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Spin-valley magnetism on the triangular moiré lattice with SU(4) breaking interactions
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The discovery of correlated insulating states in moiré heterostructures has renewed the interest in strongly
coupled electron systems where spin and valley (or layer) degrees of freedom are intertwined. In the strong-
coupling limit, such systems can be effectively described by SU(4) spin-valley models akin to Kugel-Khomskii
models long studied in the context of spin-orbit coupled materials. However, typical moiré heterostructures also
exhibit interactions that break the SU(4) symmetry down to SU(2)spin ⊗ U(1)valley. Here we investigate the impact
of such symmetry-breaking couplings on the magnetic phase diagram for triangular superlattices considering a
filling of two electrons (or holes) per moiré unit cell. We explore a broad regime of couplings—including XXZ
anisotropies, Dzyaloshinskii-Moriya exchange, and on-site Hund’s couplings—using semiclassical Monte Carlo
simulations. We find a multitude of classically ordered phases, including (anti)ferromagnetic, incommensurate,
and stripe order, manifesting in different sectors of the spin-valley model’s parameter space. Zooming in on
the regimes where quantum fluctuations are likely to have an effect, we employ pseudofermion functional
renormalization group (pf-FRG) calculations to resolve quantum disordered ground states such as spin-valley
liquids, which we indeed find for certain parameter regimes. As a concrete example, we discuss the case of
trilayer graphene aligned with hexagonal boron nitride using material-specific parameters.
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I. INTRODUCTION

Moiré systems of different van der Waals heterostructures
have by now been established as a highly tunable platform
to emulate the physics of strongly correlated electrons [1,2].
Varying several experimental tuning knobs such as the twist
angle between layers, electrical displacement fields and dop-
ing via gate voltages, rich phase diagrams have been found to
emerge. Examples include graphene-based materials such as
twisted bilayer graphene (TBG) [1–8], twisted double-bilayer
graphene (TDBG) [9–12], and trilayer graphene aligned with
hexagonal boron nitride (TG/h-BN) [13–17], where the oc-
currence of correlated insulating phases at different integer
fillings has been supported by several measurements, some-
times in close proximity with superconducting behavior.
Beyond graphene-based materials, moiré bilayers of two-
dimensional transition metal dichalcogenides (TMD) have
also been found to exhibit correlated states, including Mott
insulators, generalized Wigner crystallization, stripe phases,
and quantum anomalous Hall insulator phases [18–22].

In addition to spin, many of these moiré heterostructures
feature another bivalued quantum number, which—depending
on the particular system—has different microscopic
origin, e.g., an additional valley or layer index. Effective
descriptions of such heterostructures can then be formulated
in terms of Hubbard-type models on a hexagonal moiré
superlattice, where the electrons come in four flavours due
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to the combination of the actual spin with the valley/layer
pseudospin degree of freedom. Concretely, models with an
approximate SU(4) flavour symmetry or at least dominating
SU(4)-symmetric interactions have been suggested in the
context of the above mentioned TBG [23–27], TDBG
[28,29], TG/h-BN [30–32], or moiré TMDs [33–36].

The formation of strongly correlated states observed in
various moiré systems is tentatively supported by the presence
of narrow electron bands, boosting the relevance of electronic
interactions. While it is difficult to pin down the precise lo-
cation of a moiré material on the weak- to strong-coupling
axis, it has been argued that—building on the four-flavoured
Hubbard-type models—a strong-coupling perspective may be
a good starting point to shed light on the nature of the corre-
lated insulated phases at integer fillings, e.g., in TBG [23–25],
in TG/h-BN [26,30,31] or in moiré TMDs [31,33,36]. Such a
strong-coupling expansion leads to approximate SU(4) Kugel-
Khomskii-type models [37] for the spin- and the valley/layer
degrees of freedom [38,39]. In the context of moiré materials,
hexagonal-lattice SU(4) spin models have been previously ex-
plored by various many-body approaches, collecting evidence
for the emergence of several magnetically ordered as well as
spin-valley liquid states [40–44].

Accurate modeling of moiré materials—in contrast to
paradigmatic studies—is generally quite challenging. Gener-
ically, however, the approximate SU(4) symmetry will be
broken down to a lower symmetry due to the presence
of various competing interaction contributions, see, e.g.,
Refs. [23,26,30,45,46], relevant to the cases of TDBG and
TG/h-BN. These interactions can be expected to have a severe
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impact on the phase diagram by supporting the formation
of different spin- and/or valley-ordered magnetic states. An
interesting question therefore is, which of these states are
actually realized for specific configurations of SU(4) breaking
couplings.

As a concrete example consider, TG/h-BN with an applied
perpendicular electric field D, cf. Ref. [30]. For large enough
D (with a specific sign), topologically trivial, isolated narrow
bands emerge that can be described by a spin-valley extended
su(4)1 Hubbard model with small anisotropies breaking the
SU(4) symmetry. This model is expected to undergo a Mott
transition when going from smaller to larger fields and may
be used to describe the correlated insulating states with n =
−1 and n = −2 holes per moiré unit cell [30,47,48]. Both
the type of insulator in the strong coupling limit, as well as
the nature of the Mott transition, are still under debate. In
Ref. [30], where a concrete spin-valley extended Hubbard
model for TG/h-BN was derived, the insulating phase was
predicted to be ferromagnetic in the strong-coupling limit
[Eq. (3) below], with a possible spin liquid phase close to
the Mott transition. More recent work considered a Hubbard
model with a completely SU(4) symmetric onsite interac-
tion using single-site DMFT [47]. Their results suggest that
close to the Mott transition interactions promote antiferro-
magnetic order, which breaks C3 symmetry and competes
with the ferromagnetic state. This seems to be compatible
with spectroscopy measurements of TG/h-BN observing a
direct optical excitation across the Mott gap that rules out a
ferromagnetic ground state, but allows antiferromagnetic or
intervalley-coherent ground-state order [17].

For the case of TG/h-BN and also for other moiré het-
erostructures with intertwined spin and valley/layer degrees
of freedom, the additional SU(4) breaking couplings may,
however, not be negligible, and could, thus, strongly affect the
nature of correlated states of the system. We therefore deem
it useful to gain a more general understanding of effective
models in different parameter regimes and limits. Here, we
shed some light on this issue, focusing on moiré systems that
can be described on a triangular superlattice, with a filling of
two electrons (or holes) per moiré unit cell, as relevant, e.g.,
for TDBG, TG/h-BN, and moiré TMDs. To this end, we study
the limit of strong coupling, i.e., we explore a spin-valley
model with localized degrees of freedom described by genera-
tors of SU(4), featuring both an on-site Hund’s-type coupling
as well as nearest and next-nearest neighbor superexchange
interactions that strongly break the SU(4) symmetry down to
SU(2)spin ⊗ U(1)valley. Due to the extra valley degeneracy, the
size of the local Hilbert space in spin-valley extended mod-
els is significantly increased compared to conventional Mott
insulators, which makes the theoretical treatment a serious
challenge for most conventional many-body techniques.

We start to explore such models by using a semiclassical
Monte Carlo approach to establish the classical ground-state
order in the high-dimensional SU(4) spin-valley space, sim-
ilar to what was already done analytically for the fully
SU(4) symmetric model [43]. Since the parameter space in
low-symmetric models is large, we here take a concretely

1With su(4) we refer to the Lie algebra of the Lie group SU(4).

suggested model for TG/h-BN as reference and explore
the parameter space and phase diagram in its vicinity to
classify candidates for the insulating phases of TG/h-BN
and, possibly, related moiré systems. In doing so, we find
a multitude of classically ordered phases, including anti-
ferromagnetic (AFM), ferromagnetic (FM), incommensurate
(ICS), and stripe order that manifest in different sectors of
the coupled spin-valley space. It turns out that a determin-
ing factor in the ground-state order are indeed the type and
strength of the SU(4) symmetry breaking interactions, which
we systematically investigate. We further study the effect of
thermal fluctuations and find evidence for both continuous
and first-order transitions into the ordered phases, as well as
order-by-disorder effects where thermal fluctuations lift the
ground-state manifold.

To also study the effect of quantum fluctuations, which
are expected to be especially strong in the vicinity of the
Mott transition, we complement our semiclassical analysis by
performing pseudofermion functional renormalization group
(pf-FRG) calculations [49] to distinguish between magneti-
cally ordered and disordered regimes. The pf-FRG approach
has recently made considerable progress in broadening its
range of describable models [50]. Concretely, first applica-
tions of the pf-FRG to SU(N) symmetric spin models [51,52]
have been extended to the case of SU(2)spin⊗SU(2)valley sym-
metry [44] and further technical developments have prepared
applicability to general SU(2)spin ⊗ U(1)valley models [50].
Here, we will apply an implementation of the latter method-
ological refinement to the specific case of spin-valley models
for moiré heterostructures, which gives us estimates for the
location of putative spin-valley liquid or other quantum disor-
dered phases in parameter space.

The rest of the manuscript is structured as follows. We
start with short overview over the key results of our numerical
study in Sec. II, focusing on phase diagram for the strong-
coupling limit of the spin-valley model derived in Ref. [30]
for TG/h-BN. In Sec. III, we introduce a general class of
spin-valley models with SU(2)spin ⊗ U(1)valley symmetry and
also briefly comment on their possible origin in the context
of moiré heterostructures. In Sec. IV, we then introduce the
semiclassical Monte Carlo approach to study the spin-valley
model and analyze its ordered phases with a focus on a region
in parameter space suggested for TG/h-BN and beyond. We
specifically also address the role of SU(4)-symmetry breaking
couplings within the semiclassical analysis. To study the role
of quantum fluctuations, in Sec. V, we employ an extension
of the pf-FRG approach to identify regions in the phase di-
agram where quantum disordered states, spin-valley liquids,
can occur. We conclude with a discussion in Sec. VI.

II. KEY RESULTS

We begin by giving a short overview over the main
results from our numerical study of the SU(2)spin ⊗ U(1)valley

symmetric spin-valley model [Eq. (3) below] originally
derived in Ref. [30] for TG/h-BN in the strong coupling
limit. We always consider a filling of n = −2 holes per moiré
unit cell. A more detailed introduction to the model, our
numerical methods, and an in-depth discussion of the results
are presented in the following sections.
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Starting with the concrete example of TG/h-BN, the ap-
plied displacement field D induces a potential difference �V

between the graphene layers, which tunes both the overall
strength of electronic correlations, as well as the relative
strength between different types of interactions. Ref. [30] pre-
dicts that the strongest electronic correlations occur for �V <

−30 meV, while for �V > −30 meV, their strength decreases
until at approximately �V � −20 meV a Mott transition to
a metallic state occurs. The dependence of the couplings in
the strong-coupling Hamiltonian on the potential difference is
shown in Fig. 1(a), according to Ref. [30]. The Hamiltonian
includes SU(4) symmetric nearest and next-nearest neighbor
interactions J1 and J2, as well as SU(4) breaking interactions
in the form of an XXZ anisotropy JXXZ

i j , a Dzyaloshinskii-
Moriya exchange JDM

i j , and an on-site Hund’s couplings JH .
Figures 1(b) and 1(c) show the corresponding semiclassical

and quantum phase diagrams obtained from our Monte Carlo
and pf-FRG calculations, respectively, as presented in this
work. Away from the Mott transition the ground state is an
ordered state exhibiting either ferromagnetic or 120◦ order
in both the semiclassical and quantum limit. Close to the
Mott transition, however, the semiclassical approach shows
incommensurate (ICS) order that melts into a quantum disor-
dered, putative spin-valley liquid (SVL) state when including
quantum fluctuations. All observed ground states break the
U(1)valley symmetry implying intervalley coherent (IVC) or-
der. We never observe valley polarization, i.e., finite τ z. In
some cases, the spin shows finite expectation values in ad-
dition to IVC order, which we refer to as “IVC + spin” order.
In the quantum case, however, the pf-FRG has difficulties to
resolve such spin-valley order in multiple sectors and only
shows the more dominant IVC order.

Figure 1 suggests that the type of ground-state order
strongly depends on the value of the SU(4) breaking cou-
plings. A dominant JXXZ

i j results in collinear, ferromagnetic
order, while large values of JDM

i j seem to induce noncollinear
order with a finite vector chirality κ—defined in Eqs. (9) and
(10)—such as 120◦ or ICS order. The type of noncollinear
order then depends on the relative magnitude of J1 and J2. A
small J2/J1 favors 120◦ order and a large J2/J1 favors ICS
order. We confirm this observation by systematically varying
the SU(4) breaking couplings for different (fixed) values of
J1 and J2, as is shown in Fig. 7. The quantum limit agrees
with the semiclassical case in all but the ICS phases, where
we consistently observe that quantum fluctuations drive the
system into a disordered state.

Our two complementary approaches, targeting both clas-
sically ordered and quantum disordered phases, provide a
consistent picture of the spin-valley entangled quantum mag-
netism across a wide range of coupling parameters. While
our analysis, originating from a strong coupling approach,
is per se agnostic to the details of the electronic state, one
might nevertheless be tempted to make some connections.
The strong-coupling perspective is best justified for correlated
insulator states, particularly Mott insulating states with local
spin and valley degrees of freedom (which is the case for
large displacement fields �V < −30 meV). In this regime,
the classically ordered states that we find—various forms of
ferromagnetism and 120◦ order—are good candidates for the
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FIG. 1. Phase diagram of the TG/h-BN model as a function of
the potential difference �V with (a) the couplings in Hamiltonian
(3) as estimated for TG/h-BN [30], (b) the transition temperature Tc

and ground-state order from semiclassical Monte Carlo calculations,
and (c) the critical scale and quantum ground states from pf-FRG.
Away from the Mott transition at �V = −20 meV the ground state
is ferromagnetic (FM) or 120◦ ordered in both the semiclassical
and quantum limit. Close to the Mott transition, the semiclassical
calculation shows incommensurate (ICS) order that melts into a
quantum disordered, putative spin-valley liquid (SVL) state when
including quantum fluctuations, as indicated by the absence of a
flow breakdown in the pf-FRG (�c = 0). In the semiclassical phase
labeled by ICS/stripe, the valley shows ICS order and the spin instead
shows stripe order. The pf-FRG has difficulties to resolve phases
with order in multiple sectors and only predicts the dominant IVC
order. The 120◦ and ICS ordered states have a finite vector chi-
rality κ—defined in Eqs. (9) and (10)—that switches sign in line
with the sign change in JDM

i j . All observed ground states break the
U(1)valley symmetry implying intervalley coherent (IVC) order, and,
in some cases, additionally the spin shows finite expectation values
(IVC + spin).

collective spin-valley ordered ground state. In the weakly
correlated regime for �V � −30 meV, our strong-coupling
approach is less justified. However, it is remarkable that it
is in this regime where we find the emergence of quantum
disordered ground states, even in the presence of sizable
SU(4) breaking couplings. The formation of such spin-valley
quantum liquids in the weakly coupled regime is reminiscent
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of the observation that quantum spin liquids [53,54] might
form in weak Mott insulators close to the metal-insulator tran-
sition (where electronic fluctuations might imprint themselves
onto the magnetic state). Our results might therefore motivate
further searches for spin-liquid states in strongly correlated
moiré heterostructures.

III. SPIN-VALLEY MODEL

Starting from a spin-valley extended Hubbard model, a
strong coupling expansion leads to a Kugel-Khomskii type
[37] spin-valley model. Therein, instead of conventional su(2)
spin operators, the 15 generators of SU(4), forming the basis
of the Lie algebra su(4), describe the localized degrees of
freedom. In the context of moiré materials it can be useful to
keep the original spin and valley quantum numbers explicit
and choose a basis of spin-valley operators defined via a
parton construction with auxiliary pseudofermions as2

σ
μ
i τ κ

i = f †
islθ

μ

ss′θ
κ
ll ′ fis′l ′ ,

σ
μ
i ≡ σ

μ
i 1i = f †

islθ
μ

ss′ fis′l ,

τ κ
i ≡ 1iτ

κ
i = f †

islθ
κ
ll ′ fisl ′ , (1)

where f †
isl and fisl are fermionic creation and annihilation

operators with a site index i, a spin index s = (↑,↓), and a
valley/layer index l = (+,−). The θμ (μ = x, y, z) are the
usual Pauli matrices. In the following, we will simply call l
the “valley index” and note that it is determined by the specific
system under consideration, whether it refers to an actual
valley, a layer, or another pseudospin degree of freedom.

We want to consider the scenario of half electron (or hole)
filling of the underlying Hubbard model, which translates to a
local constraint of two partons per site, i.e.,

ni = f †
isl fisl = 2. (2)

With four electron flavours given by the different com-
binations of the spin and valley indices, this corresponds
to half-filling and fixes the local Hilbert space dimension
to

(4
2

) = 6, which means we consider the six-dimensional
representation of su(4). The corresponding SU(4) sym-
metric Heisenberg model with antiferromagnetic couplings
on a triangular lattice has been studied previously, ex-
hibiting a nonmagnetic valence bond solid (VBS) ground
state [43].

For many moiré materials, SU(4) breaking terms due to
on-site and intersite Hund’s coupling are estimated to be
small compared to density-density interactions and using an
SU(4) symmetric interaction can be justified [30,45,47]. In the
strong coupling limit, however, the perturbative treatment of
the Hamiltonian’s kinetic term generates superexchange in-
teractions that strongly break the SU(4) symmetry and are, in
fact, of the same order as the SU(4) symmetric terms [30,55].
Here, we therefore consider a spin-valley model defined by

2Summation over repeated spin and valley indices is implied.

the Hamiltonian

H = J1

8

∑
〈i j〉

(1 + σ iσ j )(1 + τ iτ j )

+ J2

8

∑
〈〈i j〉〉

(1 + σ iσ j )(1 + τ iτ j )

+ 1

8

∑
〈i j〉

JXXZ
i j (1 + σ iσ j )

(
τ x

i τ x
j + τ

y
i τ

y
j

)

+ 1

8

∑
〈i j〉

JDM
i j (1 + σ iσ j )

(
τ x

i τ
y
j − τ

y
i τ x

j

)

− JH

4

∑
i

(n+in−i + σ+iσ−i ), (3)

where 〈·〉 denotes summation over nearest-neighbor sites and
〈〈·〉〉 over next-nearest neighbors, in our case of a triangular
lattice. Such a Hamiltonian can be obtained starting from an
extended spin-valley Hubbard model for TG/h-BN [30] and
then using standard second-order perturbation theory.

The terms proportional to J1 and J2 are SU(4) symmetric
nearest and next-nearest neighbor Heisenberg interactions.
The coupling J1 can include both a ferromagnetic part arising
from a nearest-neighbor Hund’s coupling and an antiferro-
magnetic part due to superexchange. Depending on the precise
material parameters and the strength of the applied displace-
ment field, both positive and negative couplings are thus
possible, see, e.g., the discussion of the specific case of TG/h-
BN, below. The coupling J2, in contrast, can be expected to
be positive as it exclusively originates from a superexchange
process. The coupling terms proportional to JXXZ

i j and JDM
i j

break the SU(4) symmetry down to SU(2)spin ⊗ U(1)valley and
also mainly originate from superexchange.

In addition to nearest and next-nearest neighbor interac-
tions, the last term in the Hamiltonian is an on-site Hund’s
coupling JH , where n±i = f †

i±l fi±l and σ
μ
±i = f †

is±θ
μ

ss′ fis′± are
the density and spin operators in the ± valley sectors. This
term can be rewritten, up to a constant, in terms of the spin-
valley operators in Eq. (1) using

n+in−i + σ+iσ−i = 1
4 (1 + σ iσ i )

(
1 − τ z

i τ
z
i

)
, (4)

which shows more clearly that this also breaks the SU(4)
symmetry to SU(2)spin ⊗ U(1)valley.

In total, this model introduces five independent coupling
parameters, i.e.,

J1, J2, JXXZ
i j , JDM

i j , and JH , (5)

that may all be of similar relevance. According to the motiva-
tion given, specific choices for these parameters describe the
strong-coupling sector of various moiré heterostructures.

A. TG/h-BN spin-valley model

Since such a huge parameter space is hard to explore ex-
haustively, we use the estimated values for TG/h-BN from
Zhang and Senthil’s model building in Ref. [30] as a starting
point and then explore the parameter space in its vicinity. For
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TG/h-BN, JXXZ
i j and JDM

i j are related to J1 via

JXXZ
i j = (J1 + K )[cos (2ϕi j ) − 1],

JDM
i j = (J1 + K ) sin (2ϕi j ). (6)

Here, ϕi j is a phase that flips sign between nearest-neighbor
bonds that are related by a C6 rotation, hence breaking the
C6 symmetry of the triangular lattice down to C3. This phase
originates from a valley contrasting flux |	| = 3|ϕi j | in the
nearest-neighbor hopping. K is an intersite Hund’s coupling.

Notably, for TG/h-BN, the parameters J1, J2 and ϕ ≡ |ϕi j |
are tunable by an applied displacement field, which induces a
potential difference �V between the graphene layers. The de-
pendence on this potential difference is depicted in Fig. 1(a).
K and JH only depend weakly on the displacement field
and we consider the constant values K = 0.4 meV and JH =
0.136 meV in the following. Note that Ref. [30] predicts
that the size of the Hubbard U compared to the electronic
bandwidth is strongest for �V < −30 meV, i.e., this regime
is the most likely to be appropriately described by a strong-
coupling expansion. In contrast, U becomes equal to the
bandwidth at �V � −20 meV, where the Mott transition is
expected to occur. Approaching such a Mott transition from
the insulating side, it is expected that the spin-valley model
at hand will be further augmented by higher-order exchange
terms, which become relevant in the strong coupling expan-
sion. Here, we adopt a perspective that the spin-valley model
(3) is a well-justified starting point for the case of TG/h-BN,
cf. Refs. [30,48], but might also be an interesting model in
its own right. We will explore the full range of coupling
parameters, including the vicinity of the Mott transition where
new physics might arise.

IV. SEMICLASSICAL ANALYSIS

To understand the role of the different couplings in our
principal Hamiltonian (3) it is useful to start with a classical
analysis and study which kind of ordered ground states are fa-
vored by the different interactions in the classical limit. In this
section, we do so by first defining a suitable (semi)-classical
limit for the su(4) models in consideration and then discuss
how we study the resulting model using classical Monte Carlo
calculations. This allows us not only to determine the ground-
state order over vast parameter ranges, but also to study the
role of thermal fluctuations and the nature of thermal phase
transitions into these ordered phases.

A. Semiclassical Monte Carlo

For su(2) spin models, the usual classical limit is to replace
the spin operator by real three-dimensional vectors of fixed
length, which has proven useful for a multitude of quantum
spin models even for small spin lengths S [56]. A naive
continuation of this method to spin-valley models would be
to perform a mean-field decoupling of the spin and valley
degree of freedom into two separate su(2) spins, and then
approximate these spins by classical vectors. Although such
an approach might give reasonable results for a filling of one
electron per site [55,57], at two electrons per site spin- and

valley degrees of freedom are closely intertwined, as, e.g.,
〈τ z

i 〉 = 2 directly implies 〈σ z
i 〉 = 0 due to the Pauli principle.

Such a naive mean-field decoupling of spin and valley is,
therefore, not an ideal approximation beyond single-electron
filling. Instead, we follow Ref. [43] and define the semiclas-
sical limit solely by the fact that there is no entanglement
between two different lattice sites. This is enforced by con-
sidering only product states of the form |ψ〉 = ⊗i|ψi〉, where
|ψi〉 is an arbitrary state in the local Hilbert space on site i.
In order to find the semiclassical ground state at T = 0, we
minimize the semiclassical energy Hsc = 〈ψ |H |ψ〉 numeri-
cally using a simulated annealing procedure with subsequent
stochastic gradient descent (details of which are provided in
Appendix A). On a conceptual level, this approach is equiv-
alent to a mean-field theory where spin-valley operators σiτi

are replaced by their expectation values 〈σiτi〉 and determined
self-consistently.

We can, however, go one step further and also calculate
expectation vales at finite temperatures T = 1/β > 0 by sam-
pling the space of product-state wave functions according to
the Boltzmann distribution ∼ exp(−β〈ψ |H |ψ〉) [58,59] using
a standard Markov chain Monte Carlo algorithm [56]. This is
equivalent to a cumulant expansion of the partition function to
first order, which becomes exact in the limits of low T → 0
and high temperature T → ∞ and we therefore expect it to
accurately capture the thermodynamic properties of the semi-
classical model. Further details on the simulations are also
given in Appendix A.

B. Ordered phases of the spin-valley model

As a starting point for our analysis, we calculate the
ground-state and finite-temperature phase diagram for the
Hamiltonian (3) with the coupling parameters given by
the estimates for TG/h-BN in Ref. [30]. The dependence
of these couplings parameters as a function of the potential
difference �V is shown Fig. 1(a), while Fig. 1(b) shows
a summary of the finite-temperature phase diagram (using
|J| = (J2

1 + J2
2 + JXXZ

i j
2 + JDM

i j
2 + J2

H )1/2 as a an energy scale
for normalization).

1. Preliminaries

Before we discuss the different phases for specific param-
eter choices, let us briefly review the types of order one can
generally expect for the model at hand. The simplest order is
of one-sublattice type, i.e. ferromagnetic. For su(2) spin mod-
els, this means that all spins are aligned and point somewhere
on the 2-sphere in spin space. The analog for su(4) models is
a state for which the expectation values of the 15 generators
σμ, τ ν, σμτ ν are the same on all sites. Since the Hamiltonian
we consider is symmetric under global rotations, generated
by σ, τ z, and στ z, the states related by these rotations have the
same energy. Therefore we do not distinguish between order
in all 15 generators, but we define the following sectors:

σ = (σ x, σ y, σ z ),

τ⊥ = (τ x, τ y),

τ z = (τ z ),
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στ⊥ = (σ xτ x, σ yτ x, σ zτ x, σ xτ y, σ yτ y, σ zτ y),

στ z = (σ xτ z, σ yτ z, σ zτ z ). (7)

Since all generators have eigenvalues −2, 0, and 2, a perfect
ferromagnet that orders, e.g., only in the spin σ will have a
finite magnetization |〈σ〉| ≡ |∑i〈σ i〉|/N = 2 with the mag-
netization in all other sectors precisely vanishing.3

Given that our model exhibits a continuous SU(2)spin sym-
metry, a fluctuation-driven finite-temperature transition into
pure spin order is generally forbidden by the Mermin-Wagner
theorem [60]. We, therefore, expect order either in the valley
or spin-valley sectors. Order in the out-of-plane valley τ z or
spin-valley στ z implies a valley polarized state that breaks an
Ising like Z2 symmetry. This is, however, not observed in any
of the calculations in this work. Order in the in-plane valley τ⊥
or spin-valley στ⊥ breaks the continuous U(1)valley symmetry
implying intervalley coherent (IVC) order and may be real-
ized through a Berezinskii-Kosterlitz-Thouless type transition
[61,62]. In the following, we label ordered states that only
have finite 〈τ⊥〉 or 〈στ⊥〉 as “IVC,” states that additionally
have 〈σ〉 �= 0 as “IVC + spin” and states that only have finite
〈σ〉 as “spin.”

In addition to ferromagnetic order, the system may also
realize states where the expectation values of the su(4)
generators vary spatially, e.g., in a 120◦ type or even an in-
commensurate (ICS) pattern. This variation may take place in
only one of the defined sectors or, in principle, in the full su(4)
spin-valley space. To fully label an ordered state, we therefore
have to give both the sector the order occurs in, as well as the
type of real-space pattern. As an example, if a state shows a
120◦ pattern in 〈στ⊥〉, with all other expectation values being
zero, we refer to it as IVC 120◦ order.

2. Ferromagnetic states

For a large region of the phase diagram, centered at around
�V = −60 meV, we obtain ferromagnetic order showing fi-
nite magnetizations in different sectors, as shown in Fig. 2(a).
In this regime, the out-of-plane (spin-)valley expectation val-
ues all vanish (not shown), which is not surprising, given that
the couplings J1 and JXXZ

i j are dominant and negative here,
favoring ferromagnetic order in τ⊥ and στ⊥.

Interestingly, we find two different kinds of ferromagnets:
At the boundaries of the FM phase, i.e., in the regions
−91 � �V � −77 meV and −36 � �V � −31 meV, we see
IVC FM order and the ground state is simply an eigenstate of
τ⊥ or στ⊥. Thermal fluctuations always select an eigenstate
of στ⊥ and not τ⊥ indicating an order-by-disorder effect. In
the intermediate range −77 � �V � −36 meV the ordered
state is an IVC + spin FM and has finite magnetizations in
both σ, τ⊥, and στ⊥. Here, up to symmetry transformations,
the ground state can be written as

|
〉IVC+spin
FM ∼ |σ xτ x〉 + |τ x〉 + δ|σ x〉, (8)

3Note that this is quite different to the case of quarter filling (one
electron per site), where different sectors can have maximal mag-
netization simultaneously, e.g., showing complete spin and valley
polarization.
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FIG. 2. Semiclassical observables as a function of the potential
difference �V . (a) Magnetization in the spin σ, the in-plane valley τ⊥

and the in-plane spin-valley στ⊥. Finite magnetization implies FM
order in the respective sector. A crossover between IVC FM order
(only finite |〈στ〉|) and IVC + spin FM order (all magnetizations
finite) can be observed. The dashed lines show the phase bound-
aries. (b) Staggered vector chirality of the ground state as defined
in Eqs. (9) and (10) and illustrated in the inset. At low �V , the value
κστ = +4 implies IVC 120◦ order. The varying negative κτ ≈ κστ at
higher �V implies IVC + spin ICS or stripe order. (c) Magnitude
of the ground-state ordering vector corresponding to the position
of the structure factor’s maximum kmax. At each �V only sectors
that show significant nonzero correlations are shown. kmax = K (K ′)
corresponds to 120◦ order, kmax = � to FM order, kmax = M to stripe
order and values on no symmetry point of the Brillouin zone to ICS
order. Examples of the full structure factors are shown in Fig. 3.

where by |σμτν〉 we denote the eigenstate of σμτν with eigen-
value +2. The value of δ varies as a function of �V in the
interval δ ∈ [0.455, 0.538] meV, which we found by com-
paring the analytic energy of |
〉IVC+spin

FM with the numerical
minimization. We note that since the eigenstates |σ xτ x〉, |τ x〉
and |σ x〉 are not linearly independent, their linear combination
may also be written differently and already the state |σ xτ x〉 +
|τ x〉 would generate a finite spin expectation value 〈σ x〉, which
lowers the energy of the on-site Hund’s coupling term ∼JH .

3. Ordered states with finite chirality

Outside the ferromagnetic region all one-sublattice magne-
tizations vanish and other observables need to be considered
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FIG. 3. Semiclassical ground-state structure factors (static) for different �V (in meV). The color and opacity depict the sector and the
relative magnitude, respectively. Points that lie on top of each other are slightly shifted for visibility.

to classify the phases. Here the Dzyaloshinskii-Moriya-type
coupling JDM

i j is large which favors noncollinear states with
a finite chirality in τ⊥ and/or στ⊥. This means that, going
around a triangle, expectation values will likely be rotated in
valley space relative to their neighbors with a certain hand-
edness that is opposite for left and right pointing triangles.
The prime example with maximal chirality is 120◦ order. To
quantify this, we calculate the z component of the staggered
vector chirality, which for three-dimensional vectors vi dis-
tributed on the triangular lattice is defined as [see Fig. 2(b) for
an illustration]

κ (v) = 1

3
√

3N

∑
r∈(�,�)

(−1)r (v1 × v2 + v2 × v3 + v3 × v1)z.

(9)

This takes the maximal value of κ = ±4 if the vectors are
aligned in a 120◦ order in the x−y plane (for vectors of length
|vi| = 2) and κ = 0 for collinear or randomly oriented vec-
tors. The overall sign will be fixed by the sign of JDM

i j , which
lifts the degeneracy between states of positive and negative
chirality. Fig. 2(b) shows the ground-state chiralities

κτ ≡ κ (〈τ〉),

κστ ≡ κ (〈σ xτ〉) + κ (〈σ yτ〉) + κ (〈σ zτ〉) (10)

as a function of �V . For �V < −91 meV, the ground state
clearly shows IVC 120◦ order in στ⊥ with κστ = +4. Explic-
itly, such a state can be obtained by starting, e.g., from |σ xτ x〉
and then applying rotations in the valley x-y plane as

|
a〉IVC
120◦ = e−iτ zθa |σ xτ x〉, (11)

with the angles θa = (0, 2π/3, 4π/3) for the three sublattices
of the 120◦ order. As before, eigenstates of τ⊥ also lie in
the ground-state manifold, but thermal fluctuations only select
eigenstates of στ⊥.

Close to the Mott transition at �V = −20 meV we also
observe finite ground-state chiralities, this time in both τ⊥ and
στ⊥ and with a negative sign. They do not, however, take fixed
values but decrease with increasing �V , indicating that some
form of incommensurate (ICS) order is likely realized. ICS
order is, by its nature, difficult to quantify and visualize in
real space. To remedy this, we calculate the spin-valley spin-
valley correlation functions 〈σ iσ j〉, 〈τ⊥

i τ⊥
j 〉 and 〈σ iτ

⊥
i σ jτ

⊥
j 〉

and obtain the corresponding structure factors via a straight-

forward Fourier transform,4 as depicted in Fig. 3. The defining
feature of the ICS states it then the position kmax where the
structure factors have their maxima, whose absolute values are
shown in Fig. 2(c).

In the ferromagnetic region peaks in the structure factor
appear at the � point and for 120◦ order at the K and K ′
points, as expected. In the ICS phase the ordering vectors
lie at incommensurate momenta, which move between the
� and K points for τ⊥ and στ⊥ and between the � and M
point for σ. Only in a small region the spin structure factor
has a peak exactly at the M point, which indicates stripe
order.

The energy of the FM and 120◦ ordered states, as defined
above, can be calculated exactly and compared to the ground-
state energy from our numerical minimization, showing very
good agreement. At the phase boundary between the IVC
120◦ and IVC FM states their energies cross, creating a sharp
kink in the ground-state energy, which suggests a first-order
transition. All other T = 0 transitions appear continuous (see
Appendix A for supplemental data).

C. Thermodynamics of the spin-valley model

Let us close this discussion of the various ground-state
orders with a brief overview of their finite-temperature sta-
bility. Summarized in Fig. 4, we show specific heat traces
along with their energy as a function of temperature for
the three principal phases of our model, the 120◦ ordered
state for �V = −100 meV, the spin-valley ferromagnet for
�V = −60 meV and the incommensurate spiral phase for
�V = −24 meV. All three phases show a sharp peak-feature
in the specific heat at their respective thermal phase transitions
that scales/diverges with increasing system size. The nature
of these transitions appears to be continuous for the 120◦
and ferromagnetically ordered states, while the double-peak
structure in the energy histogram and the associated latent heat
jump in the energy at the respective transition temperature in-
dicates a first-order transition for the incommensurate phase.
All three ordered states exhibit a low-temperature specific
heat saturation of cV (T → 0) = 5, indicating the presence of

4Since we consider finite lattice sizes one has to be careful to only
consider momenta allowed by the periodic boundary conditions to
avoid unphysical artifacts in the structure factors.
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FIG. 4. Thermodynamics of the spin-valley model in semiclassical Monte Carlo simulations for TG/h-BN inspired coupling parameters
shown for three different potential differences �V = −100, −60, and −24 meV, which stabilize a (120◦) ordered state (left column), a
spin-valley ferromagnet (middle column), and incommensurate (ICS) order (right column). The top row shows the specific heat, the middle
row the energy per site, and the bottom row an energy histogram at the thermal phase transition. The double-peak structure in the latter indicates
a first-order transition.

ten harmonic zero modes [63] in their ordered states. This
extraordinarily large number of zero modes [compared to,
say, an O(3) ferromagnet with two harmonic zero modes]
can be rationalized as follows. The local Hilbert space of an
su(4) spin-valley model at a filling of two partons per side is
six-dimensional. In the semiclassical picture, the state on each
site is, therefore, parametrized by a six-dimensional complex
valued vector. Counting the real and imaginary part of each
component, but excluding one parameter for the normalization
and an arbitrary phase, this leaves exactly ten parameters per
site, each of which contributes a harmonic zero mode in the
ordered phases of our model.

D. Role of the SU(4) symmetry breaking couplings

In discussing the ground-state orders of the spin-valley
model, we have seen that in particular the SU(4) breaking
couplings JDM

i j and JXXZ
i j as well as their relative magntitudes

are essential in determining the type of order that we observe.
We now want to explore the role of these SU(4) breaking
couplings in a more general phase diagram of the Hamilto-
nian (3) where we go beyond the somewhat fine-balanced
parametrization following Zhang and Senthil’s model building
in Ref. [30]. To this end, we fix the value of the potential
difference �V (and the corresponding values of J1 and J2)

to one of the three principal ordered phases (120◦ order, FM
and ICS phase), lock the Hund’s coupling to JH = 0.136 meV,
and then scan the the SU(4) breaking couplings over a broad
range by calculating phase diagrams as a function of the phase
ϕ ≡ |ϕi j | in 0 � 2ϕ � 2π , which determines the values of
JDM

i j and JXXZ
i j via Eq. (6). In the region around 2ϕ ≈ π the

coupling JXXZ
i j is dominant and ferromagnetic and as JDM

i j is
small we expect FM ground states with vanishing chirality.
Moving away from 2ϕ ≈ π the absolute value of |JXXZ

i j | de-
creases and becomes smaller than |JDM

i j | for 2ϕ � π/2 and
2ϕ � 3π/2, which may induce 120◦ or ICS order with finite
chirality in this region.

The resulting phase diagrams as a function of ϕ are shown
in Figs. 5(a)–5(c), for the 120◦ order (�V = −100 meV), FM
(�V = −60 meV) and ICS phase (�V = −24 meV). In each
plot the value of ϕ corresponding to the estimate for TG-hBN
in Fig. 1(a) is indicated by a dotted black line. The structure
factors corresponding to the different phases are depicted in
Fig. 5(d).

For �V = −100 meV with J1 > 0 and J2 ≈ 0, an IVC 120◦
order with positive chirality was found for the original ϕ. This
order is preserved for 3π/2 < 2ϕ < 0. Changing the sign of
the phase (i.e., going to 0 < 2|ϕi j| < π/2) simply changes
the sign of the chirality and not the type of order. In the region
π/2 < 2ϕ < 3π/2, however, instead of 120◦ order we get
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FIG. 5. Semiclassical phase diagram as a function of the phase. [(a)–(c)] Phases and phase boundaries for J1 and J2 fixed to their TG/h-BN
estimates at �V = −100, −60, −24, but with varying phase ϕ. Varying the phase ϕ effectively tunes the in-plane nearest neighbor valley
couplings JXXZ

i j and JDM
i j which both break the SU(4) symmetry. The dotted black lines show the initial estimate for ϕ at these �V . κ± denotes

the sign of the chirality (when nonzero). All ICS phases are of IVC + spin type. (d) Ground-state (static) structure factors. The color and
opacity depict the sector and the relative magnitude, respectively. Points that lie on top of each other are slightly shifted for visibility.

an IVC FM, stemming from the large negative value of the
coupling JXXZ

i j .
For �V = −60 meV, the dominant coupling is J1 < 0 and

|J2| is still very small, resulting in IVC + spin FM order which
remains stable for a large region of ϕ. Only for a phase close
to ϕ = 0 a FM appears that has a finite magnetization only in
the spin with |〈σ〉| = 2. Such a truly long-ranged state should,
in principle, not be allowed at finite temperatures due to the
Mermin-Wagner theorem [60]. As such we deem the asso-
ciated finite-temperature feature to be a finite-size induced
thermal crossover.

In the IVC + spin ICS phase at �V = −24 meV, the
original order is again preserved for a large region of ϕ, with
a change in chirality when changing the sign of the phase.
Around 2ϕ = 0, π/2, 3/2π the spin-structure factor shows
ordering vectors at the M point again implying spin stripe
order which also appeared in Fig. 1. For a flux around the
value 2ϕ = π , the system again transitions into the IVC FM
order.

In summary, there is a strong tendency towards FM states
for 2ϕ ∈ [π/2, 3π/2], where the JXXZ

i j dominates and a ten-
dency towards finite-chirality states for 2ϕ ∈ [3π/2, π/2],
where JDM

i j dominates. If J1 is negative and sufficiently large,
FM states remain for all ϕ. If J1 is positive, the type of chiral
state is determined by the magnitude of J2, where for small
values IVC 120◦ order is favored, and for larger J2 ≈ J1 > 0
IVC + spin ICS or stripe order emerges. We never observe
valley polarization, but only IVC, IVC + spin, or spin order.

V. QUANTUM MODEL

In the previous section, we have shown that the Hamil-
tonian (3) realizes a plethora of ordered states that can be

well captured in a semiclassical analysis. Now, we turn to
the question of how quantum fluctuations alter the picture,
with particular interest in finding regions where spin-valley
order is destabilized in favor of a quantum disordered ground
state. An established method for finding these regimes is the
pseudofermion functional renormalization group (pf-FRG),
which has, by now, been applied to a variety of spin models
to resolve the competition between ordered and disordered
ground states in the presence of quantum fluctuations [64–76].
In a technical development, the pf-FRG approach was recently
extended (by some of us) [44,50] from conventional su(2)
spin models [49] to the su(4) spin-valley models of interest
here. After a short introduction of the basic concepts of the
pf-FRG method, we employ the approach to investigate the
role of quantum fluctuations on the phase diagrams previously
explored in the semiclassical analysis.

A. Pseudofermion functional renormalization group

The central idea of the FRG approach [77] is to treat the
system by not considering all energy scales at once, but start-
ing from a known high-energy limit and iteratively including
lower energy scales until the full theory is recovered [78,79].
This is achieved by introducing an infrared cutoff � into the
theory so that at � → ∞ all correlation functions are deter-
mined simply by the bare couplings in the Hamiltonian, and
at � = 0 the full, physical correlation function reemerge. A
derivative with respect to the cutoff � generates an hierarchy
of differential equations, the flow equations, which govern
the evolution of the correlation functions between these two
limits.

The integration of the flow equations down to � = 0,
however, is only possible if no indications of spontaneous
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symmetry breaking occur. The onset of such symmetry break-
ing is signaled by the divergence of a susceptibility, associated
with an order parameter, when approaching a characteristic
scale �c, which we dub the critical scale. To probe spin-valley
orders with bilinear order parameters, we consider the Fourier
transformed Green’s function

χ
μνκλ�
i j (ω) =

∫ ∞

0
dτeiωτ

〈
T̂τ

(
σ

μ
i τ κ

i

)
(τ )

(
σ ν

j τ
λ
j

)
(0)

〉�
, (12)

where T̂τ is the time-ordering operator in imaginary time τ .
Due to finite numerical accuracy the divergence is usually
softened to a cusp or peak. Below the critical scale the flow is
no longer physical, and the numerical integration of the flow
equations has to be stopped. If such a flow breakdown occurs,
the dominant component of χ

μνκλ
i j tells us in which sector

the system wants to order, whereas its Fourier transform (the
momentum dependent structure factor) allows us to determine
the type of order. The absence of a flow breakdown, on the
other hand, leaves open the possibility of a spin-valley liquid
or a different quantum disordered ground state.

The symmetries of the Hamiltonian are preserved in the
flow equations and carry over to the spin-valley spin-valley
correlations. To distinguish the different types of order in the
sectors defined in Eq. (7), consider the diagonal components

χσ
i j = χ

μμdd
i j ∼ 〈σ iσ j〉,

χ τ⊥
i j = χddxx

i j = χ
ddyy
i j ∼ 〈τ⊥

i τ⊥
j 〉,

χστ⊥
i j = χ

μμxx
i j = χ

μμyy
i j ∼ 〈σ iτ

⊥
i σ jτ

⊥
j 〉,

χτ z

i j = χddzz
i j ∼ 〈

τ z
i τ

z
j

〉
,

χστ z

i j = χ
μμzz
i j ∼ 〈

σ iτ
z
i σ jτ

z
j

〉
,

(13)

with μ = x, y, z (no summation). These are the same sec-
tors as defined in the previous section for the semiclassical
approach and, in principle, we can detect the same types
of semiclassical order. At a flow breakdown, however, the
subdominant components of the correlations are usually sup-
pressed and only the dominant component diverges. This
makes it difficult to resolve IVC + spin states with simul-
taneous order in multiple sectors. The valley out-of-plane
sectors χτ z

i j and χστ z

i j are always negligibly small and are not
considered in the following. The off-diagonal components
χddxy = −χddyx ∼ 〈τ xτ y〉 and χμμxy = −χμμyx ∼ 〈στ xστ y〉
are finite but also small. They can, however, still be used
to determine a sign change in the staggered vector chirality
defined in Eqs. (9) and (10), see Appendix B for details.

B. Quantum phase diagram for TG/h-BN spin-valley model

We employ the pf-FRG to calculate the quantum counter
parts to the semiclassical phase diagrams obtained in the pre-
vious section. Starting with the TG/h-BN inspired parameters,
Fig. 6(a) shows the critical scale as a function of the potential
difference �V with labels denoting the types of ground state.
The horizontal bar on top of the figure shows the semiclassical
phase boundaries obtained in the previous section for compar-
ison. Figure 6(b) shows the momentum kmax for which the
structure factor is maximal and (c) shows the full structure
factor for several �V .
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FIG. 6. Quantum phase diagram of the TG/h-BN Hamiltonian as
a function of �V from pf-FRG. (a) Critical scale �c where the pf-
FRG flow shows instabilities. The background color shows the phase
boundaries and the small bar on top shows the semiclassical results
for comparison. (b) Magnitude of the ordering vector given by the
momentum kmax at which the structure factor is maximal. Note that
we show all sectors, even though σ and τ⊥ are very small compared
to στ⊥. (c) Static structure factor at � slightly above �c. All sectors
are plotted at the same color scale (for fixed �V ). Compared to the
semiclassical calculation (see Fig. 1), the spin-valley sector is always
clearly dominant and no IVC + spin phases with order in multiple
sectors appear, which stems from the fact the pf-FRG has difficulties
to resolve such states (as explained in the main text). In the vicinity
of the semiclassical ICS phase we observe regions with no flow
breakdown, indicating a putative spin-valley liquid (SVL) ground
state. The staggered vector chirality κ changes sign consistent with
the semiclassical result.

Below �V � −31 meV the critical scale �c shows qual-
itatively similar behavior to the semiclassical transition
temperature. The structure factors imply IVC 120◦ order with
positive chirality for �V � −91 meV and a large FM phase
centered around �V ≈ 60 meV. The position of the phase
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FIG. 7. Quantum phase diagram as a function of the phase from pf-FRG. The coupling J1 and J2 are fixed to their TG/h-BN estimates for
different �V . The dotted black lines show the initial estimate for ϕ at the corresponding �V . The inner circles show the semiclassical results
(see Fig. 5 for comparison). The main discrepancy occurs in (c). Here, the phase boundaries are slightly shifted and we observe disordered,
putative SVL liquid phases in the regime of the semiclassical ICS order. Around ϕ = 0 semiclassical ICS/stripe order turns into dominant ICS
order in the spin. κ± denotes the sign of the chirality (when nonzero).

boundary between these phases matches the semiclassical
result almost perfectly. In the FM phase, however, the pf-
FRG does not clearly distinguish between the IVC and IVC
+ spin order, as already explained above. Instead, it always
shows dominant χστ⊥

implying an IVC FM ground state. The
position of the maximum kmax in the spin structure factor χσ

may indicate a crossover between different types of order, see
Fig. 6(b), but the magnitude of the peaks relative to χστ⊥

does
not change significantly, see Fig. 6(c).

For �V � −31 meV, the pf-FRG structure factors show
peaks at incommensurate momenta, with dominant χστ⊥

and
negative chirality. This is consistent with the semiclassically
observed ICS order. The flow of the structure factor, however,
shows no flow breakdown down to the lowest considered scale
indicated by the gray area in the figure. This implies that no
spin-valley order is present even for very low energy scales
and suggests a putative spin-valley liquid ground state. It is
also possible that the system orders at scales too low for our
numerical resolution. This may explain the flow breakdowns
in the small region close to the semiclassical ICS/stripe phase
with a small critical scale of �c/|J| ≈ 0.025.

C. Role of the SU(4) symmetry breaking couplings

We now turn to the phase diagrams with fixed J1 and
J2 and varying phase ϕ. Figure 7 shows the phases and
their boundaries found by the pf-FRG in comparison to the
semiclassical results. For J1 and J2 fixed to their values at
�V = −100 and −60 meV, the phase diagrams agree remark-
ably well. The only significant difference is that semiclassical
IVC + spin order again turns to only IVC order in the
pf-FRG.

For �V = −24 meV, however, an extended putative SVL
phase emerges where the semiclassical approach showed ICS
order. The phase boundaries are also shifted notably. The
SVL phase is interspersed by incommensurate order in the
vicinity of the semiclassical ICS/stripe phase. Close to 2ϕ =
π/2, 3π/2, we observe IVC ICS order and again a very small
spin structure factor. Around ϕ = 0, on the other hand, the
spin is dominant and shows ICS instead of stripe order. The
corresponding structure factors and the position of their max-
ima are shown in Fig. 8. The spin structure factor shows very

faint stripe order everywhere expect close to ϕ = 0(2π ). This
may indicate that the corresponding stripe order observed in
the semiclassical approach is an artifact of a finite lattice with
periodic boundary conditions.

The phase boundaries are determined by the location of
the minima in the critical scale, which is shown in Fig. 9.
The critical scale in all ICS phases is again very close to
the smallest scale we can reliably calculate and the results
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FIG. 8. Quantum structure factors from pf-FRG (a) Magnitude of
the ordering vector given by the momentum kmax where the structure
factor is maximal for the phase diagram corresponding to Fig 7
(c) (�V = −24). (b) Full static structure factors at � slightly above
�c for the phases found in Fig. 7. All sectors a plotted at the same
color scale (in one phase).
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FIG. 9. Critical scale as a function of the phase for J1 and J2

fixed to the same parameters as in Fig. 7. The black area high-
lights the value of �/|J| = 0.01 below which we stop the numerical
integration. The IVC ICS phases in (c) show flow break downs
very close to this value, at which the numerics become increasingly
unreliable.

have to be interpreted with some caution due to increas-
ing numerical uncertainties. It is both possible that at such
low scales the flow breakdowns are numerical artifacts, or
that the ICS phases are indeed larger, but order below
�c/|J| = 0.01.

VI. DISCUSSION

Motivated by the recent success in the synthesis and ex-
ploration of strongly correlated moiré materials, we have
conducted a systematic study of triangular-lattice spin-
valley models with SU(2)spin ⊗ U(1)valleysymmetry, which
had been constructed as effective models for several moiré
heterostructures. While an approximate SU(4) symmetry can
be considered to be a good starting point for the study
of their correlated phase diagram, SU(4) breaking inter-
actions such as XXZ anisotropies, Dzyaloshinskii-Moriya
exchange, and on-site Hund’s couplings, are expected to
have a strong impact on magnetic and nonmagnetic ground
states. Focussing on the case with a filling of two electrons
(or holes) per moiré unit cell, we explored the SU(2)spin ⊗
U(1)valleyspin-valley model in a broad regime of coupling
constants using semiclassical Monte Carlo simulations as
well as complementary pseudofermion FRG calculations.

As the parameter space of the SU(2)spin ⊗ U(1)valley model
is large, we use material- and tuning-parameter specific
predictions for TG/h-BN as a starting point and then gen-
eralize to a broader range by additional tuning of the
XXZ anisotropies and Dzyaloshinskii-Moriya exchange cou-
plings.

With both approaches, we consistently found a rich variety
of ordered phases, including (anti-)ferromagnetic, incommen-
surate, and stripe order, which appear in the different regions
of the model’s parameter space. These states should therefore
be considered as potential candidates for correlated insulator
states appearing in moiré heterostructures described by the
SU(2)spin ⊗ U(1)valley spin-valley model. We note that it is
an ongoing discussion whether, e.g., the correlated insulat-
ing states in TG/h-BN are the result of a Stoner instability
[16], of the relevance of Mott correlations [47], or of actual
strong coupling [48]. Additional tuning or another materials
composition may tip the scale into one or the other direction
and our study can therefore shed some light at least on the
strong-coupling side.

In certain parameter regimes, it can be expected that quan-
tum fluctuations play an important role, which is not be
covered by the semiclassical Monte Carlo simluations. In that
case, the pseudofermion functional renormalization group is
better suited to identify whether quantum disordered ground
states are likely to occur. Indeed, we found a broad parameter
range where such spin-valley liquids may emerge, even in the
presence of sizable SU(4) breaking couplings. We therefore
conclude that strongly correlated moiré heterostructures are a
promising candidate materials to continue the search for and
exploration of spin liquid physics.
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APPENDIX A: SEMICLASSICAL MONTE
CARLO SIMULATIONS

In this section, we give additional details on the im-
plementation of the semiclassical Monte Carlo calculations,
discussing the definition of the semiclassical limit, the local
METROPOLIS update used in our Monte Carlo algorithms, the
finite-temperature calculations and the minimization proce-
dure to obtain the ground state. We then present supplemental
numerical data relevant for the results discussed in Sec. IV,
i.e., ground state energies obtained from the numerical mini-
mization as a function of �V and ϕ, the evolution of the latent
heat of the first-order transition into ICS/stripe, the transition
temperature as a function of ϕ, and specific heat saturation
for T → 0.
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1. Implementation

a. Semiclassical limit

As described in the main text, we define the semiclassical
limit solely by the fact that there is no entanglement between
two different lattice sites. This is enforced by considering only
product states of the form

|ψ〉 = ⊗i|ψi〉, (A1)

where |ψi〉 is an arbitrary state in the local six-dimensional
Hilbert space parametrized as

|ψi〉 =
6∑

j=1

bj
i |γ j〉, (A2)

with normalized, six-dimensional complex vectors |bi| = 1
and a basis of the local Hilbert space {|γ j〉}.

Using the notation |s1l1, s2l2〉, where s1/2 and l1/2 are the
spin and valley of the first and second electrons, we choose
the six basis states

|γ j〉 ∈ {|↑ +,↓ +〉, |↑ +,↓ −〉, |↓ +,↑ −〉,
|↑ +,↑ −〉, |↓ +,↓ −〉, |↑ −,↓ −〉}. (A3)

For a lattice with N sites and subtracting the normalization as
well as an arbitrary local phase, the full state |ψ〉 is, therefore,
parameterized by N (12 − 2) = 10N real numbers.

The semiclassical energy, defined as

Hsc({bi}) = 〈ψ |H |ψ〉, (A4)

then is a function of these real numbers. To obtain finite tem-
perature observables, we follow the approach in Refs. [58,59]
and approximate the partition function as

Z =
∫ ∏

i

dbi〈
|e−βH |
〉 ≈
∫ ∏

i

dbi e−β〈ψ |H |ψ〉. (A5)

This is equivalent to a cumulant expansion to first order,
which becomes exact in the limits of low T → 0 and high
temperature T → ∞. Thermal expectation values can now
be efficiently calculated using a Markov chain Monte Carlo
algorithm, as we describe in the following.

b. METROPOLIS updates in spin-valley space

To calculate finite-temperature observables in the
semiclassical limit, we sample spin-valley configurations
according to the Boltzmann distribution ∼exp(−β〈ψ |H |ψ〉)
using the METROPOLIS algorithm [56] with local updates.
Instead of a conventional spin configuration, however, we
need to uniformly sample from the space of product states
parameterized according to Eqs. (A1) and (A2) by a six-
dimensional complex vector bi on each site i. These vectors
are normalized and can therefore be understood to live on a
real 11-dimensional hypersphere parameterized by the real
and imaginary part of each vector component. To uniformly
sample on an n-dimensional hypersphere (n-sphere), we can
use the method from Ref. [80] and draw n + 1 normally dis-
tributed random numbers and normalize the resulting vector
afterwards. A new state can, consequently, be generated by

randomly selecting a site i and then sampling a new local state

b′
i = �

|�| , (A6)

where � is a six-dimensional complex vector, with the real
and imaginary part of each component sampled from a normal
distribution. Such sampling on the full sphere, however, leads
to very low acceptance rates for low temperatures and in turn
to very slow convergence of the results. To combat this, we
generalize the update procedure proposed for classical su(2)
spins in Ref. [81] and utilize the Gaussian trial move, which
generates a new state in the “vicinity” of the original as

b′
i = bi + σg�

|bi + σg�| . (A7)

This is also an unbiased way of sampling the local Hilbert
space, but with the benefit that the acceptance rate can be
adjusted by controlling the value of σg. Starting with a large
σg and then updating σg after every tenth sweep according to

σg → 0.5

1 − R
σg, (A8)

where R is the acceptance rate during the last ten sweeps,
this very quickly tunes the overall acceptance rate to
approximately 50% and we observe a significant speedup in
the convergence for low temperatures.

c. Finite-temperature calculations

A full finite-temperature Monte Carlo run for a temperature
T is divided in a thermalization phase for Nt sweeps and
measurement phase for Nm = 10Nt sweeps and proceeds as
follows. For the thermalization phase, we start with a large
temperature Ti = 2|J| and σg = 60 and perform Monte Carlo
sweeps using the update procedure explained above. For the
first 3

4 Nt sweeps the temperature is gradually lowered to the

desired T by multiplying it with the factor (T/Ti )
4

3Nt after each
sweep. For the remaining 1

4 Nt sweeps, the temperature is kept
constant.

During the measurement phase, temperature and σg are
kept constant for Nm sweeps and observables are measured
every tenth sweep. The statistical evaluation of measurements
is done with the BINNINGANALYSIS JULIA package [82].

Typical Monte Carlo runs in our simulations use a setup
of up to N = 362 lattice sites with periodic boundary con-
ditions and Nm = 4×106 sweeps per temperature, or up to
Nm = 20×106 sweeps close to the transition temperature.

d. Minimization to the ground state

In order to obtain semiclassical ground-state observables,
we first use simulated annealing to get close to the global
energy minimum while avoiding possible local minima. We
follow this by a stochastic gradient descent, which mono-
tonically further lowers the energy towards the ground-state
value.

Similar to the thermalization phase of a conventional
Monte Carlo run, simulated annealing constitutes of
performing Monte Carlo sweeps using the METROPOLIS

updates described above while gradually lowering the
temperature. We initialize the system at Ti = 2|J| and
σg = 60 and perform METROPOLIS updates for 4000 sweeps,
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FIG. 10. Ground-state energy per site for TG/h-BN inspired pa-
rameters. The solid gray line shows the result of the numerical
minimization. The dashed/dotted lines depict the exact energies of
the FM and 120◦ type states. The kink at the transition between
FM and 120◦ order suggests a first-order transition, while all other
transitions appear to be continuous.

or until 400N updates have been accepted (where N is the
number of sites), whichever comes first. Afterwards, we
calculate the acceptance rate R at the current temperature,
adjust σg according to Eq. (A8) and lower the temperature by
2%. When σg has reached the minimal value of σg = 0.05 we
keep it constant. We continue lowering the temperature until
the acceptance rate is below Rmin = 0.001%, after which we
stop the calculation.

Starting from the so obtained state, we perform optimiza-
tion sweeps using stochastic gradient descent. Here, the idea
is to randomly pick a site i, obtain the energy Hi

sc as a
function of only bi (with b j �=i fixed), and then minimize this
energy using gradient descent. To preserve the normalization
|bi| = 1, however, Hi

sc needs to be minimized on the 11-sphere
spanned by the real and imaginary part of bi. To this end,
we calculate the gradient ∇Hi

sc on the sphere using the finite
differences backend of the MANIFOLDS JULIA package [83],
and then perform gradient descent using the MANOPT JULIA

package [84]. The gradient descent on a single site is stopped
when the norm of the gradient is below 0.001|J|. Performing
this for N randomly chosen sites constitutes one optimization
sweep. We find that after No = 60 optimization sweeps the
energy does not significantly change anymore and we stop the
minimization. From the resulting state, we can then calculate
ground-state observables. To confirm that we are not stuck in
a local energy minimum, we perform several of these mini-
mizations and compare the resulting energies.

2. Supplemental numerical data

a. Ground-state energies

In this section, we present the ground-state energies ob-
tained from the numerical minimization to confirm the correct
identification of the FM and 120◦ states, and to elucidate the
nature of the T = 0 transitions between the different ground-
state orders. Starting with the TG/h-BN inspired parameters,
Fig. 10 shows the energy from the minimization compared
to the exact energies of the IVC FM (e.g., given by |σ xτ x〉),
the IVC + spin FM [defined in Eq. (8)], and the IVC 120◦
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FIG. 11. Ground-state energy per site as function of the phase for
J1 and J2 fixed to the same parameters as in Fig. 5. The solid gray line
shows the result of the numerical minimization. The dashed/dotted
lines depict the exact energies of the FM and 120◦ type states. The
transition between the 120◦

κ+ , 120◦
κ− , and FM order shows a clear

kink in the energy suggesting a first-order transition, while transitions
between the two FM phases appear continuous. The nature of the
transition in the ICS phase in (c) (blue background) can not be
conclusively determined from the numerical data.

state [defined in Eq. (11)]. The numerical minimization al-
most exactly matches the energy of the lowest lying state,
apart from the ICS phase where we did not obtain an ana-
lytic expression for the ground state. At T = 0, the energy
is equivalent to the free energy, in which a kink (i.e., a
discontinuity in the first derivative) implies a first-order tran-
sition. The transition between 120◦ and FM order precisely
shows this behavior, while all other transitions appear to be
continuous.

Similar behavior is found when varying ϕ for fixed J1 and
J2 as shown in Fig. 11, where the transition between 120◦ and
FM phases shows a clear kink. To determine the energy of
the IVC + spin FM shown Fig. 11(b), we numerically obtain
the optimal value for δ, which is the coefficient of the pure
spin eigenstate in the definition of the IVC + spin FM, so that
the state has minimal energy. The value δ has its minimum
of δ ≈ 0.52 at 2ϕ = π in the center of the IVC + spin FM
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FIG. 12. Specific heat saturation at low temperatures for TG/h-
BN inspired parameters deep in the 120◦, FM and ICS phase and
L = 12. We observe cv (T → 0) = 5 for all types of order, also for
those not explicitly shown here. This indicates the existence of ten
harmonic zero modes.

phase and continuously grows when moving towards the spin
FM phase. In the close vicinity of ϕ = 0 (2π ), δ → ∞ is the
optimal value, which is equivalent to the pure spin FM, sug-
gesting a continuous transition. The phase boundary shown
is in this case determined by the position of a dip in the
transition temperature [see Fig. 14(b) below]. The nature of
the transition in the ICS phase in Fig. 11(c) (blue background)
can not be conclusively determined from the numerical data.

b. Thermodynamics

In Sec. IV, we have discussed the emergence of ten har-
monic zero modes in all observed phases of our model,
indicated by a specific heat saturating at cv (T → 0) = 5.
Figure 12 shows examples of the corresponding low tempera-
ture behavior of the specific heat in the three principal phases
of our model. The other phases, not explicitly shown here,
exhibit very similar low temperature behavior and we always
find cv (T → 0) = 5. At the transition into the ICS phase
shown in the right column of Fig. 4 of the main text the energy
as a function of T shows a clearly visible discontinuity and
the energy histogram a well-developed double-peak structure,
both indicating a first order transition. Here we expand on
the strength of this first-order transition by determining the
latent heat released at this first-order transition. To this end,
we fit double Gaussians to the energy histogram and calculate
the difference of the two peak positions, which corresponds
to the jump in the energy at the transition. The evolution
of the so-determined latent heat is shown in Fig. 13. Deep
inside the ICS/stripe ordered phase at �V > −30 meV, the
associated thermal phase transition exhibits a sizable latent
heat of about 0.07|J|, indicating a strong first-order thermal
transition. Upon approaching the transition to the ferromag-
netically ordered phase, this latent heat quickly vanishes in a
continuous way, indicating a softening of the transition into a
continuous thermal transition as expected for a ferromagnet.

To conclude our discussion of the semiclassical thermody-
namics, Fig. 14 shows the transition temperature as a function
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FIG. 13. Latent heat of the first-order transition into ICS/stripe
order. Here the energy distribution at the transition temperature
shows a double-peak structure, as shown in the top panels for �V =
−32, −31, and −29 meV. The latent heat is given by the difference
of the peak positions, which we determine by fitting double Gaus-
sians to the energy distributions. This is done for a lattice size of
L = 24.

of ϕ, using the same parameters as in Fig. 5. For these plots
Tc is determined by the position of the maximum in the spe-
cific heat calculated for system sizes L = 12, 24, 36 and then
extrapolated to infinite lattice size using a linear fit.

APPENDIX B: PF-FRG SIMULATIONS

We round off the manuscript by presenting additional
details on the implementation of the pf-FRG and provide
supplemental data for the corresponding calculations of the
quantum model.

1. Implementation

The first step in the pf-FRG approach is to rewrite the
spin-valley Hamiltonian by decomposing the spin-valley op-
erators into complex pseudofermions as presented in Eq. (1).
It is important to note that the operators f (†)

isl do not represent
the original itinerant electrons of the underlying half-filled
Hubbard model, but are in fact auxiliary degrees of freedom,
which have to always fulfill the local number constraint of two
pseudofermions per site, i.e., ni = 2, cf. Eq. (2). In the pres-
ence of particle-hole symmetry, this constraint is enforced on
average, i.e., 〈ni〉 = 2, and our implementation maintains this
symmetry.5 Particle-number fluctuations around the average
are not expected to alter the qualitative behavior of physical
observables obtained from the pf-FRG [44,88,89].

5We note that exactly enforcing the constraint is notoriously dif-
ficult and has up to now only been achieved for su(2) spin models
using the Popov-Fedotov trick [85] or a Majorona fermion repre-
sentation [86,87]. Although quantitatively accurate results on small
spin clusters could be obtained for temperatures T/|J| � 0.2, their
extrapolation to the zero temperature limit, considered here, has so
far remained elusive within both approaches.
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FIG. 14. Transition temperature as a function of the phase for J1

and J2 fixed to the same parameters as in Fig. 5. Tc is determined
as the position of the maximum in the specific heat extrapolated to
infinite lattice size.

The central idea of the FRG approach [77] is to treat the
resulting fermionic Hamiltonian by not considering all energy
scales at once, but starting from a known high-energy limit
and iteratively including lower energy scales until the full
theory is recovered [78,79]. This is achieved by introducing
a regulator function ��(ω) in the bare propagator

G0(ω) = (iω)−1 → G�
0 (ω) = ��(ω)G0(ω), (B1)

so that it satisfies the boundary conditions G�→∞
0 = 0 and

G�→0
0 = G0. A derivative with respect to the cutoff � gen-

erates an infinite hierarchy of differential equations, the flow
equations, which govern the evolution of the one-particle ir-
reducible vertex functions. To become amenable to numerical
computations the infinite hierarchy has to be truncated. Here,
we choose the Katanin truncation [90], which only considers
the scale dependence of one- and two-particle correlation
functions, i.e. the frequency-dependent self-energy �� and
the interaction vertex ��. This level of truncation has been
shown to successfully discriminate between ordered and dis-
ordered regimes [49]. The initial conditions of the vertex
functions at � → ∞ are given by the bare coupling con-
stants in the Hamiltonian and integrating out all fluctuations
amounts to lowering the cutoff scale down to � → 0.

In our numerical implementation, which is based on the
PFFRGSOLVER JULIA package [44], the continuous Matsubara
frequencies are discretized in an adaptive grid with N� = 200
frequencies for the one-particle vertex and N� = 40×30×60
for the two-particle vertex, where we checked for convergence
with respect to increasing the number of frequencies. The infi-
nite lattice is approximated by considering a real-space vertex
truncation of L = 12 lattice bonds, which effectively enforces
a maximal correlation length. This is beneficial compared
to periodic boundary conditions as incommensurate order is
more easily resolved [91]. We integrate the flow equations,
which for this setup amount to approximately 8×107 coupled
differential equations, starting from a large cutoff �/|J| = 20
down to �/|J| = 0.01, below which the simulation starts
to become unreliable. We label phases that show no flow
breakdown above �/|J| = 0.01 as putative spin-valley liquids
(SVL) that exhibit a quantum disordered ground state.

2. Supplemental numerical data

a. Renormalization group flow of the structure factor

In Fig. 15, we show the renormalization group flow of the
static (equal-time) structure factor for the different phases of
our model, calculated at the momentum kmax with maximal
intensity of the dominant sector. A divergence in the flow,
which is usually softened to a kink or cusp by finite size

FIG. 15. Renormalization group flow of the static structure factor for the different phases of our model at the momentum of maximal
intensity kmax. The dotted gray line shows the critical scale �c indicating the onset of magnetic order, which is determined by the position of
maximal negative curvature. In the SVL phase the flow stays convex down to the lowest numerically computed cutoff �/|J| = 0.01, i.e., the
curvature is always positive. This indicates the absence of magnetic order.
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effects, indicates the onset of magnetic order. We determine
the associated critical scale �c as the � where the structure
factor has the maximal negative curvature (the second
derivative). If the flow is convex down to �/|J| = 0.01, i.e.,
the curvature is always positive, we interpret the ground
state to be a disordered, putative SVL state. In the case of a
flow breakdown, we always observe either dominant χστ⊥

,
indicating IVC order, or in χσ , indicating spin order. In
contrast to the semiclassical model, the structure factor in the
dominant sector is always close to a magnitude bigger than
the others indicating that we never observe an IVC + spin
state in the quantum model.

b. Staggered vector chirality

The sign of the staggered chirality, as defined in Eqs. (9)
and (10), can also be calculated in the quantum model using
the nearest neighbor correlations obtained from the pf-FRG
flow. Since the flow equations preserve the symmetries of the
Hamiltonian, which include a C3 rotation and a sign change
under inversion, all nearest neighbor correlations along a tri-
angle will be equal up to a a sign change between left and
right pointing triangles. A sign change under inversion also
implies χ

μμxy
i j = −χ

μμyx
i j . It follows that the chiralities are

proportional to κτ ∼ χ
ddxy
〈i j〉 and κστ ∼ χ

μμxy
〈i j〉 , with 〈i j〉 being

a nearest-neighbor bond in a right-pointing triangle. Figure 16
shows the resulting flow of the staggered chiralities in all
phases of our model. The FM and pure spin orders show zero
chirality. The chirality in all other phases exactly matches the
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FIG. 16. Renormalization group flow of the staggered chirality
deep inside the different phases of our model. FM states, or states
that order only in the spin always show zero chirality. The chirality
of all other states is consistent with the sign of the coupling JDM

i j in
Eq. (3).

sign changes of the JDM
i j coupling of Eq. (3), as was the case

for the semiclassical model. Even the SVL phase shows a
finite chirality consistent with the corresponding semiclassical
ICS phase.
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