy (chemical po-
tential). For the system under consideration this is a supercon-
ductor in two spatial dimensions in Altland-Zirnbauer [113]
symmetry class D. As discussed in [112], the two-dimensional
space (Fig. 2(d)) of the (2 + 1)D system represents the space-
time of the circuit depicted in Fig. 2(a,c), and in a formulation
of the (2+1)D system on a 2D spatial lattice and discrete time,
this is referred to as a “Chalker-Coddington” model [114]:
In each time-step of the discrete time the Majorana fermions
propagate across a link of a square lattice [the so-called “sur-
rounding lattice” [115], whose sites are the midpoints of the
links of the lattice in Fig. 2(d)] whose plaquette-centers rep-
resent the locations of Ising spins (σi) on one sublattice, and
dual Ising spins (µp) on the other sublattice of the bipartite
lattice of plaquettes, see Fig. 2(c). A spin (σi) and dual spin
(µp) located at (the center of) a plaquette corresponds to a
(2 + 1)D vortex enforcing a minus sign for fermions encir-
cling the plaquette in the time of the (2 + 1)D system. In this
formulation, a negative sign of the variable “sij” appearing
in the transfer matrix, Eq. (7), corresponds to a pair σi, σj of
vortices on nearest-neighbor sites i and j of the sublattice of
spin plaquettes, while a negative sign of the variable “tp,q” in
Eq. (7) corresponds to a pair µp, µq of vortices on nearest-
neighbor sites p and q of the sublattice of dual-spin plaque-
ttes. In this language, the square of the partition function of
the Ising model in any fixed configuration of e and m vor-
tices (in a particular gauge) is obtained (see [110]) by tracing
over (two identical copies of Majorana, or equivalently a sin-
gle copy of complex) fermions, which we denote by Z(e,m).
(See Eq. (9) below, where the same trace is computed, equiv-
alently, in the Ising spin formulation.)

As mentioned, the so-described formulation using the
Chalker-Coddington model is given in a fixed configura-
tion of the vortices mentioned above, or equivalently (by
a gauge choice) of e and m vortices. Historically, such a
Chalker-Coddington model was (a) applied to various set-
tings of generic (“uncorrelated”) quenched disorder averages
over configurations of Majorana fermion zero modes (e and
m vortices) [11, 110, 111]. In a theoretical description us-
ing replicas, these situations correspond to the limit of the
number N of replicas going to zero, N → 0. In the present
work we apply, (b), the aforementioned Chalker-Coddington
model to settings where e and m vortices are measured, and
we are thus interested in quenched measurement disorder
subjected specifically to the Born-rule probability distribu-
tion. In a theoretical description using replicas, these situ-
ations correspond [108, 109] to the limit of the number N
of replicas going to unity, N → 1. In both applications,
(a) and (b), Kramers-Wannier duality – meaning the invari-
ance of the respective probability distribution under Kramers-
Wannier duality, also called “statistical”, or “weak”, or “aver-
age” Kramers-duality – plays an essential role for the resulting
physical behavior of the system.

Relationship with previous work

The key conclusion of the prior work in Refs. [11, 110, 111]
was that there are two fundamentally different situations, lead-
ing to very different physical properties: case (i), discussed
below, which does not exhibit a metallic phase, as well as case
(ii) discussed below which does exhibit a metallic phase. We
discuss those now in turn, with support of the schematics in
Figs. 2(e,f):

(i) In the case of the RBIM, in its entire phase diagram
at and away from the Nishimori line, the vortices are
allowed to appear only on one sublattice of plaquettes
of the Chalker-Coddington model, namely on the sub-
lattice of (say) spin plaquettes. In this case, only two
phases are possible [116], a ferromagnetic (topological)
phase and a paramagnetic (topologically trivial) phase.
In the RBIM these vortices occur in adjacent pairs.
Each such pair corresponds to a negative sign of the
random variable sij described in the first paragraph
of this section. This model, the RBIM case (i), maxi-
mally violates statistical (“average”) Kramers-Wannier
symmetry since vortices are only allowed to occur on
one of the two sublattices of plaquettes [117], the (say)
sublattice of spin plaquettes.

(ii) If, on the other hand, Majorana zero modes are also al-
lowed to appear on the other sublattice of plaquettes of
the Chalker-Coddington model, namely the sublattice
of dual-spin plaquettes where they occur in adjacent
pairs, then in addition to the ferromagnetic (topologi-
cal) and paramagnetic (topologically trivial) phases, a
third, metallic phase will occur in the phase diagram.
This is the so-called Cho-Fisher (CF) model, originally
intended [118] as a formulation of the Nishimori sys-
tem (a), but later shown [11, 110] to actually describe
a different system with the novel properties described
in [110, 111] and reviewed here. It should also be
noted that it was proven in [110] that a metallic phase
is forbidden when vortices are only allowed to occur on
one sublattice of plaquettes of the Chalker-Coddington
model, as is the case in the Nishimori model, case (a).
A variant of the CF model was also discussed in [111]
where vortices occur randomly with some probability
on any site of the two sublattices of plaquettes of the
Chalker-Coddington model, but with equal probabil-
ity on both sublattices (dubbed the O(1)-model). This
system was shown to exhibit only the metallic phase
throughout its entire phase diagram, and no ferromag-
netic nor paramagnetic phases whatsoever survives in-
finitesimal disorder strength.

We now discuss the two cases of distinct replica limits:

(a) N → 0 replica limit, uncorrelated quenched disorder.–
The phase diagram of the CF model, case (ii), exhibits a line
possessing average Kramers-Wannier symmetry along the
phase boundary separating ferromagnetic (topological) and
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paramagnetic (non-topological) phases, and connecting the
non-random (pure) Ising critical point with a multicritical
point at which a transition to the metallic phase sets in,
and continuing into the metallic phase. This self-dual line
is depicted as the vertical line in Fig. 2(f) [111]. Recent
numerical work [119] found that the RG flow emerges from
the multicritical point and flows into the pure Ising critical
point which (obviously) possesses “strong” as opposed to
“statistical” (“weak”, or “average” – in recent jargon) KW
symmetry.

(b) N → 1 replica limit, Born measurement disorder.– The
previous work [11, 110, 111], briefly summarized in item
(a) above, raises the question about the nature of these var-
ious phases and transitions when the quenched randomness
does not originate from generic, uncorrelated randomness, but
rather from measurements of the e and m degrees of freedom
(representing (2+1)D vortices) satisfying the Born-rule prob-
ability distribution. This question has, in fact, been the very
motivation for the work that we report in the paper at hand and
is what we will address in the following.

It is useful to begin with the KW self-dual system which,
in the above-reviewed language of the Chalker-Coddington
model, is a version of the KW-self-dual line of the CF model,
where however now randomness arises from measurements of
e andm, and is thus subjected to the Born-rule probability dis-
tribution. In short, we will demonstrate that the KW self-dual
model is a “measurement-version” of the CF model discussed
in (a) (ii) above, in which the generic quenched disorder is
replaced by the intrinsic randomness of quantum mechanical
measurement outcomes. In that sense, the KW self-dual sys-
tem is a self-dual ‘cousin’ of the Nishimori critical point (and
it will be in a different universality class, as we also numeri-
cally confirm - see Table I).

As the self-dual circuit is a circuit of non-interacting
fermions in Altland-Zirnbauer [113] symmetry class D, it is
generically described [112, 120–122] by a NLSM with target
space SO(2N)/U(N) where N is the number of replicas.
Moreover, following the same logic as that used in Ref. [123]
for symmetry class DIII, the case of randomness arising from
measurements satisfying the Born-rule probability distribu-
tion requires [108, 109] taking the replica limit N → 1. In
addition, and importantly for the present context, Ref. [11] es-
tablished averaged (i.e. statistical) KW duality of this NLSM.
As the topology of the target space SO(2N)/U(N) allows
for a Θ-term, criticality is known to occur when Θ = π.
[This is in complete analogy with, e.g., the familiar O(3)-
NLSM, describing the 1D Heisenberg chain.] In summary,
this establishes the description of the KW self-dual point by
the SO(2N)/U(N) NLSM at Θ-angle Θ = π in the limit
N → 1. (We note that independent work in [104] arrived at the
same conclusion about this critical point, starting from the mi-
croscopic (‘lattice’) formulation of Majorana fermion parity
measurements. [124]) Moreover, Ref. [11] also found that the
SO(2N)/U(N)NLSM asN → 1 is stable under RG to a cer-
tain class of deformations (not necessarily related to the ones
we study numerically in the present paper). It is worth not-
ing that with Born-rule measurements there is, in contrast to

generic, uncorrelated quenched randomness [discussed in part
(a) above], no stable metallic phase. This is easily understood
as a consequence of the known RG beta function of the cou-
pling constant of the NLSM on this symmetry class D target
space (reproduced, e.g., in [11]), which demonstrates stability
of the metallic phase in the replica limit N → 0, relevant for
case (a), while in the replica limitN → 1, relevant for case (b),
the metallic phase is unstable. The phase diagram that thus
emerges for the measurement-version of the CF model with
Born-rule measurements is that depicted in Fig. 2 above (the
same as Fig. 1 of Ref. [111]), except that the metallic phase is
completely removed: There is then a vertical line describing
the self-dual model connecting the non-random (pure) critical
Ising point (bottom) with the KW self-dual fixed point (top).
Moving to the right or to the left of this vertical line breaks
statistical KW duality and leads to the ferromagnetic (topo-
logical) or paramagnetic (topologically trivial) phase. These
are described by moving the Θ-angle of the NLSM away from
π in one direction or the other.

IV. THE SELF-DUAL CRITICAL STATE

Let us start our discussion of mixed-state boundary criti-
cality by characterizing the self-dual critical state first. Using
numerical simulations, we first confirm its precise location at
θ = π/4 by calculating the coherent information for tuning
the measurement angle θ along the center line (ps = pη = 0)
of in our phase diagram in Fig. 1(c). Such scans for differ-
ent system sizes also allow us to extract the correlation length
exponent ν from a finite-size scaling analysis. We then turn
to the entanglement properties of the self-dual critical state
and calculate a central charge proxy for its non-unitary CFT
description by calculating Calabrese-Cardy-like entanglement
arcs whose scaling prefactor cvNent appearing in the coefficient
of the logarithm of subsystem size of the von Neumann entan-
glement entropy we determine.

A. Coherent information

The mixed-state phase transition of a long-range entangled
phase upon decoherence can be diagnosed by the coherent in-
formation [6, 42, 125–128], utilizing the fact that a long-range
entangled phase can serve as a logical memory. In order to
determine the coherent information, which indicates whether
this logical memory is still intact, one employs a reference
qubit R, whose state maximally entangles with the logical
qubit state of the memory. For instance, when viewing the
GHZ state as a repetition code, one would entangle the refer-
ence qubit together with the initial qubit chain to form a joint
GHZ state ∣ψ0⟩QR = ∣00⋯00⟩Q ⊗ ∣0⟩R + ∣11⋯11⟩Q ⊗ ∣1⟩R, as
shown in Fig. 3(b). When viewed from the Majorana fermion
representation, this protocol can alternatively be interpreted
as encoding and decoding the logical information in a Kitaev
Majorana chain-based topological quantum computation set-
ting [129]. In the topologically nontrivial phase of the Ma-
jorana chain [49], the unpaired Majoranas at the boundaries
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(a) electric-magnetic vortices (b) coherent information

FIG. 3. Self-dual mixed state transition. (a) Vortex densities. Shown are numerical (Monte Carlo) results for the e-flux density ⟨e⟩ and
m-flux density ⟨m⟩ as a function of θ for different system sizes Lx. The solid lines are the analytic predictions of Eq. (11). It witnesses the
electric-magnetic duality at θ = π/4 where the density of the electric charges coincide with the density of the magnetic charges. The vertical
line indicates the self-dual location, where the sampled e and m-vortex density becomes identical. (b) Coherent information across the self-
dual mixed state transition. The coherent information can be computed as shown in the schematic inset on the upper left: Logical information
of R is encoded into the quantum chain (Q), which then undergoes a monitored quantum evolution. An external observer “eavesdrops”,
attempting to recover the logical information – with the coherent information reflecting the success of this recovery (with Ic = ln 2 indicating
perfect recovery). The solid vertical line indicates the critical point θc = 0.251(1)π (fitted via the data collapse shown in the lower right inset),
which agrees with the exactly known self-dual location π/4 within its error bar. In our numerical computation, 100 ∼ 1000 independent m
configurations are sampled and 1000 Monte Carlo sweeps for e configurations are performed. For θ < 0.2π, we initiate from e-vortex-free for
Monte Carlo sampling, while for θ > 0.2π we initiate from random vortex configurations.

form, within their topologically degenerate 2-state manifold,
a mixed state of even and odd parities. This mixed state cor-
responds to a 2-dimensional logical code space without any
encoding yet. It can, however, be purified by maximally en-
tangling it with a reference qubit R [125].

The logical information being encoded into the system
spreads through the bulk evolution, and meanwhile keeps
being “eavesdropped” by the local measurements of an ob-
server [130, 131], such that the spacetime evolution can be
interpreted as a faulty channel. Whether the quantum logi-
cal information is stolen by the observer or whether it is still
preserved in the system, is what is quantified by the quantum
coherent information [6, 126–128]

Ic = SvN(ρQC) − SvN(ρQCR) , (16)

where we have included an additional index C indicating the
existence of classical information (obtained from measure-
ments) accessible for a decoder. In our setup, C refers to
the bulk bits that are fully dephased after the measurement
and ρQC = ⊕em P (em)ρQ(em) is a block-diagonal matrix
where each block corresponds to a different measurement out-
come. Thus the von Neumann entropies of the 2D mixed state
are stemming from two parts – the Shannon entropy of the
bulk classical bits, and the trajectory-averaged von Neumann
entropy of the boundary quantum bits [132]

SvN(ρQC) = −tr (ρQC lnρQC)

= F +∑
em

P (em)SvN(ρQ(em)),

where F was defined in Eq. (15) above. Consequently, the

coherent information (16) reduces to the trajectory-averaged
conditional entropy

Ic =∑
em

P (em)(SvN(ρQ(em)) − SvN(ρQR(em))) . (17)

Under the measurement channel, each trajectory em yields a
pure post-measurement state. Then SvN(ρQR(em)) = 0 and
SvN(ρQ(em)) = SvN(ρR(em)). As a result, Eq. (17) re-
duces to a measurement average of the entanglement entropy
between the system and the reference qubit [126]

Ic =∑
em

P (em)SvN(ρR(em)) .

Cast in the language of the random Ising statistical model, the
reference qubit R determines the boundary condition of the
Ising layers. The density matrix element of R is determined
by the partition function under the corresponding boundary
conditions, which can be represented by the tensor network as
follows:

⟨0 |ρR |1⟩ =

m e

m e

0

1

⟨0 |ρR |0⟩ =

m e

m e

0

0

,



12

for a given typical snapshot of em. Here for ⟨0∣ρR ∣0⟩ the
boundaries of both layers are pinned to product state 0; in con-
trast, for ⟨0∣ρR ∣1⟩ the boundaries of the two layers are pinned
to the opposite directions, which means a non-contractible
domain wall or twist-defect line is inserted to the bulk, in-
dicated by the shaded red string in the diagrammatic equa-
tion. The global Ising symmetry of the network guarantees
that ⟨0∣ρR ∣0⟩ = ⟨1∣ρR ∣1⟩ and ⟨0∣ρR ∣1⟩ = ⟨1∣ρR ∣0⟩. The re-
sultant coherent information, equal to the entropy of R, is de-
termined by the absolute ratio ∣ ⟨0∣ρR ∣1⟩ / ⟨0∣ρR ∣0⟩ ∣, which is
simply the expectation value of inserting a domain wall defect.
In the ordered phase θ → π/2, the domain wall decays expo-
nentially with system size, ⟨0∣ρR ∣1⟩ / ⟨0∣ρR ∣0⟩ ∝ O(e−Lx),
which means that R is almost diagonal and maximally mixed,
thereby giving rise to a maximal coherent information Ic →
ln 2. In the disordered phase θ → 0, ⟨0∣ρR ∣1⟩ / ⟨0∣ρR ∣0⟩ ∝
O(1), and ρR converges to a purified state with Ic → 0. For
the non-perturbative regime between these two limits, we per-
form a hybrid Monte Carlo and Gaussian fermion numerical
computation of the coherent information Ic while sweeping θ,
which is found to exhibit a clear level crossing near the self-
dual point θc = π/4 as shown in Fig. 3(b). The clean finite-size
collapse indicates the critical length exponent ν = 1.72(8).

At θ > π/4 the mixed 1D quantum state is a Z2 SW-SSB
phase. The strong Ising symmetry (∏j∈QXj)ρ = ρ is spon-
taneously broken as evidenced by the exponential cost of the
domain wall, or the long-range fidelity correlator [9]:

tr
√
√
ρZiZjρZiZj

√
ρ =∑

em

P (em)∣⟨ZiZj⟩em∣ ≠ 0 ,

where the overlap between the charge-neutral mixed state
and its charged counterpart is reduced to the disorder aver-
age of the absolute value of the spin-spin correlation func-
tion, akin to an Edwards-Anderson correlation studied for the
same model in Ref. [3]. The resultant state still preserves the
weak Z2 symmetry because of vanishing long-range corre-
lation tr(ρZiZj) = ∑em P (em)⟨ZiZj⟩em = 0. Therefore
the weak self-dual critical state (θ = π/4) separates the SW-
SSB ordered phase (θ > π/4) from the symmetric trivial phase
(θ < π/4).

B. Bulk Shannon entropy

Having precisely located the self-dual critical point at θ =
π/4 also in our numerical simulation, we compute the bulk
Shannon entropy at this point and find that it indeed follows
the scaling law (15) of a CFT, as shown in Fig. 4(a). Fitting
our numerical data we extract an estimate of the effective cen-
tral charge

cCasimir = 0.447(1),

for the self-dual point.
On a more technical note, we calculate this effective cen-

tral charge estimate for the “vacuum state”, i.e. a state in the
even sector for which we enforce the absence of an m-vortex
through the hole of the cylinder by restricting∏x sx,y=1 = +1

as a Wilson loop surrounding the cylinder along the first col-
umn, which is akin to the periodic boundary condition of the
clean Ising model without disorder. For this vacuum state,
the typical scaling dimension of the m-vortex determines the
typical correlation between two far separatedm-vortices [12].
It can be deduced from the energy cost of threading an m-
vortex through the hole of the long cylinder, which pulls a
semi-infinite long line defect through the cylinder, see the in-
set of Fig. 4(a) for a schematic, equivalent to changing the
boundary condition from periodic to antiperiodic. From the
perspective of the 2D mixed state, this energy cost is equiva-
lent to the relative entropy between the even and odd sector of
the mixed state, when the density matrix is divided into two
blocks according to the absence or presence of an m-vortex
through the hole of the cylinder:

F1 − F0

Ly
= −∑

em

P (em) ln
P1(em)

P (em)
∝

2π∆m

Lx
, (18)

where P1(em) is the partition function with an extram-vortex
through the cylinder hole, given the same em configuration in
the bulk. The additional entropy scales with a universal scal-
ing dimension of the vortex, which from our numerical simu-
lations summarized in the inset of Fig. 4(a), can be extracted
to be

∆m ≈ 0.156(1) .

Due to the self-duality, the scaling dimension of the e-vortex
in the bulk shall be identical to ∆e = ∆m. Note that the e-
vortex corresponds to the spin operator σ in Eq. (9), while the
m-vortex corresponds to the dual spin operator in the statis-
tical model, which is often labeled by µ [12]. Then the typ-
ical spin-spin correlation function in the bulk is governed by
the same scaling dimension ∆e. We also compute the scaling
dimension of the first excitation in the even sector, which is
found to be

∆ϵ ≈ 0.259(1) .

Lyapunov spectrum

Besides the vacuum energy alone, one can look into the
full (single-particle) Lyapunov spectrum which reveals more
information of the (1 + 1)D dynamics [96, 133]. In partic-
ular, we compare the clean Ising, Nishimori, and the weak
self-dual criticality, see Fig. 5 below. As a consequence of the
underlying 10-fold way [113, 122] (Altland-Zirnbauer) sym-
metry class D, the single-particle spectrum has particle-hole
symmetry, being symmetric with respect to the zero energy
level. The even and odd sectors are labeled by the black and
red colors. The spectrum becomes denser upon increasing
the system size Lx, which can be viewed as forming two
“bands” in the thermodynamic limit where the gap closes.
The vacuum of the CFT is obtained by fixing the even sector
and filling the lower band. Pumping an m-vortex through the
cylinder hole traps a Majorana mode, drawing two levels from
the band into the middle of the “gap”. They lie at exactly zero
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Charlie
Alice

Bob
Lx

lLy

(a)    S(C)

m

(b)    S(AC) − S(C)

FIG. 4. Characterization of the self-dual critical theory via the effective central charge and entanglement scaling at the point θc = π/4.
For the system placed on a cylinder, we label the decohered bulk as “Charlie” (C) and the two segments of the bipartition of the boundary
quantum chain as “Alice” (A) and “Bob” (B). (a) The Shannon entropy density of Charlie is equal to the free energy density of the classical
statistical model (9), which is governed by the effective central charge cCasimir = 0.447(1). Inset: twisting the boundary condition yields
the scaling dimension of the vortex operator being ∆m = 0.156(1). For comparison, the black line in the inset shows the scaling dimension
∆ϵ = 0.259(1) of the first excitation without the twist i.e. in the even sector. The numerical sampling is performed for long cylinder of sizes
Lx = 6−30 and Ly = 100Lx with 30,000 Monte Carlo samples, where the energy density is extracted deep in the bulk. (b) The von Neumann
entropy of Alice conditioned upon Charlie scales logarithmically with the chord length, from which we extract the prefactor cvNent = 0.795(1)
as the scaling dimensions of the boundary twist operator. The numerical calculation was performed for cylinder of sizes up to Lx = 512 and
Ly ≥ 2Lx in periodic spatial boundary condition, with 2,000 Monte Carlo sweeps for Lx = 512 and 500,000 sweeps for Lx = 8 − 32.

energy for the clean Ising critical point, resulting in a two-fold
degeneracy of the many-body spectrum due to the Majorana
zero mode [49]. However, they split in the Nishimori critical
state, which we attribute to the hybridization with the back-
ground m-vortices in the bulk. For Nishimori we numerically
verify that ∆m ≈ 0.341(1), which roughly agrees with the
scaling dimension 2π∆m/Lx ≈ 0.691(2)π/Lx reported in
Ref. [12, 134, 135], see Appendix A 3 for more details. For
the weak self-dual critical state with not only proliferated
m-vortices but also proliferated e-vortices, the midgap modes
appear to converge to the zero levels, restoring the Majorana
zero modes. Consequently, the many-body spectrum exhibits
a double degeneracy in the odd sector akin to the clean Ising
critical state, see Appendix A 3.

C. Boundary entanglement entropy

For the 2D mixed state at hand we have identified in our
discussion of the coherent information above that its von Neu-
mann entropies stems from two parts – the Shannon entropy of
the bulk classical bits, which we have discussed in the previ-
ous Section, and a trajectory-averaged von Neumann entropy
of the boundary quantum bits. The latter is what we will turn
to now.

The von Neumann entropy of the boundary quantum chain
exhibits CFT scaling and a Calabrese-Cardy entanglement arc

of the form

SAC − SC =∑
em

P (em)SvN(ρA(em))

=
1

3
cvNent ⋅ ln(

L

π
sin

πl

L
) + . . . ,

(19)

when considering the conditional entanglement entropy
SAC − SC with A denoting a segment (of length l) of the
quantum chain, where we abbreviate SvN(ρAC) by SAC (and
similarly for all terms in the following). It is equivalent to the
measurement trajectory-averaged von Neumann entropy be-
tween Alice and Bob, in the notion of the inset of Fig. 4(a).
Fitting the entanglement arcs of Fig. 4(b) we can determine
the ‘central charge proxy’ (which is the [typical] critical expo-
nent of the boundary condition changing (bcc) twist operator
- see below)

cvNent ≈ 0.795(1) .

Technically, we perform a free-fermion evolution for a fixed
random trajectory em, and use Born’s rule to sample the en-
semble of trajectories. In this numerical context, we can eas-
ily generalize from the von Neumann entropy to the family
of higher-order Rényi entropies and calculate their respective
central charge proxy for the Born-averaged ensemble of tra-
jectories (as above). We find that this central charge proxy
monotonically decreases towards

c
(∞)

ent = 0.484(1),

in the ∞-Rényi-order limit, see Appendix B for supporting
numerical data.
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(a) Ising

(b) Nishimori

(c) weak self-dual

e

e
mm

mm

m

ϵn

Lx

e

e
mmm

mmm

FIG. 5. Energy or Lyapunov spectra. Shown are the free-fermion
energy or Lyapunov spectra for a cylinder of finite width for the Ising,
Nishimori and weak self-dual critical states, respectively. For each
case, we show schematically a typical vortex configuration in a cylin-
der in the even sector, compared with its counterpart in the odd sector
with anm-vortex threaded into the big hole of the cylinder. The spec-
trum for the even sector is denoted by the black levels with squared
marker, while that for the odd sector is denoted by the red levels
with circle markers. The orange lines in the middle of the spectrum
highlight the “midgap” levels as created by the m-vortex threaded to
the cylinder hole. (a) For the clean Ising critical state placed on a
cylinder of finite width (a quasi-1D system), an m-vortex pulls two
fermion states from the band onto the mid-gap zero-energy level,
forming a pair of exact Majorana zero modes, akin to the topological
Majorana chain [49]. (b) A hybridization with the background m-
vortices results in the energy splitting of the zero modes. (c) In the
presence of e-vortices, the Majorana zero modes are restored.

While cent is identical with the central charge for unitary
CFTs [102], for the non-unitary CFT situation at hand it cap-
tures the (typical) scaling dimension of so-called boundary
condition changing (bcc) operators. The latter describe the
scaling of bipartite entanglement of the non-unitary bound-
ary CFT [96, 97, 108, 136], and should not be confused
with cCasimir, a universal finite-size scaling amplitude at crit-
icality, which can be extracted, as discussed in the previ-
ous Section, from the Shannon entropy of the measurement
record [96, 97, 136].

The scaling dimension cent also determines the conditional

mutual information (CMI), a non-linear correlation related to
the reversibility of the quantum channel, which can signal the
mixed state phase transition point [137]. For this quantity
we can partition the 1D chain into 4 segments, denoted by
A,B,D,E, respectively, with the length being ∣A∣ = ∣B∣ = a,
∣D∣ = l−a such that the distance between the centers of A and
B is l:

A BD E
la a

E

.

Then we investigate the CMI scaling with distance as a func-
tion of Lx. By making use of the block diagonal property
of the density matrix, the Shannon entropy is subtracted from
the CMI of the total system, which is reduced into the Born
average of the CMI of each post-measurement pure state

I(A ∶ B∣D) =∑
em

P (em) (SAD + SBD − SD − SABD)em .

(20)
Each term is the Born-averaged entanglement entropy of a
contiguous block, which is a function of its length only, due
to its average translation symmetry. We consider the regime
a ≪ l. In the area law phase, S saturates to a constant ∼ ln ξ
that depends only on the characteristic length scale but not
the subsystem size, and thus I(A ∶ B∣D) ∼ 0, signaling a
non-zero Markov gap and finite Markov length. At the critical
point, using the numerically confirmed scaling law Eq. (19),
we find

I(A ∶ B∣D)∣θ=π/4 =
1

3
cvNent ⋅ ln

sin2(πl
L
)

sin (π(l−a)
L
) sin (π(l+a)

L
)

∼

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
3
cvNent ⋅

a2

l2
, l≪ L

1
3
cvNent ⋅

π2a2

L2 , l = L/2
(21)

which decays in an inverse square law with a universal
prefactor cvNent/3. Physically, the divergence of the Markov
length implies the irreversibility of the channel which occurs
at the critical point that separates two distinct mixed state
phases [35, 137].

V. MIXED-STATE PHASE DIAGRAM AND RG FLOWS

Let us now move away from the self-dual line (ps = pη = 0)
in our phase diagram of Fig. 1(c) and consider two perturba-
tions that both explicitly break self-duality. First in the form
of incoherent noise (upper half in our phase diagram), then in
form of a coherent deformation (lower half in our phase dia-
gram) and, last but not least, we restore the strong self-duality
by a duality-preserving coherent deformation.

A. Breaking self-duality by measurement noise

The presence of imbalanced measurement noise explicitly
breaks the self-duality. Here we consider measurement noise
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for the site qubit, controlled by a parameter ps. For the inter-
mediate topological toric code, the measurement noise of the
e-vortices introduces an effectively finite temperature which,
in two spatial dimensions, immediately destroys its topologi-
cal order [138, 139]. Nonetheless, the boundary phase transi-
tion persists even in the presence of this noise and turns into
the Nishimori transition for ps = 50%. In this limit, it is equiv-
alent to tracing out the site qubits and can be mapped to the
RBIM in the replica limit N → 1, thus rigorously correspond-
ing to the Nishimori transition [3–5]. Upon close inspection of
the scaling behavior at the boundary phase transition upon in-
troducing the noise, we find that its universality qualitatively
changes immediately, indicating an RG flow from self-dual
criticality to Nishimori as we will discuss in the following.
Similar considerations can, by duality, be applied to m-vortex
noise.

In the presence of a measurement error the state corre-
sponding to each of the bulk classical states ∣em⟩ becomes
a noisy mixed state

∣ρ(em)⟩⟩ =∑
e′
P (e′∣e) ∣ψ(e′m)⟩⟩ , (22)

where e is the measurement record, while e′ is the vortex that
the Majorana fermion truely experiences, whose correlation is
determined by the noise probability: P (e′∣e) = (1− ps)δe′,e +
ps(1− δe′,e) = P (e∣e

′) for each individual site independently.
Here we use the double-ket notation to denote the density ma-
trix as a purified state in the doubled Hilbert space [7, 8, 72–
74, 127, 140, 141], which is sometimes referred to as “Choi
state”, due to the Choi-Jamiolkowski isomorphism [142, 143]
that maps a channel to a state. For example, for a pure state
∣ψ(em)⟩⟩ = ∣ψ(em)⟩ ⟨ψ(em)∣ its Choi state is simply a tensor
product of the two states, which can be further glued by the
noise Kraus operators, see Fig. 6(a) for schematic. In detail,
it can be represented as a bilayer tensor network state, where
the two layers correspond to the double Hilbert space:

e
m X

Z
X

e
m X

Z
X

= ( eβ/2 e−β/2

e−β/2 eβ/2 ) , = ( 1 1 − 2p
1 − 2p 1 )

|ρ(e, m)⟩⟩ =

, (23)

where each bond is a 2-by-2 matrix as written. The intra-layer
solid bond originates from the pure state Eq. 1, and the inter-
layer dashed bond is glued by the noisy Kraus operators, see
Appendix Sec. A 4 for derivation. The trace of the original
physical qubits is equivalent to an overlap with a Bell state
between the ket and bra: trρ = ⟨⟨Bell∣ρ⟩⟩, while the purity be-
comes the norm of the Choi state: trρ2 = ⟨⟨ρ∣ρ⟩⟩. Thus the cor-
responding Born’s probability is also accordingly distorted by
the noise: P̃ (em) = ⟨⟨Bell∣ρ(em)⟩⟩ = ∑e′ P (e

′∣e)P (e′m).
It is important to note that the effective 2D statistical model

thus becomes a bilayer Ising model, where the noise probabil-

ity tunes the interlayer Ising coupling, and the random mea-
surement outcome injects vortices to both layers. The (1+1)D
dynamics is thus a quantum ladder of Ising spins or Majo-
rana fermions, with interchain interactions beyond the non-
interacting fermion regime. Explicitly, in the language of the
statistical mechanics model described in Eq. (7), (9), the par-
tition function for the circuit reads in the presence of measure-
ment noise, in a fixed quantum trajectory (fixed configuration
of e and m vortices, or equivalently of the signs sij and tij)

[Z(em)
2
]
βp

∶= ∑
{σj}

∑
{τj}

exp (−H[{σj},{τj}]) , (24)

where

−H[{σj},{τj}] =
β

2
∑
⟨i,j⟩

si,j(σiσj + τiτj) +

+iπ∑
⟨ij⟩

1 − tij

2

1 − σiσjτiτj

2
+ βp∑

j

σjτj , (25)

where βp denotes the strength of the measurement noise re-
lated to ps by e−2βp = 1 − 2ps, and σj and τj denote the Ising
spins in the ket and bra parts of the circuit, respectively. The
‘vortices’ (signs) sij and tij act both simultaneously on ket
and bra parts. Note that in the absence of measurement noise,
βp = 0, the expression in Eq. (24) above is the square of the
partition function Z(em) from Eq. (9), expressing the fact
that sij and tij act simultaneously on the ket and the bra part.
The term multiplying βp represents a coupling between ket
and bra. In the maximally noisy limit ps = 1/2, and βp = +∞,
the ket and bra are locked to have identical configurations.
The original bilayer Ising model then reduces to a single layer
of RBIM with the samem vortices, where the Ising interaction
strength is doubled from β/2 to β. This can be derived using
the tensor network representation (23), or by using Eq. (9) to
see that

∑
e

Z(em)2 ∝∑
σ

eβ∑ij sijσiσj .

It is important to stress that the noisy mixed state for
0 < ps < 1/2 is no longer Gaussian in the Majorana rep-
resentation, and the noise amounts to interactions between
the Majorana fermions, which are non-interacting in the lim-
its ps = 0,1/2 [11]. A small value of ps amounts to RG-
relevant fermion interactions which break statistical (‘weak”)
KW symmetry, while these fermion interactions are numer-
ically found RG-irrelevant in the vicinity of the Nishimori
point at ps = 1/2. The lack a Gaussian Majorana representa-
tion for 0 < ps < 1/2 also implies that numerical calculations
(e.g. of the Neumann coherent information, etc.) are gener-
ically hard to perform for those values of ps. However, we
can turn to a Born measurement average of the second Rényi
coherent information by adapting Eq. (17), as it is a linear
physical observables w.r.t. the Choi state

I(2)c =∑
e,m

P̃ (em)[S
(2)
Q (em) − S

(2)
QR(em)]

=∑
e,m

P̃ (em)[− ln⟨⟨B̂R⟩⟩] ,
(26)
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where B̂R = 2 ∣Bell⟩⟩R⟨⟨Bell∣ is two times of the Bell projec-
tor of the reference qubit. Its expectation value can be effi-
ciently calculated by our tensor network representation [144],
see Appendix Sec. A 4 for details.

For a generic mixed quantum state, the phase transition
and its criticality could depend on the order of the Rényi
quantity, as different copies of the density matrices are in-
volved and are mapped to statistical models with different lay-
ers [127]. However, in our case here, the limit ps = 0 is an em-
trajectory-resolved pure state whose different Rényi entropies
are related to different scaling operators within the same criti-
cal theory [108]. Analogously, in the maximally noisy limit
ps = 50%, it becomes an m-trajectory-resolved, fully de-
phased, diagonal density matrix, whose Rényi entropies all
diverge, as in the ps = 0 case, at the same transition point.
Specifically, our ps = 50% point can be mapped to the 2D
RBIM along its Nishimori line [3–5]. Indeed, the numerical
exponents we compute in Fig. 6 are consistent with those ob-
tained for the Nishimori criticality in Refs. [42, 134, 135, 145–
147]. As shown in Fig. 1(c), for ps > 0 and θ > θc, we expect
the boundary state to be dephased in the thermodynamic limit
into a classical glassy Ising-ordered mixed state. This is ev-
idenced by the numerically computed noisy coherent infor-
mation Ic → 0 under finite-size scaling (see Fig. 11 in Ap-
pendix E). The onset of measurement noise leads to a dephas-
ing effect that immediately collapses the logical qubit into
a logical classical bit in thermodynamic limit. In the Majo-
rana representation, it means the topological protected logical
qubit composed of the two edge Majoranas is unstable against
the (noise-induced) proliferation of e-vortices in spacetime. It
does not contradict the topological protection because the e-
vortices are highly non-local topological defects. If a bond
measurement error is turned on in addition, the ordered phase
and the Nishimori criticality survive until a finite threshold, as
realized in a noisy digital quantum processor [5].

RG flow

To understand the renormalization group (RG) flow for the
manifold of critical points for 0 ≤ ps ≤ 50%, we have calcu-
lated the entanglement entropy for the Choi state ∣ρ(em)⟩⟩.
The entropy is averaged over the Born ensemble given by
P̃ (em), and agrees with the logarithmic scaling as in Eq. (19)
with a scaling prefactor denoted by c̃(n)ent , which should be dis-
tinguished from the pure state ones, c(n)ent . Only in the noise-
less limit, where the Choi state is simply a tensor product of
the ket and bra wave functions, are the two trivially related by
c̃
(n)
ent = 2c

(n)
ent due to the additivity property of the entanglement

entropies. Estimates in the presence of noise 0 ≤ ps ≤ 50%
are shown in Fig. 6(a) for the von Neumann entropy prefactor
c̃vNent. In addition, we plot the scaling exponents for the Rényi
entanglement entropy of the Choi state in Fig. 6(b).

Looking at the data in Fig. 6(b,c), we see a sudden drop of
the von Neumann entropy prefactor c̃vNent upon introducing a
finite noise ps > 0, as well as an immediate (though less dra-
matic) change of the critical exponent ν. What these changes

signal, is that the universality of the critical behavior instan-
taneously changes in the presence of noise – indicating an
RG flow towards a different universality class. Specifically,
our results imply a decoherence-driven renormalization group
flow from the self-dual criticality to Nishimori criticality.

The instability of the self-dual critical point in the presence
of noise can be rationalized due to the effect of noise-induced
Kramers-Wannier duality breaking decoherence, which in-
duces as already mentioned above, unavoidable interactions
between the two layers of non-interacting Majorana fermion
theories, numerically established to induce renormalization
group relevant perturbations. This raises the question of
whether there is a way to break the self-duality while preserv-
ing the purity of the trajectory-resolved Majoranas, which we
will now address by considering a coherent deformation in-
stead of incoherent noise.

B. Breaking self-duality by deformation

To break self-duality without breaking purity of each tra-
jectory, one can introduce a bath to absorb the e-vortices,
or to damp the Pauli X operator of the site qubits. To be
concrete, we deform the quantum state by applying a finite-
depth local non-unitary circuit exp(−η∑j(1 −Xj)/2) onto
the site qubits, before their measurement. This non-unitary
gate has previously been denoted as a “wave function defor-
mation” [45–47, 65]. If not directly implemented in a cir-
cuit this deformation can, in principle, also be realized as
the ground state of a 2D Rokhsar-Kivelson type Hamiltonian
[148]. Consequently, the statistical model (8) picks up an ad-
ditional weight factor

P (em)′ ∝ Z(em)2 × exp
⎛

⎝

η

2
∑
+

∏
⟨ij⟩∈+

tij
⎞

⎠
, (27)

up to an em independent normalization constant such that
∑em P (em)′ = 1. Note that this extra term is reminiscent
of a gauge coupling, with η endowing a mass to the e-vortex.
By tuning η from 0 to ∞, we can thereby control the density
of the e-vortices, which completely vanish at η →∞. This ex-
pression can alternatively be viewed as a “reweighting” of the
post-measurement Born ensemble. The corresponding (1 +
1)D circuit is composed of a deterministic exp(β′X/2) and a
monitored (non-deterministic) exp(±βZjZj+1/2) imaginary-
time evolution. However, we caution that the probability of
the random gate exp(±βZjZj+1/2) at a given time is not
only conditioned upon the “past” but also the “future” of the
(1 + 1)D evolution, which is computed by tracing out the
whole (1 + 1)D spacetime sheet.

For convenience we compactify the phase diagram within
pη ∈ [0,0.5] where η = ln

1+2pη

1−2pη
. In the limit η → ∞, the

e-vortices vanish, P (em)′ ∝ P (m)′δe,0. In the absence of
e, the m-dependent partition function P (m)′ reduces to two
random bond Ising layers that share the same m-vortex disor-
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FIG. 6. RG flow between the critical states, tracking the critical line in the phase diagram in Fig. 1(c). (a) Schematic of the three types of
disturbances. Each layer denotes one tensor network as the spacetime evolution of the (1 + 1)D quantum state, subjected to random e- and
m-vortices. The site measurement noise ps blurs the e-vortex configuration, the deformation pη absorbs the e-vortices to the bath, while the
coherent deformation pγ absorbs the e- and m-vortices together, maintaining the self-duality. (b) c̃vNent is the scaling exponents for the von
Neumann entanglement entropy of the (1 + 1)D noisy quantum state, viewed as a Choi pure state, where the disorder is averaged according
to the Born’s rule. cvNent governs the trajectory averaged pure state entanglement entropy under the coherent deformation. (c) ν is the critical
length exponent extracted from FSS for coherent information. At ps = 50% the Nishimori critical point, ν = 1.65(11), c̃vNent = 0.421(5) based
on our calculation of sizes up to Lx = 32. For comparison, the star markers denote the data using larger system size O(103) calculation,
adapted from Puetz et al. [42]: ν = 1.52(2), c̃vNent = 0.410(1). At pη = 0.5 the Ising+ critical point, ν = 1.00(5), cvNent = 0.310(2). The
data is computed by finite size scaling of size Lx = 4,8,16,32, whose data collapse is shown in Appendix Sec. E. Here we plot c̃ by half
because it expresses the entropy of the Choi state in the double Hilbert space. (d) Flow from strong to weak self-dual symmetry, witnessed
by the entanglement entropy scaling exponent cvNent. Computation is performed in open boundary condition for ps noisy regime, and periodic
boundary condition for pη and pγ coherent deformation regime.

der:

P (m)′ ∝ Z(m)2 =∑
σ,τ

exp
⎛

⎝

β

2
∑
⟨ij⟩

sij(σiσj + τiτj)
⎞

⎠

=∑
σ,τ
∏
⟨ij⟩

[1 + tan2 (
θ

2
)σiσjτiτj + sij tan(

θ

2
)(σiσj + τiτj)] ,

(28)

where we use the fact that tanh(β/2) = tan(θ/2), and in
the second line we perform a high-temperature expansion.
When the disorder is traced out, the s terms drop out, so
we find the normalization constant of the Born probability to
be ∑m P (m)′ ∝ ∑στ exp[tanh

−1 tan2(θ)∑⟨ij⟩ σiσjτiτj],
which is a non-random Ising model describing the disorder
average correlations of the joint Ising spin σ′j ≡ σjτj . A
transition point can then be readily determined via Kramers-
Wannier duality

tan2 (
θc
2
) =

1

1 +
√
2
,

which yields θc/π = 0.364 . . ..
Notably, at this critical point all disorder-independent oper-

ators are described by the unitary Ising CFT, which obeys this
self-duality. For instance, the two-point correlation ⟨σ′iσ

′
j⟩ ∼

∣i− j∣−1/4 because σ′ picks up the scaling dimension 1/8 from

the Ising CFT. Nevertheless, measurement-induced quenched
randomness (which also breaks self-duality) causes (random)
quantum trajectory resolved quantities to be no longer de-
scribed by simple unitary Ising CFT, which is the reason why
we have dubbed this critical theory “Ising+” theory. As shown
in Fig. 6(b), the critical length exponent ν = 1.00(5) extracted
from coherent information agrees with that of the simple Ising
CFT. If one looks into the entanglement entropy scaling of
the (1+1)D quantum state formed by the joint spins, σ′j , or
its ground state energy scaling, one would recover the central
charge 1/2. In contrast, the measurement-averaged entangle-
ment entropy for our quantum state is expressed in terms of τ
spins alone, which yields

cvNent∣η=∞ = 0.310(2) ,

which is a universal number that is not captured by the unitary
Ising CFT. Besides, the normalization condition∑m P (m)′ =
1 ensures that this critical point has vanishing central charge
following Eq. (12).

Properties characteristic of quenched disorder (including
the intrinsic randomness of quantum mechanical measure-
ments, governed by the Born-rule distribution) are described
by derivatives with respect to replicas, analogous to the effec-
tive central charge – just for different observables. (See, e.g.,
Ref. 108.) For instance, when formulated within the replica
formalism, cvNent∣η=∞ = 0.310(2) above should be a deriva-
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tive with respect to N as N → 1 of the corresponding repli-
cated boundary condition changing (“twist”) operator corre-
lation function computed with N replicas; this is needed to
generate an average of a logarithm in the entropy. The result
cvNent = 0.310(2) comes from the extra (N −1) replicas and the
derivative.

As shown in Fig. 6(b)(c), when deviating from the η = ∞
limit, ν and cent quickly cross over to the exponents for the
self-dual criticality. This again indicates an RG flow, now
from Ising+ criticality to self-dual criticality. (Numerical data
for the finite-size collapse is shown in Fig. 10 in Appendix E.)

C. Strong to weak self-dual symmetry

If we further add a mass term to not only the e but also
them-vortices, we can maintain the self-dual symmetry while
suppressing both e and m on equal footing. Such a scenario
is captured by a statistical model given by

P (em)′′ ∝ Z(em)2 × exp

⎡
⎢
⎢
⎢
⎢
⎣

γ

2

⎛

⎝
∑
+

∏
⟨ij⟩∈+

tij +∑
◻

∏
⟨ij⟩∈◻

sij
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

(29)

where γ = ln 1+2pγ

1−2pγ
. In the limit pγ = 1/2, γ =∞, all e and m

vortices are suppressed and our mixed-state self-dual critical-
ity reduces to the non-random Ising criticality, whose (1+1)D
quantum state exhibits self-duality as a strong symmetry

KW ∣ψ⟩∣γ=∞ = ∣ψ⟩∣γ=∞ ,

up to boundary condition terms [149]. This can be visual-
ized in the Majorana representation where the state inherits
the Majorana translation symmetry from the Majorana quan-
tum circuit. For any finite pγ , the self-duality is respected
and the point at θ = π/4 remains always critical, distinct from
the deformation critical line in Fig. 1(c). Therefore we sit at
θ = π/4 and perform our Born sampling computation for the
Born-averaged entanglement entropy to obtain the scaling ex-
ponents cvNent as a function of pγ . As shown in Fig. 6(d), the
finite-size fit cvNent for the critical point closer to the clean Ising
significantly drift upwards, while that closer to the mixed crit-
ical point converges faster. This indicates a crossover from
the unitary Ising CFT, with strong self-dual symmetry, to the
mixed state self-dual criticality, with only weak self-dual sym-
metry. For the measurement-version of the Cho-Fisher model
at hand the RG flow is thus towards decreasing mass, i.e.
flowing from pure Ising to the KW-self dual point. Note that
this is the opposite direction of the RG flow within the con-
ventional Cho-Fisher model in the N → 0 replica limit [119],
which is schematically shown in Fig. 2(f).

VI. DISCUSSION AND OUTLOOK

Summary of RG flows

Stepping back, one result of our study is a cascade of RG
flows between different critical theories, see Fig. 6. Putting to-

gether all the numerical evidence, one arrives at a flow within
the mixed-state critical line from Ising+, to self-dual critical-
ity, and finally towards Nishimori criticality. In other words,
when noise sets in, every fixed point could flow to Nishi-
mori criticality – elevating it to a remarkably stable univer-
sality class in this context. This adds to the mounting evi-
dence that Nishimori criticality might be an ubiquitous phe-
nomenon in the quantum dynamics of monitored cluster states
– it naturally arises from Born’s rule [3], it emerges both in
the presence of incoherent noise [1] and coherent deforma-
tions [3] as well as when both are present simultaneously [5].
The self-dual criticality can be viewed, in its own right, as a
quantum parent state of the Nishimori criticality, which main-
tains the self-duality. It is interesting that in the language of
the non-interacting fermion description of the KW self-dual
point this noise amounts to an interaction amongst the Majo-
rana fermions during the crossover, while the two endpoints
of the RG flow, the ultraviolet KW self-dual as well as the in-
frared Nishimori critical point, are both described in terms of
non-interacting fermion systems.

Relationship with measurements performed on quantum critical
ground states

The type of (1+1)D systems we discuss in the present pa-
per belong to the setups appearing in the context of measure-
ment induced phase transitions (MIPT) in deep 1D quantum
circuits [75–78, 108, 109, 150, 151]. The systems we discuss
are a particular (e- and m-) measurement-only [152] version
of those, that surround the key question of weak self-duality
symmetry, and which we write in the formulation of the mixed
state of Eq. 2 in 2D space. In these setups measurements are
performed in the 2D bulk spacetime of the quantum circuit.
In such a circuit, including at the MIPT, the 2D bulk lacks
space and time translational invariance in a fixed quantum tra-
jectory. Only observables averaged over quantum trajectories
(measurement outcomes) are described by (rather rich) non-
unitary “random” CFTs. Examples are the self-dual and the
Nishimori critical points discussed in this paper. The quantum
state at the final time (the boundary) of the circuit is described
by boundary critical properties of this “random” non-unitary
bulk CFT [dictated by a particular scale-(and conformally)-
invariant boundary condition].

This setup should be contrasted with another (technically
more tractable) type of measurement setups that has been dis-
cussed in the more recent literature, where measurements are
performed on a quantum critical ground state of a 1D trans-
lationally invariant critical Hamiltonian of a unitary (1+1)D
CFT including, e.g., a gapless Luttinger liquid [153] or a criti-
cal transverse field Ising model in the examples first discussed
in the literature, with natural generalizations to higher dimen-
sional analogs (see, e.g., [7, 154]). When formulated in path
integral language in (1+1)D spacetime [153], the quantum
critical ground state is generated at the imaginary time τ = 0
time-slice by an infinite imaginary time evolution from infin-
ity with the unitary CFT Hamiltonian. Measurements are per-
formed only at this τ = 0 time-slice, representing a line-defect
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in (1+1)D space time. Away from the defect line, the 2D bulk
of spacetime is completely translationally invariant. There are
a number of variations of this setup, including e.g. those dis-
cussed in [153, 155–161] to briefly mention only a small sub-
set. In many cases, including those where uniform measure-
ment outcomes are postselected, the defect is described by a
perfectly unitary defect/boundary CFT (thus, in those cases,
bulk and defect/boundary are both unitary). In cases where no
postselection (or bias) of measurement outcomes on the quan-
tum critical ground state is performed, a defect can appear
that itself needs to be described by non-unitary (‘random’)
“measurement-dominated” defect/boundary fixed point CFT
(exhibiting scaling behavior whose richness is qualitatively
similar to that exhibited at general MITPs and by the systems
discussed in the paper at hand). Examples of this are provided,
e.g., in [161].

Connection to decoherence transitions of the toric code

Our phase diagram, parametrized by a measurement angle
θ, describes the maximal decoherence limit of the toric code
phase diagram of Ref. [6] which discusses a weak measure-
ment / imperfect teleportation / Pauli noise channel, whose
theory is described, as mentioned, by the symmetry class D
NLSM with target space SO(2N)/U(N) with theta term in
the (N → 1)-replica limit. The RG flow, revealed in our work
here, shows that the weak self-dual critical state of the projec-
tively measured toric code immediately flows to the Nishimori
critical lines when the measurement strength is moved away
from the projective limit (and turned into a weak measure-
ment).

The self-dual decoherence here is due to the non-Clifford
Kraus operator ρ → ρ + Z+X

√
2
ρZ+X
√
2

, which involves some
terms like XρZ that create m vortices in the ket space but
e vortices in the bra space, contributing to off-diagonal ele-
ments of the density matrix in the anyon basis. This should be
distinguished from the self-dual Clifford noise with both bit-
flip and phase-flip with the same probabilities: ρ→ (1−p)2ρ+
p(1−p)XρX+p(1−p)ZρZ+p2Y ρY ), which is purely block
diagonal in the anyon basis. The latter case results in a trivial
state at p = 50%, separated from the toric code by a decoupled
Nishimori×Nishimori transition at pc ≈ 10.9%, as the statisti-
cal model can be factorized into two independent RBIM along
the Nishimori line. The physical reason for the factorization
is that the e and m vortices always appear in pairs in both the
ket and the bra space at the same location, with trivial braid-
ing statistics [127]. Similarly, the Clifford depolarizing noise
is also mapped to the Nishimori transition of a random bond
Ashkin Teller model [162]. It is interesting to note that an-
other way of Clifford self-dual decoherence by proliferating
the fermions with Kraus operator ZrXr+(1/2,1/2) can lead to a
non-critical intrinsic mixed state topological order [163–165]
at the maximal decoherence limit.

Previously, an (N → 0)-replica limit was discussed in ran-
domly deforming the toric code [166], while the (N = 2)-
replica case was discussed more recently in Refs. [7, 61, 66,
74, 127]. These different replica limits all result in funda-

mentally distinct universality classes, pointing to the neces-
sity to study the device-relevant (N → 1)-replica limit of
Born-measurement induced randomness in its own right (and
despite its significant numerical effort) for any decoherence
channel of interest.

Non-unitary measurement-based quantum computation

On a conceptual level, one way to think about the relation
between bulk and boundary states is within the framework of
measurement-based quantum computation (MBQC) [79, 80].
There, a 2D bulk cluster state serves as a (short-range) entan-
glement resource for a deep (1+ 1)D quantum circuit – prop-
agating along one the two space dimensions instead of a real
time dimension [86–90] – to prepare (compute) a nontrivial
(1+1)D quantum state. The universality of MBQC guarantees
that any pure state can be prepared, in this way, at the bound-
ary of a cluster state by an effective deterministic (1+1)D uni-
tary circuit with sufficient space resource and classical com-
munication. What we discuss here is a seemingly very differ-
ent setting with an effective circuit that is probabilistic non-
unitary [92, 93] and leads to a mixed state [3, 4, 33, 137].
But if one thinks of MBQC as a measurement-based approach
to implement conventional unitary state preparation (quantum
annealing [167]), then one can cast our setting as a generaliza-
tion of MBQC to non-unitary state preparation. This in turn
points to a much broader application landscape of MBQC,
as one can now imagine to prepare entangled mixed-states of
matter that have no counterpart in the pure-state framework.

Outlook

Decoding

When decoding is employed and a conditional unitary
based on the bulk classical bits (measurement records) is ap-
plied to the boundary quantum state, one can trace out the
bulk leaving a stand-alone boundary quantum state. An opti-
mal decoder is one that can correct the whole SW-SSB phase
at t > π/8 with glassy long-range order into an SSB phase
with long-range order. Such a decoder would leave the KW
self-dual critical location invariant, and could possibly pre-
serve the self-duality at the transition point, turning our weak
self-dual criticality into a standalone (1 + 1)D mixed state:
ρQ = ∑emU(em) ∣ψ(em)⟩⟨ψ(em)∣QU(em)

†, which should
be amenable to near-term experimental probe [5].

Higher dimensions & Kitaev spin liquids

Moving onto higher dimensions, it is well-known that the
3D Ising criticality is not self-dual, but can rather be dualized
to the 3D classical gauge theory [13]. However, the fermion
perspective points to another potential generalization in three
dimensions: a Majorana translation symmetric model with
random vortex disorder. This could potentially be realized
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in cleverly designed 3D Kitaev spin liquids [168–170]. It
is worth noting that a randomized version of monitored
Kitaev spin liquids [171–173] is also closely related to the
Floquet code of Hastings and Haah [174] – a new family of
dynamical quantum error correcting codes [82, 175]. This
points to another possible application of our duality-enriched
mixed-state quantum criticality, to engineer the thresholds of
dynamical quantum error correcting codes.

Generalized symmetries

Another versatile direction is to explore systematically a
weak-symmetry generalization [7, 8, 71, 73, 74] of the more
generic non-invertible or categorical symmetries [16, 17, 19,
21–25], when a quantum theory is subjected to decoherence.
On the other hand, our self-dual decoherence could be gen-
eralized to more generic quantum error correction codes en-
riched with duality [176], or gauge theory with matter as for
the (good) qLDPC codes [177].

DATA AVAILABILITY

The numerical data shown in the figures and the data for
sweeping the phase diagram are available on Zenodo [178].
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Second Rényi coherent information 28
Nishimori criticality in the maximally noisy
limit 28

B. Born-average Rényi entropies 29
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Appendix A: Technical details

1. Derivation for the random tensor network state

Prior to the measurements, the cluster state can be written
as a tensor network:

H

H

HH

HH
H

H

,

which shows one plaquette as a unit-cell of the tensor net-
work state. Each vertex is a diagonal delta tensor, originating
from the initial ∣+⟩ state of each qubit, and each bond is at-
tached a 2-by-2 Hadamard matrix, which originates from the
4-by-4 CZ gate matrix: diag(CZ) = [1,1,1,−1] ⇔ H =
[1,1; 1,−1]. When a site qubit is measured in theX basis, the
physical leg is terminated, and a Pauli Z is injected to the ver-
tex if the measurement outcome is negative: X = −1. When
a bond qubit is measured in the rotated basis, the physical leg
is terminated, leaving a Boltzmann weight in the form of a
2-by-2 matrix associated with the bond

s

HH

Z Z

∝ e
β′ 

2 X ⋅ X
1 − s

2 .RY(θ)
s

H

H

Z

Z

RY(θ)

i

j

∝ es β
2 ZiZj ,

.
(A1)

2. Cylindrical boundary conditions

Here we discuss the boundary condition of the statistical
model in the fermion representation when we place the 2D
quantum state on a cylinder, i.e. implementing a periodic
boundary condition along the X direction. If the measure-
ment outcomes are post-selected to be positive, the statistical
model is a clean 1+1D Ising model in the periodic bound-
ary condition. And when the boundary term is twisted to be
antiperiodic boundary condition, it excites an Ising primary
field that costs energy. Nevertheless, in the presence of ran-
dom bond disorder which breaks the translation symmetry, it
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is less clear to determine the periodic or anti-periodic bound-
ary condition by directly looking at a given bond. Essentially,
the boundary condition is related to the global flux pumped to
the cylinder, which is still well defined in the disordered sys-
tem. Consider the generators of the dynamics by taking into
account a random bond, which under Jordan-Wigner transfor-
mation becomes

sx,yZxZx+1 =sx,yiγ2xγ2x+1 ,

sx,y+ 1
2
Xx =sx,y+ 1

2
iγ2x−1γ2x ,

(A2)

where at the boundary γ2Lx+1 = −Pγ1. Here there are two
independent global quantum numbers

W = ∏
x,y=1

sx,y = ±1 ,

P =
Lx

∏
j=1

Xj =
Lx

∏
j=1

iγ2j−1γ2j = ±1 ,
(A3)

where W determines the global flux pumped through the
cylinder being 0 or π, and P specifies the parity of the spin
or the fermion. A schematic of the two sectors distinguished
by the global flux is illustared below

m m m mm

W = + 1 W = − 1

,

where the bulk configurations are kept the same. In the clean
1+1D Ising, the vacuum state lies in W = +1 , P = +1 and the
lowest excited Ising primary field lies at W = +1 , P = −1,
which has a dual counterpart, i.e. a domain wall excitation
that twists the boundary condition W = −1 , P = +1 with the
same scaling dimension 1/8. This degeneracy is related to
the exact zero modes when the fermion is placed at periodic
boundary condition such that its momentum can take 0 value.
In the disordered system, the global flux that the fermion
experiences is determined by −WP taking into account the
flux induced by the random bond disorder and the opposite
of the fermion parity. Once the boundary condition is fixed,
the state is further divided into the two sectors determined
by P . Technically, we will perform the Born measurements
to get the Born ensemble as a grand canonical ensemble of
the global flux, and then we divide the ensemble according
to W = ±1, and fill the “Fermi sea” of the single-particle
fermion eigenenergy levels to get the many-body state energy
of the even fermion parity P̃ = +1 in the eigen-fermion
basis (caution that the fermion parity of the eigenmodes
could differ from the original fermion modes [145] by a
fixed sign). Then we can generate the many-body Lya-
punov spectrum of even parity by increasing the double
number of eigen-fermion modes, and that of the odd parity
P̃ = −1 by increasing an odd number of eigen-fermion modes.

3. Lyapunov spectrum

Akin to the numerical approach to Chalker-Coddington net-
work models in Ref. [145], we evolve the (1+1)D quantum
chain with 2Lx Majorana fermions up to long times Ly ≫ Lx,
which relaxes to a “steady” state, getting rid of the tempo-
ral boundary effect. In order to extract the universal bulk
information, we discard the initial dynamics at early times,
and perform statistics for the norm change of each fermion
mode from now on. After a layer of gates, Lx indepen-
dent, normalized fermion modes linearly evolve to a set of
un-normalized fermion modes, whose norms change by a fac-
tor rn for n = 1, . . . , Lx in descending order. Numerically,
rn is the diagonal element of the R matrix after the QR de-
composition for the transfer matrix composed by a layer of
gates. Here Q is the orthogonal matrix and R is the upper
triangular matrix according to the standard linear algebra con-
vention. In numerical practice, the transfer matrix of a layer
can be further decomposed to smaller chunk of gates in order
to suppress the rounding error when Lx is large. rn can be
treated as a random variable that fluctuates as time evolves.
The typical average ϵn = −ln rn for n = 1, ..., Lx can be in-
terpreted as the single-particle fermion energies of the (1+1)D
quantum chain. Back to the second quantization picture, the
many-body energies, or the Lyapunov exponents are

Em =
1

2

Lx

∑
n=1

νnϵn ∝
2π

Lx
(∆m −

cCasimir

12
) + . . . , (A4)

where νn = ±1 specifies the parity of the n-th eigenfermion
mode, and by enumerating all the possibilities we have m =
1,⋯,2Lx many-body eigen-energy levels. Here the many-
body levels can be further divided according to the global
fermion parity.

The spacetime bulk of the evolution as a transfer matrix
converges to ∏yM(y) = ∑m e−EmLy ∣Em⟩⟨Em∣ [145]. Con-
sequently, the 1D quantum ground state energy E0 dominates
in the limit Ly ≫ Lx in contributing to the 2D free energy
(Shannon entropy of the measurement record) according to
F = E0Ly+. . .. The excitationsEm−E0 ∝ 2π∆m/Lx are ex-
pected to obey a scaling according to the underlying CFT, and
due to the state-operator correspondence, their energy gaps
capture certain operator correlation functions in spacetime.
We have performed such calculations for the self-dual criti-
cal theory for different system sizes, resulting in the “spectra”
of Fig. 7, where both Ising and Nishimori criticality are also
included for comparison.
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mmm

(a) Ising

(b) Nishimori

(c) weak self-dual

e
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FIG. 7. Numerical computation for the domain wall energy, ground state energy and the Lyapunov spectrum for the many-body states
in the second quantization picture, comparing Ising, Nishimori, and weak self-dual critical states. The system size ranges Lx = 6 ∼ 30.
The first column of the data plots lists the vacuum energy density in the even sector. The second column is the domain wall energy, obtained
by the energy difference between the ground states of the even sector and the odd sector. The third column is the dimensionless many-body
energy or Lyapunov spectrum normalized by the width of the cylinder L ≡ Lx. These levels are obtained by filling the energy levels of the
single-particle fermion modes in Fig. 5, and they are shifted by a constant such that the ground state level lies at 0. For the spectrum, the black
levels with squared markers are for antiperiodic −WP = −1 boundary conditions of the fermions, which are composed by the periodic spin
chain in the even parity sector (W,P ) = (+,+) or the antiperiodic spin chain in the odd parity sector (W,P ) = (−,−); the red levels with
circle markers include (W,P ) = (+,−) and (W,P ) = (−,+). The three rows are Ising, Nishimori and weak self-dual, respectively. Here clean
Ising is for benchmarking, which exhibits the correct c = 1/2 for Casimir energy and ∆(σ,σ̄) = 1/8 for the Ising primary field, and ∆(ϵ,1̄) = 1/2
for the fermion primary field. The sound velocity or the spacetime anisotropy factor is found to be 1 from the clean Ising benchmark, which is
consistent with the fact that we work in spacetime isotropic lattice model instead of the continuously weak monitoring limit. For Nishimori we
find E1 −E0 ∝ 2π/L ∗ 0.341(1) with sizes up to L = 30, which roughly agrees with Merz and Chalker’s ∝ 0.691(2)π/L from the scaling
dimension of the vortex-vortex correlation with fermion calculation of sizes up to L = 22 [12], and the estimated window in the figures in
Ref. [134, 135].
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4. Derivation for the noisy Choi state

Choi state as a tensor network state

The noisy state for each trajectory in Eq. (22) is represented
by a bilayer tensor network state Eq. (23) where the noise
Kraus operator glues the ket layer and the bra layer, by par-
tially tracing out the e particles. The intra-layer solid bond
matrix is the same as above: [1, e−β ; e−β ,1] (up to a negligible
constant prefactor eβ/2). The dashed bond matrix connecting
each site of the ket layer to its counterpart in the bra layer is
obtained by tracing out the noise Kraus operations:

Z

Z
+ =⊗ ⊗ ⊗ ( 1

1 − 2p)p (1 − p)

,
(A5)

which yields a weight matrix [1,1 − 2p; 1 − 2p,1] attached to
the interlayer dashed bond. With this we can use MPS evo-
lution by MPO to obtain the purity as the norm of the Choi
state:

e
m X

Z
X

e
m X

Z
X

= ( eβ/2 e−β/2
e−β/2 eβ/2 ) , = ( 1 1 − 2p

1 − 2p 1 )

|ρ(e, m)⟩⟩ = ρ=

⟨⟨ρ(e, m) |ρ(e, m)⟩⟩ = tr(ρ2) =
ρ ρ *

.
(A6)

Note that this bilayer tensor network also expresses the cor-
responding classical statistical model - a bilayer interacting
Ising model with random e and m disorder. See Eqs. (24),
25) in the main text. The noise probability tunes the interlayer
Ising coupling strength.

Second Rényi coherent information

In the setting for coherent information, one of the physical
legs is the reference qubit R, and the second Rényi coherent
information (for each trajectory em) is reduced to the loga-
rithm of the expectation of 2 times of the Bell projector that
glues the R qubit in the ket and the bra layer

ρ ρ *I(2)
c = − ln

R

= − ln[2tr (ρ |Bell⟩R⟨Bell |)]

, (A7)

evaluated over the normalized Choi state (by noting that
e−S

(2)
BR is the purity and thus the norm of the Choi state).

For a more detailed analysis of the contribution of the co-
herent information, note that the Choi state can be decom-
posed into 4 states labeled by 2 logical quantum numbers (ac-

counting for the ket and bra space, respectively)

∣ρ⟩⟩BR =
1

2
∑

µν=↑,↓

∣ρµν⟩⟩B ⊗ ∣µν⟩⟩R . (A8)

The purity is reduced to

trρ2BR =
⟨⟨ρ00∣ρ00⟩⟩ + ⟨⟨ρ01∣ρ01⟩⟩ + ⟨⟨ρ10∣ρ10⟩⟩ + ⟨⟨ρ11∣ρ11⟩⟩

(trρ00 + trρ11)
2

trρ2B =
⟨⟨ρ00∣ρ00⟩⟩ + ⟨⟨ρ00∣ρ11⟩⟩ + ⟨⟨ρ11∣ρ00⟩⟩ + ⟨⟨ρ11∣ρ11⟩⟩

(trρ00 + trρ11)
2

.

(A9)

Therefore, we arrive at the second Rényi coherent information
of the noisy state for a fixed em configuration:

I(2)c = S
(2)
B − S

(2)
BR = ln

trρ2BR

trρ2B
= − ln⟨⟨ΠR⟩⟩

= ln
⟨⟨ρ00∣ρ00⟩⟩ + ⟨⟨ρ01∣ρ01⟩⟩ + ⟨⟨ρ10∣ρ10⟩⟩ + ⟨⟨ρ11∣ρ11⟩⟩

⟨⟨ρ00∣ρ00⟩⟩ + ⟨⟨ρ00∣ρ11⟩⟩ + ⟨⟨ρ11∣ρ00⟩⟩ + ⟨⟨ρ11∣ρ11⟩⟩

= ln
⟨⟨ρ00∣ρ00⟩⟩ + ⟨⟨ρ01∣ρ01⟩⟩

⟨⟨ρ00∣ρ00⟩⟩ +Re⟨⟨ρ00∣ρ11⟩⟩
,

(A10)

where in the third line we use the global Ising symmetry and
the replica symmetry to reduce half of the terms: ⟨⟨ρ00∣ρ00⟩⟩ =
⟨⟨ρ11∣ρ11⟩⟩, and ⟨⟨ρµν ∣ρκη⟩⟩ = ⟨⟨ρνµ∣ρηκ⟩⟩. The final result
depends on only three overlaps of the Choi state in the logical
space:

• ⟨⟨ρ00∣ρ00⟩⟩ is the vacuum amplitude;

• ⟨⟨ρ01∣ρ01⟩⟩ captures the off-diagonal elements of the
density matrix of the logical qubit, which suffers from
the dephasing error;

• ⟨⟨ρ00∣ρ11⟩⟩ describes the bit-flip error for the logical
qubit that tunnels the diagonal 0 state to the 1 state.

The four noise scenarios are summarized in Table II below.

TABLE II. Coherent information determined by the logical state
density matrix elements.

logical noise ⟨⟨ρ01∣ρ01⟩⟩ ⟨⟨ρ00∣ρ11⟩⟩ I
(2)
c

none 1 0 ln 2
dephase 0 0 0
bit-flip 1 1 0

bit-flip and dephase 0 1 − ln 2

Nishimori criticality in the maximally noisy limit

In the maximally noisy limit (ps = 50%), the records of
the e-vortices are destroyed, the decoherence erases the off-
diagonal elements from the density matrix leaving only diag-
onal elements. Concretely, the site indices of the ket and the



29

bra layers are locked together, reducing the bulk of the bi-
layer tensor network into a single layer, except the final time
slice. However, the Choi state differs from the (1+1)D bound-

ary MPS of the 2D classical RBIM with Nishimori disorder
by only an additional isometry tensor that doubles the Hilbert
space:

m X X

∝ ( eβ e−β

e−β eβ )
− 1

2

( e
β
2 e− β

2

e− β
2 e

β
2 )

1
2

=

= 𝕀

m X X = ( eβ e−β

e−β eβ )|ρ(m)⟩⟩ =

(A11)

where the rank-3 triangle tensor at the boundary is the isom-
etry operator, which does not change the entanglement en-
tropy. Therefore we can conclude that our maximally de-
phased boundary (1+1)D mixed state ∣ρ(m)⟩⟩ shares the same
entanglement entropy as the (1+1)D Nishimori critical state,
falling in the same universality class.

Appendix B: Born-average Rényi entropies

One can generalize Eq. (19) to the Born average of the n-th
order Rényi entropies:

1

1 − n
∑
em

P (em) ln(tr[ρA(em)]
n) , (B1)

Note that, in contrast, the Rényi entropies of the mixed state
go beyond the Born average and correspond to the higher
replica limits described by different critical theories at differ-
ent critical locations [127]. As shown in Fig. 8, the Rényi
entanglement scaling dimensions here clearly deviate from
the Calabrese-Cardy formula for unitary CFT, where the cen-
tral charge is the only fingerprint that governs all the Rényi
entanglement entropy. In contrast, here our numerical re-
sults show that there are at least two independent exponents
cvNent = 0.795(1) and c(∞)ent = 0.484(1). From another perspec-
tive, given the limited knowledge about non-unitary CFTs, it
is surprising to see that only two parameters are sufficient in
describing all the Rényi entropies, which also appear in the
case of entanglement transition [151].

FIG. 8. Born-average Rényi entropies of the self-dual critical
point - their scaling dimensions: cn versus Rényi order n. The
inset shows that when n → ∞, c(n)ent approaches a constant value
c
(∞)

ent = 0.484(1). Here the solid line follows the scaling: c(n)ent =
(cvNent − c(∞)ent )/n + c

(∞)

ent , which is should be compared with the Cal-
abrese Cardy formula for unitary CFT c

(n)
ent = cvNent(1 + n)/(2n). A

similar scaling with Rényi indices was observed in the context of
measurement-induced phase transitions [151]. The calculation uses
parameters Lx = 512 and Ly = 1024 with periodic spatial boundary
conditions, performing 2000 Monte Carlo sweeps using the stochas-
tic fermion evolution method. For Lx ranging from 8 to 32, 1000
Monte Carlo sweeps are performed for the e configuration, condi-
tional upon each of the 500 m configurations.

Appendix C: Comparison with continuous weak measurement

Here we verify the basic notion of universality - that the
critical exponent does not depend on the microscopic details
such as spacetime anisotropy, or whether the measurement is
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βZZ

β′ X

isotropic spacetime 
tanh(β′ /2) = exp(−β)

SO(2N )
U(N ) |N→1 NLσM

continuously 

weak measurement

self-dual β = β′ 

(b) binary distributed weak measurement β = 0.1 (c) Gaussian weak measurement γdt = 0.005(a) tuning spacetime anisotropy

θ

θ′ 

tanh β = sin θ
tanh β′ = cos θ′ 

FIG. 9. Tuning the spacetime anisotropy by varying the measurement strength. (a) Schematic: the green dashed line corresponds to
the spacetime isotropic case we study in the main text, which locks β′/2 to the KW dual counterpart of β/2 because we assume a uniform
measurement angle θ for the bond qubits in the bulk, which corresponds to an isotropic spacetime in the effective statistical model. As shown in
the box, if we allow the measurement angle for the horizontal bond qubit θ′ to be independently tuned, then we can tune β and β′ independently,
moving away from the spacetime isotropic line. Then a longer cylinder is needed to reach a steady (1+1)D quantum state. The purple diagonal
line β = β′ < ∞ respects the self-duality and is expected to flow into the same universality class as described by SO(2N)/U(N)∣N→1

NLσM . (b) Numerical computation for the binary weak measurement β = β′ = 0.01 for system size Lx = 32 , Ly = 1000. (c) Numerical
computation for the Gaussian weak measurement for system size Lx = 32 , Ly = 1000. Both (b) and (c) roughly agree with that of the finite
strength binary measurement β = ln(1 +

√
2) ≈ 0.8814 shown in the main text: cvNent ≈ 0.795(1).

discrete or continuous. Namely, the whole self-dual line in
Fig. 9 with varying spacetime anisotropy exhibits the same
entanglement entropy scaling. To be concrete, we show the
entanglement entropy for the weak measurement limit when
β ≪ 1 while fixing β′ = β, which can be realized from a
space anisotropic 2D resource state. In the following we stick
to the (1+1)D monitored quantum circuit representation of the
problem.

Bimodal discrete weak measurement

Consider weakly measuring an X , the Kraus operator is

Ms = exp(
β

2
sX) /(2 coshβ) , s = ±1 , (C1)

with probability

P (s) =
1

2 coshβ
⟨ψ∣ eβsX ∣ψ⟩ =

1 + s tanhβ ⟨ψ∣X ∣ψ⟩

2
,

(C2)
conditioned upon the state. Check the mean and the variance
of this bimodal distribution of the coupling constant to X:

E(
β

2
s) = (

β

2
tanhβ) ⟨X⟩ , Var(

β

2
s) = (

β

2
)

2

, (C3)

from which we see that tanhβ ∈ [0,1] expresses the fidelity
of the measurement outcome s with the true quantum expec-
tation value ⟨X⟩ of the quantum state. Note that at the weak
measurement limit β ≪ 1, we have

E(
β

2
s) = 2Var(

β

2
s) ⟨X⟩ (C4)

One can simply replace X by any other Pauli observables for
the equations above. We check that for a small size calculation

with very weak measurement strength and highly spacetime
anisotropy, the entanglement scaling (Fig. 9b) agrees with
cvNent = 0.795(1) as reported for the spacetime isotropic case
in the main text, within numerical error bar.

Gaussian continuous weak measurement

Next we consider the continuous weak measurement [106],
which turns to the following Kraus operator

M(α) = (
γdt

π
)

1/4

exp(−γdt
(α −X)2

2
) , α ∈ (−∞,+∞) ,

(C5)
with a continuous measurement outcome α, satisfying the nor-
malization condition ∫

∞

−∞
M(α)dα = 1. The Born’s rule dic-

tates

P (α) =

√
γdt

π
⟨ψ∣ exp (−γdt(α −X)2) ∣ψ⟩ . (C6)

In the early derivation of the stochastic Schrödinger equa-
tion [105], X was referred to a continuous degree of freedom
like the position in space:

P (α) =

√
γdt

π
∫ e−γdt(α−x)

2

∣ ⟨x∣ψ⟩ ∣2dx .

and an approximation was made that the wave function distri-
bution ∣ ⟨x∣ψ⟩ ∣2 is much narrower than the Gaussian distribu-
tion in such quantum state diffusion, resulting in:

P (α) ≈

√
γdt

π
exp (−γdt(α − ⟨ψ∣X ∣ψ⟩)2) ,

such that the mean and the variance of the coupling constant
of X is

E(αγdt) ≈ γdt⟨X⟩ , Var(αγdt) ≈
γdt

2
. (C7)
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which also satisfies

E(αγdt) = 2Var(αγdt)⟨X⟩ , (C8)

as physically required for the consistency of the quantum mea-
surement. Using this Gaussian distribution function instead
of the bimodal distribution, our numerical computation for a
small size (Fig. 9c) does not show significant deviation from
0.795(1) reported for the spacetime isotropic case for size
Lx = 512.

Appendix D: Central charge of Ising+

Here we discuss the normalization issue of the Ising+
model. In our main text we normalize the probability func-
tion of disorder:

P (m)′ =
Z(m)2

ZIsing
, ∑

m

P (m)′ = 1 , (D1)

where we denote ZIsing = ∑mZ(m)
2 with Ising coupling

constant tanh−1 tan2 θ as defined in the main text. Z(m)2

can be represented as a tensor network or a CC network,
same as ZIsing. However, it is not straightforward that
Z(m)2/ZIsing can be represented as a network, because in-
verting a network - 1/ZIsing is a highly nonlocal nonlinear
operation. In our numerical CC network calculation (as a bi-
layer tensor network), the transfer matrix generates Z(m)2

only, without the normalization factor ZIsing. Therefore the
quenched disorder averaged free energy that the Majorana

fermion picks up is contributed by two terms:

Funnorm = −∑
m

P (m)′ lnZ(m)2

= −∑
m

P (m)′ ln[P (m)′ZIsing]

= −∑
m

P (m)′ lnP (m)′ − lnZIsing

=FIsing+ + FIsing

=const ×Ly − (cCasimir +
1

2
)
πLy

6Lx
+⋯ ,

(D2)

where FIsing+ is the Shannon entropy of the disorder that
scales with cCasimir, the effective central charge for Ising+
that we define in this paper. And FIsing is the free energy of
the clean Ising model with central charge 1/2. Therefore, the
Majorana fermion sees a combination of cCasimir for Ising+
and 1/2 from clean Ising. The normalization of the partition
function subtracts the 1/2 contribution.

More generally, for N replicas,

FN unnorm = − ln∑
m

P (m)
′N
Z

N
Ising

= − ln∑
m

P (m)
′N
−N lnZIsing

= − ln∑
m

P (m)
′N
+NFIsing

=FN +NFIsing ,

(D3)

the unnormalized version of the free energy picks up a back-
ground term with the Ising free energy linearly coupled to the
replica index N . Thus taking the derivative with N yields
a replica-independent constant contribution originating from
the critical Ising CFT. This is why in our definition the Ising+
has central charge 0 rather than 1/2: FN=1 = FN=1 unnorm −

FIsing ∝ (1/2 − 1/2) = 0.
Lyapunov spectrum. Since we do not have a transfer matrix

for Z(m)2/ZIsing, we cannot define its Lyapunov spectrum.
Instead, the Lyapunov spectrum that we compute corresponds
to the unnormalized model described by partition function
Z(m)2 = tr(TLy), where T is the transfer matrix.

Appendix E: Supplementary data for finite-size data collapse

We close the manuscript by providing supplementary data
for the critical states along the three critical line by tuning the
e-mass (Fig. 10), e-noise (Fig. 11), and em-mass (Fig. 12),
respectively.
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FIG. 10. Phase transitions driven by θ with varying mass of e-vortex: the first column shows the finite size scaling of coherent information
signalling the phase transition; the second column shows the Born average bipartite von Neumann entanglement entropies at the critical point.
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FIG. 11. Phase transitions driven by θ with varying noise of e-vortex: the first column shows the finite size scaling of the Born-averaged
second Rényi coherent information signalling the phase transition; the second column shows the Born average bipartite von Neumann entan-
glement entropies of the purified Choi state at the critical point.
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FIG. 12. Von Neumann entanglement entropy scaling for the self-dual mixed state interpolating between weak self-dual and clean Ising
by tuning the mass of e and m vortices. The computation is performed at the exactly known self-dual location θ = π/4, with Monte Carlo
sampling combined with Gaussian fermion evolution.
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