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Thermodynamic classification of three-dimensional Kitaev spin liquids
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In the field of frustrated magnetism, Kitaev models provide a unique framework to study the phenomena of
spin fractionalization and emergent lattice gauge theories in two and three spatial dimensions. Their ground
states are quantum spin liquids, which can typically be described in terms of a Majorana band structure and an
ordering of the underlying Z2 gauge structure. Here we provide a comprehensive classification of the “gauge
physics” of a family of elementary three-dimensional Kitaev models, discussing how their thermodynamics and
ground state order depends on the underlying lattice geometry. Using large-scale, sign-free quantum Monte Carlo
simulations we show that the ground-state gauge order can generally be understood in terms of the length of
elementary plaquettes—a result which extends the applicability of Lieb’s theorem to lattice geometries beyond
its original scope. At finite temperatures, the proliferation of (gapped) vison excitations destroys the gauge
order at a critical temperature scale, which we show to correlate with the size of vison gap for the family of
three-dimensional Kitaev models. We also discuss two notable exceptions where the lattice structure gives rise
to “gauge frustration” or intertwines the gauge ordering with time-reversal symmetry breaking. In a more general
context, the thermodynamic gauge transitions in such 3D Kitaev models are one of the most natural settings for
phase transitions beyond the standard Landau-Ginzburg-Wilson paradigm.
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I. INTRODUCTION

Quantum spin liquids occur in strongly correlated mag-
netic quantum systems, when frustration effects prevent the
local magnetic moments from ordering and spin dynamics
persist even at zero temperature [1]. While there is no long-
range magnetic order and corresponding order parameter,
such systems are nevertheless highly special in that they
form long-range entanglement [2,3] and possibly harbor ex-
otic excitations, such as, e.g., Majorana fermions. Despite
this conceptual understanding, it remains notoriously hard to
study the formation of quantum spin liquids in a microscopic
context. This is particularly true for three-dimensional (3D)
settings. As such, the recent introduction of 3D generaliza-
tions [4–8] of the Kitaev honeycomb model [9] are of special
importance. These 3D Kitaev models not only remain largely
tractable by analytical and numerical tools, they also harbor
a broad variety of different spin liquid ground states [7,8].
The underlying physics very much resembles what is well
known from the two-dimensional (2D) Kitaev model: The
original spin degrees of freedom fractionalize into itinerant
Majorana fermions and a static Z2 gauge field. As the latter
is generically gapped, the zero temperature physics can be
understood in terms of (noninteracting) Majorana fermions
moving in a static, fixed flux background. The resulting
Majorana band structure describes the low-energy physics of
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the quantum spin liquid, typically as a gapless “Majorana
metal” if the three different Kitaev couplings are of more or
less equal strength [10]. The precise nature of these Majorana
metals, however, depends on the underlying lattice geometries
with the nodal manifold being described as Majorana Fermi
surfaces, nodal lines, or Weyl points for different lattices [7].

A necessary ingredient for the classification of these 3D
Kitaev spin liquids is a correct assignment of the gauge order,
i.e., the flux background in which the Majorana fermions
move. Determining the appropriate flux background is, in
general, nontrivial. Analytically, one can resort to a theorem
by Lieb [11], which makes a connection between the length of
the elementary plaquettes of a lattice and the ground state flux
pattern. However, the applicability of this theorem is restricted
to lattices that exhibit certain mirror symmetries. Examples
include the honeycomb lattice in two spatial dimensions, for
which the ground state is “flux free,” and only one of the
3D lattices which we consider in the following. For all other
lattices, the strict requirements of Lieb’s theorem are not
met. For those lattices, an unambiguous identification of the
ground-state gauge order and corresponding flux assignment
can alternatively be obtained through (much more demanding)
numerical calculations. Since the Kitaev model in its parton
description (i.e., in the language of Majorana fermions cou-
pled to a Z2 gauge field) does not exhibit a sign problem [12],
one can perform quantum Monte Carlo (QMC) simulations
to track the finite-temperature ordering of the gauge field and
infer its low-temperature order.
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It is the purpose of this paper to elucidate and comprehen-
sively classify the thermodynamics of 3D Kitaev spin liquids
via extensive, sign-free quantum Monte Carlo simulations.
Going to finite temperatures, it is generally expected that
the flux or “vison” excitations of the Z2 gauge field become
important, as their proliferation destroys all ground state order
[13,14]. In three spatial dimensions, this proliferation is gener-
ally expected to occur at a finite temperature since the visons
are looplike excitations (whereas in two spatial dimensions
they are pointlike excitations allowing for an instant prolifera-
tion at any nonzero temperature). This is indeed what previous
numerical simulations of 3D Kitaev models on certain lattice
structures have found [12,15,16], indicating that the thermal
gauge ordering transition is suppressed by about two orders
of magnitude with regard to the bare Kitaev couplings. Here,
we perform a systematic study of a large set of 3D Kitaev
spin liquids considered first in Refs. [7,8] in classifying the
aforementioned Majorana metals. We show that the finite-
temperature behavior is very systematic, except for two cases
where additional frustration and/or spontaneous symmetry
breaking effects become important [17–19]. In particular, we
find a strong correlation between the transition temperature
and the local flux/vison gap, whereas there is no correlation
to the minimal loop length [20]. Our study also shows that
Lieb’s theorem predicts the correct flux ground state even in
cases where its requirements are not fulfilled. This suggests
that there should exist a more general version of the theorem.

Due to the substantial amount of specific results for the
various lattice geometries under consideration and the consid-
erable length of the paper, we start by giving an overview of
our results, together with the necessary background. A more
in-depth discussion of our findings can be found in the subse-
quent sections. In particular, in Sec. II we review the definition
and solution approach for the Kitaev model, as well as a brief
review on Lieb’s theorem. In Sec. III, we outline the quantum
Monte Carlo method that was used in the numerical studies,
focusing on the modifications we made in contrast to earlier
works in the field. Following that, in Sec. IV we give a detailed
presentation of our numerical results on the bipartite “fami-
lies” of lattice systems (8,3)x and (10,3)x. In this context, we
discuss the different behaviors of the relevant thermodynamic
observables and relate them to elementary geometric proper-
ties of the underlying lattices (e.g., its fundamental symme-
tries), and to the different Majorana (semi)metal ground states
that these systems exhibit. We also review results from former
works of our collaboration [18,19] on the more exotic systems
(8,3)c (Sec. IV D), which exhibits “gauge frustration,” and
the nonbipartite lattice (9,3)a (Sec. IV E), which intertwines
gauge ordering and time-reversal symmetry breaking (due to
the odd length of its elementary plaquettes). Finally, we sum
up the conclusions following from our studies and give an
outlook on further research directions in the field of 3D Kitaev
systems in Sec. VI. In addition to the main paper, there is
an extensive Appendix which explains a variety of technical
details that we chose not to cover in the main text.

Overview of results

We start with a summary of our main results. The
main ingredient of our study is a family of elementary 3D

FIG. 1. Elementary tricoordinated 3D lattices considered in this
paper [7,21]. The lattices are named and ordered according to the
Schläfli notation (p, c)x, specifying the elementary plaquette length
p and the coordination number c (followed by an index letter x).
Spirals colored blue (orange) rotate clockwise (anticlockwise). The
colors red/light blue/yellow highlight different directions of ‘zigzag’
chains. For the lattices (8,3)c and (9,3)a, marked with an asterisk,
the gauge sectors behave differently from the other tricoordinated
lattices. These systems were regarded separately.

tricoordinated lattice geometries, illustrated in Fig. 1, which
allow us to define 3D generalizations of the Kitaev honey-
comb model. It is the same family of lattices that has been
considered in earlier classification work discussing the ground
states of 3D Kitaev models as Majorana metals [7], augmented
by one of the lattices considered in a follow-up study [8].

One central result of our study concentrating on the “gauge
physics” of these 3D Kitaev models is the numerical observa-
tion that the predictions of Lieb’s theorem [11] on the ground
state flux sectors holds for all 3D lattice geometries that we
considered, including those that do not possess the mirror
symmetry requirements for its rigorous applicability.

According to this theorem, it is the (even) length of the
elementary plaquette p which determines the ground state
flux: If p mod 4 = 2, the energy is minimized if all pla-
quettes remain flux-free, while for p mod 4 = 0, it is a π

flux per plaquette which produces the flux ground state. First
used to predict the flux-free ground state of the 2D Kitaev
honeycomb model, this theorem is, in principal, applicable
to lattice systems of arbitrary spatial dimensionality, and
thus, also to 3D Kitaev systems. There is a caveat, however,
since the statement on ground state flux sectors provided by
Lieb is strictly proven only for systems and plaquettes which
fulfill certain mirror symmetries. Among the lattice systems
considered in our studies, these symmetries are only a feature
of the lattice denoted (8,3)b. As a consequence, there exists no
mathematically rigorous prediction on the energy-minimizing
flux sector for all other systems. In our former (mostly ana-
lytical) study on exact ground states [7], it was nonetheless
assumed, backed by symmetry considerations and benchmark
calculations on periodic flux configurations with small unit
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FIG. 2. Flux per plaquette. The numerical data shows that the
ground state flux sector 0/π , corresponding to the average flux
operator eigenvalue Wp = ±1 [see Eq. (9)] is determined by the
elementary plaquette length p for each lattice. For p mod 4 = 0,
the ground state has a π flux per plaquette, while the flux for systems
with p mod 4 = 2 is 0. This prediction made by Lieb’s theorem
is valid for all bipartite 3D Kitaev systems, even for those that do
not fulfill the mirror symmetry conditions that are required for its
strict proof (which are all except (8,3)b). Data shown is for the linear
system size L = 7, except for (8,3)n and (10,3)d (here: L = 5).

cells, that Lieb’s theorem provides the correct guideline to
find the ground state flux sector, also for the other 3D lattices.
Here, based on large-scale, numerically exact quantum Monte
Carlo studies, we confirm that this assumption was indeed
well justified. Our results unambiguously show that, despite
the lack of the particular mirror symmetries, all bipartite
systems with a plaquette length p dividable by 4 possess a π -
flux ground state, while all lattice systems with p mod 4 = 2
have a ground state where all plaquettes are flux-free. This
is illustrated in Fig. 2, where we plot central results of our
quantum Monte Carlo simulations: the flux per elementary
plaquette versus temperature for all lattices (with an even
length elementary plaquette).

Based on this result, the elementary 3D Kitaev systems can
be systematically categorized into different families, which
are characterized by their plaquette length and the corre-
sponding ground state flux sector. For this purpose, it is
convenient to use the Schläfli notation for the naming of the
lattices: A lattice is denominated by the expression (p, c)x,
where the number p is the elementary plaquette length, c
the coordination number, and both are followed by an index
letter x. Among the bipartite lattices, we find the family
(10,3)x with flux-free ground states, and the family (8,3)x,
where the plaquettes generally carry π flux in the ground
state. In addition, we briefly discuss two exceptional lattice
systems that have already been presented in earlier works,
namely (8,3)c, which possesses a frustrated gauge sector [18],
and the nonbipartite lattice (9,3)a, where the ground state
of the Kitaev system carries ±π/2 flux per plaquette, thus
spontaneously breaking time-reversal symmetry [19].

Extending earlier numerical studies on the thermodynam-
ics of Kitaev systems [12,22], we could verify that the main
characteristic thermodynamic signatures—namely a double-
peak structure in the specific heat—that were so far identified

FIG. 3. Correlation of “gauge ordering” temperature Tc and the
vison gap �. Both quantities are clearly correlated, which is indi-
cated by a linear fit (black line), which does not include the origin.
Here, the shaded area indicates the error of the y intersect. The
system size dependence of the vison gap � is shown in Fig. 5.
The values of Tc were extrapolated from the positions of the low-
temperature peaks in the specific heat Cv (see Fig. 14). At this
phase transition temperature, the looplike vison excitations of the 3D
Kitaev systems proliferate and break open into linelike objects. Note
that the deviation of data points from the linear fit may be ascribed
to finite-size effects in the peak positions, in particular for (8,3)a.

for (10,3)b (hyperhoneycomb) [12] and (10,3)a (hyperoc-
tagon) [16], are also observed for the other (regular) systems
of plaquette length 10 and 8. This validates the general
expectation that 3D Kitaev systems indeed exhibit separate
energy scales for the fractionalization of the spin degrees
of freedom—resulting in a crossover feature in the specific
heat around the strength of the bare Kitaev coupling and a
consecutive thermal gauge ordering transition. The precise
energy/temperature scale of the latter is a priori not known,
but its existence is expected to generically occur [13,14] in 3D
Z2 lattice gauge theories: The elementary gapped flux/vison
excitations of the ground-state flux sector of 3D Kitaev
systems have a looplike form (illustrated for an example
lattice in Fig. 6 below), caused by the geometric constraint
on plaquettes forming the boundary of closed volumes, and
therefore differ from the 2D vison excitations, which are
pointlike objects. These looplike visons are first created as
local excitations at low temperatures and break up and form
system-spanning objects only at a critical temperature Tc. For
systems with semiopen boundary conditions this effect can be
measured in terms of a nonlocal order parameter, a Wilson
loop. This phase transition between two topologically distinct
“loop regimes” in temperature space can be recast in terms
of domain boundaries in a 3D Ising model, with the roles of
high and low temperature phases inverted [12,15]. As such,
we generically expect this transition to be in the (inverted)
3D Ising universality class if it is a continuous transition. Our
numerical data is indeed consistent with such a continuous
phase transition for most systems of plaquette length 10 and
8, but our limited system sizes do not allow us to solidly
establish its universality class. This general argument for the
existence of a finite-temperature phase transition in 3D Kitaev
systems, however, does not provide any quantitative estimate
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for the transition temperature of the gauge ordering transition.
But since the transition depends on the proliferation of visons,
which are gapped excitations, one might expect to see a
correlation between the transition temperature and the vison
gap. This is indeed what we find for our family of 3D Kitaev
models—a clear correlation between the two energy scales, as
illustrated in Fig. 3.

We mention only in passing that also the gapless excita-
tions in the Majorana sector are generally expected to leave
a fingerprint on thermodynamic observables. For instance,
the low-temperature specific heat is expected to exhibit an
algebraic temperature dependence Cv (T ) ∝ T dc , where the
co-dimension dc is the difference between spatial dimension
and Fermi surface dimension, i.e., dc = 1, 2, 3 for a Majorana
(semi)metal with a Majorana Fermi surface, nodal line, and
Weyl points in three spatial dimensions, respectively. Search-
ing for such algebraic signatures in the specific heat has not
been the focus of the current study [23].

Methodologically, we have generalized the sign-free QMC
simulation approach for Kitaev models. In particular, we
expanded the approach from a purely Jordan-Wigner (JW)
transformation-based, i.e., nonlocal approach, to an ansatz
which makes use of Kitaev’s original, local transformation
from spins to Majorana fermions. We could show that the
exactness of the local approach is guaranteed on lattice ge-
ometries where a JW transformation is also applicable and
that it can be extended to larger gauge sectors and systems
with periodic boundary conditions. Under these conditions,
the effect of nonphysical states, which might arise in the local
approach, is negligible already for moderately large system
sizes (like the ones in the current study).

II. 3D KITAEV MODELS

The Kitaev model is the prototypical example of an exactly
solvable quantum spin liquid model [9]. Its essential ingredi-
ent are bond-directional Ising-type exchanges of the form

HKitaev =
∑

〈i, j〉,γ
Jγ σ

γ

i σ
γ

j , (1)

which connect spin-1/2 local moments, represented by the
Pauli matrices σi, along bonds labeled by γ = x, y, z, indi-
cating three subclasses of bonds. Any given spin, subject
to these three types of bond-directional interactions, cannot
simultaneously satisfy all couplings. The resulting “exchange
frustration” manifests itself already on the classical level
[24,25] and is the origin for the emergence of spin liquid
physics also in the quantum model.

With three principle bond-directional exchange types it
might be most natural to define the Kitaev model on tricoordi-
nated lattice structures in two [26–28] and three spatial dimen-
sions [4–8]. Generalizations to lattice geometries with higher
coordination numbers have also been considered for lattice
systems with odd [29–31] and also even [32–34] coordination
numbers. Typically, these generalization also consider higher-
dimensional spin operators, which can be captured, e.g., via
representations of � matrices [29–34].

To solve the spin-1/2 Kitaev model for a tricoordinated
lattice structure, a local transformation from spins to Majorana
fermions can be applied. In doing so, each spin operator is

replaced by four Majorana fermion operators via

σ
γ

i = ibγ

i ci . (2)

The Majorana operators bγ
i , ci fulfill the canonical commuta-

tion relations{
bα

i , bβ
j

} = 2δi jδαβ, {ci, c j} = 2δi j, {ci, b j} = 0, (3)

and reproduce two of the four relations which define the
algebra of spins: (σγ )2 = 1 and (σγ )† = σγ . There remains
a subtlety, however, since the other two relations [σα, σ β ] =
2iεαβγ σ γ and {σα, σ β} = 2δαβ require the introduction of an
additional condition. The reason for this is that the Majorana
operators act on a four-dimensional Fock space, while the
Fock space of the spin operators has only dimension 2. The
transformation (2) thus artificially increases the local Hilbert
space of each spin. Only a subspace reproduces the whole spin
algebra, though, and can therefore be considered as physical.
This physical subspace is obtained by introducing the local
gauge transformation Di = bx

i by
i b

z
i ci and consists of all states

|ξ 〉 which are gauge invariant, i.e., for which Di |ξ 〉 = |ξ 〉.
The transformation (2) replaces the Ising terms of the

Hamiltonian according to σ
γ
i σ

γ
j = −i(ibγ

i bγ
j )cic j , i.e., it re-

veals an interaction that is quadratic in the Majorana fermions
ci. The remaining quantity in the interaction term are the bond
operators ûγ

i j = ibγ
i bγ

j , with û ji = −ûi j . They have eigenval-
ues ±1 and commute with each other as well as with the
Hamiltonian. Therefore, they can be replaced by their eigen-
values in the Hamiltonian, which then assumes the form

H = i

4

∑
i, j

Ai jcic j, Ai j = 2Jγ uγ

i j, (4)

for connected sites i, j (otherwise Ai j = 0).
Physically, this parton construction leads to a system where

the spins are fractionalized. The new degrees of freedom are
noninteracting Majorana fermions ci, which are coupled to a
static Z2 gauge field {ui j} on the lattice bonds. Given a Z2

gauge field configuration {ui j}, the model is exactly solvable
by diagonalizing the complex, Hermitian tight-binding matrix
iA. The eigenvalues of iA come in pairs ±ελ and are the single-
particle energy levels that can be occupied by N/2 spinless
fermionic modes (N being the number of lattice sites). The
latter are obtained from the Majorana operators by applying a
basis transformation to normal modes b′

λ, b′′
λ and introducing

fermionic operators a†
λ = (b′

λ − ib′′
λ)/2, aλ = (b′

λ + ib′′
λ)/2

(see Appendix C for the details). The diagonal representation
of the Kitaev Hamiltonian then reads

H =
N/2∑
λ=1

ελ

(
a†

λaλ − 1

2

)
. (5)

Note that the ground-state energy of this system

E = −1

2

N/2∑
λ=1

ελ (6)

is simply the sum over the lower half of the energy levels,
divided by two.
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A. Lieb’s theorem

As a result of the parton construction described above, the
problem of obtaining the ground state is reduced to finding the
Z2 gauge field configuration {ui j} which minimizes the energy
(6). However, the bond operators ûγ

i j are not gauge invariant,
since they change sign under the gauge transformation Di.
Therefore, underlying the Z2 gauge field {ui j}, there has to
be another, gauge-invariant quantity, which is expected to be
associated with some physical observable.

As it turns out, this quantity is already well known. It has
been long established (see Appendix B) that the energy spec-
trum of a tight-binding Hamiltonian with nearest-neighbor
hopping ti j = |ti j |eiφi j only depends on the flux � around the
elementary plaquettes p of the underlying lattice [11,35,36],
which is defined by

exp (i�) =
∏

〈i, j〉∈p ti j∏
〈i, j〉∈p |ti j | . (7)

In Kitaev systems, the plaquette flux operator defined in
Eq. (7) is usually denoted by Ŵp and calculated by taking the
product of the Kitaev bond terms around the plaquettes

Ŵp =
∏

〈i, j〉,γ∈p

σ
γ
i σ

γ
j =

∏
〈i, j〉,γ∈p

(−iûγ
i j

)
. (8)

The eigenvalues of this plaquette flux operator are ±1 for
plaquettes with even and ±i for those with odd length. In
accordance with Eq. (7), we use the convention that an
eigenvalue Wp = +1 = ei0 is identified with the absence of
a Z2 plaquette flux (=̂0-flux), while an eigenvalue −1 = eiπ

signifies the presence of a Z2 plaquette flux (=̂ π -flux). We
also define the average

Wp = 1

Np

Np∑
i

Wpi , (9)

with respect to all Np elementary plaquettes in the lattice,
for which numerical results are shown in Fig. 2. Ŵp is a
conserved quantity of the Kitaev model, as it commutes with
the Hamiltonian. The Hilbert space is therefore divided into
eigenspaces of Ŵp, which are also referred to as flux sectors.
In the Majorana basis, the flux sectors {Wp} are realized by
choosing an adequate Z2 gauge field configuration {ui j}.

The remaining problem is to find the ground state plaquette
flux for a tight-binding Hamiltonian with a half-filled band.
This has been the subject of numerous studies in mathematical
physics [11,35,36]. The most striking result is a theorem by
Lieb [11], which states that the flux ground state of a lattice
with (at least) semiperiodicity is determined by its elementary
plaquette length p. Specifically, the plaquette flux � takes the
values

� = π (p − 2)/2 (mod 2π ) . (10)

That is, if p mod 4 = 0 (e.g., for the square lattice), the
energy of the half-filled system is minimized by a plaquette
flux � = π . Strikingly, this means that the presence of a
magnetic flux lowers the energy of the system, a phenomenon
which can only occur for systems where the electron density
is high. On the other hand, if p mod 4 = 2 (e.g., for the
honeycomb lattice), the ground state plaquette flux is � = 0.

FIG. 4. Geometric condition for Lieb’s theorem. (8,3)b is the
only elementary, tricoordinated 3D lattice that possesses a global
mirror symmetry for which the mirror plane (green) does not cut
through any lattice vertices. Two other such mirror planes are gen-
erated by 120-degree rotations around the z axis (blue).

This theorem, however, is only rigorously proven for sys-
tems with a specific geometric condition: The whole lattice
(i.e., the sites and bonds along with the configuration of cou-
pling constants Jγ ), and the individual plaquettes, for which
the flux is minimized, have to be invariant under reflection
symmetry. Also, the corresponding mirror plane may not cut
through any vertices of the lattice. This condition is fulfilled
for the honeycomb lattice [37], on which the Kitaev model
was first defined: Here, the elementary plaquettes are hexag-
onal and mirror symmetric, and the ground state is flux-free
(Wp = 1). On the other hand, from the 3D lattices studied in
this paper, only the (8,3)b lattice possess mirror planes which
fulfill this geometric condition, see Fig. 4 — it is therefore
the only 3D lattice for which we can rigorously predict the
ground-state flux assignment using Lieb’s theorem [38].

For all other lattice geometries, it is only through the
numerically exact quantum Monte Carlo simulations dis-
cussed in the following that we can unambiguously assign
the ground-state flux assignments—see the numerical data in
Fig. 2 and the summary in Table I. Notably, all lattice geome-
tries with an even plaquette length [except the lattice (8,3)c
where the fluxes are geometrically frustrated, see below] turn
out to follow the general guidance of Lieb’s theorem (10).
This might suggest that the symmetry requirements for Lieb’s
theorem to hold might be relaxed at least for some lattice
geometries.

If the elementary plaquette has an odd length—i.e., the
lattice is nonbipartite, as it is the case for (9,3)a—Lieb’s the-
orem does not apply at all. Here, the nature of the flux ground
state is fundamentally different from the bipartite systems,
since there is no energetic selection of one distinguished flux
state, which all plaquettes assume. Instead, two possible flux
states Wp = +i (=̂π/2-flux) and Wp = −i (=̂ − π/2-flux) are
connected by time-reversal symmetry, and the ground state
spontaneously breaks time-reversal symmetry by selecting
either of the two states for all plaquettes.

B. Vison excitations

The finite-temperature thermodynamic signatures of the Z2

gauge theory underlying Kitaev spin liquids are closely linked
to the elementary flux or “vison” excitations. For all 3D Kitaev
models considered in this paper, these vison excitations are
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TABLE I. Ground-state flux assignments for all elementary 3D
tricoordinated lattices. The plaquette length p is the quantity which
determines the ground state flux sector for all bipartite lattice systems
(see Fig. 2), while Lieb’s theorem is only strictly applicable for
(8,3)b. The lattices (8,3)c and (9,3)a, indicated by an asterisk, do not
possess the conventional ground state flux sector 0/π : For (8,3)c,
additional geometric conditions determine a frustrated flux ground
state, while the flux sector of the nonbipartite system (9,3)a is
characterized by spontaneous breaking of time-reversal symmetry
and plaquette fluxes ±π/2.

Ground state
Lattice Alternative names flux sector Lieb theorem

(10,3)a hyperoctagon [5] 0
(10,3)b hyperhoneycomb [39] 0
(10,3)c 0
(10,3)d 0
(8,3)a π

(8,3)b hyperhexagon π Yes
(8,3)n π

(8,3)c* frustrated
(9,3)a* hypernonagon ±π/2

(6,3) honeycomb 0 Yes

gapped excitations, just like in the original Kitaev honeycomb
model. The magnitude of the vison gap, however, varies for
the various lattice geometries under consideration, as sum-
marized in Table II, with the finite-size scaling illustrated in
Fig. 5.

It was already mentioned above that the nature of the
vison excitations depends on the spatial dimensionality of
the underlying lattice structure—while visons in two spatial
dimensions are pointlike objects, they are looplike objects
in 3D settings, see Fig. 6. To understand the formation of a
looplike excitation for 3D lattice geometries, note that the ele-
mentary plaquettes form boundaries of closed volumes in three
dimensions. This gives rise to a geometric constraint on the
fluxes, as one can show that the product of Wp for plaquettes
forming any closed volume is necessarily restricted to 1. One

may think of this geometric constraint as a divergence-free
condition: Whenever a flux enters a closed volume through
one plaquette, it also has to leave through another one. That
is, there are no “flux monopoles” allowed in the Z2 gauge
sector of the Kitaev systems. As a consequence, the plaquette
flux operators Wp are linearly dependent. For the 3D lattice
systems considered in this paper, we can find M/2 linearly
independent plaquette flux operators per unit cell (with M
being the number of sites per unit cell).

The divergence-free condition has a remarkable effect on
the visons: In 2D systems, the local change of a Z2 variable uγ

i j
excites a pair of plaquette fluxes (resp., one plaquette flux, if
the gauge variable is located at a boundary of the system). The
visons are thus pointlike. In addition, they can be arbitrarily
far separated with a finite energy cost. In contrast to this,
due to the linear dependence of plaquettes, the flip of a local
gauge variable in three spatial dimensions always excites all
plaquettes that surround the respective bond, i.e., it creates
a looplike excitation [40]. Enlarging the loop requires an
energy cost that grows unbounded with the loop length. This
fundamental difference in the nature of visons results in a no
less fundamental dissimilarity of the thermodynamics: While
in 2D, the Z2 plaquette fluxes locally freeze into their ordered
ground state configuration at sufficiently low temperatures,
realizing a thermal crossover, things are entirely different
in 3D. Here, it is a thermal phase transition that separates
the ordered from a disordered Z2 spin liquid regime: When
the system temperature is increased away from zero, looplike
visons will start to form, extend, and proliferate in the system.
At a critical temperature Tc, these vison loops transform
into system-spanning excitations, a topological phenomenon
which is highly nonlocal.

III. SIGN-FREE QUANTUM MONTE CARLO

While the analytical approach to find exact solutions of
Kitaev systems at zero temperature has been known since the
original introduction of the model, its numerical investigation
(at finite temperature) has initially been a challenge. While
exact diagonalization (ED) of the spin system is always an

TABLE II. Overview of the vison gaps � and critical temperatures Tc of the 3D Kitaev systems. Quantum Monte Carlo simulations show
that the temperature at which the Kitaev systems undergo a thermal phase transition from a disordered to an ordered Z2 spin liquid is correlated
with the size of the vison gap (see Fig. 3). For the lattices (8,3)c and (9,3)a, indicated by an asterisk, the physical mechanism underlying the
low-temperature phase transition is different from the rest due to special characteristics of the gauge sectors in these systems. Most of the vison
gaps have formerly been presented in Ref. [7] and are here renormalized by a factor of 3, in correspondence with the bond couplings Jγ = 1/3.

Lattice Vison loop length Vison gap � Transition temperature Tc Tc/�

(10,3)a 10 0.0299(13) 0.00405(9) [16] 0.135(7)
(10,3)b 6 0.0426(4) 0.00519(9) [12] 0.121(2)
(10,3)c 3 0.046(2) 0.0049(2) 0.107(6)
(10,3)d 6 0.030(2) 0.00462(1) 0.154(10)

(8,3)a 2 0.0197(13) 0.0044(8) 0.22(4)
(8,3)b 2 0.0532(3) 0.0079(3) 0.148(6)
(8,3)n 2 0.05397(10) 0.0071(3) 0.132(6)
(8,3)c* 4 0.0219(6) 0.0020(2) 0.091(9)
(9,3)a* 4 0.034(1) [19] 0.00244(4) [19] 0.072(2)

(6,3) 0 0.09 [7]
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FIG. 5. Vison gap � of the smallest vison loop as a function of
linear system size L. For all lattices except (8,3)c and (10,3)d, we
rescaled and refitted the data which was first presented in Ref. [7].
The shaded region indicates the data points included in the least-
squares fit. The dashed horizontal lines indicate the uncertainty range
of the fit.

option, its limitation to small system sizes makes it imprac-
tical for the 3D systems of interest here. Because of the
noncommuting, frustrating nature of the bond-directional spin
exchanges, conventional QMC approaches have also been
discarded due to their intrinsic sign problem (in this spin
basis). Instead, the key insight here is to actually use the
change of perspective provided in the analytical approach. In
its parton construction, i.e., in the basis of Majorana fermions
and Z2 gauge fields, the QMC approach turns out to be
completely free of the sign problem [12]. Such an approach,
which is closely related to Monte Carlo studies of double-
exchange models [41], in fact makes use of the exact solubility
of the Kitaev model in a fixed Z2 gauge field configuration
{ui j}. The key idea then is to do a Monte Carlo sampling
of the Z2 gauge field as a local Ising variable, accompanied
by an exact diagonalization of the respective tight-binding
Majorana Hamiltonian (4). Since the latter is quadratic in the
ci operators, an analytic expression for the partial Majorana
partition function in a given Z2 gauge field background {ui j}
can be found to be

ZMaj({ui j}) =
N/2∏
λ=1

{
2 cosh

(
βελ

2

)}
(11)

FIG. 6. Looplike vison excitation on (8,3)b. The excitation of a
single Z2 gauge variable on an x bond (red) creates a vison loop,
which is generated by four linearly independent lattice plaquettes
(yellow): Two plaquettes of length 8 (2,4) and two of length 12 (1,3).
At the critical temperature Tc, the so-created vison loops proliferate
and break open into system spanning objects.

(see Appendix F for the details of the derivation). From
this quantity, all thermodynamic observables can be directly
derived, particularly the free energy

F ({ui j}) = −T lnZMaj({ui j})

= −T
N/2∑
λ=1

ln

{
2 cosh

(
βελ

2

)}
, (12)

which is used to determine the Boltzmann weights e−β�F in
a Metropolis algorithm, giving the probability with which an
update of the Z2 gauge field, {ui j} → {u′

i j}, is accepted.

A. Jordan-Wigner and local transformation

There are, in fact, several different ways to transform the
spin degrees of freedom of the system into Majorana fermions
and a Z2 gauge field [42], two of which are considered in this
paper: The first one, which was used in the first Kitaev-QMC
simulations [12], is built on a JW transformation [12,43–45].
A second approach, on the other hand, is the one introduced
above, which follows more closely Kitaev’s original, local
transformation approach [9]—at the expense of an enlarged,
local Hilbert space (whose unphysical parts are avoided in the
JW approach).

The JW transformation is well known as an exact solution
method for one-dimensional spin models like the Heisenberg
chain. Instead of locally transforming a spin according to (2),
here it is a chainwise transformation that the spins undergo
to turn into their Majorana representation. The JW chains
have to be chosen to consist of two of the three subclasses
of γ bonds, while only the third class of bonds will carry
the Z2 gauge degrees of freedom, here usually denoted by
{η}. The major advantage of this approach is its faithfulness
to the Hilbert space dimensionality of the spin model: In
contrast to the local transformation, the JW ansatz makes
no use on an artificial Hilbert space extension. This makes
sure that one does not integrate over unphysical states when
calculating the Majorana partition function and, subsequently,
any thermodynamic observables. However, there remains a
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weak spot in this approach: In order to avoid the introduction
of nonlocal parity terms that have to be considered when
closing the JW strings, boundary conditions with broken JW
strings (such as open boundary conditions in at least one
spatial direction) have to be imposed [46].

In contrast, the local transformation approach imposes no
restrictions on any boundary conditions, but at the expense
of a Hilbert space that is artificially increased by a factor 2 for
each spin. Thus, in order to avoid any unphysical contributions
which might blur the numerical results, it might seem that a
projection to the physical subspace needs to be included in
each step of the QMC simulation. Such a projection operator
was indeed introduced by Kitaev as

P =
∏

i

(1 + Di )/2 ,

i.e., a symmetrization over all gauge transformations Di =
bx

i by
i b

z
i ci. A detailed analysis of this operator shows that on

a given lattice, a fixed Z2 gauge field configuration will allow
for fermionic states with only either even or odd parity [47].
Thus, a summation over all fermionic states, regardless of the
parity, is, in a strict sense, unphysical, and, in the derivation of
the Majorana partition function, Eq. (11), parity weights have
to be considered for each Z2 gauge field configuration [48,49],
which increases the computational cost of every QMC step
and puts a restriction on the accessible system sizes.

However, it can be shown that for lattice systems whose
principal geometry allows for a JW transformation, both
approaches will lead to the same Hamiltonian, if, within
the local approach, the Z2 gauge field on two subclasses of
bonds is fixed to a specific configuration. In this case, the
remaining Z2 gauge degrees of freedom uγ

i j on the γ bonds are
equivalent to the Z2 gauge variables η from the JW approach
(see also Appendices C and D). Since we know that the
JW transformation leads to an exact analytic expression for
the Majorana partition function (11) and, consequently, all
quantities derived from it, we are, in this case, guaranteed, that
the QMC results are exact (see the Appendices C and D for the
technical details). It turns out that this is in fact the case for all
3D Kitaev systems considered in this paper, if suitable (open)
boundary conditions are applied in the direction of the JW
strings. However, benchmark calculations have shown us that
even if we move away from this exact equivalence and sample
over all the ui j as Z2 gauge variables, our results still remain
within the error margins of the exact results. The effect of
sampling over “too many bonds” can therefore be interpreted
as a mere overcounting of physical states, which does not
affect the measurement results of the physical observables.

In addition, from the perspective of both transformation ap-
proaches, it is a scaling argument which justifies the extension
of the QMC simulation also to systems with periodic bound-
ary conditions in all spatial directions. From the perspective of
the local transformation approach, the effect of adding a single
additional fermion to a system with N sites and a Z2 gauge
field configuration {uγ

i j} (strictly allowing only for even/odd
fermionic parity) would scale [50] as 1/N , such that the effect
of the “false fermion” can be neglected in the thermodynamic
limit. Exactly the same argument holds for the parity term
which appears in the nonlocal approach whenever a JW string
is closed.

Based on these arguments, we performed the QMC simu-
lations presented in this paper with the local transformation
approach (treating the Z2 gauge field {ui j} on all bonds as free
Ising variables) but assured that a JW transformation is possi-
ble on all underlying lattice geometries (see Appendix D). The
results for the (9,3)a Kitaev system that have formerly been
presented in Ref. [19] were obtained with the JW approach.
With one exception [51], we performed the QMC simulations
on systems with periodic boundary conditions in all spatial
directions and system sizes up to ∼2000 lattice sites, which
not only justifies the neglect of parity terms but also allows for
an extrapolation of infinite-size estimates for some relevant
quantities of interest (e.g., the critical temperature Tc). Finally,
we note that empirically we find in our numerical simulations
that the behavior of the thermodynamic observables becomes
more systematic if we work with lattice geometries/boundary
conditions where all JW strings have approximately equal
length.

B. Green-function-based kernel polynomial method

One bottleneck in the numerical simulation is the exact
diagonalization of the Majorana Hamiltonian, i.e., the tight-
binding matrix Ã := iA of Eq. (4): For every single Monte
Carlo update between two Z2 gauge field configurations {ui j}
and {u′

i j}, the calculation of transition probability via the

Boltzmann weights e−β(F ′−F ) requires a calculation of the
Majorana free energy

F = −T
N/2∑
λ=1

ln

{
2 cosh

(
βελ

2

)}
,

based on the full sets of eigenvalues, {ελ} and {ε′
λ}. Doing

a full-fledge calculation of these eigenvalues via an exact
diagonalization step, we denote the resulting quantum Monte
Carlo approach as QMC-ED. For a lattice with N sites, this
requires that in every step a matrix of size N × N has to be
diagonalized—a calculation that scales as O(N3), using the
conventional divide-and-conquer algorithms. Even on state-
of-the-art high-performance compute clusters, this limits the
accessible system sizes to about N = 1000 sites. While this
has proved sufficient to extract most of the physics for 2D
systems, an exhaustive study of their 3D counterparts asks for
a significant speed-up of the algorithm.

Computationally, a local update of the Z2 gauge variable
on a particular bond 〈i, j〉 means changing the signs of a single
pair of entries Ãi j, Ã ji of the Hermitian matrix Ã. This update
can be written as Ã −→ Ã′ = Ã + �, and the question arises
if the information stored in Ã can be further used, in order to
avoid the recalculation of the whole spectrum. This is indeed
the case, as shown for the ”Green-function-based kernel poly-
nomial method” (GF-KPM) [52,53]—an efficient algorithm
that enables us to calculate the Majorana free energy ()hange
under a local bond update without explicit exact diagonaliza-
tion [16]. Its rationale is the use of Green functions, which are
approximated in terms of Chebyshev polynomials.

Defining the Green function belonging to the matrix Ã as
G(E ) = (Ã − E · I)−1, the spectrum of the updated matrix Ã′
is given by the roots of the function d (E ) = det{I + G(E )�}.
Since � is a rank-2 matrix, the expression for d (E ) contains
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only four Green functions [53]:

d (E ) = {1 + �i jG ji(E )}{1 − � jiGi j (E )}
+ �i j� jiG j jGii . (13)

The off-diagonal Green functions Gi j (E ) can be further ex-
pressed in terms of the diagonal Green functions Gii(E ) (see
Appendix E for the details).

We extend the domain of the function d (E ) to the complex
plane by the analytic continuation E → z := E + iε. It can
now be related to the change in the density of states (DOS)
during the MC update by

N{ρ(E ) − ρ(E ′)} = 1

π
Im

{
lim
ε→0

d ln d (z)

dz

}
. (14)

The key step in the MC update is the calculation of the diago-
nal Green functions Gii(z) by the Chebyshev approximation

Gii(E + iε) = i
μ0 + 2

∑M−1
m=1 μm exp {−im arccos(E/s)}√

s2 − E2
,

(15)

where s is the bandwidth of the system. It has to be calculated
in the beginning of the simulation by a sufficient number, e.g.,
1000, of ED calculations of Ã with random Z2 gauge field
configurations. The μm are the Chebyshev moments:

μm = gm 〈i| Tm(H/s) |i〉 . (16)

The moments 〈i| Tm(H/s) |i〉 are iterated by the recursion
Tm(x) = 2xTm−1(x) − Tm−2(x), and gm denotes the Jackson
kernel factor (see Appendix E). In our simulations, we usu-
ally used 256–512 Chebyshev moments. Having the Green
functions and d (z), the expression for the free energy change
during the step Ã → Ã′ follows easily from the change in the
DOS by partial integration

�F = −N

π

∫ ∞

0
lim
ε→0

d (E + iε)
1

2
tanh

(
βE

2

)
dE , (17)

which enables us to calculate the Boltzmann weights without
performing another exact diagonalization. In practice, we here
perform a standard numerical integration that is restricted to
the half-open interval [0, s). In order to optimize the con-
vergence of the integration, the number of abscissas should
correspond to the number of Chebyshev moments.

In this scheme, the most time-consuming calculation in
each Monte Carlo update is the iteration of the moments
〈i| Tm(H/s) |i〉, which is done by subsequent sparse matrix-
vector multiplications. This calculation can be most effi-
ciently performed if the matrices and vectors are stored in the
compressed-row storage format (CRS). Then, the numerical
effort of the matrix-vector multiplication is reduced to O(N ).

A comparison of numerical results for the QMC-KPM
and QMC-ED method is presented in Fig. 7. It has to be
remarked that the GF-KPM method gives sufficiently exact
results only for the free energy calculation during the Monte
Carlo update and can in practice not be used for the calculation
of thermodynamic observables or the Boltzmann weights for
replica exchange steps (for the latter, more than four Green
functions would be required). Consequently, an exact diag-
onalization of the Hamiltonian remains necessary after each
MC sweep (which, in our case, consists of N MC updates)

FIG. 7. Comparison of numerical results for the QMC-
KPM/QMC-ED method. Data shown are the specific heat Cv (T )
(top) and average plaquette flux W p (bottom) on a (10,3)b Kitaev
system (with periodic boundary conditions in the a3 direction) with
108 sites, L = 3 (a), (c) and 864 sites, L = 6 (b), (d). The number
of Chebyshev moments is M = 512. Error bars are smaller than the
symbol sizes.

when observables are evaluated. With the GF-KPM method,
lattice system sizes of N ∼ 2000 become accessible on high-
performance computing systems in a reasonable amount of
time—a specific heat plot like the one shown in Fig. 8 takes
about 500 000 core hours to calculate.

The GF-KPM method is not applicable to all lattice sys-
tems. Benchmark calculations have shown that it fails with
systems whose DOS shows exotic features like delta func-
tions: In our studies, we faced this problem with lattice ge-
ometries (10,3)d and (8,3)c, the latter with strong anisotropy
in the Jγ couplings. Therefore, while we performed the QMC
simulations for (10,3)d with the QMC-ED method, the sim-
ulations for all other systems were done with GF-KPM (in
the following also denoted by QMC-KPM). A typical QMC
simulation consists of 10 000 sweeps for the thermalization,
followed by at least 10 000 sweeps for the measurements.
In order to improve the convergence of the simulation at
low temperatures, a replica exchange step between nearest
neighbor replicas was performed for all temperature points
after each MC sweep.

IV. THERMODYNAMICS

We now turn to a detailed discussion of our results on the
thermodynamics of 3D Kitaev systems. We start by revisiting
the general two-peak signature in the specific heat [12,22,54]
and then discuss the dependence of these signatures with
regard to the underlying lattice geometries. We round off our
discussion of the gauge thermodynamics of these 3D Kitaev
systems by briefly pointing out two distinct phenomena that
occur in two special lattice geometries—the phenomenon of
“gauge frustration” in the (8,3)c lattice, which was extensively
discussed in Ref. [18], and the spontaneous breaking of time-
reversal symmetry in the (9,3)a lattice, which has been the
subject of Ref. [19].
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(6,3)

(8,3)b

(10,3)d

FIG. 8. Characteristic two-peak signature in the specific heat Cv

for 3D Kitaev systems (here: (8,3)b, L = 7, and (10,3)d, L = 5), and
for the 2D Kitaev Honeycomb model, (6,3), L = 16. For the latter,
the low-temperature peak indicates a thermal crossover [22]. Error
bars are indicated but mostly smaller than the symbol sizes.

A. Thermodynamic signatures

The principle thermodynamic signature of all Kitaev mod-
els, independent of spatial dimension and underlying lattice
geometry, is a specific heat with a distinct two-peak structure.
Its origin can be rationalized when considering the physics
that must play out as one goes from a high-temperature para-
magnet to a ground state that is characterized by a Majorana
metal (or, more generally, some Majorana band structure)
and a statically ordered Z2 gauge background. This transition
from high to low-temperature physics occurs, in fact, in two
steps that are closely linked to the two constituents of the
parton perspective, where the original spin degrees of freedom
fractionalize into emergent (fractional) degrees of freedom—
Majorana fermions and Z2 gauge fields. At some temperature
T ′ ∼ J (with J being the coupling constant of the Kitaev
interactions) this fractionalization actually happens, while at
some lower temperature Tc—which is numerically found to
be of the order of Tc ∼ J/100—the Z2 gauge field orders.
An example of this general two-peak structure is shown (on a
doubly-logarithmic scale) in Fig. 8 for two representative 3D
lattices and, for comparison, the 2D honeycomb lattice. Here
and in the following, the energy scale is set by the coupling
strength Jx = Jy = Jz = 1/3.

B. Thermal crossover and local spin fractionalization

Let us first turn to the higher temperature feature—the
fractionalization of the original spin degrees of freedom. This
is a purely local phenomenon and therefore results in a ther-
mal crossover, i.e., a peaklike feature in the specific heat that
is largely insensitive to the specifics of the lattice geometry
(and the system size), as documented in Fig. 9 where specific
heat traces from different lattice geometries almost perfectly
collapse onto one another. They only start to slowly differ at
temperatures below T ∼ 0.1, an order of magnitude below the
scale of the actual crossover phenomenon.

What sets the temperature scale for this thermal crossover?
One hint comes from the uniform behavior of the spin-spin-
correlation function Sγ γ = 2

N

∑
〈 j,k〉γ 〈σ

γ

j σ
γ

k 〉 for all lattice

FIG. 9. High-temperature crossover in the specific heat Cv . Panel
(a) shows the full specific heat, while panel (b) only the contri-
bution arising in the Majorana fermion sector Cv,MF. This high-
temperature peak, which exhibits no finite-size scaling, indicates a
thermal crossover, caused by the (local) fractionalization of spins
into (itinerant) Majorana fermions and a (static) Z2 gauge field. The
position and shapes of the peaks are (nearly) equal for all lattice
systems considered in this study, which again underlines the strictly
local character of the thermal crossover. Data shown is for the linear
system size L = 7, except for (8,3)n and (10,3)d (here, L = 5). The
dotted line indicates the crossover temperature T ′ = 0.51(5). Error
bars are smaller than the symbol sizes.

geometries: It strictly vanishes above the crossover scale but
quickly saturates to its finite, low-temperature value right
at this crossover temperature T ′ (Fig. 10). Note that this
spin-spin-correlation function is precisely equivalent to the
kinetic energy −i〈cic j〉γ of the emergent Majorana fermions
[22,54]. Indeed, all observable features of the system in this
crossover regime are almost entirely governed by the physics
of these Majorana fermions. For instance, if one measures the
specific heat contribution only of the Majorana fermions via

(8,3)a

(8,3)b

(8,3)n

(10,3)a

(10,3)b

(10,3)c

(10,3)d T'

FIG. 10. Spin correlation Szz. Below the thermal crossover at
T ′ = 0.51(5) (indicated by the dotted line), the correlator assumes
a finite plateau value for all lattice systems. Data shown is for the
linear system size L = 7, except for (8,3)n and (10,3)d (here, L = 5).
Error bars are smaller than the symbol sizes.
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FIG. 11. Entropy S per site. The entropy in the paramagnetic
(high-temperature) region is ln 2, indicating two possible states per
spin. At the thermal crossover, the system releases half of its entropy
due to the fractionalization of the spins into (itinerant) Majorana
fermions and a (static) Z2 gauge field. The latter remains disordered
in this intermediate region. It is at the thermal phase transition at
T ∼ O(J/100) that the system releases its rest entropy, and the Z2

gauge field freezes into an ordered configuration, indicated by a sharp
drop. For (10,3)d, open boundary conditions in two spatial directions
cause a residual entropy for T → 0, since Z2 gauge degrees of
freedom on the edge bonds may fluctuate without a cost in energy.
The residual entropy approaches 0 when the system size is increased.
Data shown is for the linear system size L = 7, except for (8,3)n and
(10,3)d (here: L = 5). Error bars are smaller than the symbol sizes.

the derivative of the internal Majorana energy E f with respect
to the inverse temperature (see Appendix F for a detailed
derivation)

Cv,MF(T ) = − 1

T 2

〈
∂E f ({u jk})

∂β

〉
MC

, (18)

where 〈·〉MC denotes a numerical Monte Carlo average (which,
technically, corresponds to a sample average of Z2 gauge
field configurations {u jk}), one finds that one can capture the
complete crossover signature of the entire spin system. This
is illustrated in the lower panel of Fig. 9, which shows only
this Majorana contribution to the specific heat. The associated
entropy release is plotted in Fig. 11, which shows that the
system releases precisely half of its entropy at the thermal
crossover, dropping from ln 2 in the high-temperature regime
to a plateau of 1

2 ln 2 below the crossover temperature. This
implies that all entropy associated with the Majorana fermion
degrees of freedom is released—the Majorana fermions enter

their low-temperature state, i.e., they form a Majorana band
structure whose details, however, might still depend on the
(still disordered) Z2 gauge background. This also explains
that the shape of the crossover peak is somewhat sensitive
to a variation of the underlying coupling parameters in the
Kitaev model, which in turn alter the characteristic energy
scale of the Majorana fermions. For instance, if one moves
away from the isotropic coupling point to strongly anisotropic
couplings, e.g., Jz � Jx, Jy, this will shift the specific heat
peak—consistent with a change of the center of mass in the
DOS of the Majorana fermion band [22,54].

The complete insensitivity of the thermal crossover feature
on the underlying lattice geometry and system size (which we
also checked) illustrates that the associated fractionalization
phenomenon is a generic feature of all Kitaev systems. It
goes beyond the 3D systems at the heart of the current study
and is found also in 2D geometries [22], nonbipartite lattices
[19,55], and even for generalized (higher-spin) Kitaev systems
on lattice geometries with higher coordination numbers [31].

C. Thermal phase transition and Z2 gauge field ordering

In contrast to the thermal crossover regime the specific
heat curves start to significantly differ at lower temperatures
when considering the various lattice geometries. Here, the
physical behavior of the system is entirely governed by the
Z2 gauge field {u jk} and its fluctuations. This can be seen by
explicitly calculating the contribution of the Z2 gauge field
to the specific heat, which is captured by the variance of the
internal energy E f (see Appendix F for a detailed derivation)

Cv,GF(T ) = 1

T 2

(〈
E2

f ({u jk})
〉
MC − 〈E f ({u jk})〉2

MC

)
. (19)

As plotted in Fig. 12, one can see that all (bipartite) 3D Kitaev
systems show a single, relatively sharp low-temperature peak,
which is diverging for increasing system sizes (see Fig. 13).
These peaks reflect the release of entropy associated with
the ordering of the Z2 gauge field—a true thermal phase
transition. The peak heights, shapes, and locations of these
peaks in temperature space strongly differ for different lattice
geometries. The sharpest low-temperature peak is found for
lattice geometry (8,3)b [which also has the highest transition
temperature Tc = 0.0071(3)], the broadest peak for lattice ge-
ometry (10,3)a [which also has the lowest Tc = 0.00405(9)].
There is no apparent correlation between the elementary loop
length and the critical temperature, nor the peak size: Lattice
geometry (8,3)a, which exhibits vison loops of length 2, has
a transition temperature that is only slightly higher than the
one for lattice geometry (10,3)a, which exhibits vison loops
of length 10 [56].

Instead the most pronounced correlation that the transition
temperature exhibits is the one with the size of the vison
gap, illustrated in Fig. 3. This correlation stems from the
(somewhat unconventional) mechanism that causes the phase
transition—a proliferation of the vison loops in a “topolog-
ical” phase transition. While the creation of a vison at low
temperatures results in the formation of a small loop, these
loops can gain in size as one allows for an increase in thermal
fluctuations at more elevated temperatures—the well-known
tradeoff between energy (loss) and entropy (gain) at finite
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FIG. 12. Signature of thermal “gauge ordering” transition in the
specific heat Cv,GF (gauge field contribution) in the low-temperature
region. The low-temperature peak indicates a thermal phase transi-
tion, caused by the ordering of the Z2 gauge field. Its position in
temperature space is lattice specific and correlated with the size of
vison gap � (see Fig. 3). Data shown is for the linear system size
L = 7, except for (8,3)n and (10,3)d (here: L = 5).

FIG. 13. Finite-size dependence of the specific heat Cv and av-
erage plaquette flux Wp. While the high-temperature peak of the
specific heat (a), (b) is unchanged for increased system sizes, the
low-temperature peak diverges in the thermodynamic limit. This is
a clear signature of a thermal phase transition, which is associated
with the ordering of Z2 fluxes (c), (d). Data shown is for the lattices
(8,3)b (a), (c) and (10,3)d (b), (d).

(8,3)a

Tc = 0.0044(8)

(8,3)b

Tc = 0.0079(3)

(8,3)c

Tc = 0.0020(2)

(8,3)n

Tc = 0.0071(3)

(10,3)c

Tc = 0.0049(2)

/

(10,3)d

Tc = 0.00462(1)

FIG. 14. Finite-size extrapolation of the transition temperature as
a function of the inverse system size 1/N . Plotted are the gauge-
ordering transition temperatures Tc for different system size (blue
dots) and their extrapolation (red line) to the limit 1/N → 0. The
quality of the extrapolation is marked by the red dashed line, which
indicates the standard deviation of the fit.

temperatures. Eventually, when the loops gain a spatial extent
comparable to the (finite) system size, it becomes favorable
to wrap around the system—the closed loops break open
and reconnect across the (periodic, torus-shaped) lattice ge-
ometry, a topological phase transition [12]. This perspective
on the phase transition of the Z2 gauge field corresponds
to a description of the phase transition of the related, well-
known Ising model [15]. As such, we can readily see that
the thermal phase transition of the Z2 gauge field can be
cast as an inverse Ising transition (in which the roles of high
and low temperatures are switched compared to the conven-
tional Ising transition). For those model systems, for which
we observe a continuous phase transition in our numerics,
we therefore expect a transition in the inverted 3D Ising
universality class. However, for most lattice geometries the
system sizes accessible in our numerics do not allow us to
perform a full finite-size scaling analysis and to extract the
expected critical exponents (though we can firmly extrapolate
the critical temperature, see Fig. 14). The only scenario for
which critical exponents could be effectively determined [15]
has been for the anisotropic limit (“toric code” limit) of the
hyperhoneycomb Kitaev model [57].
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Between the two thermal transitions, there is an inter-
mediate temperature regime that spans about two orders of
magnitude, J/100 ∼ Tc < T < T ′ ∼ J and might, in fact, be
the most relevant temperature regime in experimental probes
of Kitaev materials. In this regime, one expects to observe the
first signatures of fractionalization—with the original spins
already broken apart into Majorana fermions and a Z2 gauge
field. The latter, however, is still highly disordered in the
intermediate regime which prevents the formation of a “clean”
Majorana band structure (as it is the case at strictly zero tem-
perature or, more precisely, the low-temperature transition).
Instead one expects to see a “disordered Majorana metal”
[22,54] or “thermal metal” [58,59], which for certain 2D
settings has indeed been seen in numerical simulations [60].

D. Gauge frustration

The two-step thermodynamic scenario of (high-
temperature) spin fractionalization and (low-temperature)
gauge ordering transition laid out above is rather generic
and applies to almost all 3D Kitaev models. One notable
exception is found in lattice geometry (8,3)c, which exhibits
a phenomenon that we have dubbed “gauge frustration” in
Ref. [18], which discusses the peculiarities of the associated
Kitaev model in full detail. Here we provide a brief summary
to make this study comprehensive in its own right. The special
situation encountered in this lattice geometry is that the Z2

gauge field itself is subject to geometric frustration, which
in turn substantially suppresses the low-temperature ordering
transition. In a certain sense, the Kitaev model on the (8,3)c
lattice is therefore “doubly frustrated”—on the level of the
original spin degrees of freedom and on the level of the
emergent gauge field.

How this unusual phenomenon comes about can readily
be understood. As a lattice with an elementary plaquette
of length 8, one expects—via the intuition gained from the
broader application of Lieb’s theorem and its subsequent
numerical verification—that each plaquette carries a π flux.
The crucial ingredient then arises from the lattice geometry
where three such plaquettes are constraining one another
around tricoordinated junctions, see Fig. 15, to the following
effect: With flux conservation strictly required (similar to
a divergence-free condition familiar from Maxwell theory),
only two out of these three plaquettes can actually carry a π

flux with the third plaquette ending up fluxless. But which
one of the three plaquettes does not reach the lowest energy
π -flux state remains open and the origin for a residual entropy
(i.e., an extensive manifold of states) in the gauge sector—the
hallmark of (geometric) frustration.

The existence of such a gauge-frustrated low-energy man-
ifold of states and the associated suppression of thermal
gauge ordering is indeed readily visible in our numerical
simulations. As shown in Fig. 16 the low-temperature specific
heat peak is shifted towards considerably lower temperature
in comparison to other eight-loop lattice geometries. Upon
closer inspection, one does indeed find that the average pla-
quette flux Wp does not converge to a value of +1 or −1
at low temperatures, which would indicate a uniform flux
configuration, but to Wp = −1/3 (see Fig. 16): Two plaquettes
out of three acquire a π -flux (Wp = −1), and one plaquette

FIG. 15. Gauge frustration in the (8,3)c lattice. Because of the
elementary plaquette length p = 8, a π flux per plaquette is ener-
getically preferred. However, the lattice consists of plaquette triplets
which form closed boundaries. Therefore, the product of the loop
operator eigenvalues Wp is constrained to

∏
p Wp = 1 for each triplet.

In consequence, one plaquette in each triplet must carry a zero
flux, which leads to three degenerate configurations per triplet (a),
and a macroscopically frustrated manifold of Z2 flux configurations
for the entire lattice—a phenomenon which we have dubbed gauge
frustration. Panel (b) shows one flux configuration from the gauge-
frustrated manifold. Here, the yellow plaquettes are flux-free.

remains flux-free (Wp = 1), leading to an average of (−2 +
1)/3 = −1/3. This also means that the system prefers to
adopt a plaquette flux configuration that does not preserve
all the lattice symmetries (the only allowed configuration
preserving all symmetries would be a uniform configuration
of zero fluxes). This regime is also visible in the specific heat
plot of Fig. 16 as a shoulder below the crossover peak.

Upon further lowering the temperature also the (8,3)c Ki-
taev model exhibits an actual ordering transition. As detailed
in Ref. [18], it is a subtle interplay with the formation of a
nodal-line semimetal of the itinerant Majorana fermions that
leads to a columnar zigzag order of the zero fluxes.

E. Spontaneous time-reversal symmetry breaking

The second lattice geometry in this classification that is
destined to give rise to physics different from the above
two-step thermodynamic scenario is the “hypernonagon” lat-
tice (9,3)a—the only lattice geometry with an odd length
elementary plaquette. This has dramatic consequences, as
Majorana fermions hopping around such a plaquette will pick
up a phase of ±π/2, corresponding to the flux through the
plaquette [61]. But only one of the possibilities will prevail,
implying a spontaneous breaking of time-reversal symmetry
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FIG. 16. Thermodynamics of (8,3)c. (a) Due to the gauge frus-
tration, the thermal phase transition of the (8,3)c Kitaev model is
suppressed by almost one order of magnitude. At the usual transition
temperature scale T ′′ ∼ 0.01, we encounter a broad shoulder in
the specific heat Cv . This signature indicates a thermal crossover,
which is associated with the system entering the frustrated gauge
manifold. At Tc = 0.0020(2), the specific heat of the (8,3)c model
shows the characteristic phase transition peak. (b) Uniform ground
state flux configurations are accompanied by an average flux operator
eigenvalue Wp = ±1. Here instead, we find that Wp = −1/3 at low
temperatures. This indicates that two plaquettes out of three acquire
a π flux (Wp = −1), and one plaquette remains flux-free (Wp = 1),
which is a consequence of the interplay between the elementary
plaquette length p = 8 and a particular volume constraint in the
(8,3)c lattice. Data shown is for the linear system sizes L = 7, (8,3)b,
and L = 6, (8,3)c.

(which connects the two choices). This in turn means that
there must be a thermal phase transition associated with this
breaking of time-reversal symmetry (independent of spatial
dimensionality) and that the low-temperature free (Majorana)
fermion system falls into symmetry class D [62,63].

In 2D Kitaev systems with odd loop length, such as,
e.g., the decorated honeycomb/Yao-Kivelson lattice, the
symmetry-based classification of topological states [64,65]
allows for a topologically nontrivial state in symmetry class
D. In the language of spin systems this topological state is
referred to as a gapped chiral spin liquid, which has been the
subject of analytical [28] and numerical [55] studies. In three
spatial dimensions, on the other hand, symmetry class D does
not allow for the formation of a topological chiral spin liquid
ground state [64,65]. However, here, it is a combination of
time-reversal symmetry breaking, the vison loop proliferation
mechanism presented for other 3D Kitaev models and the
breaking of additional point-group symmetries, resulting in
a nonuniform ground state flux pattern, that determine the

FIG. 17. Lattice geometry and thermodynamics of (9,3)a. At
T ∗ ∼ 0.0024, the system undergoes a first-order phase transition
which is associated with vison loop proliferation, time-reversal sym-
metry breaking, and the breaking of point-group symmetries. The
signature of this phase transition is a sharp low-temperature peak in
the specific heat, with a height that is one order of magnitude larger
than for other 3D Kitaev systems—here: (8,3)b. Data shown is for
the linear system sizes L = 6, (9,3)a, and L = 7, (8,3)b [19].

thermodynamics as detailed in Refs. [17,19]. Here we provide
a brief summary of these results from large-scale QMC sim-
ulations and variational calculations. In short, these studies
have shown that all three mechanisms in the system result
not in a series of multiple thermal phase transitions but in a
single first-order phase transition, happening at a transition
temperature T ∗ ∼ 0.0024 (for isotropic coupling parameters,
Fig. 17). The first-order nature of the transition was verified
via a careful analysis of the histograms of the internal energy
in the temperature region close to the transition. It was also
shown that the ratio of critical temperature and vison gap
Tc/� is particularly low for this system (with a value of
Tc/� ∼ 0.07, compared to a typical range of 0.11–0.22 for
other 3D Kitaev systems, see Fig. 3 and Table II), which might
be attributed to the first-order nature of the transition. Note
that the high-temperature crossover transition, however, does
not show any substantial deviation from the other 3D Kitaev
systems.

What further sets the low-temperature phase of the hyper-
nonagon Kitaev model apart from its other 3D cousins is that
it exhibits a crystallineZ2 gauge order. For isotropic coupling
parameters Jx = Jy = Jz = 1/3, this crystalline order has a
generalized antiferromagnetic structure in terms of columnar
arrangements of the ±π/2 plaquette fluxes. In Ref. [19] this
crystalline gauge order is denoted as “AFII” and shown to
come along with the formation of a nodal-line semimetal in
the Majorana sector.

The AFII is in fact only one example of a larger variety
of different nonuniform flux configurations, which govern
the whole ground state phase diagram of the system when
considering a variation of (anisotropic) coupling parameters.
Variational calculations have shown that there are, in total,
five distinct flux patterns [17,19]. What is common to all
but one of these ground state flux configurations is that at
least one point-group symmetry is broken. The hypernonagon
Kitaev model is as such a prototypical example for a frustrated
spin system that harbors chiral spin liquid ground states with
crystalline gauge order [66].
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V. MAJORANA DENSITY OF STATES

We round off our discussion of the 3D Kitaev models in
this paper by taking a brief look at the emergent Majorana
fermion sector and calculate the distinct form of the DOS for
all lattices—both numerically and analytically. In doing so,
our focus has been on the low-temperature behavior—where
the DOS exhibits distinct signatures for the various lattice
geometries—and less on higher temperature thermodynamic
signatures.

In our QMC simulations, the DOS corresponds to the
distribution of eigenvalues (i.e., single-particle energies) of
the Majorana Hamiltonian, which are calculated after each
Monte Carlo sweep. In order to obtain an approximate version
of the ground-state DOS, we choose a temperature well below
the thermal phase transition but still high enough for the
simulation not to be frozen in a single gauge field configu-
ration. Typically, we report results for the numerical DOS at a
temperature T ∼ 0.0016. In addition, we have performed ana-
lytical calculations of the Majorana DOS at zero temperature.
To this end, we have transformed the Majorana Hamiltonian
of each lattice into reciprocal space and calculated the analytic
DOS of the exact ground state (generated by the appropriate
Z2 gauge field configuration {u jk}) in the discretized Brillouin
zone, here consisting of L3

k momentum points (where we
typically choose Lk = 400).

The analytical and numerical results for the DOS are given
side-by-side in Figs. 18 and 19, showing distinct features
for all lattice geometries. The behavior of the DOS in the
region around E ∼ 0, in particular, is a direct indicator for
the topological band structure of the corresponding Majorana
(semi)metal: For systems with a Fermi surface, e.g., lattice
geometries (8,3)a and (10,3)a, one finds a finite DOS down
to the lowest-lying energy levels [67]. The majority of the
other lattice systems host Majorana (semi)metals with Weyl
nodes or a nodal line as distinct topological features. For these
systems, the DOS approaches zero for E → 0 (as generally
expected). We can further distinguish these topological fea-
tures by the shape of the low-energy DOS: Those systems that
possess a nodal line in their ground state—lattice geometries
(10,3)b and (10,3)c—show a linear increase of the DOS close
to E = 0. This is reminiscent of the 2D Kitaev honeycomb
model, which has Dirac cones in the ground state, and also
an E -linear DOS for low energies [22]. For lattice geometry
(8,3)b—a system that exhibits Weyl nodes—the increase of
the low-E DOS is instead quadratic. The only lattice geometry
not exhibiting such zero-energy (semi)metallic features is the
Kitaev model on lattice (8,3)n which possesses a finite energy
gap (even for the isotropic coupling point), clearly visible also
in its Majorana DOS.

Turning an eye on our numerical results we see that the
numerical results at low but finite temperature qualitatively
reproduce the key features of the analytical DOS for all
lattice geometries. It is only in the region of lowest energies
(E  0.25) that the numerical results notably deviate from
the exact DOS, which is expected due to finite-size and
finite-temperature effects in the QMC simulation: For the
lowest-lying energy levels, where the DOS is expected to
vanish (unless the system possesses a Fermi surface), there
is still a certain occupancy probability if the temperature is
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FIG. 18. Low-temperature density of states for the (10,3)x lattice
systems. The analytic DOS on the left hand side was calculated via
exact diagonalization of the Majorana Hamiltonians in reciprocal
space. The numerical DOS on the right hand side was obtained from
QMC simulations of finite systems in real space. Data shown is for
the linear system size L = 7, except for (10,3)d (here: L = 5). The
peak at E = 0 for (10,3)d is an artifact from the open boundary
condition that was used in the simulation of this lattice.

very low, but still finite. To converge our numerics towards the
analytic DOS at this scale would require simulation times that
exceed those of the current calculations by multiple orders of
magnitude. But for the broader energy range considered here,
our QMC results reproduce the main features of the Majorana
DOS in a well-resolved manner.

VI. CONCLUSIONS

The purpose of this paper has been to present a comprehen-
sive overview of the thermodynamics of a family of elemen-
tary 3D Kitaev models, based on numerically exact quantum
Monte Carlo simulations. We thereby complement an earlier
mainly analytical study on the ground state physics of these
models. While the latter mainly classified the physics of the
emergent Majorana collective state, we have focused here
mainly on the characteristic behavior of the Z2 gauge field,
whose most interesting physics plays out at finite temperatures
and leads to distinct thermodynamic features.
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FIG. 19. Low-temperature density of states for the (8,3)x lattice
systems. Data shown is for the linear system size L = 7, except for
(8,3)n (here: L = 4).

Simulating these 3D Kitaev systems with quantum Monte
Carlo techniques, we were able to show that Lieb’s theorem,
which predicts the energy-minimizing plaquette flux sector
for a given lattice geometry, is in fact extendable to lattices
beyond the scope of its rigorous applicability. Despite the
fact that only one of the systems in this classification, namely
lattice geometry (8,3)b, possesses the mirror symmetries that
are required to prove the validity of this theorem, all systems
nonetheless exhibit the predicted flux sectors. That is, lattice
systems with an even elementary plaquette |p| have a flux-
free ground state if p mod 4 = 2 and carry a π flux per
plaquette if p mod 4 = 0. Based on this result, the 3D Kitaev
systems can be classified in a meaningful way into families of
plaquette length 8/π -flux ground state and 10/0-flux ground
state, respectively. For nonbipartite lattice systems, which
possess an odd elementary plaquette length p and flux states
±π/2 per plaquette, Lieb’s theorem is not applicable, and the
ground state flux sector is characterized by the breaking of
time-reversal symmetry.

We could further show that the 3D Kitaev systems con-
sidered here in general exhibit the thermodynamic behavior
established in former QMC studies [12,16], namely a double
peak structure in the specific heat, where the high-temperature
peak is a signature of spin fractionalization, while the low-
temperature peak indicates a thermal phase transition, at
which the Z2 gauge field assumes its ordered ground state
configuration. This phase transition is triggered by the cre-
ation and proliferation of looplike (gapped) vison excitations
in the gauge sector, i.e., it separates a low-temperature phase,
where no vison loops or only small loops exist in the system,
from a high-temperature phase with system-spanning loops.

Our comprehensive study of this transition across a number
of lattice geometries produces a direct correlation between
the critical temperature of this transition and the magnitude
of the vison gap for the respective Kitaev model. In contrast
with the Landau-Ginzburg-Wilson (LGW) paradigm for con-
tinuous phase transitions, the phase transitions in these 3D
Kitaev systems and their associated Z2 lattice gauge theories
generically lack a local order parameter as first pointed out by
Wegner [68]. This makes these 3D Kitaev models one of the
most natural habitats to look for continuous phase transitions
beyond the conventional LGW paradigm (often discussed in
the context of quantum phase transitions [69,70]) in a thermal
transition [71,72].

We also reviewed the numerical results on two Kitaev
systems which are notable exceptions from this generic two-
step scenario: For lattice geometry (8,3)c we discussed the
unusual phenomenon of a gauge-frustrated ground state [18]
and for the (nonbipartite) (9,3)a system, where the described
gauge-ordering mechanism is accompanied by a breaking of
time-reversal symmetry and, unexpectedly, a number of lattice
symmetries, within a first-order phase transition [19].

On the technical level, we extended the quantum Monte
Carlo method that was earlier introduced for Kitaev systems
by introducing an approach which relies on the local transfor-
mation of spins introduced by Kitaev, instead of a nonlocal JW
transformation. With this approach, we were able to simulate
the full gauge sectors in our systems and could examine
systems with periodic boundary conditions.
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APPENDIX A: LATTICE DEFINITIONS

For the different lattices, we used the geometric defi-
nitions (unit cells and lattice vectors) which are given in
Tables III–V.

APPENDIX B: LIEB’S THEOREM

The problem of finding the flux ground state for a half-
filled band of hopping electrons was intensely studied in
mathematical physics in the early 1990’s. The interest for this
problem rooted in the attention on an intriguing phenomenon
that arises in the context of correlated electron systems and
superconductivity: It has been noticed that under certain
conditions, i.e., in systems with a high electron density, the
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TABLE III. Lattice definitions of the (10,3)x family.

(10,3) a

Lattice vectors: a1 = (1, 0, 0) a2 = (
1
2 , 1

2 ,− 1
2

)
a3 = (

1
2 , 1

2 , 1
2

)
Unit cell: r1 = (

1
8 , 1

8 , 1
8

)
r2 = (

5
8 , 3

8 , − 1
8

)
r3 = (

3
8 , 1

8 , − 1
8

)
r4 = (

7
8 , 3

8 , 1
8

)
(10,3) b
Lattice vectors: a1 = (−1, 1, −2) a2 = (−1, 1, 2) a3 = (2, 4, 0)
Unit cell: r1 = (0, 0, 0) r2 = (1, 1, 0) r3 = (1, 2, 1) r4 = (0, −1, 1)
(10,3) c
Lattice vectors: a1 = (1, 0, 0) a2 = (− 1

2 ,
√

3
2 , 0

)
a3 = (

0, 0, 3
√

3
2

)
Unit cell: r1 = (

1
4 , 1

4
√

3
, 1

2
√

3

)
r2 = (

3
4 , 1

4
√

3
, 2√

3

)
r3 = (

1
2 , 1√

3
, 7

2
√

3

)
r4 = (

3
4 , 1

4
√

3
, 1√

3

)
r5 = (

1
2 , 1√

3
, 5

2
√

3

)
r6 = (

1
4 , 1

4
√

3
, 4√

3

)
(10,3) d
Lattice vectors: a1 = (

1
2 , − 1

2 , 0
)

a2 = (
1
2 , 1

2 , 0
)

a3 = (
0, 0, 1

2

)
Unit cell: a = 1

4 (2 − √
2) c = 1

2

r1 = (
0, −a, 3

4 c
)

r2 = (−a, 0, 1
2 c

)
r3 = (

0, a, 1
4 c

)
r4 = (a, 0, 0)

r5 = (−a, − 1
2 , 1

4 c
)

r6 = (
0, a − 1

2 , 1
2 c

)
r7 = (

a,− 1
2 , 3

4 c
)

r8 = (
0, −a − 1

2 , 0
)

effect of diamagnetism can be reversed. In these systems, the
application of a magnetic field does in fact not raise but lower
the energy.

This discovery led to the formulation of the flux phase
conjecture, which states that on a planar square lattice with
free hopping electrons, the energy minimizing magnetic flux

is π per square, if the electron filling factor is 1
2 . More

general, it was stated that on planar lattices, the optimum flux
choice per plaquette (circuit) is π for plaquettes containing
zero (mod 4) sites and zero for plaquettes with two (mod 4)
sites. This conjecture was proved by Lieb and coworkers for
several lattice graphs, such as rings, trees of rings, ladders,

TABLE IV. Lattice definitions of the (8,3)x family.

(8,3) a

Lattice vectors: a1 = (1, 0, 0) a2 = (− 1
2 ,

√
3

2 , 0
)

a3 = (
0, 0, 3

√
2

5

)
Unit cell: r1 = (

1
2 ,

√
3

10 , 0
)

r2 = (− 3
5 ,

√
3

5 , 2
√

2
5

)
r3 = (

1
10 , 3

√
3

10 ,
√

2
5

)
r4 = (

4
10 ,

√
3

5 ,
√

2
5

)
r5 = (

0, 2
√

3
5 , 0

)
r6 = (− 1

10 , 3
√

3
10 , 2

√
2

5

)
(8,3) b
Lattice vectors: a1 = (

1
2 , 1

2
√

3
,

√
2

5
√

3

)
a2 = (

0, 1√
3
, 2

√
2

5
√

3

)
a3 = (

0, 0,
√

6
5

)
Unit cell: r1 = (

1
10 , 1

2
√

3
,

√
2

5
√

3

)
r2 = (

1
5 ,

√
3

5 ,
√

6
5

)
r3 = (

3
10 , 11

10
√

3
, 4

√
2

5
√

3

)
r4 = (

1
5 , 2

5
√

3
, 2

√
2

5
√

3

)
r5 = (

3
10 , 3

√
3

10 ,
√

6
5

)
r6 = (

2
5 , 1√

3
,

√
2√
3

)
(8,3) c
Lattice vectors: a1 = (1, 0, 0) a2 = (− 1

2 ,
√

3
2 , 0

)
a3 = (

0, 0,
√

2
5

)
Unit cell: r1 = (− 1

5 , 4
5
√

3
, 1

10

)
r2 = (

0, 7
5
√

3
, 1

10

)
r3 = (

1
5 , 4

5
√

3
, 1

10

)
r4 = (

1
2 , 1

2
√

3
, 3

10

)
r5 = (

0, 1√
3
, 1

10

)
r6 = (

3
10 , 7

10
√

3
, 3

10

)
r7 = (

1
2 , 1

10
√

3
, 3

10

)
r8 = (

7
10 , 7

10
√

3
, 3

10

)
(8,3) n
Lattice vectors: a = (1, 0, 0) b = (0, 1, 0) c = (

0, 0, 4
2
√

3+√
2

)
a1 = a a2 = b a3 = 1

2 (a + b + c)
Unit cell: x =

√
3+√

2
2(2

√
3+√

2) z = 1
8

r1 = x · a + (
1
2 − x

) · b + 1
4 · c r2 = (1 − x) · a + (

1
2 − x

) · b + 1
4 · c r3 = (

1
2 + x

) · a + 1
2 b + (

1
2 − z

) · c

r4 = (1 − x) · a + (
1
2 + x

) · b + 1
4 · c r5 = x · a + (

1
2 + x

) · b + 1
4 · c r6 = (

1
2 − x

) · a + 1
2 b + (

1
2 − z

) · c

r7 = (1 − x) · b + z · c r8 = x · b + z · c r9 = (
1
2 − x

) · a + x · b + 1
4 · c

r10 = 1
2 · a + (

1
2 − x

) · b + (
1
2 − z

) · c r11 = (
1
2 + x

) · a + x · b + 1
4 · c r12 = (

1
2 + x

) · a + (1 − x) · b + 1
4 · c

r13 = 1
2 · a + (

1
2 + x

) · b + (
1
2 − z

) · c r14 = (
1
2 − x

) · a + (1 − x) · b + 1
4 · c r15 = x · a + z · c

r16 = (1 − x) · a + z · c
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TABLE V. Lattice definition of the (9,3)a lattice.

(9,3) a

Lattice vectors: a1 = (−√
3

2 , 1
2 , 1√

3

)
a2 = (

0, −1, 1√
3

)
a3 = (√

3
2 , 1

2 , 1√
3

)
Unit cell: r1 = (− 2√

3
, 0, 0

)
r2 = (− 7

4
√

3
, 1

4 , 0
)

r3 = (− 7
4
√

3
, 1

4 , 1√
3

)
r4 = (−√

3
2 , 1

2 , 1√
3

)
r5 = (− 1

2
√

3
, − 1

2 , 0
)

r6 = (− 1√
3
, − 1

2 , 0
)

r7 = (− 1√
3
, − 1

2 , 1√
3

)
r8 = (−√

3
2 , − 1

2 , 1√
3

)
r9 = (− 1

2
√

3
, 1

2 , 0
)

r10 = (− 1
4
√

3
, 1

4 , 0
)

r11 = (− 1
4
√

3
, 1

4 , 1√
3

)
r12 = (

0, 0, 1√
3

)

and necklaces [35], which laid the foundation for the later
formulation of Lieb’s theorem [11].

The set up for Lieb’s theorem is a finite graph �, consisting
of |�| sites, which are indexed by x, y, and hopping ampli-
tudes txy = |txy|eiφ(x,y) (with φ(x, y) = −φ(y, x) and txx = 0
for all x). The quest is for the numbers φ(x, y) which minimize
the electronic ground state energy of the tight-binding Hamil-
tonian K = −∑

x,y txyc†
xcy (in fact, different fluxes for up- and

down-spins are also allowed, as well as further terms in the
Hamiltonian, which introduce longer range density-density or
spin-spin interactions). It had been proven before [35] that
the spectrum of the Hermitian matrix T = {txy} only depends
on the numbers φ trough the fluxes. The latter are defined
on closed loops (circuits), i.e., sequences of connected lattice
points x1, x2, ..., xn, x1 (with txi,xi=1 �= 0 for all i) by

� =
n∑
i

φ(xi, xi+1) mod 2π. (B1)

Note that in the Kitaev model, the Z2 gauge field ui j corre-
sponds to the hopping phase factor eiφ(x,y) in the general setup
and the loop operator eigenvalue Wp to the exponentiated flux
term ei�. The ground state energy of K is given by the sum
over the negative eigenvalues of T

E0 =
N/2∑
λ=1

ελ(T ). (B2)

The flux conjecture was proven for systems with a certain
periodicity requirement: The lattice � has to be (at least) half
periodic in the horizontal direction. Then, it can be cut into
two half cylinders, with the cutting lines intersecting only
bonds, such that the two half cylinders are mirror images of
each other in terms of the bond couplings |txy| (see Fig. 20
for the square lattice). The proof of Lieb’s theorem, which
we will not reproduce in detail here, now shows that the
energy-minimizing flux is π for the squares containing the
cutting lines. If in addition to the aforementioned geometric
requirement, reflection symmetry of the bond couplings is
fulfilled for any choice of cutting lines, it follows from Lieb’s
theorem that π is the optimal flux choice for every square
of �.

The theorem includes the prediction of the respective
ground state fluxes of hexagonal, octagonal, and further pla-
quettes, with the same argument. It can be further generalized
to D-dimensional hypercubes instead of squares, if reflection
symmetry is realized with respect to (D–1)-dimensional hy-
perplanes. Then, it states that π is the optimal flux choice for

each 2D square plaquette that is cut by the hyperplane. Also
here, it follows that the flux is optimal for every plaquette
if periodicity in (D–1) dimensions is fulfilled. Among the
3D Kitaev system, the reflection symmetry condition is com-
pletely fulfilled only for (8,3)b, while in (8,3)n, seven out of
eight elementary plaquettes per unit cell are mirror symmetric
in the described way.

An alternative proof of Lieb’s theorem was later presented
by Macris and coworkers [36], which makes use of the same
symmetry requirements as the proof by Lieb. To summarize,
we have seen that the applicability of the mirror symmetry
argument is a sufficient but not a necessary condition for the
validity of the flux phase conjecture.

APPENDIX C: LOCAL TRANSFORMATION

The major part of the exact solution of the Kitaev model
was explained in the main text. By applying the local trans-
formation of spins into Majorana operators, σ

γ
i = ibγ

i ci, and
then recombining the b-Majoranas to bond operators via ûγ

i j =
ibγ

i bγ

j , the Kitaev Hamiltonian takes up the form [9]

H = i

4

∑
i, j

Ai jcic j, (C1)

FIG. 20. Reflection symmetry in Lieb’s theorem. Square lattice
with periodic boundary conditions in the horizontal direction (the
sites on the left hand side and on the right hand side are the
same). The thin black lines are mirror lines. All the bond couplings
(indicated in red, purple, and blue) are mirror symmetric. Lieb’s
theorem states that a flux π per square minimizes the energy for the
plaquettes that are cut in half by the mirror lines. Since the mirror
symmetry condition is also fulfilled if the mirror lines are moved
by integer multiples of the horizontal lattice vector (indicated in
black), it is proven that the π flux is the optimal choice for any
square plaquette. The theorem includes the statement that a zero
flux optimizes the mirror-symmetric hexagonal plaquette, and so
on. It can be generalized to a D-dimensional lattice with (D − 1)-
dimensional hyperplanes that do not intersect any vertices.
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FIG. 21. Honeycomb lattice in bricklayer geometry. Rows
(columns) of sites are labeled by the coordinates m (n). The JW
strings are defined along rows of x and y bonds (red and green). The
z bonds (blue) host the Z2 gauge variables η.

with the nonzero matrix entries Ai j = 2Jγ uγ
i j for connected

bonds 〈i, j〉.
After that, the Majoranas are basis transformed to normal

modes according to

(b′
1, b′′

1, ..., b′
m, b′′

m) = (c1, c2, ..., c2m−1, c2m)Q, (C2)

where Q is a transformation matrix consisting of the real
(imaginary) parts of the eigenvectors of iA in their odd (even)
columns. The matrix A and the eigenvalues εi of iA are related
with the transformation matrix Q by

A = Q

⎛
⎜⎜⎜⎜⎝

0 ε1

−ε1 0
. . .

0 εm

−εm 0

⎞
⎟⎟⎟⎟⎠QT . (C3)

Finally, the basis-transformed Majorana operators b′
λ, b′′

λ are
transformed into spinless fermion operators via

a†
λ = 1

2 (b′
λ − ib′′

λ) aλ = 1
2 (b′

λ + ib′′
λ). (C4)

Inserting the operators a†, a into the Hamiltonian gives its
diagonal form

H =
N/2∑
λ=1

ελ

(
a†

λaλ − 1

2

)
. (C5)

APPENDIX D: JORDAN-WIGNER TRANSFORMATION

In contrast with the local transformation ansatz introduced
by Kitaev [9], an alternative approach, which leads to the same
exact solution, makes use of a nonlocal JW transformation
and was applied in earlier QMC studies on Kitaev systems
[12,43–45].

Here, the system is regarded as being composed of one-
dimensional strings of bonds, which belong to two of the three
subclasses γ (e.g., x and y bonds). The strings are connected
by bonds of the third subclass. A convenient way to visualize
this in 2D systems is to transform the underlying lattice
to a bricklayer geometry (see Fig. 21) for the honeycomb
example). In this geometry, where rows and columns of sites
can be labeled by the two coordinates m and n, the Kitaev
Hamiltonian is rewritten as

H =
∑

m+neven

(−Jxσ
x
m,nσ

x
m,n+1 − Jyσ

y
m,n−1σ

y
m,n − Jzσ

z
m,nσ

z
m+1,n

)
.

(D1)

In the following, we choose the JW strings along x and y
bonds. With this choice, the spin operators are replaced with
spinless fermion operators a†, a via

σ x
m,nσ

x
m,n+1 = −(am,n − a†

m,n)(am,n+1 + a†
m,n+1)

σ y
m,nσ

y
m,n+1 = (am,n + a†

m,n)(am,n+1 − a†
m,n+1)

σ z
m,nσ

z
m+1,n = (2nm,n − 1)(2nm+1,n − 1). (D2)

FIG. 22. Jordan-Wigner vs local transformation. Benchmark calculations on (10,3)a clusters with 32 sites (a) and 108 sites (b) have shown
that the error obtained from sampling Z2 gauge variables on all lattice bonds (local transformation) is negligible even for small systems (shown
here for a double-logarithmic scale).
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FIG. 23. (10,3)a and (10,3)d. JW strings can be defined along all spirals of x and y bonds (yellow / blue), while the remaining z bonds
(gray) host the Z2 gauge variable η.

The Hamiltonian now reads

H =
∑

m+neven

{Jx(am,n − a†
m,n)(am,n+1 + a†

m,n+1)

+ Jy(am,n−1 + a†
m,n−1)(am,n − a†

m,n)

− Jz(2nm,n − 1)(2nm+1,n − 1)}. (D3)

On bipartite lattices, the two sublattices can be distinguished
by the labels A, B. With these labels, different Majorana
operators cA/B for the two sublattices can be defined via

cA = −i(aA − a†
A)cB = aB + a†

B

c̄A = aA + a†
Ac̄B = −i(aB − a†

B). (D4)

With these Majorana operators, the Hamiltonian in Eq. (D3)
is finally rewritten as

H =
∑

m+neven

(iJxcm,ncm,n+1 − iJycm,n−1cm,n

− iJzηm,m+1cm,ncm+1,n), (D5)

where ηm,m+1 = ic̄m,nc̄m+1,n is the Z2 gauge variable that is
defined on all z bonds.

Note that within this transformation approach, no artificial
expansion of the local spin Hilbert space was necessary.
Therefore, the JW transformation-based solution is known to
be exact without any reprojection. However, this method only
gives a Hamiltonian of the easy-to-handle form in Eq. (D5) for
systems with open boundary conditions in the direction of the
JW strings. Otherwise, additional nonlocal boundary terms
appear in the transformation, which are difficult to deal with.

On the Hamiltonian level, the difference between the local
transformation and the JW ansatz is the number of Z2 gauge
variables in the system. The local transformation generates Z2

gauge variables ui j on all bonds, while the Z2 gauge variables
η in the JW-transformed Hamiltonian only live on one sub-
class of bonds (here: the z bonds). For a system with open
boundary conditions, both Hamiltonians are equivalent if the
gauge field in the local version is fixed on the x and y bonds.
However, benchmark calculations on small Kitaev clusters
have shown that the QMC simulation based on the local trans-
formation gives results that are within the error bars of the
data points that were obtained from a QMC simulation with
JW strings (see Fig. 22), even for very small systems, where
the deviations are expected to be the largest. We can therefore
conclude that the error arising from the local transformation

FIG. 24. (10,3)b and (10,3)c. For both lattices, JW strings are defined along the zigzag chains of x and y bonds (yellow/blue).
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FIG. 25. (8,3)a and (8,3)b. For both lattices, JW strings are defined along chains of x and y bonds (yellow), assigning the Z2 gauge field η

to the remaining z bonds (gray). For both lattices, one JW string is highlighted in blue.

ansatz, where the Hilbert space is artificially enlarged for
each spin, is negligible in the large-scale QMC simulations.
The interpretation is that on systems with a well-defined
JW-transformed Hamiltonian of the form in Eq. (D5), the
additional gauge variables ui j of the local transformation only
lead to an overcounting of physical states. Thus, the existence
of a JW solution on a given Kitaev system ensures us that the
results are correct, even if the QMC simulation is based on
the local transformation ansatz. Therefore, we checked that
for all elementary, tricoordinated 3D lattices considered in this
paper, there is a well-defined JW transformation if appropriate
bond subsets are chosen for the one-dimensional strings (see
Figs. 23–27).

APPENDIX E: GREEN-FUNCTION-BASED KERNEL
POLYNOMIAL METHOD

In the QMC method used for this paper, the Z2 gauge
variables ui j on the lattice bonds 〈i, j〉 are sampled, which
is expressed as rank-2 updates of the matrix Ã in the Hamil-
tonian: Ã → Ã′. In the GF-KPM method, it is used that the
spectrum of Ã′ is given by the roots of the function d (E ) =
{1 + �i jG ji(E )}{1 − � jiGi j (E )} + �i j� jiG j jGii.

Within this function, it is convenient to express the off-
diagonal Green functions Gi j (i �= j) in terms of the diagonal
Green’s functions via

Gab = 1
2 {Ga+b,a+b − iGa+ib,a+ib − (1 − i)(Ga,a + Gb,b)}

Gba = 1
2 {Ga+b,a+b + iGa+ib,a+ib − (1 + i)(Ga,a + Gb,b)}. (E1)

The diagonal Green’s functions are then approximated by the
expression

Gii(E + iε) = i
μ0 + 2

∑M−1
m=1 μm exp {−im arccos(E/s)}√

s2 − E2
,

(E2)

where the key ingredients are the Chebyshev moments

μm = gm 〈i| Tm(H/s) |i〉 . (E3)

Here, gm denotes the Jackson kernel factor

gm = (M − m + 1) cos
(

πm
M+1

) + sin
(

πm
M+1

)
cot

(
π

M+1

)
M + 1

,

(E4)

which serves to dampen the Gibbs oscillations that usually
occur when a Chebyshev iteration is truncated after a finite
amount of steps [52]. The expression 〈i| Tm(H/s) |i〉 is iterated
by the recursion Tm(x) = 2xTm−1(x) − Tm−2(x), which, for the
ith element, is realized by successive multiplications with the
rescaled Hamiltonian H/s according to

|u0〉 = I |u〉 = T0(H/s) |u〉
|u1〉 = (H/s) |u0〉 = T1(H/s) |u0〉
|um〉 = 2(H/s) |um−1〉 − |um−2〉 . (E5)

Note that the subsequent matrix-vector multiplications used
in the calculation of the Chebyshev moments μm are the

FIG. 26. (8,3)c and (8,3)n. On (8,3)c, JW strings are defined on x and y bonds (yellow). On (8,3)n, it is of more advantage to use y and z
bonds (yellow). For both lattices, individual JW strings are highlighted in blue.
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FIG. 27. (9,3)a. On the only nonbipartite lattice in this classifica-
tion, we can define JW strings along the y and z bonds.

most time-consuming part in the QMC-KPM method. The
necessary calculation steps for the moments can be reduced
by a factor of 2 by using the relations

μ2m = 2 〈um, um〉 − μ0, μ2m+1 = 2 〈um+1, um〉 − μ1.

(E6)

Benchmark calculations for different lattices and system sizes
have shown that the GF-KPM method well reproduces the
results of the (exact) QMC-ED method [see Fig. 7 for a
(10,3)b system with L = 6].

APPENDIX F: THERMODYNAMIC OBSERVABLES

The major part of the thermodynamic observables are
calculated from the Majorana partition function in a fixed Z2

gauge field configuration {ui j}. Starting from the full partition

function, which we express in terms of the diagonalized spin-
less fermion Hamiltonian, we obtain the Majorana partition
function ZMaj({ui j}) by

Z = tr{ui j}trnλ
e−βH = tr{ui j}trnλ

e−β
∑N/2

λ=1 ελ(n̂λ− 1
2 )

= tr{ui j}
N/2∏
λ=1

{
2 cosh

(
βελ

2

)}
︸ ︷︷ ︸

=:ZMaj({ui j})

. (F1)

The expressions for the free energy F ({ui j}), the internal
energy E ({ui j}), and the specific heat contributions of the
Majorana fermions Cv,MF(T ) and the Z2 gauge field Cv,GF(T )
follow as

F ({ui j}, T ) = −T
N/2∑
λ=1

ln

{
2 cosh

(
βελ

2

)}
, (F2)

E ({ui j}, T ) = −
N/2∑
λ=1

ελ

2
tanh

(
βελ

2

)
, (F3)

Cv,MF(T ) = − 1

T 2

〈
∂E f ({u jk})

∂β

〉
MC

, (F4)

Cv,GF(T ) = 1

T 2

(〈
E2

f ({u jk})
〉
MC − 〈E f ({u jk})〉2

MC

)
, (F5)

Cv,total(T ) = Cv,MF(T ) + Cv,GF(T ) . (F6)

Note that the bracket 〈...〉MC indicates the average over the
Monte Carlo samples, i.e., averaging over the Z2 gauge field
configurations {ui j}. The entropy per site can be calculated
from the internal energy by the integration

S = ln(2) + β〈E〉MC −
∫ β

0
〈E〉MCdβ . (F7)
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