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We study the stability of topological order against local perturbations by considering the effect of a
magnetic field on a spin model—the toric code—which is in a topological phase. The model can be
mapped onto a quantum loop gas where the perturbation introduces a bare loop tension. When the loop
tension is small, the topological order survives. When it is large, it drives a continuous quantum phase
transition into a magnetic state. The transition can be understood as the condensation of ‘‘magnetic’’
vortices, leading to confinement of the elementary ‘‘charge’’ excitations. We also show how the
topological order breaks down when the system is coupled to an Ohmic heat bath and relate our results
to error rates for topological quantum computations.
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Topological phases are among the most remarkable
phenomena in nature. Although the underlying interactions
between electrons in a solid are not topologically invariant,
their low-energy properties are. This enhanced symmetry
makes such phases an attractive platform for quantum
computation since it isolates the low-energy degrees of
freedom from local perturbations—a usual cause of errors
[1]. Tractable theoretical models with topological phases in
frustrated magnets [1,2], Josephson junction arrays [3,4],
or cold atoms in traps [5] have been proposed. However,
such phases have not, thus far, been seen experimentally
outside of the quantum Hall regime. Is this because topo-
logical phases are very rare and these models are adiabati-
cally connected only to very small regions of the phase
diagrams of real experimental systems?

In this Letter, we take a first step toward answering this
question. We begin with the simplest exactly soluble model
of a topological phase [1], whose Hamiltonian given below
describes a frustrated magnet with four-spin interactions
similar to cyclic ring exchanges. It is closely related to, and
has the same topological phase as the quantum dimer
model [6,7], which can be realized in Josephson junction
arrays [3]. We consider perturbations of the soluble model
that, when sufficiently large, drive the system out of the
topological phase. The question is, how large? A small
answer would imply that such a topological phase is deli-
cate and occupies a small portion of the phase diagram.
This might explain the paucity of experimentally observed
topological phases. Instead, we find that ‘‘sufficiently
large’’ is of order one in units of the basic four-spin
plaquette interaction. Our numerical simulations demon-
strate key signatures of the phase transition out of the
topological phase, including the finite-size degeneracy
splitting of the topological sectors, the condensation of
magnetic excitations, and the confinement of electric
charges.

We also consider perturbing the system by coupling it to
an Ohmic heat bath. When coupled to such a bath, a quan-
tum mechanical degree of freedom can undergo a transition
from coherent to incoherent behavior [8]. Recently, the
effects of such a coupling on quantum phase transitions,
at which divergent numbers of quantum mechanical de-
grees of freedom interact, have been studied [9]. In both
contexts, the coupling to the heat bath tends to make the
system more classical. Coherent quantum oscillations are
suppressed, while broken symmetry phases—which are
essentially classical—are stabilized. A topological phase
is quantum mechanical in nature. We find that coupling the
heat bath to the kinetic energy does not destroy such a
phase. However, for strong dissipation the gap becomes
very small, and the topological phase may be too delicate
to observe or use at reasonable temperatures. If the heat
bath is coupled to the classical state of each plaquette, the
topological phase is destroyed through a Kosterlitz-
Thouless transition at a dissipation strength of order one.

In quantum information language the ground states in
different topological sectors are the basis states of an
encoded quantum memory. Quasiparticle excitations are
states outside of the code subspace. The stability of the
topological phase, as measured by a gap � within a topo-
logical sector, translates into an error rate for topological
qubits. At zero temperature, errors are due to the virtual
excitation of pairs of quasiparticles, assuming that the
system is shielded from perturbations at frequencies higher
than �. Such virtual processes lead to a splitting between
topological sectors �E� e��L=v, where L is the system
size and v is a characteristic velocity. With increasing
temperature, the thermal excitation of particles eventually
dominates and the error rate is �e��� [10].

The model.—We start with the toric code Hamiltonian

 HTC � �A
X

v

Y

j2vertex�v�

�zj � B
X

p

Y

j2plaquette�p�

�xj; (1)
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where the �i are S � 1=2 quantum spins on 2N edges of a
square lattice with N vertices on a torus. Since all terms in
(1) commute with each other, the model can be solved
exactly [1]. The ground-state manifold can be described as
a quantum loop gas where loops consist of chains of up-
pointing �z-spins and the loop fugacity is d � 1. On the
torus there are four degenerate ground states that can be
classified by a winding number parity Py=x �

Q
i2cx=y�

z
i

along a cut cx=y in the x or y direction.
Here we study the effect of perturbing Hamiltonian (1)

with a loop tension introduced either by a longitudinal
magnetic field or local Ising interaction of the form

 H � HTC � h
X

i

�zi � J
X

hiji

�zi�
z
j; (2)

where h (J) is the strength of the magnetic field (Ising
interaction). These are the dominant perturbations ex-
pected in a physical implementation; e.g., in a Josephson
junction implementation [3,4] they arise from electric
potential perturbations or Coulomb interactions between
neighboring quantum dots. We discuss this model in the
limit of a large charge gap, i.e., A� B, h, J, where it
becomes equivalent to the ‘‘even’’ Ising gauge theory, the
emergent gauge theory description of the quantum dimer
model [13]. The low-energy sector has no free charges and
any state is described by a collection of loops that can be
obtained from a reference state (e.g., all �zi � 1=2) by a
sequence of plaquette flips. Let us introduce a new pla-
quette spin operator �p with eigenvalues �z

p � ��1�np=2,
where np is the number of times a given plaquette p has
been flipped, counting from the reference state. Then �zi �
2�z

p�z
q, where p and q are the plaquettes separated by the

edge i. The plaquette flip term in Eq. (1) becomes
�4B

P
p�

x
p. In the new variables, Hamiltonian (2) be-

comes equivalent to the transverse field Ising model
(with both nearest and next-nearest-neighbor Ising inter-
actions resulting from, respectively, the magnetic field h
and the local Ising interaction J in the original
Hamiltonian) in a basis restricted to loop states. With
only the nearest-neighbor interaction (i.e., J � 0), this
system orders at a critical field strength �h=B�c �
0:656 95�2� determined by continuous-time quantum
Monte Carlo simulations [14]. Including the next-nearest-
neighbor couplings (J � 0) will lower the critical value
somewhat without changing the nature of the transition, so
we will concentrate on the J � 0 case henceforth. The
transverse field Ising model for the plaquette spins can be
mapped to a classical (2� 1)-dimensional Ising model:

 H cl � �K�
X

k;p

Spk S
p
k�1 � K

X

k;hp;qi

SpkS
q
k; (3)

where Spk � Sp�k��� and Sp � 2�z
p � 	1. The real-

space coupling is then given by K � 1
2 ��h and the

imaginary-time one by K� � �
1
2 ln
tanh���B��, with ��

being the lattice spacing in the imaginary-time direction.
The model (3) describes the well-known continuous mag-

netic phase transition of the 3D Ising model [15]. For
isotropic interactions, K � K�, the critical coupling has
been determined with high precision to be Kc �
0:221 659 5�26� [17]. Setting B � 1 this gives a critical
loop tension hc � 0:582 24 with �� � 0:76. This value
slightly varies from that for continuous time, but both
models have the same long-distance physics. In Fig. 2,
we use continuous time, in the other figures, discrete time.

The magnetic susceptibility diverges at the transition
and the magnetization h

P
i�

z
i i=2N has a corresponding

kink, shown in Fig. 1. This is not a symmetry-breaking
transition, but the analogous transition driven by next-
nearest interaction J is a continuous quantum phase tran-
sition from a topologically ordered quantum state to a
broken symmetry state [18]. The transition can be under-
stood in terms of the condensation of ‘‘magnetic vortices’’,
plaquettes with

Q
j�

x
j � �1. The gap, which is � � 2B

for Hamiltonian (1), vanishes at hc, as shown in Fig. 2. The
gap has been estimated from measurements of the
imaginary-time correlation length �� as � / 1=��, which
we have calculated applying continuous-time quantum
Monte Carlo simulations using the ALPS looper code
[19,20].

Topological order.—The breakdown of topological or-
der at the phase transition can be seen from the energy
splitting �E between the ground states for the various
sectors. When winding parities are used as basis states
for a quantum memory, this splitting causes phase errors.
(The absence of ‘‘electric charges’’ precludes any transi-
tions between different winding parities so bit flip errors
cannot occur.) In the topological phase, the virtual excita-
tion of quasiparticles leads to a small splitting �E /
exp���L=v� between the topological sectors. In the clas-
sically ordered phase, on the other hand, the energy split-
ting should scale with L, which corresponds to the energy
cost of a loop in the ordered ground state. As the winding
parity is conserved by imaginary-time spin-flip operations,
we can simulate the system in one of the topological
sectors by choosing an appropriate initial spin configura-
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FIG. 1 (color online). Magnetization M versus loop tension.
For small tension an almost constant susceptibility (see inset)
leads to a linear increase of M. Above the critical loop tension
(dashed line) the system approaches the fully polarized state.
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tion. Figure 3 shows the splitting for various system sizes
in the vicinity of hc. At the phase transition, the behavior
changes from power-law scaling for strong loop tension to
an exponential suppression in the topological phase for
small loop tension. A more quantitative picture arises
from the finite-size scaling analysis of the energy splitting
�E�L� between the feven-oddg- and feven-eveng-parity
sectors shown in Fig. 4. For the critical loop tension we
find a power-law scaling �E�L� / L2�z with an exponent
z � 1:42	 0:02. Below the critical value the scaling turns
into exponential scaling as expected for the topological
phase.

Confinement transition.—For the loop gas (1) the ele-
mentary electric charge excitations (end points of an open
loop) are deconfined. For strong loop tension, however
these excitations are expected to become confined, thereby
eliminating all open loops. In our simulations this transi-
tion is studied by breaking a loop in an arbitrary closed
loop configuration and sampling the movement of the two
end points. This allows us to measure the confinement
length �c as the square root of the average second moment
of the distance between the two excitations, which for a
torus with even extent L is normalized by a factor 6=�L2 �
2�. As shown in Fig. 5, electric charges clearly remain
deconfined for the full extent of the topological phase

and the confinement transitions occurs simultaneously
with the magnetic transition. At the critical loop tension
the confinement lengths �c�L� for various system sizes
cross which demonstrates that the confinement length di-
verges with the same critical exponents as the magnetic
correlation length � and there is only one length scale
describing the phase transition. For our model without
dynamical electric charges, this measure of the confine-
ment of test charges is closely related to the calculation of a
Wilson loop expectation value. In the presence of dynami-
cal electric charges, Polyakov loops have been used as
order parameter for the finite temperature transition of
the 3D Ising gauge model [21].

Dissipation.—Finally, we discuss the effect of dissipa-
tion when Hamiltonian (1) is coupled to an Ohmic heat
bath. We first examine coupling a heat bath to the kinetic
energy, e.g., to �x

p, so that a ‘‘phonon’’ is created when a
plaquette flips. This type of dissipation could occur in a
Josephson junction model [22] or in a spin model through
the spin-phonon coupling. The standard procedure [23] for
a linear spectral density (‘‘Ohmic’’ dissipation) results in
an effective action for independent Ising chains with long-
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FIG. 3 (color online). Energy splitting between topological
sectors. The sector with feven-odd=odd-eveng winding number
parities was taken as a reference (dashed line).
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FIG. 4 (color online). Finite-size scaling of the energy splitting
between topological sectors around the phase transition for � �
10L. At the critical loop tension (crosses) we find power-law
scaling with exponent z � 1:42	 0:02.
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FIG. 2 (color online). Excitation gap for magnetic vortices
(star symbols) versus loop tension. Right: Tunneling rate
exp����� between topological sectors (circles) for � � 10.
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range couplings in an external longitudinal magnetic field.
As a consequence of the Lee-Yang theorem [24], there can
be no singularities of the respective partition function at
any real nonzero field, ruling out the existence of a quan-
tum phase transition for this model. This implies that the
magnetic gap remains finite for any dissipation strength.

An entirely different behavior arises if dissipation is
coupled such that it stabilizes the ‘‘classical’’ state of the
system. Coupling the bath to either �zi or �z

p stabilizes the
classical state of a single spin or a plaquette, respectively.
We consider the latter as it should be more effective at
damping quantum fluctuations. Integrating out the heat bath
then leads to a model for decoupled Ising chains given by

 H cl � �K�
X

k;p

Spk S
p
k�1 � �

X

k<k0;p

��N��
2SpkS

p
k0

sin2� �N� jk� k
0j�
; (4)

where the parameter � measures the dissipation strength.
This model has been studied [25] and is known to ex-
hibit a Thouless-type phase transition into a classically or-
dered, fluctuationless phase. The critical value �c of this
transition depends weakly on the cutoff in the long-range
interaction; in our simulations �c � 0:7. At the transition,
the magnetic gap vanishes, in sharp contrast to the previous
case.

Because of the long-range interactions introduced by the
dissipative coupling, the spin-spin correlations asymptoti-
cally decay as 1=�2 [26] making it nontrivial to define a
correlation time. For � & 0:1 one observes an exponential
decay of the correlation function onto the asymptotic 1=�2

behavior. The �� extracted from the exponential compo-
nent grows linearly with �. For �> 0:1 we estimate ��
from the asymptotic decay of the correlations ����=��2.
These ��s grow approximately exponentially in the region
0:1 & � & �c. Alternatively, one could define a correla-
tion time from the crossover scale where the short-time
behavior crosses over to the asymptotic 1=�2 form (the
results are almost identical). Gap and error probability
computed from the inverse correlation length are given in
Fig. 6. The error probability remains negligibly small
below the crossover value � � 0:1.

Outlook.—The topological phase of the toric code exists
in an extended region of phase space around the soluble
point. This demonstrates that a system does not have to be
particularly fine-tuned to reach such a phase. These con-
clusions need to be tested for other, more exotic topologi-
cal phases supporting universal quantum computation [27].
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FIG. 6 (color online). Gap and error probability versus dissi-
pation strength of the dissipative Ising chain (4).
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