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Abstract
Moiré materials provide a highly tunable environment for the realization of band structures with
engineered physical properties. Specifically, moiré structures with Fermi surface flat bands—a
synthetic environment for the realization of correlated phases—have moiré unit cells containing
thousands of atoms and tantalizingly complex band structures. In this paper we show that
statistical principles go a long way in explaining universal physical properties of these systems. Our
approach builds on three conceptual elements: the presence of quantum chaos caused by the
effective irregularity of the atomic configurations on short length scales, Anderson localization in
momentum space, and the presence of approximate crystalline symmetries. Which of these
principles dominates depends on material parameters such as the extension of the Fermi surface or
the strength of the moiré lattice potential. The phenomenological consequences of this
competition are predictions for the characteristic group velocity of moiré bands, a primary
indicator for their average flatness. In addition to these generic features, we identify structures
outside the statistical context, notably almost flat bands close to the extrema of the unperturbed
spectra, and the celebrated zero energy ‘magic angle’ flat bands, where the latter require
exceptionally fine tuned material parameters.

1. Introduction

Sheets of two-dimensional materials stacked at rel-
ative twist angles or with a mismatch in lattice con-
stant define a class of quantum matter known as
moiré materials. At low twist angles or small lattice
constant mismatch, moiré materials can have tens of
thousands of atoms in their effective unit cells, and
as many energy bands in their Brillouin zones. Con-
trolled variations of twist angles, and/or the (corrug-
ated) van der Waals coupling between layers affords
the unique opportunity of band structure engin-
eering [1–8]. The recent realization of almost non-
dispersive bands in twisted bilayer graphene (TBG)
(and the observation of a wealth of strong correlation
effects [9–15] symptomatic for flat band materials)
demonstrate the opportunities provided by this type
of quantum matter, which besides graphene [16–21]
contains hexagonal boron nitride [22, 23], transition
metal dichalcogenides [24–26], and others [27, 28] as
material platforms.

The tantalizingly complex band structure of
moiré materials raises the question for underlying

universal principles. For instance, a naked eye inspec-
tion of the blow-ups in figure 1 reveals recur-
rent patterns in the ‘spaghetti’ of individual energy
bands. Most apparent among these are regions
with almost linearly dispersive bands (‘uncooked
spaghetti’ in figure 1(a)) interspersed by narrowly
avoided crossings, and regions with slack energy
bands (‘cooked spaghetti’ in figure 1(b)) meander-
ing up and down subject to strong band repulsion.
The average uniformity of these patterns over wide
ranges of momenta and energies suggests that statist-
ical principles are at work. Embedded in these struc-
tures we observe anomalous features which clearly
are not of statistical nature. Most prominent among
these are the celebrated flat bands forming upon fine
tuning of twist angles and/or corrugation paramet-
ers, see figure 1(c) near the Fermi level of ∼0.4 eV.
In addition to these exceptional flat bands, there are
more robust ‘super-flat’ bands forming next to the
bandminima of the uncoupled layers, as we will show
below.

In this paper, we present a simple semi-
phenomenological theorywhich turns the complexity
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Figure 1. Features in the band structure of moiré materials. Shown is a typical band structure of TBG, with zooms into the band
structure (c) and two cutouts ((a) and (b)) as well as density of states (d) for two layers of graphene twisted by a commensurate
angle of θ ≈ 1.1◦.

implied by the large number of bands into an
advantage and uses it as the basis for a statistical
approach [29–31]. Our theory builds on three basic
principles:

• Lattice periodicity. The presence of an effective
moiré potential repeating itself over large distance
scales defines a lattice structure of periodicity L"
1 atomic lattice spacings, a. The latter may be
looked at in real space or, preferably for our pur-
poses, in momentum space. In that representation,
the system is described by a finite lattice of spa-
cing Gm ∼ 1/(La) with O(L2) sites corresponding
to the number of atoms in the moiré unit cell.
The moiré potential defines an effective hopping
Hamiltonian in this lattice, and the dispersion rela-
tion of the unperturbed layers that of an effective
on-site potential.

• Anderson localization. The aperiodic site-to-site
variations of that potential define a source of
effective irregularity or quantum disorder. For
weak moiré potentials, hopping along the effect-
ively one-dimensional equi-potential Fermi sur-
faces is impeded by the mechanism of Ander-
son localization (in momentum space). We will
see that this manifestation of quantum localiza-
tion is an efficient promoter of strong energy band
dispersion [32].

• Quantum chaos. With increasing moiré hop-
ping the Fermi surfaces broaden and eventually
turn into quasi two-dimensional structures. The
increasing hopping strength driving this develop-
ment delocalizes wave functions, up to a point that
they cover a two-dimensional subset of the lattice
almost ergodically. In such regimes, the combin-
ation of residual quantum disorder and discrete
symmetries characterizing the moiré lattice defines
weakly dispersive band structures containing accu-
mulations of almost, but not fully flat bands.

As we will see, the combination of these three ele-
ments goes a long way in quantitatively describing the
universal features of the moiré band structure. How-
ever, it also explains various non-universal features,
among them the formation of different types of flat
bands or van Hove structures.

We conclude this introductory discussion with a
general remark on the lattice structure of the prob-
lem. Most moiré systems are quasi crystals: the moiré
unit cells are not periodically repeated, and trans-
lational invariance is absent including at the largest
length scales. As we demonstrate in appendix A (see
also [3, 33]), this lack of commensurability shows
at orders in perturbation theory roughly equal to
the linear extension L of the moiré cells. In a series
of recent papers [34–37] it has been found that
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for flat bands qualitative effects may ensue, not-
ably localization-delocalization transitions driven by
the quasi crystalline lack of translational invariance.
However, for the ‘mesoscopically’ large moiré struc-
tures, L=O(102), considered in this paper, such
effects can safely be ignored and we assumemoiré cell
periodicity throughout.

2. Setup and general considerations

We consider two-dimensional crystalline systems
with lattice constant a—more generally (a1,a2)—
subject to a perturbation V periodic over distances
am = La, L" 1 (inset a) of figure 2). This perturb-
ation may be the substrate potential induced by the
proximity of a second layer of different chemical com-
position, or generated by the coupling to a second
layer as in TBG. In either case, V defines periodic
‘hopping potential’ in momentum space, and we dis-
cuss them in parallel. More specifically, in the ‘exten-
ded’ Brillouin zone defined by the reciprocal lat-
tice vector of magnitude G= 2π/a, the potential
V defines transition matrix elements between states
differing in multiples of the moiré reciprocal lat-
tice vector of magnitude Gm ≡ 2π/am = G/L, and
thus defines a momentum space hopping Hamilto-
nian. Momenta kmodGm are conserved, and on this
basis, the spectrum of the system gets organized into
∼ L2 bands indexed by k. We assume the poten-
tial to be strong enough to couple these bands, V!
D/L2, where D is the total bandwidth and D/L2

defines the characteristic band spacing. This assump-
tion rests on the efficient coupling of ‘sites’ in the
momentum space moiré lattice over scales ∆p!
Gm. (In appendix C we discuss in which way this
assumption relies on the commensurability prop-
erties of the substrate potential and is not entirely
innocent.)

In the rest of the paper, we will build on a
momentum space lattice picture to obtain informa-
tion on universal features of the moiré band struc-
ture. In particular, we will emphasize connections
between the present problem and that of Ander-
son localization in quasi one-dimensional disordered
media. To understand this link, notice that for each
realization of k the dispersion of the native two-
dimensional material εQn

≡ ε(k+Qn) is a function
on the sites Qn ≡ n1 Gm,1 + n2Gm,2 of the moiré lat-
tice with effectively random site–to–site variations
and continuous modulation in k.

In momentum space, εQn
acts as an effective

potential. In combination with weak (translationally
invariant) hopping t⊥ induced byV, this potential has
two principal effects. First, it defines broadened quasi
one-dimensional Fermi surfaces, centered around the
Fermi lines εQn

= εF of the unperturbed system.More
precisely, typical wave functions will probe a region
of width ∼ t⊥/(vFGm) lattice spacings around these

contours, see figure 2. Second, as the reciprocal lat-
tice is discrete, the site-to-site variations of εQn

, define
a source of effective disorder.

Such quasi one-dimensional disordered systems
are subject to Anderson localization weaker than in
strictly one-dimensional materials (potential road-
blocks can be efficiently sidestepped) but stronger
than in two-dimensions (there is limited phase space
for transverse diffusion). We aim to explore how the
ensuing physics of wave function confinement due
to effective disorder manifests itself in the universal
band structure of moiré materials and what excep-
tions to such a universal framework exists.

To sharpen the question, let us for a moment
ignore the localization principle and speculate on the
ramifications of the coupling V in the band struc-
ture. Under the above assumptions, V! D/L2 is a
strong and effectively random perturbation paramet-
rically dependent on k. On this basis, we should
expect efficient level repulsion, i.e. variations of bands
over scales∆ε∼ D/L2 under parametric variations of
extension∆k∼ Gm—the ‘cooked spaghetti’ scenario.
Characteristic level ‘velocities’ in this case would be of
order ∆ε/∆k∼ vF(a/L)α, where vF ∼ D/a is a typ-
ical group velocity of the underlying two-dimensional
material and the exponent 1/2 ≤ α≤ 1 will depend
on how strongly neighboring ‘cooked spaghetti’ will
wiggle relatively to each other, see below. Regions
of such small dispersion are observed for sufficiently
large t⊥, but they are not generic. Far more fre-
quently do we see ‘uncooked spaghetti’, of steeper
velocity O(L0). This is proof–by–contradiction that
‘quantum disorder’ or ‘quantum chaos’ reasoning by
itself does not explain the generic band structure. We
aim to demonstrate how the localization principle is
the missing element in the story.

While much of our phenomenological reasoning
does not rely onmodel specific assumptions, the con-
crete calculations below are performed for the case of
twisted bilayer structures, more specifically, bilayers
of honeycomb lattices as relevant to the case ofmagic-
angle graphene. The details of this model setup are
summarized in appendix A.

In this paper, we will look at this system through
the lenses of two complementary numerical models.
The first is a real space tight-binding model of twis-
ted honeycomb layers with Slater–Koster paramet-
ers [38–40], cf appendix B. This model describes the
system from first principles and is suited to explore
wide portions of its spectrum, including those far
detached from its Dirac points. However, this free-
dom comes at the expense of relatively high compu-
tational demands. We use this approach to explore
large scale statistical features of the spectrum. The
second is a continuum model developed by Mac-
Donald and Bistritzer for bilayer graphene [3] (see
appendix F for a review). This model assumes lin-
ear dispersion of the uncoupled layers, and hence is
limited to the vicinity of the Dirac points. However,
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Figure 2. Extended Brillouin zone of a moiré lattice. A moiré potential V periodic in real space over scales La≡ am # a, cf inset
(a), has two interrelated effects: it defines a moiré Brillouin zone with reciprocal lattice vector magnitude Gm = 2π/am and
O(L2) bands of characteristic spacing∼ D/L2, where D is the total bandwidth, cf inset (b). Second, it causes hopping with
characteristic strength t⊥ ∼ V between momentum states differing by multiples of the moiré reciprocal lattice vectors in the
extended Brillouin zone (left). In this way we obtain, for each fixed instance k of the conserved moiré cell momentum, a lattice of
momentum states subject to short range hopping with characteristic momentum transfer p∼ Gm % G and hopping rates
∼ V∼ t⊥, typically satisfying the inequalities D# V# D/L2. For a given Fermi energy, εF , wave functions subject to the
competition of potential and hopping are generically confined to the broadened Fermi surfaces discussed in the text.

due to its computational efficiency it gives us highly
resolved insight into the spectra and wave functions
near these points.

The rest of the paper is organized as follows: In
section 3 we discuss key observations on the band
structures of moiré materials obtained within the
framework of the real space approach. In section 4
we introduce the real and momentum space descrip-
tion of these structures as a basis for our subsequent
discussion of the statistical approach. In the central
section 5 we discuss how the band velocity distribu-
tions relates to the concept of Anderson localization
in momentum space. This is followed by the detailed
numerical study of the continuummodel in section 6
where we consider spectral and wave function statist-
ics as indicators of chaos and localization, and relate
them to the observed characteristics of the velocity
statistics. We conclude in section 7, technical details
of our analysis are relegated to several appendices.

3. Statistics of velocity distribution

To set the stage for our analysis, we first discuss
the band structure of the twisted honeycomb bilayer
moiré system, with an emphasis on the distribution

of band velocities over wide ranges of the spectrum.
Our method of choice in this endeavor is the real
space model [38–40] mentioned above. We diagon-
alize the model to extract the dispersion of the energy
bands εn(k) with band index n and wave vectors k
within the first moiré Brillouin zone. The electron
group velocity with wave vector k in band n is then
given as vn(k) =∇kεn(k). To obtain the velocity dis-
tribution, we collect the absolute values |vn(k)| in all
bands for a large set of randomly selected wave vec-
tors. We show their relative occurrence in the right
three panels of the upper row of figure 3 for three dif-
ferent choices of the interlayer coupling and corrug-
ation, ranging from decoupled flat layers (cf panels b
+ f) over the experimental system (cf panels c + g)
to strongly coupled and corrugated layers (c.f. panels
d + h). The corresponding panels in the lower row
show which velocities appear at a given energy.

We first observe that typical electron velocities are
of order vF (cf the vertical dashed lines in panels (b)
and (c) in figure 3 for average values), and hence do
not suffer the suppression down to scales∼1/Lwhich
would be expected on the basis of the naive ‘band
repulsion’ picture formulated above. On the other
hand, the distributions tend to exhibit enhanced
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Figure 3. Velocity distribution in TBG model. Variations in velocity distributions ((b)–(d)) and velocity-energy correlations
((f)–(h)) when increasing interlayer coupling for two graphene layers at commensurate angle of∼1.1◦, (corresponding to
m= 27,n= 26, cf appendix B for a definition). Panels (b), (e), and (f) show data for decoupled and uncorrugated layers of
graphene, i.e. V = 0, C= 0. Panels (c) and (g) show data that is compatible with experimental studies, i.e. V = 1,C= 1. The
emerging flat band can be seen as a bright spot in the velocity-energy correlations and is highlighted in panel (g). Panels (d) and
(h) show data for an extremely corrugated and strong layer-coupled case with parameters V = 2, C= 5. Harmonic oscillator
ladder states emerge for low energies, highlighted in the inset of panel (h). For comparison, panel (a) shows the dispersion of
nearest-neighbor coupled single-layer graphene.

probabilities for smaller velocities upon increasing
corrugation and interlayer coupling, cf panel (d) in
figure 3 where the interlayer tunneling is twice as
large as experimentally reported and the corrugation
is increased by a factor of five. In this extreme para-
meter regime, the main peak of the velocity distribu-
tion is shifted toward small velocities right above zero.
The corresponding panel (h) indicates that the small
velocities come from different energy regions at and
near the van-Hove filling.

In addition to the generic features of the energy–
velocity distribution, we observe a number of anom-
alies in the form of almost perfectly non-dispersive
(zero velocity) bands. Among these, the most prom-
inent is the celebrated flat band of TBG, visible as a
bright spot in the inset of panel g). The interpret-
ation of this anomaly in the mindset of the present
approach is discussed in section 7. At strong corrug-
ation we observe a different type of flat bands, dis-
tinguished by their uniform spacing in energy (inset
of panel h). This ladder structure affords a natural
interpretation as a tunneling phenomenon in the
moiré momentum space lattice structure, as we dis-
cuss in appendix D. Here, we will focus on the ana-
lysis of the ‘generic’ regions of the velocity distribu-
tion and their explanation in terms of momentum
space localization.

4. Momentum space localization

With an eye on the generic regions of moiré
band structures, we now proceed to develop the
momentum space picture in detail and how it can be
used to characterize the universal features of moiré

band structures. For the sake of definiteness, we again
consider the case of TBG. However, most of the dis-
cussion applies to different types of moiré materials
with little or no alteration.

We consider a lattice in its momentum space rep-
resentation, as schematically depicted in the inset
of figure 4(a). General wave functions |ψn(k)〉 with
momentum k in the first moiré Brillouin zone and
band index n are given by

|ψn(k)〉=
∑

Q

∑

α=U,L

Aα
n (k−Q)|ψα(k−Q−Kα)〉.

(1)

Here Q are the moiré reciprocal lattice vectors, α
is the layer index (α= U,L), Kα is the K point
of layer α in the first moiré Brillouin zone, cf
figure 2(b), Aα

n (k−Q) are expansion coefficients,
and |ψα(k+Q−Kα)〉 are two-component vectors
whose components describe the wave function amp-
litudes on the A and B sites of the bipartite honey-
comb lattice, respectively. Using |ψn(k)〉 as basis vec-
tors, one can evaluate the tunneling matrix elements
between layers and derive an effective Hamiltonian,
see appendix F.

Hereafter, we concentrate on physics near the K
points for simplicity. By folding out of the first moiré
Brillouin zone to the extended zone, a lattice spanned
by the reciprocal moiré lattice vectors Q (cf gray dots
in figure 4) emerges.

For the following discussion it is useful to simplify
our setup still further and temporarily ignore the layer
and the K-point index. The essential physics is then
described by the Hamiltonian
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Figure 4.Momentum space localization. (a) Inset: momentum space one-dimensional rings in which wave functions are
confined. The rings are embedded into a bipartite moiré lattice indicated by the gray dots (the bipartition is inherited from the K
points of the upper and lower graphene layers). Each ring has radius r= ε/(vFqm) (energy of the original graphene bands) with
width 2 t⊥/(vFqm). Main panel: localization length ξ‖ in t⊥/(vFqm) (blue dots with r= r1 = 10 and red dots with r= r2 = 5).
(b)–(d) Representative wave functions (black dots) of energy corresponding to the radius r2, but different t⊥/(vFqm): (b)
t⊥/(vFqm) = 0.1, (c) 1, and (d) 4.

Ĥk =−t⊥
∑

〈Q,Q ′〉

(c†QcQ ′ + h. c.)+
∑

Q

ε(k+Q)c†QcQ,

(2)

where c†Q creates a particle at momentum k+Q and
we made the parametric dependence on the con-
served momentum k explicit.

As discussed above, the Hamiltonian equation (2)
describes the spreading of wave functions along con-
tours of constant energy εQ ( ε= const. A wave
function hybridizes over two nearest neighbors of
the momentum lattice on these shells provided the
energy difference is of order ∆ε∼ vFGm " t⊥. This
hybridization criterion gives the shells a width of
∼t⊥/vFGm in transverse direction. In the longitud-
inal direction, the effectively random site energy vari-
ations make quasi one-dimensional localization an
inevitable consequence.

However, the question remains under what con-
ditions that localization length ξ is smaller or lar-
ger than the circumference of the momentum space
Fermi ring. Unfortunately, finding parametric estim-
ates for the dependence ξ(t⊥,ε,{εQ}) of the localiza-
tion length on the relevant system parameters is not
easy under the present circumstances. The reason is
that for most systems of interest, t⊥ is of the same
order as the characteristic energy differences δε∼
|εQ− εQ ′ | between nearest neighbors, i.e. t⊥ ( δε.We
are thus sitting between the two chairs of localization

in strongly andweakly disorderedmedia, respectively.
On top of that, the lattice contains stretches of sites
approximately aligned with the Fermi surface (see
appendix G for further discussion and illustration).
Along these, site-to-site energy differences are atyp-
ically small, defining local corridors of near ballistic
wave function propagation.

5. Three localization regimes

The momentum space setup introduced above sets
the stage for the identification of three different
regimes of qualitatively different phenomenology.
The nature of these is best understood by considering
what happens as the interlayer coupling, t⊥, is gradu-
ally increased for a system at given Fermi energy ε:

I. Deep localization regime
For small site hopping, t⊥, we are in a regime of
strong Anderson localization. Individual eigenfunc-
tions, ψn are centered around specific momenta kn =
〈ψn|k̂|ψn〉 of magnitude kn ∼ ε/vF. The group velo-
city of the electron is computed from 〈ψn|∂Hk

∂k |ψn〉
and changes very little as long as the wavefunction
is localized in close proximity to kn. At the same
time, |∂kHk|∼ vF is large, giving the band disper-
sion the structure of steep almost linear functions of
k—the regime of uncooked spaghetti. In this regime
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all effects arising from the fact that the Fermi sur-
face is closed are exponentially suppressed. We finally
notice that the complete momentum space localiza-
tion implies the absence of correlations between dis-
tinct eigenfunctions and their eigenvalues, with the
observable consequence of Poissonian spectral stat-
istics. This regime is of direct relevance for bilayer
graphene at large twist angle, see below.

II. Quasi one-dimensional (de-)localization
An increasing of t⊥ causes a gradual compromising
of the pristine momentum space localization. Wave
functions begin to spread around the Fermi ring,
and thus become correlated.While analytic computa-
tions are not straightforward, our numerical analysis
below suggests an approximately linear dependence,
ξ ∼ (t⊥/vF) for the localization length inmomentum
space for small t⊥. Assuming that in the same regime
the radius of the Fermi surface∼ ε/vF is linear in the
Fermi energy, we obtain a crossover scale t⊥ ∼ ε for
the I/II regime boundary. Inside regime II, delocaliza-
tion combined with the presence of effective random-
ness should lead to chaotic (Wigner–Dyson) correla-
tions in the energy spectra. At the same time, indi-
vidual states remain inhomogeneously distributed,
with non-vanishing expectation values of magnitude
kn ∼ ε/vF. On this basis, we expect bands with con-
tinued steep slope, but showing the ‘level repulsion’
symptomatic for chaotic spectra. Metaphorically, this
is a regime of semi-cooked spaghetti.

III. Strong coupling and dimensional crossover
Naively, one would expect that further increase of t⊥
results in an ergodic phase characterized by uniform
wave function distribution around the Fermi sur-
face and strong level correlations. However, the actu-
ally observed behavior is more nuanced. In fact, the
increase of the coupling, starts several developments,
the confluence of which determines the observable
phenomenology: for coupling strength approaching
t⊥ ∼ ε, wave functions are no longer confined to a
ring, they flood the interior of the constant ‘potential’
energy circle, and significantly extend beyond it. We
note that for models with Dirac dispersion this cri-
terion for the II/III boundary is parametrically of the
same order than that for the I/II boundary, indicating
that the intermediate regime II may not have a para-
metrically wide support. On the other hand, the three
regimes are defined by physically different principles
and our analysis below demonstrates the prevalence
of regime II over a numerically wide interval for rel-
evant model parameters.

Second, the diminishing influence of the effect-
ively random fluctuations in εQ implies a higher
degree of wave function isotropy. For the same
reason, discrete symmetries begin to play a role. The
moiré momentum space lattice shows crystal dis-
crete symmetries, namely C3 rotation symmetry and
the mirror symmetry My (y→−y) combined with

an operation that flips the upper and lower layers.
Except at few high symmetry points in the reduced
k-Brillouin zone, these symmetries are broken by the
parametric momentum k in the function εQ = εQ(k).
However for strong t⊥ this symmetry breaking gets
relatively weaker, especially in the neighborhood of
high symmetry points. In principle, one may expect a
situation where the Hilbert space is reorganized into
irreducible symmetry representation spaces of these,
with chaotic correlations inside each symmetry sec-
tor due to the residual influence of εQ and only weak
correlations between different sectors. This anticipa-
tion suggests spectral statistics intermediate between
Wigner–Dyson and Poissonian. At the same time,
we expect band velocities parametrically smaller than
in regime II. To be a little more concrete, assum-
ing that a characteristic wave function spreads over
N lattice sites exploring both positive and negative
velocities. In this case, the central limit theorem sug-
gests a velocity expectation value of order vF/

√
Nwith

N∼ L2 in the two-dimensional regimewhileN∼ L in
the quasi one-dimensional regime. While this estim-
ate may be too crude, our analysis below confirms
hybrid Wigner–Dyson/Poisson hybrid statistics and
band velocities drastically reduced compared to those
in regime II. Note that the statements given above
only hold for closed Fermi surfaces of the underly-
ing single-layer dispersion. For example, if one con-
siders a moiré where single-layer transport is quasi-
one dimensional with two disconnected open Fermi
surfaces, then the spread of the wave function along
a single Fermi surface will still result in a large net
velocity.

6. Continuummodel

From our previous discussion it is evident that both
the structure of single wave functions and correla-
tions in the energy spectrum play a crucial role in
understanding the physics of the above regimes I–
III. On this basis, we focus on two sets of statistical
observables throughout: (i) wave-function statistics,
as characterized by inverse participation ratios (IPRs),
and (ii) spectral statistics described by the so-called
Kullback–Leibler (KL) divergence. The latter is partic-
ularly suited to the quantification of spectral statistics
in hybrid regimes where neither Poisson norWigner–
Dyson statistics prevails in pure form.Wewill analyze
these quantities within the framework of a continuum
model developed by MacDonald and Bistritzer for
bilayer graphene [3] (see appendix F for a review).
Focusing on the strong corrugation limit [41], we
now discuss how increasing the interlayer coupling t⊥
brings the three regimes discussed above to life.

6.1. Wave function statistics
The degree to which a wave function, defined for a set
of lattice sites Q, is delocalized is conveniently quan-
tified by the IPR[42],

∑
Q |ψQ|4. In the limiting cases
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of fully delocalized and perfectly localized states, this
quantity assumes the values 1/L2 and 1, respectively.
More generally, the IPR probes the inverse square of
the localization length. More precisely, we define the
localization length ξ‖(ε) along a ring of given energy
ε, by the IPR projected onto the ring as

ξ‖(ε) = 1/

(
∑

Sl

( ∑

(Q+Kα)∈Sl(ε)

∣∣Aα
n (k−Q)

∣∣2
)2
)
.

(3)

Here, the first sum runs over a set of momentum vec-
tors S$ given by Q+Kα that fulfill the condition

Round [ε/(vFqm)(Arg(Q+Kα)+π)]

= ( for ( ∈ Z ,

where qm = |KU −KL| is a momentum difference
between momenta in the upper layer, KU , and lower
layer, KL. The overbar represents the averaging over
momenta k in the first moiré Brillouin zone and band
index n with eigenenergy εn(k) in the vicinity of ε.

This localization length ξ‖ is plotted as a function
of the interlayer hopping t⊥ in the top panel (a) of
figure 4 for two different dimensionless ring radii r≡
ε/(vFqm), r1 = 10 (blue dots) and r2 = 5 (red dots).
The most obvious structure to notice is an increase of
the localization length followed by the eventual satur-
ation at a plateau. For small t⊥, the IPR does not show
significant energy dependence, and the two curves
approximately coalesce.We interpret this observation
as localization driven by the local incommensurabil-
ity of the lattice structure, cf figure 9 in Appendix G
for an illustration. Roughly, thismeans that the exten-
sion of wave functions depends on the geometric ori-
entation of the locally straight Fermi surface relat-
ive to the momentum lattice. With increasing t⊥, the
wave function explores larger regions of the Fermi
surface. For the system of smaller energy, the circu-
lar geometry of the latter becomes visible at values of
the localization length, where the larger surface still
looks approximately straight. This is the reason for
the deviations between the two curves at some inter-
mediate coupling strength. Eventually saturation of
the localization length is expected. Contrary to what
one might expect, we observe saturation at a value
somewhat different from the ring circumference. The
origin of this deviation will be discussed below. We
have no convincing explanation for the growing tend-
ency for non-monotonous behavior of the localiza-
tion length with increasing energy.

It is illuminating to relate this discussion to the
structure of actual wave functions. At small interlayer
coupling t⊥ ≈ 0.1 vFqm, wave functions are fully loc-
alized at single (but arbitrary) points in momentum
space, as shown in panel (b) of figure 4. For inter-
mediate interlayer coupling t⊥ ∼ vFqm, they start to
spread out along the ring and become mutually cor-
related, panel (c). However, a still inhomogeneous

distribution of wave function weight implies a char-
acteristic band velocity of O(ε/kF) in line with the
discussion of the intermediate regime II in the pre-
vious section. For even larger interlayer couplings
t⊥ > vFqm, the wave functions begin to spread out
into the two-dimensional momentum space, cf panel
(d). (This excursion into the second dimension may
explain the above mentioned numerical discrepancy
between the saturation value of ξ‖ and 2 πr.) At the
same time we observe regular features, in the shown
example an approximate reflection symmetry at the
vertical axis. These structures herald the increasing
importance of lattice symmetries and the entrance
into regime III.

6.2. Spectral statistics
To further characterize the different regimes, we now
turn to spectral statistics as a second diagnostic tool.
Our results for the spectral correlations characteriz-
ing the system are summarized in figure 5.

The top panel (a) provides an overview of how
the band velocities are distributed in dependence of
of the interlayer coupling t⊥. Starting from the Fermi
velocity (set to 1 in this plot), the average velocity
slowly decreases until it asymptotically hovers around
a small finite value of vavg ≈ 0.05 for a numerical value
of t⊥ ! 4. While this evolution of the velocity dis-
tribution in itself might not point at three different
regimes, such a distinction becomes apparent when
looking at typical band structures for increasing val-
ues of the interlayer coupling as depicted in panels (b–
d) in the middle row of figure 5.

Panel (b) on the left shows the scenario of
‘uncooked spaghetti’, regime I, with different energy
levels criss-crossing one another at small interlayer
coupling. Here the average band velocities are of the
order of vF and level repulsion is exponentially small.
That this is a momentum space localized regime
becomes evident in the level statistics of the spectrum.
To this end, we calculate the distribution of ratios
of adjacent level spacings rn =∆En/∆En+1 [43] (in
order to avoid level unfolding). The resulting distri-
bution is then compared to what is expected for these
ratios in Poisson or Wigner–Dyson statistics (ortho-
gonal symmetry class, Gaussian orthogonal ensemble
(GOE)), i.e. to what is expected for a localized versus
delocalized phase, respectively. As demonstrated in
the lower row of panels, the data almost perfectly fol-
lows the Poisson distribution of a localized phase.

Further increasing the interlayer coupling one
enters the regime II of ‘semi-cooked spaghetti’ with
a significant amount of level repulsion and still steep
average dispersion. This is the regime which we iden-
tified as themomentum-space localized regime above
where the wavefunction is restricted to a ring in
momentum space, i.e. delocalized in one dimen-
sion but localized with regard to the perpendicu-
lar (radial) direction. In terms of level statistics, this
delocalization becomes evident in the observation of

8
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Figure 5. Spectral statistics. (a) Velocity distribution and the average velocity (cyan trace) as a function of the (dimensionless)
interlayer coupling t⊥/(vFqm). (b)–(d) Band structures around r= 5 on a momentum cut A−B in the first moiré Brillouin zone
(inset) for different values of the interlayer coupling (indicated by the arrows in the top panel) with (b) t⊥/(vFqm) = 0.1, (c) 1,
and (d) 6. ((e)–(g)) Level statistics for the parameters corresponding to panels ((b)–(d)), compared to Poisson statistics (green)
and Wigner–Dyson/Gaussian orthogonal ensemble (GOE) distribution (red). (h) Normalized KL divergences (4) calculated for
the level statistics. The KL divergences are normalized such that DKL (PWigner||PPoisson)=1 and vice versa.

Wigner–Dyson statistics, more precisely a GOE dis-
tribution of energy level ratios as shown in panel (f)
in the lower row of figure 5. The spectrum at fixed
momentum is described by the orthogonal symmetry
class due to a combination of time-reversal symmetry
and inversion which maps the momentum k to itself.
Note that even a weak external magnetic field will
reduce the symmetry to the unitary symmetry class.
It is an interesting open question whether this leads
to a singular response in the band structure.

Finally, for yet stronger coupling we enter the
‘cooked spaghetti’ regime III, with weakly dispers-
ive bands. Naked eye inspection of the dispersion
reveals the presence of level repulsion, but also level

crossings. We tentatively interpret this observation
in terms of the almost decoupled symmetry mul-
tiplets discussed in the end of section 4. Notice that
the weak dispersiveness (k-dependence) reflects the
relatively weaker influence of the effective disorder:
it is no longer strong enough to localize, giving the
wave functions a symmetric a roughly isotropic dis-
tribution along the fermi surface. Under these cir-
cumstances, velocity expectations values are small
and depend only weakly on the parameter k entering
the lattice potential. The observed Poisson statistics
indicates the absence of correlations between differ-
ent symmetry sectors of the Hilbert space. However,
we have not managed to identify subspaces of cleanly
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realized lattice symmetries, indicating that theHilbert
space decomposition is only approximated.

In more quantitative terms [44], the identity of
the different regimes can be resolved by monitoring
the proximity of the spectral distribution to either
Poisson or Wigner–Dyson statistics via an entropic
measure. To this end, we consider the KL diver-
gence [45]

DKL(P||Q) =
∑

s

ps log

(
ps
qs

)
, (4)

as a logarithmic measure for the difference between
two distributions P and Q. Specifically, the low-
est panel in figure 5(h) shows the KL diver-
gences between the observed distribution and the
Poisson/Wigner–Dyson distribution as a function of
the interlayer coupling. The crossover from regime
I to regime II can clearly be seen in the crossover
from Poisson to Wigner–Dyson type distributions.
However, we also notice that neither of the limiting
distributions is generically realized in pure form.
This is particularly true for regime III, where we
observe strong fluctuations of the KL divergences.
This sensitivity to small variations of the interlayer
coupling reflects the fact that spectral statistics, in
particular chaotic regimes following Wigner–Dyson
statistics, are particularly sensitive to the presence
of discrete symmetries. The formation of decoupled
symmetry multiplets in regime III therefore leads
to the return of Poisson statistics for large interlayer
couplings.

6.3. Beyond statistics
We already mentioned that the spectra of moiré
systems feature structures outside the statistical
approach. Indicated by van Hove singularities, visible
as spikes in the spectral density shown in figure 1,
these include different types of anomalously flat
bands.

We first note that close to some of their min-
ima the unperturbed bands are approximately para-
bolic,∼p2/(2M) (in symbolic notation neglecting the
two-dimensionality of the problem). The coupling
between the layers adds an effective periodic poten-
tial ∼ t ⊥cos(Gmr), defining an quantum mechan-
ical washboard Hamiltonian. Referring for a more
detailed discussion to appendix D, the potential term
for relevant model parameters is effectively strong.
Under these circumstances we obtain a spectrum
comprising bands exponentially small in the ratio of
t⊥ and the recoil energy ER = G2

m/(2M), t⊥/ER " 1,
centered around the equidistant levels of the para-
bolic potential minima. Examples of such bands are
visible in panel (h) of figure 3.

Then there is of course the celebrated flat band of
magic angle graphene. In the reading of this paper,
this band is the result of an ‘magically’ high level of
fine tuning resulting in a band with exceptionally low,

but not vanishing k-dependence. Besides fine tuning,
a factor supporting the flatness of this band is its posi-
tioning at zero energy. The average particle-hole sym-
metry of the spectrum visible in figure 1 implies a
tendency for ‘locking’ at this value. At the same time,
this band sits at a ‘Fermi circle’ of vanishing radius,
which makes momentum space localization a non-
issue. At any rate, the universal principles addressed
in this paper have nothing of relevance to say on the
engineering of this type of magically flat bands.

7. Discussion

In this paper, we applied statistical concepts to the
description of moiré band structures. Our start-
ing point was the observation that the incommen-
surability of the inter-layer coupling relative to the
uncoupled system’s dispersion is a source of effect-
ive disorder. On this basis, we defined three regimes
governed by different principles: Regime I where
weak interlayer coupling leads to momentum space
localization and approximately linearly dispersive
statistically independent energy bands, regime II at
intermediate coupling where states become mutually
correlated and partially delocalized leading to a non-
linearly dispersive spectrum, and regime III where
strong interlayer coupling makes the symmetries of
the moiré lattice a relevant feature and the energy
bands become nearly, but not perfectly flat.

Embedded in the tangle of the statistical spec-
trum there exist various non-generic features, not-
ably bands of exceptional flatness localized near band
extrema. We also interpreted the celebrated magic
angle flat band as a genuinely anomalous structure
which owes its existence to multi-parameter fine tun-
ing rather than to a universal principle.

On the basis of the above discussion the best bet
for encountering an accumulation of exceptionally
flat bands is regime III. However, that regime requires
t⊥ ! εF, i.e. huge interlayer coupling, or Fermi ener-
gies scaled to the vicinity of an effective Dirac point
(as is the case for the magic angle flat bands.)

Some open questions that merit further explor-
ation include the role of screening and its band
structure effects. One might also entertain the ques-
tion whether one can engineer longer-range hopping
in momentum space in order to drive the system
into the delocalized, chaotic regime already for small
interlayer coupling and thereby effectively flatten all
bands. This could possibly be achieved by a manipu-
lation and rearrangement of atoms (while keeping the
underlying moiré periodicity unchanged) to generate
a short-range potential in real space, which in turn
induces a long-range hopping in momentum space.
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Appendix A. Magic-angle graphene

We here define the model of TBG which serves
as a basis for the numerical studies of this paper.
Graphene has a lattice constant a of the order of ang-
strom and a total bandwidth D∼O (10eV) [40, 48].
At the magic angle of 1.1◦, the stacked material has
a moiré lattice constant am ≈ 50a [3, 49]. A moiré
potential V is caused by the interlayer coupling t⊥∼
O(0.1 eV)∼D/L, which is subject to spatial vari-
ations on the large scale of the moiré unit cell. At
such small angles, incommensuration effects coming
from LGm /= G are suppressed by a factor (t⊥/D)

L,
i.e. no quasicrystal physics occurs. The variation of
the interlayer coupling may be amplified through
the corrugation of the layers in the out-of-plane dir-
ection, e.g. the interlayer distance is slightly differ-
ent in the AA-stacked regions and in the AB-stacked
regions, see appendix B. We take this into account
in our modeling, below. Note that the bandwidths
of the much discussed flat bands at the Fermi level
in magic-angle graphene are reported in a range of
20–40meV [12, 15]. This is significantly larger than
theoretical predictions of " 10meV [50], including
corrugation but not in-plane lattice relaxation effects.
Putting the experimentally reported bandwidth into
context withGm, the typical velocities v in these bands
are only moderately suppressed when compared to
the typical velocity vF of single-layer graphene, i.e.
v∼ 0.1, . . . ,0.2 · vF.

Appendix B. Real-space lattice model

To perform band structure calculations for TBG, we
start from a real-space lattice model by considering a
honeycomb lattice with lattice vectors

a1 = a

(√
3

2
,−1

2

)
, a2 = a

(√
3

2
,+

1

2

)
(B1)

and lattice constant a.
Twisting two graphene layers with respect to each

other by a finite angle θ gives rise to a large-scale inter-
ference pattern—the moiré pattern. At commensur-
ate twist angles, moiré unit cells are formed which are
strictly periodic. These commensurate twist angles

are achieved by pairs of integer numbers m and n
which define the twisting of the Bravais lattice site
Ru =ma1 + na2 in the upper layer on top of site Rl =
na1 +ma2. The twist angle θm,n for a given pair (m,n)
is then defined as

cos(θm,n) =
1

2

m2 + n2 + 4mn

m2 + n2 +mn
. (B2)

The corresponding moiré Bravais lattice vectors are

a1,M =ma1 + na2, a2,M = R(60◦)a1,M. (B3)

We further use a generic tight-binding Hamiltonian
with all-to-all hopping amplitudes t(ri,j), reading

H=
∑

i,j

t(ri,j)c
†
j ci . (B4)

The distance-dependent hopping amplitudes are
chosen to be in the Slater–Koster form [38–40], i.e.

t(r) = Vppπ(r)

(
1−
(r·ez

r

)2 )
+Vppσ(r)

(r·ez
r

)2
,

(B5)

Vppπ(r) = V0
ppπe

−(r−a0)/δ0 , (B6)

Vppσ(r) = V0
ppσe

−(r−d0)/δ0 . (B7)

Here, we have introduced the intralayer nearest-
neighbor distance a0 = a/

√
3, the mean interlayer

distance d0 (see next paragraph), the decay distance
of orbital overlap δ0, as well as the two overlap integ-
rals V0

ppπ and V0
ppσ . In our calculations we base our

parameters on the experimentally determined values
of a0 = 0.142 nm, δ0 = 0.319 nm as well as V0

ppπ =
−2.7 eV and V0

ppσ = 0.48 eV.
For the modeling of the real-space structure of

TBG in a setting close to experiments, we further take
into account corrugation effects which buckle the lat-
tice on scales of themoiré cell, i.e. we introduce a peri-
odic variation of the interlayer distance. This effect
stems from the interactions between the atoms of the
two layers which are stacked either in an AA or AB
fashion, depending on the relative position within the
moiré cell. The layer distance therefore varies between
dAA and dAB with the periodicity of the moiré cell as

d(R) = d0 + 2d1

3∑

i=1

cos

(
2π

R ·Ci

|Ci|2

)
. (B8)

Here, d0 and d1 are based on the AA and AB distances
as

d0 =
1

3
(dAA + 2dAB), (B9)

d1 =
1

9
(dAA − dAB). (B10)
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The corrugation spanning vectors Ci which are
enclosing an angle of 60◦ span the moiré pattern and
read

C1 =
1

2
(a1,M + a2,M), (B11)

C2 = R(60◦)C1, (B12)

C3 = R(120◦)C1. (B13)

The AA and AB distances have been experiment-
ally determined to be dAA = 0.360 nm and dAB =
0.335 nm [50–52].

When referring to specific combinations ofmodel
parameters, we always use relative values with respect
to the experimental parameters, e.g. a corrugation of 0
refers to a layer distance of the AB regions everywhere
in the lattice. In total, we modify the layer distance,
the strength of corrugation, as well as the orbital
overlap. To that end, we introduce the interlayer
coupling parameter V which denotes the interlayer
Slater–Koster parameter V0

ppσ in units of its experi-
mental value. Further, we parametrize the interlayer
distanceDl in units of the equilibriumdistance as well
as the level of corrugation by a parameter C which
denotes the corrugated part of the interlayer distance
dAA − dAB in units of the experimentally determined
value.

Appendix C. One-dimensional moiré
system

In this section, we study a one-dimensional moiré
system to explore the effective range of the coupling
between lattice sites in momentum space. We show
that this coupling decays exponentially on the scale
∆p! Gm, where Gm is the shortest moiré reciprocal
lattice vector.

To that end, we consider a one-dimensionalmoiré
system consisting of two chains with different lat-
tice constants a and b. Each layer feels a ‘substrate
potential’ induced by the other layer, cf figure 6(a).
To obtain a large-scale moiré interference pattern,
|a− b| is assumed to be much smaller than a and
b. The length of the moiré unit cell is given by
am = ab/|a− b| and the length of the unit of the
moiré reciprocal lattice vector is Gm = 2 π/am.

The potential V in the upper chain as induced by
the lower chain reads

V(RU) =
∑

RL

U(RU −RL) , (C1)

whereU(RU −RL) is themicroscopic interlayer coup-
ling which only depends on the distance |RU −RL|.
Through the potential V an electron with initial
momentum p can be scattered into a state with

momentum p
′
. This process is described by the mat-

rix element

〈p ′|V|p〉= 1

N

∑

RU

V(RU)ei(p−p ′)RU

=
1

N

∑

RU,RL

U(RU −RL)ei(p−p ′)RU

, (C2)

where N is the number of sites in the upper chain.
To study the behavior of this matrix element for
long wavelengths, we introduce a smoothing function
f (x) [38]. The smoothing property of f allows us to
treat the moiré potential as a continuous and smooth
modulation and estimate the induced hopping range.
To realize the smoothing, f (x) is chosen to decay on a
scale much larger than the atomic scale a, but much
smaller than the moiré scale am and it is normalized
as
´
am
dxf(x) = am. Inserting this normalization con-

dition into equation (C2) yields

〈p ′|V|p〉= 1
Nam

ˆ
x

∑

RU,RL

f(x−RU)U(RU−RL)ei(p−p ′)RU

∼ 1
Nam

∑

RU,RL

ˆ
x
ei(p−p ′)xf(x−RU)U(RU−RL)

= fp−p ′
∑

GU,GL,q

U(q)δp−p ′+q,GUδq,GL . (C3)

Here, we used ei(p−p ′)RU ∼ ei(p−p ′)x when going from
the first to the second line as the smoothing func-
tion acts as a delta function on the moiré scale and we
introduced the reciprocal lattice vectors of the upper-
/lower chains GU/L. The two Kronecker deltas in the
last line of equation (C3) lead to the relations

∆p= p− p ′ = GU −GL = 2 π
(m1

a
− m2

b

)
≡ Q,

q= GL = 2 π
m2

b
, (C4)

withm1,m2 ∈ Z and the moiré reciprocal lattice vec-
tors Q. To obtain a non-negligible contribution to
〈p ′|V|p〉, the smoothing function f(∆p) needs to be
sizeable, which is the case for smallmomentum trans-
fer∆p smaller than the decay length (0 1/a or 1/b)
of f(∆p). This is realized for the casem1 =m2, which
we discuss in the following.

Since U(x) decays on the atomic scale a, the
potential U(q) decays on the scale ∼1/a. Therefore,
the dominant contribution comes from the q= 0
part, but it gives rise to the condition p= p ′, and thus
results in a trivial energy shift by a constant term. The
lowest non-trivial contribution comes from them1 =
m2 =±1. According to equation (C4), we then obtain
∆p=±2π(1/a− 1/b) and q=±2π/b leading to the
matrix element 〈p ′|V|p〉= U(2π/a). More generally,
choosing m=m1 =m2, i.e. ∆p= 2 πm(1/a− 1/b)
and q= 2πm/b, yields the matrix element

〈p ′|V|p〉= U

(
2πm

b

)
. (C5)
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Figure 6. One-dimensional moiré system. (a) Two layers with different lattice constant a and b. |a− b| is assumed to be much
smaller than a and b, or equivalently a,b are much smaller than the size of moiré unit cell, am. The lattice sites in the upper
(lower) layer are denoted as red (blue) dots. (b) and (c) commensurate lattices with the condition %1a= %2b with integers %1,%2.
(b) %1 = 15 and %2 = 14. (c) %1 = 36 and %2 = 33. There is a three-fold approximate symmetry within the exact periodicity. After
washing out the fine structures of the lattices by a bootstrap (e.g. disorder), the periodicity of the approximate symmetry governs
features of the coupling of lattice sites in the momentum space.

Hence, together with the assumption that the
microscopic interlayer coupling U decays exponen-
tially on the atomic scale a, the coupling of the lattice
sites in momentum space decays exponentially over
scale∆p! Gm.

We note that the above argument does not depend
on whether the lattice configuration is commen-
surate or incommensurate since we never explicitly
impose the condition of LGm = GU or LGm = GL. It
is instructive, however, to briefly revisit the reason-
ing for the commensurate case, where l1a= l2b with
integers (1 and (2. When |(1 − (2|= 1, cf figure 6(b),
the lowest non-trivial condition p− p ′ = 2π(1/a−
1/b) =±2π/((1a) =±Gm is fulfilled; the range of
the coupling of the lattice sites in momentum space
decays over the scale Gm. Even for |(1 − (2| /= 1, we
always find the approximate symmetry that satisfies
( ′1a( ( ′2b with |( ′1 − ( ′2|= 1, cf figure 6(c), only if
|a− b|0 a,b. This periodicity of the approximate
symmetry governs features of the coupling of lattice
sites after washing out the fine structures of the lat-
tices by a possible bootstrap, e.g. disorder. Therefore,
the statement that the coupling of lattice sites in
momentum space decays over the scale ∆p! Gm

holds generally for moiré systems.

Appendix D. Flat band ladders

An exceptional feature of our real-space TBG model
is the occurrence of a sequence of equally-spaced flat
bands. This sequence emerges near the minimum of
the graphene bands of the uncoupled system, cf the
inset in panel (h) of figure 3 in the main text. The
underlying physical mechanism at play here can be
readily understood in terms of a harmonic-oscillator
level spacing. To that end, consider electrons near
the band minimum of the uncoupled layers tunnel-
ing in the periodicmoiré potential, which—along one
chosen direction—is dominated by the modulation
term ∼t⊥cos(Gmr) [53]. Near a band minimum, the
kinetic energy of the electrons can be approximated
using a quadratic approximation ∼k2/(2m), where

m is given by the curvature at that minimum. The
potential is large as compared to the recoil energy,
since the parameters in the presented model imply

t⊥ ! 1/L" G2
m/(2m)∼ 1/L2.

This allows us to extract the corresponding level spa-
cing of the harmonic oscillator eigenenergies yielding

√
t⊥G2

m/m∼ 1/L3/2 " 1/L2.

In consequence, we obtain a sequence of equally
spaced bands with an exponentially small bandwidth

∆W∼ exp(−
√
t⊥mGm)∼ exp(−

√
N).

Definite numerical evidence of this scenario is
provided in figure 7, where we show the wave-
function solutions of the eigenstates in this sequence
as plotted in the cascade of panels on the right—a
beautiful illustration of two-dimensional harmonic
oscillator states.

Appendix E. Spectral statistics for TBG

We complement the analysis of spectral statistics for
the continuum model in the main text (section 6.2)
with numerical data for the real-space TBG model
here. While such an analysis for the real-space model
does not give the same quantitative clarity as for the
continuum model, we observe very similar qualit-
ative behavior as a function of increasing interlayer
coupling. A summary is provided in figure 8. Here,
the upper two rows show the velocity statistics as
a function of increasing interlayer coupling (differ-
ent columns), cf figure 3 of the main text. Therein,
we present a histogram of velocities in the first row
and energy-resolved ‘waterfall’ plots in the second
row. The lower three rows show the spectral statist-
ics. Here, the two rows at the bottom are snapshots
of the band structure in the two energy windows
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Figure 7. Formation of ladder states near band minimia. The ‘waterfall’ plot (akin to figure 3 in the main text) on the left
highlights the formation, at finite interlayer coupling, of a sequence of equally-spaced flat bands emerging near the minimum of
the graphene band of the uncoupled system. The cascade of plots on the right illustrates the wavefunctions for the first five energy
levels extracted from exact diagonalization of our real-space TBG model. The parameters are identical to those in figure 3 panels
(d) and (h), i.e. strong interlayer coupling V = 2 and strong corrugation C= 5.

Figure 8. Spectral statistics for real-space TBG model as a function of interlayer coupling at an angle corresponding to
m= 15,n= 12, cf (B2), i.e. θ ≈ 2.28◦. We have choosen an interlayer distance of 55% of the experimental distance and a
corrugation that is five times stronger than the experimental value, i.e. Dl = 0.55 and C= 5, cf section B. Columns are shown
from left to right with increasing interlayer coupling parameter V which denotes the interlayer Slater–Koster parameter V 0

ppσ in

units of the experimental value V0
ppσ = 0.48 eV. The upper two rows show velocity statistics whereas the lower three rows

illustrate the spectral statistics. The middle row shows histograms of r values which are compared to Poisson or Wigner Dyson
statistics indicate localization versus chaotic regimes. The underlying histograms of values for the ratios of adjacent level
spacings r are computed by averaging over several momenta within the first moiré Brillouin zone as well as all energies. The
spectral statistics of the real-space model are in overall agreement with what is discussed for the momentum space model in
section 6.2 in the main text.

as indicated on the very left. A quantitative analysis
of the level spacings in these band structure plots is
provided in the middle row. Here, we present the
level-spacing distribution as a histogram that is com-
pared to the Poisson and Wigner–Dyson distribu-
tions, which are characteristic for localized and delo-
calized chaotic regimes, respectively.

Looking at the evolution for increasing interlayer
coupling parameter V, we observe a similar progres-
sion as discussed for the continuum model in the

main text, cf section 6.2: starting from a Poisson-
like distribution the level statistics evolves to a broad
histogram as resembling a Wigner–Dyson-like dis-
tribution. We note, however, that the formation of
flat band ladders, cf section D, gives rise to a δ-
function like peak at vanishing ratio of adjacent level
spacing, i.e. at r= 0. This phenomenon somewhat
obscures the evolution of the level spacing distribu-
tion. For large interlayer coupling, the distribution
moves back to a monotonously decaying Poisson-like
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distribution, akin to the reentrance behavior dis-
cussed for the continuum model in section 6.2.

Appendix F. Momentum-space continuum
model for TBG

In this section, we review the continuum model for
TBG as developed in [3] as valid for small twist
angles θ. We employ this model for the calculations
in section 6 as a simple tool to understand the com-
plex band structures of the TBG based on statistical
principles.

The starting point is a monolayer of
graphene with primitive lattice vectors as given
in equation (B1). Explicitly, the basis of the
honeycomb lattice sites reads τ A = 0,τ B = ax̂/

√
3

and the primitive reciprocal lattice vectors are b1 =
(2π/a)(x̂/

√
3+ ŷ) and b2 = (2π/a)(x̂/

√
3− ŷ),

where x̂ and ŷ are euclidean unit vectors in the x
and y direction, respectively. The inequivalent K and
K ′ points read

K=
4 π

3a
ŷ, K ′ =−K=−4π

3a
ŷ. (F1)

Accordingly, the equivalent K points in the first Bril-
louin zone are given by translations by primitive
reciprocal lattice vectors, i.e. K1 = K,K2 = K− b1,
and K3 = K− b1 + b2.

We now consider a twisted graphene bilayer with
total relative twist angle θ. For symmetry reasons, the
upper layer is twisted by +θ/2 and the lower layer is
twisted by−θ/2with respect to a perfectly alignedAA
stacking of the bilayer. The Bloch wave function with
momentum k (k ′) residing on sublattice β (β ′) in the
upper (lower) layer is written as

|ΨU
kβ〉=

1√
NU

∑

RU

eik·R
U

|RU + τU
β〉,

|ΨL
k ′β ′〉=

1√
NL

∑

RL

eik
′·RL

|RL + τ L
β ′〉. (F2)

HereNU(L) is the number of the unit cells in the upper

(lower) layer and τU(L)
β ≡ e±iθσz/2τβe∓iθσz/2 is the

rotated basis.
The bare graphene (Dirac) Hamiltonian of layer

U(L) near the KU(L) point then reads

HK
U/L(p) =−

√
3at

2

(
σ±θ/2 · p

)
, (F3)

where σθ = eiθσz/2σe−iθσz/2. Given momentum
p in the first Brillouin zone, the bare graphene
Hamiltonian with momentum p−Qn can be unfol-
ded into the extended Brillouin zone scheme as

HK
U/L(p−Qn) =−

√
3at

2

(
σ±θ/2 · (p−Qn)

)
. (F4)

HereQn are the moiré reciprocal lattice vectors, asso-
ciated with the periodicity of the moiré unit cell.

The interlayer hopping matrix describing a pro-
cess where an electron with momentum k residing on
sublattice β in the upper layer hops to a state with
momentum k ′ on sublattice β ′ in the lower layer
reads

〈ΨL
k ′β ′ |HT|ΨU

kβ〉=
∑

RU,RL

t(RL+τ L
β ′−RU−τU

β)√
NUNL

× eik·R
U−ik ′·RL

=
∑

RU,RL,q

tβ
′β

q

NUNL
ei(q−k ′)·RL−i(q−k)·RU+iq·(τ L

β ′−τU
β )

=
∑

GL,GU

∑

q

tβ
′β

q δq−k,GUδq−k ′,GL eiq·(τ
L
β ′−τU

β ).

(F5)

Here,GU(L) is the reciprocal lattice vector of the upper
(lower) graphene layer and we have assumed that
t(RL + τ L

β ′ −RU − τU
β) only depends on the distance

|RL + τ L
β ′ −RU − τU

β |. The two delta functions in
equation (F5) lead to the moiré condition

k− k ′ = GU −GL = Qn. (F6)

Under the assumption that tq decays rapidly around
|q|∼ |K|, q can be restricted to momenta around the
K points in the first Brillouin zone (K1, K2 and K3);
q can be decomposed as q= KL

i + p ′ = KU
i + p for

i= 1,2,3 with small momentum p and p ′, leading
to p− p ′ = KL

i −KU
i ≡ qi. Within those approxima-

tions, equation (F5) becomes

〈ΨL
p ′α ′ |HT|ΨU

pα〉=
∑

i=1,2,3

tβ
′β

Ki
eiKi·(τ L

β ′−τU
β)δp−p ′,qi .

(F7)

We assume that tβ
′β

Ki
are momentum independent

(tAAKi
= tAAKi

= tAA and tABKi
= tABKi

= tAB), and further
neglect the small angle dependence of τ L

α,τ
U
α ( τα.

Then, the hopping termbecomes a 2× 2matrix, read-
ing

〈ΨL
p ′ |HT|ΨU

p 〉=
∑

i=1,2,3

δp−p ′,qi

(
tAB

[
σx cos

(2π
3
(i− 1)

)

+σy sin
(2π

3
(i− 1)

)]
+ tAAI

)
. (F8)

This completes the description of TBG in the con-
tinuum model as employed in section 6.

Appendix G. Localization by
incommensurability

In this section, we address the localization driven
by the local incommensurability as mentioned in
section 6. To this end, we consider an approximate
Hamiltonian, describing a physical mechanism that
takes place in a small fraction of a one-dimensional
energy circle of the original graphene dispersion with
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Figure 9. Localization by incommensurability. (a) The circle of equal energy crossing momentum p0 = p0(cosφ, sinφ). In the
limit of p0 →∞ this can be regarded as a straight line (red line) with angle (π−φ). (b) Localization length ξ‖ along the line as a
function of the angle φ with pronounced peaks at commensurate angles. Here, the notion ’(in)commensurate angle’ means that
the distances between the lattice points and the line are (in)commensurate. Different colors represent different t⊥, i.e. t⊥ = vFqm
(blue dots) and t⊥ = 0.1 vFqm (red dots). The pronounced peaks of ξ‖ at commensurate angles show that incommensurability is
a dominant source of localization. (c) ξ‖ as a function of t⊥ with fixed φ= π/12.

Figure 10. Corrugation effect. (a) Diagrams to show how lattice sites in the momentum space are connected with the nearest
neighbor sites by the interlayer hopping with a different level of the corrugation. The corrugation is effectively parameterized with
ϕ as tAA = t⊥ cosϕ and tAB = t⊥ sinϕ. With the eigenstates |k+Qn,α〉 of the Hamiltonian in the absence of the interlayer
coupling, the strength of the matrix element |〈k+Q ′

n ,U|HT|k+Qn,L〉| is represented as the thickness of the connection between
sites. (b) localization length ξ‖ as a function of ϕ with fixed t⊥ = 0.5 vFqm.

large radius, cf the outer-most ring in the inset of
figure 4(a).

We start by taking a momentum p0 =
p0(cosφ, sinφ), cf figure 9(a), which is large with
respect to K , i.e. the K point of the untilted graphene
band. Then we consider the circle of equal energies
with radius vFp0 passing through momentum p0. In
the limit of p0 →∞, the fraction of the circle in the
vicinity of momenta p0 becomes a straight line with
angle (π−φ), cf the red line in figure 9(a). Then, the
curvature of the circle is negligible.

The angle φ determines the level of incom-
mensurability of the geometrical distances between
the line and the sites of the momentum-space lat-
tice. For example, for φ= π/3, the distances are
commensurate. To describe the physics near p0, we
expand the Hamiltonian in equation (F4) in δp=
p− p0 as HK

l (p)(HK
l (p0)+ δHK

l (p), with δHK
l (p)

reading

δHK
l (p) = vF〈ψ+

p0,l
|(δp+Qn −Kl) ·σ±θ/2|ψ+

p0,l
〉

=
vF
p0
(δp+Qn −Kl) · p0 , (G1)

where l ∈ {U,L} and |ψ+
p0,U/L

〉= (exp
(
−i(φ∓ θ

2 )
)
,1 )T is an eigenstate of HK

U/L(p0) with

positive energy vFp0. Likewise, the effective interlayer
coupling is given by

δHT(p0) = 〈ψ+
p0,U

|HT|ψ+
p0,L

〉+H.c.. (G2)

Using the effective Hamiltonian (δHK
U/L(p0)+

δHT(p0)), we compute the localization length ξ‖
along the straight line, where ξ‖ is defined as the
inverse of the projected IPR on the line. We show ξ‖
as a function of the angle φ in figure 9(b).

Interestingly, for commensurate anglesφ—as, e.g.
found at multiples of π/6—the localization length
exhibits a sharp peak, clearly showing that localiza-
tion occurs due to incommensuration effects of the
underlying moiré lattice. Whenever a wave function
crosses the region of an incommensurate angle it
gets tied up there, leading to localization. Figure 9(c)
shows that the localization length tentatively increases
linearly with increasing t⊥, however, with an addi-
tional oscillation. The oscillation effect occurs as a
function of angle and we did not resolve its origin,
here.

Appendix H. Corrugation effect

Finally, we show that in the weak corrugation case,
an additional localization mechanism occurs along
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the energy circle. Here we address the effect of the
corrugation within the momentum space continuum
model. This effect is due to interference between the
interlayer couplings in the regions of AA stacking and
AB stacking. We note that in the main text, we use a
strong corrugation case, i.e. tAA = 0 in equation (F8),
to avoid this effect as it is not of primary interest for
the present work.

The corrugation can effectively be taken into
account in the interlayer coupling terms of the con-
tinuum model, cf equation (F8). Using an angular
parameter ϕ, it can be continuously tuned from weak
to strong as tAA = t⊥ cosϕ and tAB = t⊥ sinϕ.

To see how neighboring lattice points are connec-
ted by the interlayer coupling, we employ a perturb-
ative approach. First, we calculate the eigenvectors of
theHamiltonian in the absence of the interlayer coup-
ling |k+Qn,α= U,L〉. We then compute matrix ele-
ment 〈k+Q ′

n,U|HT|k+Qn,L〉. The absolute value of
thematrix element is shown in figure 10(a) and is rep-
resented by the thickness of the connections between
lattice points.

Without corrugation (ϕ= π/4), the connections
in the angular direction are suppressed due to the
formation of dimer states in comparison with the
connections in the radial direction. On the other
hand, with strong corrugation, i.e. ϕ= 0 and ϕ=
π/2, the connection along a contour of equal energy
is relatively strong.While three nearest neighbor con-
nections are equivalent in the ϕ= 0 (tAB = 0) case,
the connection in the ϕ= π/2 (tAA = 0) dominantly
occurs along the angular direction. Strong depend-
ence on the corrugation suggests an interference effect
between the AA and AB interlayer coupling.

The above localization mechanism is further sup-
ported by a calculation of the localization length along
a ring, figure 10(b). For decreasing corrugation, i.e.
closer to ϕ= π/4, the localization length decreases.
This clearly shows that there is an additional localiz-
ation mechanism in the weak corrugation case.
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