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Symmetry-deformed toric codes and the quantum dimer model
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Motivated by the recent introduction of a U(1)-symmetric toric code model, we investigate symmetry-based
deformations of topological order by systematically deconstructing the Gauss-law-enforcing star terms of the
toric code (TC) Hamiltonian. This “term-dropping” protocol introduces global symmetries that go beyond the
alternative framework of “ungauging” topological order in symmetry-deformed models and gives rise to models
such as the U(1)TC or XY TC. These models inherit (emergent) subsystem symmetries (from the original
1-form symmetry of the TC) that can give rise to (subextensive) ground-state degeneracies, which can still
be organized by the eigenvalues of Wilson loop operators. However, we demonstrate that these models do not
support topological or fracton order (as has been conjectured in the literature) due to the loss of (emergent) gauge
symmetry. An extreme deformation of the TC is the quantum dimer model (QDM), which we discuss along the
family of symmetry-deformed models from the perspective of subsystem symmetries, sublattice modulation,
and quantum order-by-disorder mechanisms resulting in rich phase diagrams. For the QDM, this allows us to
identify an emergent SO(2) symmetry for what appears to be a gapless ground state (by numerical standards)
that is unstable to the formation of a plaquette valence bond solid upon sublattice modulation.

I. INTRODUCTION

Symmetry is a unifying principle in the classification of
quantum many-body phases. Beginning with the familiar
case of spontaneous symmetry breaking (SSB)—where dif-
ferent phases correspond to distinct patterns of broken global
symmetry—one can extend the classification to symmetric
yet short-range entangled ground states known as symmetry-
protected topological (SPT) phases [1]. These phases are sta-
ble against any local perturbation that preserves the protecting
symmetry. Beyond this symmetry-based paradigm lies topo-
logical quantum order (TO), a long-range entangled phase
supporting anyonic excitations and a ground-state degener-
acy fixed by the system’s topology [2–4]. Many TO phases
are best viewed as emergent gauge theories with local gauge
groups; crucially, this gauge structure does not itself have to
be an explicit symmetry of the microscopic Hamiltonian, but
can be an emergent symmetry at low temperatures.

A versatile tool to connect symmetry, topology, and entan-
glement is gauging—the procedure which converts a “global”
symmetry to a “local” gauge symmetry [5–7]. If the un-
derlying (global) symmetry group is sufficiently “large,” one
can perform partial gauging, whereby the resulting system
can host long-range entangled TO enriched by a residual
global symmetry, yielding symmetry-enriched topological or-
der (SET) [8, 9]. Although gauging and its inverse, ungaug-
ing, naturally uncover a hierarchical structure of phases within
a tractable group-theoretic framework, the interplay between
global and local symmetries that cannot be related by gauging
remains a subtle open problem.

In this work, we follow a different symmetry-deformation
strategy to endow TO with global symmetry: instead of gaug-
ing or ungauging, we drop terms from an exactly solvable
Hamiltonian hosting a fixed-point TO phase. Specifically,
we consider Kitaev’s toric code (TC) [10] on a square lattice,
which realizes the simplest Z2 gauge theory, and deconstruct
the Gauss-law-enforcing star term, as illustrated in Fig. 1. We
ask whether such a term-dropping protocol gives rise to a new
hierarchical structure of symmetries, similar to the ungaug-
ing procedure. We find that the answer is partially affirma-

tive: Dropping terms can indeed lead to new subsystem or
even global symmetries, with the most interesting example
exhibiting a global U(1) (instead of Z2) symmetry [11]. But
whether such a U(1)TC retains TO has remained an enigma—
quantum Monte Carlo (QMC) simulations [11] indicated a
ground-state degeneracy (GSD) of three states, whose inter-
pretation as a topological degeneracy points to the exhilarat-
ing possibility of non-Abelian TO (such as the Ising TQFT),
but at the same time a sensitivity of this GSD to boundary
conditions is counter-indicative of TO (with a 0 degree com-
pactification reported [11] to result in a two-fold GSD).

Motivated by this puzzle, we present a detailed analysis
of the ground states of symmetry-deformed TC models,
including the U(1)TC and a related XY TC [12] as important
cases, and—in an extreme deformation—the quantum dimer
model (QDM), which retains only a minimal number of
terms, see Fig. 1. We show that symmetry plays a distinct role
in all of these models. Crucially, we find that the acquisition
of global symmetry comes at the expense of local (emergent)
gauge symmetry, generically leading to a breakdown of TO.
At the same time, an understanding of subsystem symmetries
in these models leads to broad understanding of ground states
and their degeneracies, including fresh insights into the QDM
as the most extreme deformation of the TC.

II. SYMMETRY-DEFORMED TORIC CODES

Our starting point is the conventional TC Hamiltonian
HTC = −

∑
s As −

∑
p Bp, a sum of star and plaquette

terms. The latter, Bp =
∏

l∈∂p σ
z
l , enforce a zero-flux con-

straint (which can be identified with the even sector of the un-
derlying Z2 gauge theory). Our attention lies on the star terms
that, for the conventional TC, enforce a local Gauss-law, but
will be modified for the symmetry-deformed TC models by
systematically removing operators from each star term

As =
∏
l∈s

σx
l =

∏
l∈s

(σ+
l + σ−

l ),

=
(
| ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |

+ | ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |+ h.c.
)
,

(1)
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FIG. 1. Schematic model overview for the term-dropping protocol. Shown are instances of 8-term, 6-term, 4-term, and 2-term models that
arise from restricting the 16 individual operators (and their Hermitian conjugates) of the toric code’s star terms shown in the upper left (orange
shaded) panel. The plaquette term of the original toric code can be similarly represented (see the upper right, pink-shaded panel) where we
distinguish terms enforcing Bp = +1 (Bp = −1) plaquette eigenvalues corresponding to an even (odd) gauge theory. For each model
instance, we illustrate a representative example of a ground-state configuration in the exactly solvable limit of maximal sublattice modulation
(Js2 = 0). The black diagonal lines emanating from the plaquettes serve as a visual aid to identify the locations of fluxes, as explained in
detail in Fig. 3 and in the main text. For the quantum dimer model (QDM), the gray plaquettes indicate those that do not gain energy from the
star term (see the discussion in Sec. III).
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FIG. 2. Phase diagram of symmetry-deformed toric codes. (a) Phase diagram interpolating the U(1)TC and XY TC models to the TC
model using parameters λ and λ′, respectively, with a sublattice modulation of the star terms, Js2 = 1 − Js1 . The red/blue lines indicate
first/second order transitions. The label “pVBS” stands for plaquette valence bond solid, while “SSSB” stands for spontaneous subsystem
symmetry breaking phase. For the solvable limit of the U(1)TC the subsystem symmetry is emergent, indicated by “SSSB*”. (b) Energy
difference between the full-line configuration and the pVBS configuration, ∆E = Efull-line −EpVBS. (c) Schematic illustration of the quantum
order-by-disorder mechanism induced in 4th-order perturbation theory. Energy costs are localized on the plaquettes marked in red. (d) The
inverse correlation length 1/ξ, which scales with the gap, along horizontal cuts in the upper half, indicating continuous phase transitions (with
a gap closing) for λ < 0.851 and first-order transitions (with a finite gap) for λ > 0.851. (e) Scaling of the correlation length ξ with bond
dimension χ at phase boundaries.

where, in the second line, a pictorial representation is used
for the σz-basis [black(white) for σz = +1(−1)]. For
example, retaining only the first and last three terms (and
their Hermitian conjugates) yields the XY TC model [12],
whose star term can also be expressed as As = (

∏
l∈s σ

x
l +∏

l∈s σ
y
l )/2. Subsequently removing the first term, leading

to As = | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ | + h.c. , gives rise to
a global U(1) symmetry, resulting in the U(1)TC [11]. One
can further deform these models by keeping only four terms
or even only two terms, where the model turns into an even
gauge-sector equivalent of the well-known QDM. A summary
of these models is provided in Table I below.

Any symmetry-deformed TC model satisfies [Bp, Bp′ ] =
[Bp, As] = 0 and, on a torus geometry, the Hamiltonian com-
mutes, for all models, with Wx =

∏
i∈Cx

σz
i and Wy =∏

i∈Cy
σz
i , where Cx and Cy denote contours along the pe-

riodic x and y directions, respectively. The star terms, how-
ever, do not commute [As, As′ ] ̸= 0 for neighboring s
sites—except in the undeformed TC case—indicating that
the symmetry-deformed models are no longer integrable. To
gain analytical insight we divide the star sites into two mu-
tually staggered sublattices, s1 and s2: −Js1

∑
s1
As1 −

Js2
∑

s2
As2 . When the star terms on the s2 sublattice are

turned off, the model decomposes into isolated clusters of four
spins attached to the s1 sites (subject to the Bp constraints),
thereby restoring integrability, see Fig. 3(a). This provides,

as we will discuss below, understanding of a broader GSD, in
which a finite Js2 can then be treated as a perturbation. Since
the models are generally non-integrable, we also resort to nu-
merical methods for a full understanding. Specifically, we em-
ploy iDMRG simulations [13], for which the two-dimensional
model is mapped onto a one-dimensional cylindrical geome-
try: the system is finite along the y direction and infinite along
the x direction [14–17]. To fully exploit the translational sym-
metry along the infinite direction, we carefully choose a com-
pactification angle based on the expected symmetry-breaking
pattern (see below and Appendix A for further details).

A. The U(1) toric code

We start our exploration of symmetry-deformed TC mod-
els by mapping out a phase diagram (Fig. 2) interpolating
between the U(1)TC, the undeformed TC, and the XY TC
Hamiltonians. For instance, in the upper half of the phase dia-
gram we interpolate H = (1−λ)HTC+λHU(1)TC, while also
varying the relative strength of the two star terms As1 and As2

with Js2 = 1 − Js1 . Similarly, we interpolate the TC to the
XY TC (using a parameter λ′) in the lower half of the phase
diagram. The phase diagram shows a broad range of stability
of TO around the TC fixed-point (λ = λ′ = 0; Js2 = 1/2)
to both the symmetry deformation and sublattice modulation.
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The latter gives rise to ordered phases, a plaquette valence
bond solid (pVBS) phase with a unique ground state and
a spontaneous subsystem symmetry breaking (SSSB) phase.
The U(1)TC and XY TC sit exactly at phase transitions be-
tween two symmetry-related sublattice ordering patterns. It
is therefore instructive to start our further analysis from these
ordered phases in their exactly solvable limits.

Exactly solvable limit

In the exactly solvable Js2 = 0 limit of the U(1)TC the
ground-state (GS) configurations for Bp = +1 plaquettes can
be graphically represented by a set of plaquette valence bonds
centered at the s1 sites

| ⟩ = | ⟩+ | ⟩ , | ⟩ = | ⟩+ | ⟩ , | ⟩ = | ⟩+ | ⟩ ,

(a)

(b)

(c)

s1 s2 Bp = 1

=

=

=

=

＋

＋

＋

＋

Bp = −1

(Wx , Wy) = (+1, +1)

(−1, −1)

(+1, +1)

(+1, −1) (−1, +1)

0 deg. 45 deg.

FIG. 3. Graphical representation of ground-state configurations
in the exactly solvable limit Js2 = 0. (a) The sites, on which the
star terms act, are split into two sublattices, s1 and s2. Ground-
state configurations can be constructed by assigning to each s1 site a
plaquette valence bond favored by the corresponding As term, e.g.,
| ⟩, | ⟩, or | ⟩ in the case of the U(1)TC. Bp = −1 plaquettes
(indicated by a “+”) appear at the endpoints of (anti-)diagonal lines
(see text for details). (b) Ground-state configurations related by the
Zsub

2 symmetry can be sequentially generated by repeatedly applying
the operator

∏
i∈Cdiag

σx
i , where Cdiag denotes the contour along the

diagonal direction. (c) Examples of the subextensive ground-state
manifold of the U(1)TC, characterized by different compactification
angles and classified by the eigenvalues of the operators Wx and Wy .

with the pVBS configuration,
∏

s1
| ⟩s1 , being one of the

ground states. In addition, each plaquette may have (anti)
diagonal lines emanating from its center if the two spins on
the corresponding edge have the same sign [Fig. 3(a)]. If, in
the multiplaquette state, these lines have endpoints, then the
corresponding plaquettes (at the end of the lines) will have
a plaquette flux Bp = −1 and therefore describe an excited
state. If, on the other hand, the diagonal lines wrap around the
torus, then we have another GS. The manifold of such states
can be obtained by repeatedly applying the Zsub

2 symmetry op-
erator,

∏
i∈Cdiag

σx
i , to the pVBS state [Fig. 3(b)]. The same

holds for ground states containing anti-diagonal line loops us-
ing

∏
i∈Canti-diag

σx
i operators. This construction thereby leads

to a (2L/2+1−1)-fold subextensive GSD in the solvable limit.
The GS manifold generated in this way exhibits, by con-

struction [18], an emergent subsystem symmetry where the
subextensive GSD is a direct consequence of SSB of this sym-
metry, indicated by SSSB* in Fig. 2(a). In addition, GS can
be organized by the eigenvalues of Wx and Wy . Interest-
ingly, the line representation, introduced as a visual tool to
check the Bp constraints, can also be used to determine the
eigenvalues of Wx and Wy , i.e., each time a loop crosses a
line, the corresponding eigenvalue flips its sign. For even
linear system size L, in the 0-degree compactification, this
leads to two possibilities—(Wx,Wy) = (±1,±1). Mean-
while, in the 45-degree compactification, three distinct sectors
appear—(Wx,Wy) = (+1,+1) and (Wx,Wy) = (±1,∓1)
[see Fig. 3(c)].

Quantum order-by-disorder

Moving away from the solvable limit one can treat a fi-
nite Js2 in perturbation theory, which is expected to lift the
classical GSD through a quantum order-by-disorder process.
In finite-size systems, two types of quantum fluctuations can
arise—global and local. Global fluctuations are induced by
operators such as

∏
s2∈C′

diag
As2 , or their anti-diagonal coun-

terparts, which mediate hopping between different ground
states (e.g. via inserting, removing, or shifting (anti-)diagonal
lines). However, these processes are exponentially suppressed
with the linear system size (and therefore invisible in our
iDMRG simulations). Local fluctuations, in contrast, act to
locally dress the ground-state wave function. Applying As2

twice at the same s2 site brings the system back to the same
ground state, with intermediate energy costs localized on the
four neighboring s1 sites. This second-order process renor-
malizes the energy of all ground-state configurations equally
and thus does not lift the degeneracy.

The situation changes at fourth order [Fig. 2(b, c)]. When
two neighboring s2 terms are applied, the intermediate energy
cost then depends on whether those two s2 sites intersect with
a (anti-)diagonal line. If they do, the excitation involves six
s1 sites; if not, the two central plaquettes incur no additional
energy cost, as they are favored by the U(1)TC star term. As a
result, the energy gain from this fourth-order process is maxi-
mized when the system contains no (anti-)diagonal lines, i.e.,
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in the configuration
∏

s1
| ⟩s1 , corresponding to the pVBS

state. This constitutes a quantum order-by-disorder mecha-
nism [19] that selects the pVBS state as the unique ground
state once Js2 ̸= 0. Numerically obtained energy splittings
between the zero-line and full-line configurations confirm the
fourth-order selection scenario [Fig. 2(b)].

Ground state

We find that the pVBS ground state selected at small but
finite Js2 > 0 persists up to the isotropic point Js1 = Js2 ,
where the U(1)TC model recovers full translational symme-
try. This isotropic point can thus be interpreted either as a
first-order transition point or as an SSB of translational sym-
metry, with the two possible pVBS states forming a two-fold
GSD. For any deviation Js1 ̸= Js2 , translational symmetry is
explicitly broken, and the ground state becomes unique.

In the presence of both global and local fluctuations, the
finite-size energy splitting between the zero-line and single-
line configurations is given by

∆E(L) = α exp(−L/ξ) + βL

with L being the linear system size. The first term arises
from global fluctuations, while the second originates from lo-
cal fluctuations and scales linearly in system size L. For small
L, the first term dominates, leading to an apparent exponen-
tial suppression of the gap. As L increases, however, the
linear term becomes dominant and reopens the gap between
topological sectors. Numerically, we estimate the prefactor
β to be rather small, approximately 1.1 × 10−3, even at the
isotropic point Js1 = Js2 . This strong numeral suppression
of the finite-size effects of local fluctuations makes it a chal-
lenge to detect this splitting in any finite-size simulations. For
instance, to resolve this small energy splitting in QMC simula-
tions, the temperature must be lower than the gap scale. Oth-
erwise, the system appears to exhibit a renormalized classi-
cal ground-state manifold [20–22]. Consequently, rather than
observing the true pVBS ground state, QMC might indicate
an apparent ground-state degeneracy—two-fold for 0-degree
and three-fold for 45-degree compactification—thus reconcil-
ing our results with previous QMC findings [11].

Phase transitions

Let us return to the phase diagram of Fig. 2(a), which
interpolates between the U(1)TC and the undeformed TC
Hamiltonian and investigate how TO break downs at the var-
ious phase transitions. Starting from the U(1)TC point at
(λ = 1, Js1 = Js2), and moving towards the TC along the
λ-axis we observe a gap closing near λ ≈ 0.85. This sig-
nals that the first-order transition at Js1 = Js2 turns into a
second-order phase transition, at which the two-fold degen-
erate pVBS phase meets the Z2 TO phase. In the extended
parameter space with sublattice modulation Js1 ̸= Js2 , this
critical point turns out to be a tricritical point, from which

two second-order transition lines branch out for λ < 0.85.
We argue that these two transition lines are second-order tran-
sitions belonging to the universality class of the (2+1)-D Ising
model—akin to the breakdown of TO in the toric code under
a magnetic field [23–26]—for the following reasons:

Starting in the pVBS phase (e.g. for Js2 < Js1 ), the As2

term serves as a source of quantum fluctuations. Its action
creates excitations on the four neighboring s1 sites, which col-
lectively form a domain wall, represented pictorially by the
lines emanating from plaquettes introduced earlier. Repeated
applications of As2 extend these domain walls [cf. Fig. 2(c)].
In addition to the explicit energy cost, illustrated by the red-
colored plaquettes in the figure, there is also an implicit en-
ergy cost associated with the | ⟩ and | ⟩ plaquettes. This
cost arises from previously discussed fourth-order processes
and from the reduced transition amplitude of the As2 term
(less than unity), akin to the physics of domain walls.

As λ decreases, both the explicit energy cost and the sup-
pression of the transition amplitude are reduced, lowering
the overall ‘domain-wall energy’. This reduction drives the
second-order transition observed for λ < 0.85, which can
thus be interpreted as domain-wall condensation leading to
the emergence of Z2 TO, analogous to the mechanism in the
(2+1)-D Ising model [27]. For λ > 0.85, quantum fluctua-
tions are strongly suppressed, and the Z2 TO phase disappears
entirely.

In terms of topology we can think of the pVBS phase as a
topological trivial phase, in which the m excitations of the TC
are confined and the e excitations condensed (with their con-
densation driving the phase transition from the TC into the
pVBS phase). To see this, consider creating a pair of m ex-
citations (Bp = −1) in the pVBS phase and separating them
along a diagonal direction. This process requires placing | ⟩
configurations along the path, with the m excitations local-
ized at the endpoints of the diagonal line. Since each | ⟩ con-
figuration carries an energy cost, the m excitations are con-
fined. Equivalently, this reflects the condensation of e exci-
tations in the pVBS phase. With this topological description
in mind, note that our phase diagram indeed bears some re-
semblance to the TC phase diagram with a two-component
magnetic field in the XZ-plane [24, 25] where—akin to the
well-known Fradkin-Shenker phase diagram of the Z2 gauge
theory [28]—two lines of continuous Ising transitions meet
in a tricritical point, out of which a first-order line emerges.
However, this latter tricritical point exhibits self-duality and
the two continuous phase transitions are dual to one another.
In contrast, no such duality connects the two continuous phase
transition lines in our case. Both are transitions into staggered
variants of the pVBS phase, each driven by the condensation
of e excitations and confinement of the m vortices.

B. The XY toric code

For the XY TC model, ground states can be constructed in
a very similar manner to the U(1)TC: in the solvable limit
(Js2 = 0) the expansion of the star operator to

As = | ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |+ h.c.
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inserts an additional plaquette state | ⟩ = | ⟩+ | ⟩. The lat-
ter allows for the crossing of diagonal and anti-diagonal line
loops (whose coexistence is forbidden in the U(1)TC). While
the subsystem symmetry for the U(1)TC is an emergent sym-
metry, it becomes explicit for the XY TC [12]. We note that
this explicit subsystem symmetry Zsub

2 in the XY TC model
descends directly from the original (magnetic) 1-form sym-
metry of the undeformed TC. The hallmark of a 1-form sym-
metry operator—the ’t Hooft loop operator—is that it can be
smoothly deformed, e.g. by multiplying it with the star terms,
all of which commute with the Hamiltonian. If these star
terms are removed (or modified as for the XY TC), this de-
formability is lost; the loop operator consequently splits into
independent, rigid subsystem symmetries. This symmetry set-
ting then allows one to construct all 2L distinct ground states
in the solvable limit—each configuration is a realization of
one of SSSB states.

Ground state

For the XY TC model, increasing Js2 > 0 away from
the solvable limit we find that local fluctuations do not lift
the GSD. As an illustrative example, consider the fourth-
order perturbation process that selects the pVBS state in the
U(1)TC model [Fig. 2(c)]. In the XY TC case, the intermedi-
ate energy cost resides only on the four s1 sites, since the | ⟩
plaquettes—previously excited states in the U(1)TC model—
are now energetically favored. Indeed, our numerical results,
which are free from global fluctuations, show no energy split-
ting between the zero-line and full-line configurations, indi-
cating that even higher-order perturbative processes fail to lift
the GSD. This subextensive GSD persists up to the isotropic
point Js1 = Js2 , where the system undergoes a first-order
phase transition. This is also evidenced by the absence of a
gap closing and a finite inverse correlation length at the tran-
sition [see Fig. 2(e)].

The ground state of the XY TC model thus is described by a
2L+1 degenerate ground-state manifold, with each state being
a realization of a spontaneous subsystem symmetry breaking
(SSSB) state.

Phase transitions

Previous work [12] on the XY TC model established a
mapping between the XY TC model and two copies of the
Xu-Moore model [29]. There, the transition between the
Z2 TO phase (akin to the TC) and the SSSB phase (akin
to the XY TC) corresponds to a self-dual point of the Xu-
Moore model, which has been shown to undergo a first-order
transition. Although our interpolation parameter λ′ between
the XY TC and the TC model differs from the one used in
Ref. [12], the two can be brought into one-to-one correspon-
dence through a proper rescaling [30], implying that the phase
transition lines in the lower half of our phase diagram, cf.
Fig. 2(a), are first-order transitions. This is indeed confirmed
in our numerical simulations where the transition between the

Z2 TO phase and the SSSB phase remains first-order (indi-
cated by a finite gap/inverse correlation length) along the en-
tire line.

Variations of the XY TC model

The XY TC model, which comprises eight of the sixteen
terms in the original TC, has a natural conjugate – the XY TC
which is built from the remaining eight terms. In fact, this
subset of eight terms is also a canonical choice since the terms,
in their pictorial representation, are all symmetry-related to
one another

As = | ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |+ h.c.

Notably, the XY TC and the previously discussed XY TC are
isospectral, i.e. their energy spectra are in one-to-one corre-
spondence. This even holds when flipping the gauge con-
straint from Bp = +1 (even gauge) to Bp = −1 (odd gauge),
as illustrated in the inset of Fig. 1. As a consequence, we
can construct the ground-state manifold of the XY TC in a
manner analogous to what we have discussed above. Fig-
ure 1 shows an example GS configuration of the symmetry-
deformed XY TC in the exactly solvable limit (Js2 = 0), from
which other ground state configurations can be systematically
generated by applying the symmetry operator

∏
i∈C(anti-)diag

σx
i .

The XY TC in the isotropic limit (without sublattice modu-
lation) then also sits at a first-order transition where the two
ground-state manifolds coexist, giving rise to a GSD of 2L+1

states, with each state being a realization of a spontaneous
subsystem symmetry breaking (SSSB) state.

Interestingly, there are no other notable eight-term models
beyond these XY TC models (and their conjugates). Every
other subset of eight terms will reduce to an equivalent 6-,
4-, or 2-term model (with the remaining terms only renormal-
ize states without causing qualitative changes), which we will
discuss below.

C. Hierarchy of models

Our “term-dropping” protocol has, so far, taken us from
the the original, undeformed TC model where the star term is
expressed in 16 terms to its symmetry-deformed descendants,
the XY TC and U(1)TC with Bp = +1 constraint, containing
8 and 6 terms, respectively.

The full hierarchical structure of symmetry-deformed TC
models is revealed by further removing terms, as summarized
in Table I. We focus on the case with uniform Bp = 1 or Bp =
−1 for all p. The models that include all 16 possible terms
correspond to the odd- and even-gauge TC models, associated
with Bp = 1 and Bp = −1, respectively.

4-term models

One can identify two distinct types of models with just 4-
term: (i) one with explicit subsystem symmetry (which we de-
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model terms subsystem ground-state
symmetry degeneracy

toric code 16 1-form 4-fold (topo.)
XY toric code 8 explicit (rigid) 2L+1

U(1) toric code 6 emergent† (rigid) 2-fold (pVBS)

4-term model I 4 explicit (rigid) 2L/2+1-fold
4-term model II 4 — 4-fold (pVBS)
TFIM∗ 2 — 2-fold (pVBS)
QDM∗ 2 — critical

TABLE I. Summary of the models discussed in this work. The
ground-state degeneracy at Js1 = Js2 is calculated for an L × L
system with periodic boundary conditions. The asterisk (∗) for the
transverse field Ising model (TFIM) and the quantum dimer model
(QDM) indicates that these models are defined in a modified gauge
sector, but remain in one-to-one correspondence with their original
definition. The † indicates that the subsystem symmetry is emergent
in the limit (Js2 = 0).

note as ‘4-term model I’), whose GS realizes a SSSB phase,
and (ii) another one without it (termed ‘4-term model II’),
whose GS forms a 4-fold degenerate pVBS.

A concrete example of model I is defined by

As = | ⟩⟨ |+ | ⟩⟨ |+ h.c.

The operator
∏

i∈Cdiag
σx
i exchanges the two terms in As,

indicating that the model possesses a diagonal subsystem
Zsub
2 symmetry. In contrast to the XY TC model, however,∏
i∈Canti-diag

σx
i is not a symmetry of the Hamiltonian. At

Js2 = 0, the GS manifold is generated by applying the subsys-
tem symmetry operator to a pVBS configuration

∏
s1
| ⟩s1 ,

resulting in a 2L/2-fold degeneracy characteristic of SSSB.
Quantum fluctuations at finite Js2 do not lift this degeneracy,
and the symmetric point Js1 = Js2 (without sublattice modu-
lation) corresponds to a first-order transition between two dis-
tinct SSSB phases.

Any set of four star terms that are related by
∏

i∈C(anti-)diag
σx
i

defines an equivalent model, provided the energetically fa-
vored plaquettes can be arranged to satisfy the Bp constraint.
A further example in the Bp = +1 sector is shown in Fig. 1,
where equivalence is confirmed by isospectral ED results at
Js1 = Js2 .

An example of model II is defined by

As = | ⟩⟨ |+ | ⟩⟨ |+ h.c.

with Bp = +1. In this case, the model does not exhibit a
subsystem symmetry, as the two terms in As are not related
by

∏
i∈C(anti-)diag

σx
i . One may interpret the terms in As as fa-

voring two complementary types of plaquette configurations.
To satisfy the Bp = +1 constraint globally, both types must
be present; using only one type would violate the constraint
(see Fig. 1). As a result, the GS exhibits a 2-fold degeneracy
in the exactly solvable limit, which increases to 4-fold at the
symmetric point Js1 = Js2 . An equivalent model can also
be realized in the Bp = −1 sector; an example is shown in
Fig. 1.

2-term models : TFIM and QDM

The most reduced cases are 2-term models, obtained by se-
lecting two terms from the above 4-term models. Their GS
correspond either to that of the transverse-field antiferromag-
netic Ising model (TFIM) on the checkerboard lattice (2-fold
pVBS) [20] or to the QDM, which is the only model in the
hierarchy that appears to have a quantum critical ground state,
as discussed in the next section.

The checkerboard lattice, also known as the 2D pyrochlore
lattice, consists of a corner-sharing network of tetrahedra
[shown in blue in Fig. 4(a)]. In the absence of the transverse
field, the TFIM reduces to a frustrated classical Ising model,
where each tetrahedron satisfies the two-in-two-out “ice-rule”
constraint, leading to an extensive ground-state degeneracy.
The transverse field introduces quantum fluctuations, whose
leading nontrivial process is | ⟩⟨ | + h.c., which energeti-
cally selects the pVBS ground state via an order-by-disorder
mechanism [20, 31, 32]. Notably, the ice-rule constraint is a
subset of the Bp = 1 constraint, which also allows “all-in/all-
out” configurations (see Fig. 1). However, if one selects, as a
star operator of 2-term model,

As = | ⟩⟨ |+ h.c.

the operator does not convert two-in-two-out tetrahedras into
all-in/all-out ones. As a result, configurations containing all-
in/all-out tetrahedra remain dynamically disconnected from

(a)

(b)

TFIMBp = + 1 Bp = − 1

symmetry-deformed TC

Bp = 1: ice-rule + all-in/all-out ice-rule

FIG. 4. Equivalence between TFIM and symmetry-deformed
TC models. (a) Schematics of a spin configuration for symmetry-
deformed TC/TFIM. (b) Energy spectra of two variants of the TFIM-
type two-term symmetry-deformed TC model with uniform Bp =
+1 and Bp = −1 constraints and the TFIM , obtained via ED for a
system of size N = 32. While all three models share the same low-
energy spectra (indicated by the blue lines), the symmetry-deformed
TC models also exhibit additional states that are dynamically discon-
nected from the TFIM subspace.
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the TFIM subspace. Figure 4(b) shows the low-lying spec-
tra of the symmetry-deformed TC model and the TFIM (eval-
uated using only the leading-order term), showing that the
lowest energy levels are isospectral. Additional states in the
symmetry-deformed TC model arise from configurations in-
volving all-in/all-out tetrahedra. An equivalent model can also
be realized in the odd gauge (Bp = −1) sector by choosing
terms that favor plaquette configurations whose uniform tiling
satisfies the Bp constraint (see Fig. 1).

The equivalence between the QDM and the symmetry-
deformed TC model is most transparent in the Bp = −1 sector
with

As = | ⟩⟨ |+ h.c.

where the presence or absence of a dimer can be identified
with an up or down spin, respectively, in the spin repre-
sentation defined on the dual lattice [Fig. 5(a)]. The dimer
constraint—requiring exactly one dimer per vertex—ensures
that the system lies within the Bp = −1 sector. As in the
TFIM case, the Bp = −1 constraint in the QDM mapping
can also be satisfied by configurations with three dimers at-
tached to a single vertex. However, such states are dynami-
cally disconnected from the QDM subspace (with exactly one
dimer per vertex), as the star term (kinetic term) preserves the
number of dimers per vertex. Consequently, as long as the
ground state of the symmetry-deformed TC model lies within
the QDM subspace, the two models exhibit identical low-
energy spectra—up to additional exact copies arising from
the disconnected subspace in which every vertex hosts three
dimers. Figure 5(b) shows the low-lying spectra of the QDM
and a symmetry-deformed TC model with Bp = −1. The two
spectra match exactly within the QDM subspace, while the
symmetry-deformed TC model also features extra states cor-
responding to configurations with vertices occupied by three
dimers.

For the Bp = +1 constraint, the connection between the
QDM and the symmetry-deformed TC model is less direct.
However, one can still establish an exact mapping by re-
defining the dimer-spin correspondence. For example, in the
model with As = | ⟩⟨ | + h.c., the spin-down/up state
on the upper site of an s1 vertex may be identified with the
presence/absence of a dimer, while for all other sites, the
usual correspondence of spin-down/up to absence/presence of
a dimer applies. The ED spectrum confirms the exact equiv-
alence between the spectra of different QDM-type two-term
models.

III. QUANTUM DIMER MODEL

Having established the equivalence between the QDM and
the symmetry-deformed TC model, we now turn our attention
to the QDM itself. The Hamiltonian of the QDM on the square
lattice is given by [33]

HQDM =
∑
p′

[−t (| ⟩ ⟨ |+ h.c.) + µ (| ⟩ ⟨ |+ | ⟩ ⟨ |)] ,

(2)

(a)

(b)

QDMBp = + 1 Bp = − 1

symmetry-deformed TC

= ＋

FIG. 5. Equivalence between QDM and symmetry-deformed TC
models. (a) Schematics of a spin/dimer configuration for symmetry-
deformed TC/QDM. (b) Energy spectra of the QDM and two variants
of the QDM-type two-term symmetry-deformed TC model with uni-
form Bp = +1 and Bp = −1 constraints, obtained via ED for a
system of size N = 32. While all three models share the same low-
energy spectra (indicated by the blue lines), the symmetry-deformed
TC models also exhibit additional states that are dynamically discon-
nected from the QDM subspace.

with t and µ parametrizing the relative strength of dimer res-
onance and chemical potential terms, respectively. The case
µ = 0 corresponds to the 2-term model indicated by the star
symbol in the phase diagram of Fig. 6(a).

Despite extensive studies of the QDM [34–39], the ground-
state phase diagram for µ < 1 remains unsettled. In particular,
it is still unclear whether the columnar phase—characterized
by translational symmetry breaking along one of the princi-
pal lattice directions—persists all the way to the Rokhsar-
Kivelson (RK) point (µ = 1). An alternative scenario is the
presence of a gapped mixed (or pVBS) phase before reaching
the RK point [36, 39]. Like the pVBS, the mixed phase breaks
translational symmetry in two directions, and in addition—
like the columnar phase—breaks C4 symmetry. With θ quan-
tifying the strength of C4 symmetry breaking, the mixed phase
can be characterized by an angle 0 < θ < π/4. Identifying
phases can be challenging, as small (large) values of θ can blur
the distinction between mixed and columnar (pVBS) phases
[39], and any finite-temperature numerics may be subject to
undesired thermal entropic bias [40].

Notably, the sublattice modulation technique employed in
the analysis of symmetry-deformed TC models above pro-
vides valuable insight also into this problem (Fig. 6). Unlike
the ambiguous nature of the Js1 = Js2 point, i.e., the orig-
inal QDM, a broad region of the extended phase diagram at
Js1 ̸= Js2 clearly supports pVBS order, smoothly connected
to the exactly solvable limit Js2 = 0. In contrast, the colum-
nar phase in the QDM limit remains stable under sublattice
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(b)

Ly = 4

θ = π/4
pVBS

θ = π/4
pVBS

staggered

RK

(θ ≠ 0)
critical

columnar
θ = 0

FIG. 6. Quantum dimer model. (a) Phase diagram as a function
of the chemical potential µ and the star term strength Js2 . (b) µ-
dependence of physical quantities extracted from iDMRG at Js1 =
Js2 . From top to bottom: amplitude of the order parameter, angle
θ, and central charge c (see text for details). The angle θ = 0 and
θ = π/4 correspond to the columnar and pVBS phases, respectively,
while intermediate values 0 < θ < π/4 indicate a mixed phase.

modulation only at large negative µ. The energy gap between
the columnar and pVBS phases can be roughly estimated by
the critical value (Js2)c for a given µ, and numerics indicate
that this gap decreases with increasing µ. For instance, at
µ = −0.25, |(Js2)c − 0.5| is as small as 5.0 × 10−6, and
for µ > 0, the system appears practically critical.

To identify a possible mixed phase, we define an
order parameter amplitude as

√
σz(π, π)2 + σz(π,−π)2,

with σz(k) ≡
∑

i e−ik·ri ⟨σz
i ⟩, and the angle θ as

θ = arctan [σz(π, π)/σz(π,−π)], assuming σz(π, π) ≤
σz(π,−π). At Js1 = Js2 and µ ≳ 0.0, iDMRG struggles
to consistently resolve an optimal value of θ [Fig. 6(b)]—a
wide range of θ ∈ [0, π/4] yields nearly degenerate energies,
suggesting an emergent SO(2) symmetry with no clear ener-
getic preference for a particular angle. Our results resemble
the approximate SO(2) symmetry reported in Ref. [37, 38],
except that, in our case, no small but finite gap is detected
within numerical accuracy. This absence of a resolvable gap
is corroborated by the instability of the Js1 = Js2 phase un-
der minimal sublattice modulation. The critical nature is also
indicated by a central charge estimate c ≈ 1.0 [Fig. 6(b)],
calculated from the entanglement entropy, consistent with the
presence of a gapless mode [41, 42]. Whether, however, this
criticality is genuine or merely a proximity effect arising from
second-order transitions in the direct (and numerically not re-
solvable) vicinity remains an open question for future inves-
tigation. To summarize, by extending the QDM phase space,
we identify competing stability regions of pVBS and colum-
nar phases, and find that the QDM, as a symmetry-deformed
TC, exhibits (within our numerical accuracy) quantum critical
behavior with an emergent SO(2) symmetry.

IV. DISCUSSION

Unlike symmetry-based gauging and ungauging procedures
—which typically relate fixed-point Hamiltonians—our sym-
metry deformation can yield models with distinct characteris-
tics that reflect microscopic details, such as subsystem sym-
metries or the specific type of lattice geometry (e.g., square,
triangular, or honeycomb). Although this complexity intro-
duces analytical challenges and may necessitate numerical
methods, it is precisely because of this extra level of speci-
ficity that our term-dropping protocol may also lead to var-
ious emergent phases that simple gauging or ungauging ap-
proaches cannot capture—making it a compelling avenue for
exploring new routes to complex quantum states.

For the square lattice Z2 TO, starting from the TC, we have
shown that introducing a global U(1) symmetry leads to a
breakdown of the underlying gauge structure, resulting in a
pVBS phase. This transition can be understood in terms of
e-anyon condensation, analogous to the field-induced break-
down of TO in the undeformed TC. The same symmetry-
deformation approach leads to a variety of other models, in-
cluding the XY TC and four-term models that exhibit subsys-
tem symmetries—remnants of the original 1-form symmetry
of the TC.

As extreme cases within the family of symmetry-deformed
TC models, one ends up with instances of the TFIM on
the checkerboard lattice and the QDM. Employing the same
sublattice modulation technique, which has proven to be a
powerful tool for exploring the phase diagram of symmetry-
deformed TCs, one can add a new perspective on these mod-
els. For the QDM, this has allowed us to identify stable re-
gions of columnar ordering and argue for an emergent SO(2)
symmetry in the original QDM.

An interesting future extension of this work is to explore
TOs with larger gauge groups than the Z2 TO considered
here. One such example would be Z4, where intermediate
TO phases, including SET, naturally emerge through partial
ungauging. It will be an interesting question to explore
whether the symmetry-deformation approach can also realize
such intermediate topological phases, potentially revealing a
broader landscape of novel quantum orders.

Data availability.– The numerical data shown in the figures
and the data for sweeping the phase diagram is available on
Zenodo [43]. Our iDMRG simulations employed the publicly
available Python package TenPy [44].

Note added.– While finalizing this work, we became aware
of a related independent study [45], which is expected to ap-
pear on arXiv concurrently.
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Appendix A: Numerical simulations

Here, we provide a detailed description of the numerical
setup used in our iDMRG simulations [13]. We consider
a square lattice spanned by the two principal lattice vectors
l̂1 = (1, 0) and l̂2 = (0, 1), with spin-1/2 degrees of freedom
residing on the links. The numerical unit cell is defined by
two orthogonal vectors L1 and L2:

L1 = Lx(al̂1 + bl̂2), L2 = Ly(−bl̂1 + al̂2),

where integers (a, b) specify the angle of L1 with respect to
l̂1. For instance, (a, b) = (1, 0) corresponds to 0◦ compactifi-
cation and (1, 1) to 45◦ compactification [Fig. 7(a)]. We use
an infinite cylinder geometry, with L1 as the infinite direction
(repeated blocks of size Lx) and L2 as the finite periodic di-
rection of length Ly .

…

l1 

(a)

…

…

(b)

L1 

L2

L1 

…
…

l2 L2 

…

45° tilt 

0° tilt 

FIG. 7. Compactification schemes. (a) 0◦ tilt compactification with
Lx = Ly = 2 and 45◦ tilt compactification with Lx = Ly = 1.
The numerical unit cell is repeated infinitely along the L1 direction,
while the L2 direction is finite and periodic. (b) 0◦ tilt compacti-
fication used for the U(1)TC, where the diagonal direction extends
indefinitely along the infinite direction of the cylinder.

U(1) toric code simulations

In the exactly solvable limit Js2 = 0, the U(1) toric
code exhibits a subextensive ground-state degeneracy, and fi-
nite Js2 acts as a perturbation on this classical degeneracy.
In iDMRG simulations, global fluctuations—induced by op-
erators

∏
s2∈C(anti-)diag

As2 along diagonal (l̂1 + l̂2) and anti-

diagonal (l̂1 − l̂2) directions—can complicate the analysis of
the ground state. However, as we explain below, such fluctu-
ations can be suppressed by choosing a suitable compactifica-
tion scheme.

With 45◦ compactification, these global fluctuations can
still be induced by repeated action along the finite periodic
direction L2. This causes a typical finite-size effect seen, for
example, in exact diagonalization, where the finite system size
forces the ground state to be a symmetric combination of all
configurations related by global or subsystem symmetry op-
erations. In contrast, with 0◦ compactification, both diagonal
and anti-diagonal directions extend indefinitely along the infi-
nite direction of the cylinder [Fig. 7(b)], entirely suppressing
global fluctuations. Consequently, only local fluctuations re-
main, simplifying the analysis of the ground state. The same
principle applies to the XY TC model, where, in the absence
of global fluctuations, spontaneous symmetry-breaking states
can be observed by taking the subsystem symmetry direction
to be infinite.

Most of the results presented in the main text were obtained
using the 0◦ compactification scheme, with numerical unit-
cell dimensions Lx = Ly = 4. The bond dimension χ was in-
creased up to 800, ensuring that the truncation error remained
below 6 × 10−7. To accurately estimate the prefactor β in
the finite-size energy splitting (see main text), we also studied
larger circumferences (Ly = 6 and 8), avoiding any potential
overestimation of the energy gain from the fourth-order per-
turbation. (For Ly = 4, repeated actions of the As2 operators
along the finite periodic Ly direction can induce additional
local fluctuations.)
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Quantum dimer model simulations

The possible ground states of the quantum dimer model
discussed in the literature include the columnar, pVBS, and
mixed phases [34–39]. It is thus crucial to ensure that the
choice of geometry in iDMRG simulations does not inadver-
tently introduce anisotropies that could bias the numerical re-
sults. In particular, special caution is required when studying
the columnar and mixed phases, which involves the C4 rota-
tional symmetry breaking of the square lattice.

For instance, with 0◦ compactification, the simulations
preferentially select the columnar phase that breaks symmetry
along the infinite l̂1 direction, rather than the finite periodic
l̂2 direction. This preference arises because, in order to sta-
bilize translational symmetry breaking along a finite periodic
direction, the system would need to form a superposition of
the two possible symmetry-breaking patterns rather than real-
izing a true symmetry-breaking configuration. Such superpo-
sitions typically lead to higher entanglement entropy and are
therefore numerically disfavored in iDMRG.

In contrast, the 45◦ compactification, which preserves C4

symmetry, allows for symmetry breaking along both lattice
directions. Numerically, we confirmed that in this case, the
simulation indeed selects one of the four possible symmetry-
breaking patterns, depending on the initial state. Therefore,
for the quantum dimer model, we typically use the 45◦ com-
pactification scheme.

The numerical unit-cell dimensions Lx = Ly = 4 and a
bond dimension χ up to 1000 are used. We tested both pVBS
and columnar initial states in our simulations, each obtained
from parameter regimes deep inside their respective phases.
In the parameter regime where the two phases compete, i.e.,
0 < µ < 1 with Js1 = Js2 , where we observed (nearly) criti-
cal behavior, the choice of initial state can lead to differences
in the monitored physical quantities, as each result tends to
be biased towards the respective phase. However, no apparent
energy differences larger than 2×10−8 were found in the con-
verged iDMRG results, further supporting the critical nature
of the system. The order parameters in the main text, are con-
structed from σz(k) ≡

∑
i e−ik·ri ⟨σz

i ⟩, where ri is defined
using the L1 and L2 directions as a basis, with the spacing
between sites along these directions set to one.
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