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The fractionalization of quantum numbers in interacting quantummany-body systems is a central motif in
condensed-matter physics with prominent examples including the fractionalization of the electron in
quantum Hall liquids or the emergence of magnetic monopoles in spin-ice materials. Here, we discuss the
fractionalization ofmagneticmoments in three-dimensionalKitaevmodels intoMajorana fermions (and aZ2

gauge field) and their emergent collective behavior. We analytically demonstrate that theMajorana fermions
form aWeyl superconductor for the Kitaev model on the recently synthesized hyperhoneycomb structure of
β-Li2IrO3 when applying a magnetic field. We characterize the topologically protected bulk and surface
features of this state, which we dub a Weyl spin liquid, including thermodynamic and transport signatures.

DOI: 10.1103/PhysRevLett.114.157202 PACS numbers: 75.10.Kt, 03.65.Vf, 71.20.Be

One of the most intriguing phenomena in strongly
correlated systems is the fractionalization of quantum
numbers, i.e., the low-temperature emergence of novel
quantum numbers that are distinct from those of the
original constituents of the quantum many-body system.
Familiar examples include the spin-charge separation in
one-dimensional metallic systems [1], the fractionalization
of the electron in certain quantum Hall states [2], and the
emergence of monopoles in spin ice [3] or chiral magnets
[4]. In this Letter, we discuss the fractionalization of
magnetic moments in three-dimensional generalizations
of the Kitaev model [5] and the collective behavior of
the emergent Majorana fermionic degrees of freedom. The
latter form metallic states whose precise character inti-
mately depends on the underlying lattice structure. For the
two-dimensional honeycomb Kitaev model, it is well
known that the Majorana fermions form a semimetal with
two gapless “Dirac points” [5]. Recently, three-dimensional
lattice structures have been considered for which the
emergent Majorana fermions form metallic states with
gapless modes either along a “Fermi line” [6] or a two-
dimensional “Fermi surface” akin to a conventional metal
[7]. The common feature of these lattices is that they
preserve the tricoordination of the vertices familiar from
the honeycomb lattice. An example of such a three-
dimensional lattice structure is the so-called hyperhoney-
comb lattice illustrated in Fig. 1, which has recently been
synthesized for the iridate compound Li2IrO3 [8]. Like
other 5d transition metal oxides, Li2IrO3 exhibits an
intricate interplay of electronic correlations, crystal field
effects, and strong spin-orbit coupling leading to the
formation of a Mott insulator where the local moments
are spin-orbit entangled j ¼ 1=2 Kramers doublets [9]. It
has been argued [10] that the microscopic interactions
between these local j ¼ 1=2 moments realize Kitaev-type
Hamiltonians with recent experiments indeed confirming
such a spatially highly anisotropic exchange [11–13].

Here, we demonstrate that in the presence of a magnetic
field (or any other time-reversal symmetry-breaking term),
the emergent Majorana fermions in such three-dimensional
Kitaev models can form yet another collective state—a
Weyl superconductor. The band structure of the latter is
characterized by the presence of gapless “Weyl points” in
the bulk and the formation of topologically protected
gapless “Fermi arcs” on the surface [14]. Keeping in mind
that this physics in fact plays out in a quantum spin system,
we dub this highly unconventional emergent state a Weyl
spin liquid. The key distinction when compared to elec-
tronic Weyl semimetals or superconductors is that it arises
in an electronic Mott insulator. In the latter, the electronic
degrees of freedom are frozen out, but the collective state of
the localized moments mimics the formation of an itinerant
electronic state. The analytical tractability of the Kitaev
model allows us to comprehensively discuss the intriguing
facets of this state in the following.
Model.—Specifically, we consider a Kitaev model on the

hyperhoneycomb lattice

FIG. 1 (color online). The tricoordinated hyperhoneycomb
lattice synthesized for β-Li2IrO3. IrO6 octahedra are indicated
on the left. Green, red, and blue bonds correspond to an Ising-type
interaction of σxσx, σyσy, and σzσz type, respectively. The three-
spin interaction σxjσ

y
kσ

z
l induces a next-nearest-neighbor hopping

term between sites j and k in the effective Majorana model (3).
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HKitaev ¼ −JK
X

γ-bonds

σγiσ
γ
j; ð1Þ

which favors nearest-neighbor SU(2) spin-1=2’s (repre-
sented by the Pauli matrices σi) to align their x, y, or z
components depending on the bond directions of the
hyperhoneycomb lattice (as color coded in Fig. 1).
Remarkably, this highly frustrated spin model can be
solved exactly. In close analogy to Kitaev’s solution [5]
of the two-dimensional honeycomb model, one represents
the spins in terms of four Majorana fermions σγj ¼ ibγjcj
and regroups the two Majorana fermions associated with a
bond into an operator ûij ¼ ibγi b

γ
j whose �1 eigenvalues

can be identified with a static Z2 gauge field. One thereby
maps the original interacting spin model to a free-fermion
Hamiltonian of Majorana degrees of freedom hopping in
the presence of a static Z2 gauge field. Diagonalizing this
Hamiltonian [15], one readily obtains the band structure of
this model with four distinct bands arising from the four
sites of the unit cell of the hyperhoneycomb lattice. As
shown in Fig. 2 the system exhibits gapless modes located
along a closed loop in the ky ¼ −kx plane of the Brillouin
zone [6]. Close inspection [5,7] of the Hamiltonian further
reveals that the gapless modes are protected by time-
reversal symmetry and indeed stable against various per-
turbations [17–20], as well as thermal fluctuations [21–23].
Any time-reversal invariant perturbation to the Hamiltonian
can only deform the line, but not immediately gap out the
gapless modes (see the Supplemental Material [24]).
We now ask what effects are induced by time-reversal

symmetry-breaking perturbations such as a magnetic
field. In particular, we study a term −

P
j
~h ·~σj where the

magnetic field points along the 111 direction. This aug-
mented Kitaev model is no longer exactly solvable per se.
However, one can perturbatively derive a low-energy
effective model that remains exactly solvable, again similar
to the two-dimensional Kitaev model [5]. This effective
model is obtained by observing that the static Z2 gauge
field allows us to perform perturbation theory in the zero-
flux ground-state sector as long as the strength of the
magnetic field remains smaller than the flux gap, which is

approximately 0.2JK around the isotropic point. The first
nontrivial contributions arise at third order and yield an
effective Hamiltonian

Heff ¼ −JK
X

γ-bonds

σγiσ
γ
j − ~κ

X

j;k;l

σαjσ
β
kσ

γ
l ; ð2Þ

with a three-spin coupling constant ~κ ∼ hxhyhz=J2K . The
sites j and k denote two distinct nearest neighbors of site l,
and (α, β, γ) is a permutation of ðx; y; zÞ with bond jl (kl)
being of type α (β) as illustrated in Fig. 1. Recasting this
Hamiltonian in terms of the Majorana fermions yields a
noninteracting model of fermions hopping between nearest
and next-nearest neighbors

Heff ¼ iJK
X

hj;ki
ujkcjck − i~κ

X

hhj;kii
~ujkcjck; ð3Þ

where the coefficient of the nearest-neighbor hopping is
given by ujk ¼ 1ð−1Þ for j on the odd (even) sublattice and
the coefficient in front of the next-nearest-neighbor hop-
ping term ~ujk can be determined from the underlying three-

spin interaction, σαjσ
β
kσ

γ
l , to be ~ujk ¼ −ϵαβγ , where ϵαβγ is

the totally antisymmetric Levi-Civita tensor (see the
Supplemental Material [24]). In the following, we will
parametrize the next-nearest-neighbor hopping by the ratio
κ ¼ ~κ=JK as to keep the order of the overall energy scale
~κ þ JK fixed.
Before we discuss this effective model, two short remarks

are in order. First, we note that themagnetic field term induces
a second third-order term of the form

P
j;k;lσ

x
jσ

y
kσ

z
l , where j,

k, and l are the three nearest neighbors of a common central
site. This yields a local four-Majorana fermion interaction in
the effective Hamiltonian. Closer inspection of this term
shows that it is irrelevant in a renormalizationgroup sense, and
we, therefore, neglect it in the following (see theSupplemental
Material [24]). Second, we point out that tilting the magnetic
field direction away from the 111 axis does not significantly
alter the effective Hamiltonian. Such a tilt simply adds spatial
anisotropies to the strength of theKitaev interaction leading to
a shift of the position of theWeyl points. Our results are in fact
valid as long as the magnetic field has nonvanishing compo-
nents along all three spatial directions.
Weyl points.—Returning to the effective Hamiltonian

(3), we find that a magnetic field immediately gaps out the
gapless modes along the Fermi line—except for two
singular points. As illustrated in Fig. 3 we observe that
the energy dispersion around these points is linear in all
momentum directions and takes the form

EðqÞ ¼
X3

i¼1

vi · qτi;

where the Pauli matrices τi act within the subspace spanned
by the two touching bands (above and below the Fermi
energy) and q is the momentum relative to the singular
point [25]. As such, these two remaining gapless points are
in fact a pair of Weyl points (WPs). Such WPs have

FIG. 2 (color online). The energy dispersion of the hyper-
honeycomb Kitaev model for various values of κ (parametrizing
the effective magnetic field) along certain high-symmetry lines
indicated in the Brillouin zone on the right-hand side. The gray
hexagon indicates the plane kx ¼ −ky on which the line of
gapless mode (black line) is located.

PRL 114, 157202 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

17 APRIL 2015

157202-2



attracted considerable interest recently as it has been shown
that these points describe topologically protected band
touchings [14]. For electronic systems, the presence of
such band touchings at the Fermi energy leads to a so-
called Weyl semimetal—a topologically protected gapless
phase. For the Majorana fermion system at hand, the WPs
are fixed to exactly zero energy for symmetry reasons.
Inversion symmetry assures that the WPs are at momentaQ
and −Q and have identical energies EðQÞ ¼ Eð−QÞ, while
particle-hole symmetry gives EðQÞ ¼ −Eð−QÞ.
Each WP can be identified as a quantized source of

Berry flux with the “charge” given by its chirality:
sgn(v1 · ðv2 × v3Þ). One consequence of this is that the
Chern number of the Hamiltonian restricted to a two-
dimensional subspace of the Brillouin zone can be nonzero.
To illustrate this effect, we calculate these Chern numbers
on planes in momentum space as depicted in Fig. 4 where
we parametrize the location of these planes by the
momentum kz. When passing through a WP, the Chern
number jumps by an amount related to the charge of theWP
[26]. This difference in the Chern number can be identified
with the Chern number of a two-dimensional surface
surrounding the WP. Thus, the WPs are indeed topological
objects, explaining their remarkable stability against any
kind of local interaction; WPs can only be gapped out in a
pairwise fashion when two points of opposite chirality
coincide at the same momentum.
Intricately connected with the occurrence of nontrivial

Chern numbers in the bulk is the presence of gapless surface
states called Fermi arcs [14], which—analogous to the bulk
WPs—are topologically protected. To see the emergence of
such surface Fermi arcs in our spinmodel (2), let us consider
the effective Hamiltonian for a slab geometry, where
periodic boundary conditions are imposed along the a2
and a3 directions but not along a1 (see the Supplemental
Material [24] for a detailed description of the lattice). The
spectrum is then projected to the associated surfaceBrillouin
zone, which is illustrated in Fig. 5(c). For the time-reversal
symmetric case (κ ¼ 0), the projection of the gapless Fermi
line in the bulk is again a line filled with a flat surface
band, shown in the leftmost picture in Fig. 5(b). Such flat
surface bands in time-reversal symmetric models were
first discussed in Refs. [27,28]. Their occurrence in
three-dimensional Kitaev models was recently noted in

Ref. [29]. Breaking time-reversal symmetry (κ ≠ 0), the
surface band develops a dispersion and only a single line
connecting the projection of the twoWPs remains at exactly
zero energy—these are the Fermi arcs, which are illustrated
in Fig. 5(b) for various values of κ. We stress that the WPs
and their corresponding Fermi arc(s) are not protected by
any symmetry but rather by the topological nature of the
WPs. Perturbing the system without annihilating the WPs
can only deform the Fermi arcs, not destroy them.
Evolution of the Weyl points and Fermi arcs.—Let us

now turn to a discussion of the effective Hamiltonian (3) for
arbitrary κ > 0. Notably, we find that the spectrum remains
gapless for any value of κ; only the position and number
of WPs change. The evolution of the WPs is shown in
Fig. 5(a) for κ ¼ 0;…;∞. In order to visualize the behavior
for increasing κ, negative (positive) chirality WPs are
shaded yellow (red) for κ ¼ 0 turning to green for
κ → ∞. Strikingly, at κ ¼ 1

2

ffiffiffiffiffiffiffiffi
3=5

p
each WP splits into

three, two of the same chirality and one of the opposite
chirality such that the chirality is indeed conserved locally.
This behavior is also reflected in the evolution of the Fermi
arcs. The single Fermi arc for small values of κ splits into
three separate fermi arcs precisely at κ ¼ 1

2

ffiffiffiffiffiffiffiffi
3=5

p
. While

the WPs on the high-symmetry line ΓY recombine at
κ ¼ ∞, the WPs on the face of the Brillouin zone do
not. Instead, the band gap collapses and theWPs merge into
nodal lines that appear at κ ¼ ∞. This behavior is exactly
the opposite of the one shown in Fig. 3 that occurred when
turning on κ. We should note here that this evolution for
arbitrary κ does not rigorously describe the physics at
arbitrary magnet field strength h, as the perturbative
expansion yielding the effective Hamiltonian (3) is, strictly

FIG. 3 (color online). In the presence of a finite magnetic field
along the 111 direction the Fermi line of the hyperhoneycomb
Kitaev model is gapped out except for two distinct Weyl points.
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FIG. 4 (color online). Plot of the Chern number of the effective
Hamiltonian (3) for (a) κ ¼ 0.05 and (b) κ ¼ 0.55 restricted to the
two-dimensional plane in reciprocal space defined by the three
points k ¼ ð0; 0; kzÞ, kþ q2=2, and kþ q3=2, where q2 and q3

are reciprocal lattice vectors (see the Supplemental Material [24]).
The colored lines indicate the position of the respective (hex-
agonal) planes shown on the left.
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speaking, only valid for small κ ≪ 1, i.e., the limit in which
no Z2 flux excitations are created.
Thermodynamics.—Let us now reflect on what exper-

imental probes may be used to detect a Weyl spin liquid.
One possibility is to measure the different low-temperature
contributions to the specific heat coming from the gapless
bulk and surface modes. While the bulk contribution of the
WPs to the specific heat results in a T3 dependence on
the temperature, the contribution from the Fermi arcs on the
surface varies linearly [30] with T, i.e.,

CðTÞ ∼ abulkL3T3 þ asurfL2T; ð4Þ
whereL is the linear systemsize and theprefactorsabulk=surf are
generically functions of κ and depend on microscopic details.
Varying the size and aspect ratios of samples, one can thereby
identify these two distinct distributions. Measuring a specific
heat of the form of Eq. (4) paradoxically indicating the
presence of a metallic state in a Mott insulator is an
unambiguous signature for the formationof aWeyl spin liquid.
Weyl spin liquids can also be probed via nontrivial

transport features as they exhibit a thermal Hall effect.
When applying a thermal gradient to the system, a net heat
current perpendicular to the gradient arises due to the chiral
nature of the surface modes. This thermal Hall effect was
first discussed in the context of Weyl superconductors [31],
which are closely related to our system. Following the
analysis of Ref. [31], we can readily infer that a temperature
bias in the x̂þ ŷ direction in our system leads to a thermal
Hall conductance K (in the ŷ − x̂ direction) that is propor-
tional to the distance d of the WPs in momentum space [32]

K ¼ 1

2

k2Bπ
2T

3h
d
2π

Lz; ð5Þ

where h is the Planck constant and Lz is the length of the
sample in the z direction.
Discussion.—The hyperhoneycomb lattice is the first

representative of an entire family of lattices, the so-called
harmonic series of hyperhoneycomb lattices introduced in
Ref. [11], which also reports the synthesis of the first-
harmonic member of this family as a third crystalline form
of Li2IrO3. The physics of the Kitaev model is very similar
for all members of this harmonic series. In the presence of

time-reversal symmetry, the low-energy gapless modes of
all of these model variants form a Fermi line [29]. As such,
we also expect similar behavior when breaking time-
reversal symmetry; i.e., all members of this family will
exhibit a Weyl spin liquid with all of the aforementioned
properties and experimental signatures. The occurrence of
Weyl spin liquids in this family of hyperhoneycomb lattices
should be contrasted to the physics of the Kitaev model
on the hyperoctagon lattice of Ref. [7] (and its higher
harmonics), where the gapless modes form a Fermi surface.
Breaking time-reversal symmetry for these models does not
destroy the Fermi surface but merely deforms it. In fact, this
deformation stabilizes the spin liquid ground state as it
removes possible BCS pairing instabilities [33].
A more comprehensive picture for the emergence ofWeyl

spin liquids in three-dimensional Kitaev-type models arises
if one frames the symmetries of the spin system and its
underlying Majorana model in terms of the symmetry
classification scheme of free-fermion systems [34]. The
situation described here, particle-hole symmetry plus broken
time-reversal symmetry, corresponds to symmetry class D.
In this class, WPs appear generically at zero energy, if
inversion symmetry is not broken. Only the location and
number ofWPsdepend onmicroscopic details [35]. It should
be noted that in the reverse situation of preserving time-
reversal symmetry and breaking inversion—corresponding
to symmetry class BDI—a Kitaev model cannot harbor a
Weyl spin liquid. The latter is due to the fact that particle-hole
symmetry entails that WPs at momenta �Q have opposite
chirality [36], while time-reversal symmetry restricts them to
have the same chirality. Thus,WPs of opposite chiralitymust
necessarily coincide, and even infinitesimal perturbations
can gap them out pairwise [37]. This should be contrasted to
electronic systems where one can find WPs in systems that
break either time-reversal or inversion symmetry, corre-
sponding to symmetry classes A or AII, respectively; see
Refs. [28] and [39] for examples of minimal electronic
models realizing these symmetry classes. While disorder
effects for topological insulators in all free-fermion sym-
metry classes are well understood [40], such a comprehen-
sive picture does not yet exist for topological semimetals. It
would be interesting to study whether Weyl spin liquids
(symmetry class D) exhibit different disorder effects than

(a) (b) (c)

FIG. 5 (color online). Evolution of the (a) Weyl points and (b) corresponding Fermi arcs for increasing κ. The shading yellow-to-green
indicates the evolution of negative chirality Weyl points for κ ¼ 0 → ∞, shading red-to-green the evolution of their particle-hole partners
with positive chirality (see main text). The surface Brillouin zone for breaking translation invariance in the a1 direction is indicated in (c).
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Weyl semimetals in electronic systems (symmetry class A
or AII).
Finally, taking a step back we note that our motivation to

study such three-dimensional generalizations of the Kitaev
model arises from a strong-coupling perspective of spin-
orbit entangled j ¼ 1=2 Mott insulators found in a number
of iridates in close proximity to a metal-insulator transition.
It is quite satisfying to see that these models are capable of
capturing the emergence of a Weyl spin liquid—a state in
which the collective physics of the localized, spin-orbit
entangled degrees of freedoms of a weak Mott insulator
closely mimics the itinerant electronic state of a nearby
Weyl semimetal. This Weyl semimetal has been found
when studying these materials from the opposite limit of a
weak-coupling perspective [14].

We thank A. Akhmerov, T. Hughes, A. Rosch, and
especially S. Bhattacharjee and Y. B. Kim for insightful
discussions. We acknowledge partial support from SFB TR
12 of the DFG. The numerical simulations were performed
on the CHEOPS cluster at RRZK Cologne.
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