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The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that
has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two
and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in
particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to
a finite set. Here we generalize the pf-FRG approach to SU(N )-spin systems with arbitrary N and demonstrate that
the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization
group equations for arbitrary N , we can make a stringent connection between the physically most significant
case of SU(2) spins and more accessible SU(N ) models. In a case study of the square-lattice SU(N ) Heisenberg
antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the
instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but
finite, values of N . In a companion paper [Roscher et al., Phys. Rev. B 97, 064416 (2018)] we formulate a
momentum-space pf-FRG approach for SU(N ) spin models that allows us to explicitly study the large-N limit
and access the low-temperature spin liquid phase.

DOI: 10.1103/PhysRevB.97.064415

I. INTRODUCTION

Frustrated quantum magnets give rise to one of the most
fascinating quantum many-body phenomena—the formation
of quantum spin liquids [1]. These highly unorthodox
quantum ground states can exhibit macroscopic entanglement,
while their fundamental excitations carry fractional quantum
numbers [2,3]. The latter are not only manifestly distinct from
the constituent spin degrees of freedom, but in fact reveal the
emergence of a much larger underlying structure—a lattice
gauge theory in its deconfined regime. While spin liquids
are conceptually well understood by now, their unambiguous
identification in microscopic model systems has remained one
of the grand challenges in the field of quantum magnetism.
Analytically, progress has been driven by the seminal work of
Kitaev on two paradigmatic spin models—the toric code [4]
and the honeycomb Kitaev model [5]—that are both amenable
to a rigorous analytical solution revealing Abelian and
non-Abelian fractional excitations and an underlying Z2 gauge
structure [6]. In a parallel work, Wen has expanded the parton
construction, originally developed for fractional quantum Hall
liquids [12,13], to capture more general lattice gauge settings
such as U(1) gauge theories or chiral Chern-Simons theories
[14]. On the numerical side, frustrated quantum magnets have
long remained out of reach for some of the most powerful
simulation techniques [15], such as quantum Monte Carlo ap-
proaches that typically suffer from the notorious sign problem
in the presence of frustration. For two-dimensional settings,
significant progress has been made by pushing the development
of the density-matrix renormalization group (DMRG) towards
the simulation of quasi-two-dimensional ladder systems [16].
Three-dimensional systems, however, have remained elusive

for almost all numerical approaches. One remarkable exception
is the development of the pseudofermion functional renormal-
ization group (pf-FRG) [17], which has been demonstrated
to identify the presence or absence of magnetic ordering
tendencies in a number of three-dimensional quantum magnets
[18–21]. Technically, the pf-FRG approach starts from a
decomposition of the spin degrees of freedom into auxiliary
(pseudo)fermions, akin to a Schwinger fermion representation
or Wen’s parton construction, and then employs the func-
tional renormalization group scheme introduced by Wetterich
[22] for the study of many-fermion problems [23]. In the
discussion of interacting spin models, the application of the
pf-FRG approach has been met with some skepticism as
the underlying FRG scheme involves a number of presump-
tions and approximations—though a variety of undeterred
numerical studies for two-dimensional quantum magnets have
demonstrated excellent agreement with unbiased approaches
[17,24–34]. The conceptual challenge to explain the deeper
merits of the pf-FRG approach has recently been picked up
by formulating a generalization of the pf-FRG to quantum
magnets with arbitrary spin length S [35]. This spin-S gener-
alization becomes exact in the S → ∞ limit where it precisely
equals the well-known Luttinger-Tisza approach [36,37]. This
observation readily provides an explanation as to why the
pf-FRG has been quite successful in detecting nontrivial
magnetic ordering tendencies in systems with many competing
interactions.

In this paper, we introduce a generalization of the pf-FRG
approach to SU(N ) quantum magnets. We show that the
approach becomes exact also in the N → ∞ limit. This not
only complements the previous spin-S generalization, but it
also provides an understanding of why the pf-FRG approach
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has been quite successful in also identifying spin liquid regimes
that do not show any magnetic ordering tendency. Such a
suppression of magnetic ordering can be systematically studied
in SU(N ) quantum magnets where quantum fluctuations are
augmented by enlarging the spin symmetry group. This leads
to a simplification as these SU(N ) systems become exactly
solvable in terms of a mean-field analysis in the limit N → ∞.
Generalized spin models of this kind have been used in
the past as a starting point for a systematic expansion in
1/N corrections in an attempt to make statements about the
physically prevalent (but far-away) N = 2 case [38]. As we
will discuss in the following, our SU(N ) pf-FRG generalization
provides a systematic connection between these two limiting
cases of N = 2 and N → ∞. We demonstrate this by a case
study of the square-lattice SU(N ) Heisenberg antiferromagnet,
which is well known to exhibit a Néel ordered ground state
for SU(2) spins [39], while it harbors a staggered flux spin
liquid in the N → ∞ limit [38]. Our numerical implemen-
tation of the generalized SU(N ) pf-FRG approach shows that
moderately enlarging the spin symmetry group readily destroys
the formation of magnetic long-range order and allows us
to track the formation of the staggered flux spin liquid at
intermediate values of N . In addition, we find that the system,
for sufficiently large values of N , develops an instability that
indicates the transition into a spin liquid ground state. This
direct observation of a spin liquid transition [40] in the pf-FRG
framework shows that a positive identification of a spin liquid
can be achieved with this approach. Within the real-space
pf-FRG perspective on SU(N ) spin models introduced in
this paper, the spin liquid phase below the phase transition,
however, remains inaccessible. In a companion paper [41] we
develop a momentum-space pf-FRG approach to SU(N ) spin
systems that allows us to explicitly enter the spin liquid phase.
In combination, these SU(N ) generalizations of the pf-FRG ap-
proach mark an important step towards closing the gap between
the ability of existing numerical approaches for frustrated
magnets and the conceptual understanding of spin liquids.

The remainder of the paper is organized as follows. In Sec. II
we introduce the SU(N ) Heisenberg model on the square lattice
that we use as a case study to illustrate our generalized pf-FRG
approach and to benchmark our results in the limiting cases of
N = 2 and N → ∞ (where no 1/N corrections are included).
We provide a precise specification of the generalization of
ordinary SU(2) quantum spins to SU(N )-symmetric moments
and briefly recapitulate the known mean-field results in the
N → ∞ limit. In Sec. III we then turn to the generalized
pf-FRG approach. We first derive the full set of pf-FRG flow
equations in their SU(N )-generalized form and discuss, on a
formal level, the exact limiting case of large N . We numerically
solve the flow equations for arbitrary N in Sec. IV B before
we turn to an analytical solution of the N → ∞ equations in
Sec. IV C. We review the breakdown of the solution at the spin
liquid phase transition and reconcile it with the established
notion of a pf-FRG breakdown at an ordinary magnetic
ordering transition. We conclude our findings in Sec. V.

II. SU(N) SQUARE-LATTICE HEISENBERG MODEL

While the generalized pf-FRG formalism developed in this
paper can readily be applied to arbitrary SU(N ) spin models in

both two and three-dimensional lattice geometries, we consider
for the sake of simplicity the SU(N ) Heisenberg model on the
square lattice as a case study. Its Hamiltonian reads

H = 1

N

∑
〈i,j〉

Jij Si · Sj , (1)

where the sum runs over nearest neighbors on the square lattice,
and the exchange coupling is set to be antiferromagnetic for
all bonds Jij ≡ J ≡ 1. The spin operators have been promoted
to representations of the SU(N ) group. Note that there is
no unique SU(N ) generalization of the spin algebra and,
in fact, various representations of the generalization exist,
both fermionic and bosonic, that may even describe different
physical ground states in the large-N limit [38]. Yet all schemes
make a well-defined connection to the conventional SU(2)
model. For the purpose of our work it is most convenient to
choose a fermionic representation that expresses each spin in
terms of N different flavors of fermions,

S
μ

i =
N∑

α,β=1

f
†
iαT

μ
αβfiβ, (2)

where the T μ (μ = 1, . . . ,N2 − 1) are generators of the
SU(N ) group. This is a valid spin representation if the fol-
lowing holonomic constraint is fulfilled, which corresponds to
the half filling of fermions on each individual lattice site,

N∑
α=1

f
†
iαfiα = N/2 for all i. (3)

This readily implies that the mapping is only well defined
for N even. For N = 2 this reduces to the conventional
SU(2) representation in terms of Abrikosov fermions and Pauli
matrices. Note that despite being a faithful representation of the
spin operators the mapping from spins to fermionic operators
introduces an artificial U(1) gauge symmetry [42] that plays
an important role in our analysis.

A mean-field analysis provides us with important insight
about the ground state of the system in the large-N limit
[38,41]. Most importantly, a divergence of the magnetic sus-
ceptibility

χij =
∫ ∞

0
dτ

〈
S

μ

i (τ )Sμ

j (0)
〉

(4)

(no summation over μ) is not observed which hints at the
absence of magnetic long-range order. Instead one finds that
the uniform susceptibility

χ (T ) = 1

NL

∑
ij

χij (T ), (5)

where NL is the number of lattice sites, grows as χ (T ) =
1/(4T ) above a critical temperature Tc = J/4. Below Tc the
susceptibility decreases again and eventually drops to zero. At
the critical temperature one finds that the spins fractionalize
and give rise to an emergent nonlocal field Qij ∼ f

†
iαfjα that

is defined on the bonds of the original lattice. This order
parameter develops a nontrivial spatial structure

Qij = Qe−iθ with θ =
{±π

2 for rj − ri ∼ ex

0 for rj − ri ∼ ey

, (6)
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FIG. 1. SU(N) spin model for the staggered flux spin liquid. The
original spins are decomposed into pseudofermions and recombine
into a finite, nonlocal order parameter on the bonds that generates a
π -flux on every plaquette.

which becomes finite upon the transition into the staggered flux
phase [44]; see Fig. 1. Note that the staggered flux spin liquid
spontaneously breaks the U(1) symmetry [45] and should
be distinguished from the π -flux phase which comprises all
gauge equivalent configurations. With the nonlocal pairing
of fermions the back transformation from pseudofermions to
spins becomes somewhat ambiguous. In fact, the transforma-
tion is formally impaired by the release of the half-filling con-
straint (3). Even if the constraint was enforced by a Lagrange
multiplier on the Hamiltonian level the corresponding prefactor
would become zero in the mean-field solution [38].

III. SU(N) GENERALIZATION OF PF-FRG

For arbitrary N , the mean-field approach no longer remains
exact and in fact introduces an unwanted bias. Any mean-field
decoupling reflects a choice of coupling channel that, without
any prior understanding of the system, might introduce a
preference towards either the appearance of a spin liquid or
a magnetically ordered state. For an unbiased analysis it is, of
course, more desirable to treat all channels on equal footing.
This is precisely what the pf-FRG scheme [17] allows for
by addressing the full quartic interaction vertices and thereby
incorporating all possible decoupling channels in the RG flow.
In the following, we will demonstrate how to set up the pf-FRG
calculations for SU(N ) spin models by explicitly deriving
the flow equations of the single- and two-particle interaction
vertices (in their real-space representation). Subsequently, we
will discuss the relevance of the Katanin truncation [46] to
the generalized flow equations and show that this truncation
scheme becomes exact in the limit N → ∞. We close this
section with a short summary of our numerical implementation
of the generalized pf-FRG scheme.

A. Generalized flow equations

Our starting point for the derivation of the generalized
flow equations is the SU(N ) Hamiltonian (1). Employing the
fermionic representation of SU(N ) moments (2) we obtain the

pseudofermionic Hamiltonian

H = 1

N

∑
〈i,j〉

JijT
μ
αβT

μ
γ δf

†
iαfiβf

†
jγ fjδ, (7)

which is structurally equivalent to the pseudofermion Hamil-
tonian in the established pf-FRG scheme for SU(2)-symmetric
spins [17], i.e., it contains only quartic interactions and no
kinetic terms. Therefore, in close analogy to the SU(2) pf-FRG
scheme, we parametrize the self-energy as


�(1′; 1) = 
�(ω1)δ(ω1′ − ω1)δi1′ i1δα1′α1 , (8)

and the two-particle vertex as


�(1′,2′; 1,2) = ([

�

s,i1i2
(ω1′ ,ω2′ ; ω1,ω2)T μ

α1′α1
T μ

α2′α2

+
�
d,i1i2

(ω1′ ,ω2′ ; ω1,ω2)δα1′α1δα2′ α2

]
δi1i

′
1
δi2i

′
2

−(1′ ↔ 2′)
)× δ(ω1′ + ω2′ − ω1 − ω2), (9)

where � is the frequency cutoff scale and the numbers
n in the vertex arguments represent composite indices of
lattice site in, spin index αn (that runs from 1 to N ), and
Matsubara frequency ωn. This parametrization of the effective
action is a complete basis for all SU(N )-symmetry allowed
contributions—comprising a spin term


s ∝ T
μ

α1α
′
1
T

μ

α2α
′
2

and a density term


d ∝ δα1α
′
1
δα2α

′
2
.

The initial values for the vertices at infinite cutoff � → ∞
are given by the bare interactions and may be obtained from
comparison with the Hamiltonian (7):


∞(ω) = 0,


∞
s,i1i2

(ω1′ ,ω2′ ; ω1,ω2) = Ji1i2/N, (10)


∞
d,i1i2

(ω1′ ,ω2′ ; ω1,ω2) = 0.

Note that even though the density contribution is zero initially
it may become finite throughout the flow and therefore must
be included in the calculation. For the pf-FRG scheme to be
complete we have to specify an RG-cutoff function which is
conveniently chosen as a sharp cutoff in frequency space [17].
With this cutoff function the full propagator and the single-
scale propagator, respectively, become

G�(ω) = �(|ω| − �)

iω − 
�(ω)
, (11)

S�(ω) = δ(|ω| − �)

iω − 
�(ω)
. (12)

The full set of flow equations can then be derived by inserting
the parametrization of the effective action (8), (9) together
with the propagators (11) and (12) into the general form of
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FIG. 2. Generalized flow equations for SU(N )-symmetric spin systems of spin length S. The prefactors indicated here are only schematic
and to leading order in S and N . The exact prefactors are given in Fig. 6 in the Appendix. Slashed propagator lines should be understood as
the single-scale propagator. A pair of slashed propagators in the flow equation for the two-particle vertex should be understood as a pair of
single-scale and full propagators where the two permutations of the propagators are summed over. The Fock diagram and the particle-hole
ladder contribution, which both describe quantum fluctuations, are enhanced as N is increased. Similarly, as the classical limit is approached
for increasing spin length S the Hartree and random-phase approximation (RPA) channels are boosted.

the fermionic flow equations [47],

d

d�

�(1′; 1) = − 1

2π

∑
2


�(1′,2; 1,2)S�(ω2), (13)

d

d�

�(1′,2′; 1,2) = 1

2π

∑
3,4

[
�(1′,2′; 3,4)
�(3,4; 1,2)

− 
�(1′,4; 1,3)
�(3,2′; 4,2) − (3 ↔ 4)

+ 
�(2′,4; 1,3)
�(3,1′; 4,2)+(3 ↔ 4)]

× G�(ω3)S�(ω4). (14)

The general structure [48] of these generalized flow equations
is depicted in Fig. 2. As N is increased, the Fock channel in the
flow of the single-particle vertex and the particle-hole channel
in the flow of the two-particle vertex become dominant. This
should be contrasted with what has been observed in the
large-S generalization of the flow equations [35], where the
Hartree and RPA channels become dominant. The full set of
SU(N )-symmetric flow equations for arbitrary N is given in
the Appendix.

Since the flow equations provide a full description of all
single-particle and two-particle interaction vertices they can
readily be used to compute observables. The magnetic suscep-
tibility (4), in particular, can be diagrammatically expanded as

. (15)

The so-calculated susceptibility is often used as a primary
witness for the presence or absence of magnetic order via the
presence or absence of a flow breakdown as we will discuss
in further detail in Sec. IV A. To reveal the incipient magnetic
order in case of a flow breakdown, one typically calculates
real-space correlations and their momentum-space structure
factor in the vicinity of the flow breakdown.

B. Katanin truncation

It is important to note that the most general form of the
fermionic FRG flow equations is an infinite hierarchy of inte-
grodifferential equations where the flow of the n-particle vertex
may depend on all vertices up to order n + 1. In order to obtain

a closed set of equations, the dependence of the flow equation
for the two-particle vertex on the three-particle vertex has
been truncated in the above discussion. However, it has been
shown phenomenologically that, at least for SU(2) spin models,
this simple truncation is not sufficient to predict the correct
physical behavior of many spin models [17]. On this rudimen-
tary level of truncation, the flow of the magnetic susceptibility
would always diverge at some finite cutoff scale �c, which can
be related to a spontaneous breaking of spin-rotational symme-
try that is explicitly incorporated in the vertex parametrization
(9). Once the symmetry is spontaneously broken, the vertex
parametrization and hence also the flow equations can no
longer describe the correct physical behavior—which is typ-
ically observed in the form of a divergence or a kink in the
RG flow of the magnetic susceptibility. For an arbitrary spin
system, its magnetic ordering tendencies are thereby highly
overestimated, while spin-liquid phases cannot be observed at
all. The crucial step to overcome this limitation is to improve
the truncation by implementing the so-called Katanin scheme
[46], which stipulates the replacement of the single-scale
propagator with the derivative of the full propagator,

S�(ω) → S�
kat(ω) = − d

d�
G�(ω). (16)

Making this replacement was phenomenologically shown to
be a vital ingredient in order to not only correctly predict the
existence of spin liquid phases in various SU(2) spin models,
but also to match spin liquid phase boundaries predicted by
other methods [17,49].

It is thus obvious to also implement the Katanin truncation
for the generalized SU(N ) flow equations. Importantly, we
will explicitly show that the Katanin truncation is in fact a
necessary ingredient to exactly reproduce the mean-field gap
equation in the large-N limit [51]. But before we proceed to
such a rigorous algebraic analysis, we want to first lay out an
intuitive diagrammatic understanding of the truncation scheme
for the large-N calculations. To simplify the diagrammatics we
rewrite the pseudofermionic Hamiltonian (7),

H = 1

2N

∑
〈i,j〉

Jijf
†
iαfiβf

†
jβfjα, (17)
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which to leading order in 1/N is equivalent (up to a factor
of 2 that can be absorbed into the definition of the coupling
constant) to the previous formulation that explicitly revealed
the spin exchange ∝ T

μ

α1α
′
1
T

μ

α2α
′
2
. Diagrammatically, the bare

interactions can now be represented as

∼ 1
N

. (18)

The flow equation in its truncated form (that we discussed in
the previous section, where the three-particle vertex has been
set to zero) contains, to leading order in 1/N , only a single
contribution from the particle-hole channel (cf. Fig. 6 in the
Appendix),

(19)

The full flow equation for the two-particle vertex, however,
also contains a contribution from the three-particle vertex,
where two external legs are contracted. This contribution may
indeed become finite to leading order in N , e.g., generated by
the following SU(N )-symmetric vertex ∼ f

†
iαfiβf

†
jβfjαf

†
iγ fiγ

where two external legs are contracted,

∼ N2

N3
. (20)

Although such terms are not included in a straightforward
truncation of the three-particle vertex, they are captured by the
Katanin scheme: Diagram (20) is just a particle-hole ladder
diagram where one internal propagator has been replaced by a
Fock diagram (cf. the first diagram in the single-particle flow
equation, Fig. 2). This is exactly what the Katanin scheme (16)
prescribes—the replacement of the single-scale propagator
with the derivative of the full propagator, which in the large-N
limit includes a Fock diagram contribution.

Higher orders, however, are not captured by the Katanin
scheme. Contributions from the four-particle vertex (with four
out of eight external legs contracted) or higher orders can also
be constructed to leading order in N that cannot be reduced to
the particle-hole channel with a single propagator substitution.
It is therefore not immediately clear that the Katanin truncation
suffices to describe the exact large-N behavior. This is easier to
see by formulating an implicit solution to the Katanin truncated
flow equations.

To this end, let us consider the flow equations in their
Katanin-truncated form. The numbers now represent compos-
ite indices of Matsubara frequency and lattice site while the
spin structure has been computed explicitly, and we only keep

terms to leading order in N ,

d

d�

�(1′; 1) = 1

2π

∑
22′


�(1′,2′; 1,2)S�(2; 2′), (21)

d

d�

�(1′,2′; 1,2) = − 1

2π

∑
33′,44′

d

d�
[G�(3; 3′)G�(4; 4′)]

× 
�(1′,4′; 1,3)
�(3′,2′; 4,2). (22)

Notice how the Katanin replacement allows us to combine
two terms in the two-particle flow equation into a single
derivative of a product of two propagators. For the conventional
truncation such a concise notation is not possible, and both
terms appear explicitly,

d

d�

�(1′,2′; 1,2)

= − 1

2π

∑
33′,44′

[S�(3; 3′)G�(4; 4′) + G�(3; 3′)S�(4; 4′)]

× 
�(1′,4′; 1,3)
�(3′,2′; 4,2). (23)

This concatenation of terms is one of the biggest perks of the
Katanin scheme. It allows us to formulate an implicit solution
of the flow equations [51]. The solution is constructed as


�(1′,2′; 1,2) = 
∞(1′,2′; 1,2)

− 1

2π

∑
33′,44′

G�(3; 3′)G�(4; 4′)

× 
∞(1′,4′; 1,3)
�(3′,2′; 4,2) (24)

and describes a resummation of spin loops that ensures rele-
vance to leading order in N . Inserting the solution (24) into the
flow equation for the self-energy (21), one obtains the relation

d

d�

�(1′; 1) = − 1

2π

∑
22′


∞(1′,2′; 1,2)
d

d�
G�(2; 2′), (25)

which due to vanishing initial value of the propagator is
straightforward to integrate. We obtain a self-consistent ex-
pression for the nonlocal self-energy


�(1′; 1) = − 1

2π

∑
22′


∞(1′,2′; 1,2)G�(2; 2′) (26)

that reproduces the self-consistent gap equation in the mean-
field formalism.

C. Numerical solution of the RG equations

We round off this section by providing some details on the
numerical solution of the pf-FRG flow equations for arbitrary
SU(N ) spin models. Formally, we consider the flow equations
in their zero-temperature limit, where Matsubara frequencies
are continuous. Hence, for the numerical solution of the
flow equations one has to artificially discretize the vertices’
frequency dependence. To do so, we typically introduce a
logarithmic frequency mesh with some Nω = 144 discrete
frequencies. Furthermore, we note that the flow equations
include summations over the entire real-space lattice (Hartree
and RPA term; see Fig. 2). To treat such terms numerically, we
consider interactions only up to a certain bond distance and
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truncate interactions beyond this. Note that this scheme does
not introduce an artificial boundary to the system and should
rather be understood as a finite-cluster expansion operating
directly in the thermodynamic limit. Convergence is usually
reached already for distances of L = 10 bonds in any direction
(which for the square-lattice model at hand corresponds to a
cluster of NL = 221 lattice sites), even for phases of magnetic
long-range order. This leaves us—after employing all lattice
symmetries—with a total of 13 623 624 coupled differential
equations to solve.

IV. RESULTS

A. General considerations

Before we turn to explicit numerical results for the solution
of the generalized flow equations, let us start with some general
considerations. In Sec. III A we already mentioned that the
principal signature of a magnetic ordering transition, where the
SU(N ) spin symmetry is spontaneously broken, is a breakdown
of the smooth flow of the magnetic susceptibility [17]. In
the following, we recapitulate [52] that not only a magnetic
ordering transition but, more generally, any second-order phase
transition necessarily results in a breakdown of the flow—given
that it is driven by an interaction that is quartic in fermions. The
argument holds in particular for the transition into the staggered
flux spin liquid that we expect to emerge in our model system
(1) and which is accompanied by a spontaneous breaking of
the U(1) symmetry. To this end let us consider the action of a
generic four-fermion exchange term

Sint = J
∑
1234

f
†
1 f2 f

†
3 f4 , (27)

where the indices are composite symbols for any relevant set of
quantum numbers and J is the (constant) interaction strength.
Note that the generalized case J = J1234 can be addressed by
considering each realization of J1234 separately. Now suppose
that the action S = S0 + Sint with the noninteracting part S0

is invariant under some symmetry group G, but the ground
state of the system is known to spontaneously break this
symmetry—assume, for example, G = U(1), which is the
symmetry spontaneously broken by the staggered flux spin
liquid. Let us consider a bosonic order parameter Q

(†)
12 whose

onset is an indicator of the spontaneous symmetry breaking.
By means of a Hubbard-Stratonovich transformation it is then
possible to reformulate the partition function Z such that the
order-parameter field is exposed explicitly, i.e.,

Z =
∫

D[f ]e−S = N
∫

D[f,Q]e−S−m
∑

1234 Q
†
12Q34 . (28)

For concreteness, but without loss of generality, we shall
assume that the ordering occurs in a densitylike channel where
a linear shift of the form

Q
(†)
12 → Q

(†)
12 + g

m
f

†
1 f2 (29)

may be employed. If the defining relation

m = g2

J
(30)

is fulfilled, the quartic fermion interaction Sint is canceled
exactly and the partition function takes on the form

Z =
∫

D[f,Q]e−S0−
∑

1234[mQ
†
12Q34+gf

†
1 f2 Q34+gQ

†
12f

†
3 f4 ]. (31)

Let us now discuss the implications for our RG anal-
ysis and treat the coefficient m ≡ m� of the (G-invariant)
order-parameter density ρ = Q†Q as a running coupling that
depends on the RG cutoff �. Using Eq. (31) as the initial
condition for the flow of the effective average action, higher
powers of ρ are generated throughout the flow and eventually
give rise to an order-parameter potential U [ρ] in the Landau
sense. In the Landau picture, the spontaneous symmetry
breaking by means of a second-order phase transition is tied to
a sign change of the linear term in the potential U [ρ]—which
is parametrized by the running coefficient m�. Alternatively,
the Hubbard-Stratonovich transformation may in principle be
performed on the original fermionic formulation with the
running coupling J� at any value for the cutoff �. Therefore
relation (30) generally holds throughout the entire RG flow (up
to artifacts arising from the truncation of the flow equations).
Hence, the sign change (and thus a zero crossing) of m� in
the bosonic formulation is equivalent to a divergence of the
coupling J� in the fermionic model.

Thus, the spontaneous breaking of any symmetry group G

goes hand in hand with a divergence of the fermionic coupling
J as long as the order-parameter field can be represented by
some fermion bilinear. In our example, where G = U(1), and
the symmetry-breaking order parameter is Qij ∼ f

†
iαfjα , we

therefore expect to observe a breakdown of the flow upon
transition into the staggered flux spin liquid phase. Note that the
bosonized description (31) requires explicit knowledge about
the structure of the order parameter. The purely fermionic
formulation, however, is unbiased as the breakdown is bound
to occur on the level of the effective average action without
any additional transformation.

Having formulated the expectation of a vertex divergence at
the flow-induced phase transition, we are almost set do discuss
the solution of the flow equations. But before we proceed, a
remark on our strategy for obtaining finite-temperature ob-
servables is in order. That is because formally we always solve
the flow equations at zero temperature, and we refrain from
introducing a finite temperature in the sense of a Matsubara
frequency discretization. Solving the zero-temperature flow
equations we obtain the full dependence of the susceptibility
χ� (or any other observable) on the cutoff parameter �.
Per construction of the flow equations the zero-cutoff limit
describes the true physical solution of the system and in our
case corresponds to the ground state at zero temperature.
However, it has been shown heuristically that—at least in
three spatial dimensions, where a finite-temperature transition
exists—the cutoff dependence of the formal zero-temperature
solution can be related to the full temperature dependence of
the observable by a simple rescaling [18],

χ (T ) = χ�|�=2T/π . (32)

In the remainder of this section we shall see that the relation
also holds for our two-dimensional model system above the
phase transition into the staggered flux spin liquid. In the
symmetry-broken regime the simple relation (32) no longer
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FIG. 3. Susceptibility for various N calculated by pf-FRG with
Katanin truncation. For finite N the flow equations are solved numer-
ically. In the limit N → ∞ the flow equation is solved analytically.

holds (see our companion paper Ref. [41] for a more detailed
discussion).

B. Finite-N results

We now proceed to an analysis of the square-lattice SU(N )
Heisenberg model by a straightforward numerical solution
of the generalized flow equations for arbitrary N . By first
considering the limiting case of N = 2, we can convince
ourselves that we can indeed reproduce the previous results
for the ordinary SU(2) Heisenberg antiferromagnet, which is
known to exhibit Néel order at zero temperature. Indeed we
observe a breakdown in the flow of the uniform susceptibil-
ity in our pf-FRG calculations around T ≈ 0.37 (� ≈ 0.24,
see Fig. 3) that is attributed to a spontaneous breaking of the
SU(2) spin symmetry upon magnetic ordering. Yet the specific
value for a transition temperature should not be taken literally
here; Despite the flow equations being formulated at zero
temperature, in two spatial dimensions one should be careful
about the rescaling from frequency cutoff to temperature since
a finite-temperature transition arising from the spontaneous
breaking of a continuous symmetry is formally excluded by the
Mermin-Wagner theorem [53]. As the full spatial dependence
of the two-particle vertex is calculated in the pf-FRG scheme,
we can directly access the real-space resolved correlations.
Although we cannot access the symmetry-broken regime
where true long-range Néel order prevails, we can study the
susceptibility just above the critical temperature where the in-
cipient magnetic order is already visible in the correlations. For
the SU(2) model the antiferromagnetic correlations observed
right above the transition clearly depict Néel order, as shown
in the left panel of Fig. 4.

Already a slight enlargement of the symmetry group to
SU(4) is found to cause a qualitative change. Quantum fluc-
tuations in the extended symmetry group appear sufficient
to destroy magnetic order even at zero temperature. Conse-
quently, the flow breakdown disappears and the susceptibility
runs smoothly down to zero temperature without any sign
of magnetic ordering; see Fig. 3. This intermediate regime
persists until the spin symmetry is enlarged significantly to

FIG. 4. Real-space correlations for (a) N = 2 and (b) N = 1000
plotted just above the respective critical cutoff. Correlations are
given with respect to a single reference site (grey). Ferromagnetic
correlations are represented by blue circles, AFM correlations by red
ones. The size of the circle represents the correlation’s magnitude
relative to the reference site. Correlations for N = 2 clearly reveal
Néel order while for N = 1000 no correlations are visible.

N ≈ 100, where we identify a third qualitatively different
regime. Notably, above N ≈ 100 a new flow breakdown devel-
ops around Tc ≈ 1/4[�c ≈ (2π )−1] as shown in Fig. 3. These
results are in line with previous quantum Monte Carlo studies
that agree on the breakdown of Néel order at N = 6, while
the N = 4 case is more subtle [54,55]. Until now a breakdown
of the flow has always been related to the onset of magnetic
ordering in the framework of pf-FRG. Yet the breakdown that
we observe here is of different origin. This becomes apparent
already by a quick check of the spin correlations that are
practically zero within the entire lattice (see right panel of
Fig. 4). In fact, the breakdown should be interpreted as a
signature of the spontaneous breaking of the artificial U(1)
gauge symmetry that is introduced with the fermionization
process (2) of the original spin model. This is in line with
the mean-field result for the N → ∞ limit, which predicts
a transition into the U(1)-broken staggered flux spin liquid
phase at Tc = 1/4 and whose high-temperature susceptibility
we perfectly reproduce for large, but finite, N . Our numerical
pf-FRG analysis thus suggests that the staggered flux spin
liquid and the associated finite-temperature phase transitions
persist for finite, but large N . A more detailed analysis of
the symmetry-broken phase with a modified momentum-space
pf-FRG approach to SU(N ) spin models is developed in the
companion paper [41], which allows us to explicitly enter
the low-temperature phase and explicitly probe symmetry-
breaking properties.

Knowing that for large N we approach the exact result above
the phase transition raises the question of how important the
Katanin scheme really is for our results. We have established
in Sec. III B that the Katanin scheme is essential to faithfully
reproduce the exact mean-field result in the large-N limit.
Comparing the finite-N results that we obtain with (Fig. 3)
and without (Fig. 5) the Katanin scheme we find that deviations
only exist for N � 100, i.e., explicitly not in the large-N limit
For small N = 2 the strong sensitivity of the result on the
truncation scheme is known already [17]. Without the Katanin
scheme the susceptibility would always diverge, making it im-
possible to identify spin liquid phases. In our results this behav-
ior is particularly distinct for moderate N = 4,6,8, . . . where
the susceptibility runs smoothly down to zero temperature
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FIG. 5. Susceptibility for various N without Katanin truncation
calculated by pf-FRG. Finite-N results are obtained numerically, the
N → ∞ limit is exact.

if the Katanin scheme is applied but the flow breaks down
in the conventional truncation scheme. At large N the Katanin
scheme may still become relevant in the staggered flux spin
liquid that we cannot access. Intuitively one would indeed
expect that higher-order diagrams, which are only captured
within the Katanin scheme, become more important only in the
symmetry-broken phase where the nonlocal order parameter
Qij becomes finite. Since such a term is not allowed in our ini-
tial parametrization of the self-energy (8), we are oblivious of
its existence. To explore the symmetry-broken phase we should
therefore allow an explicit site dependence in the propagator
and replace G(ω) → Gij (ω). It turns out, however, that this
modification alone is not sufficient to capture the symmetry-
broken phase. Throughout the flow the existence of a nonlocal
propagator may also give rise to two-particle vertices with a
more complicated spatial structure. To be consistent, one must
therefore also allow for nonlocal two-particle terms 
s/d,i1i2 →

s/d,i ′1i

′
2i1i2 that carry a full site dependence. With two additional

lattice site indices per vertex, this generalized approach comes
with a massive increase of computational complexity on the
order of N 2

L, and is not feasible numerically.
A different pf-FRG approach which is condensed to a

relatively small number of relevant flowing parameters is
presented in our companion paper Ref. [41] and explicitly
explores the symmetry-broken phase. In the remainder of this
paper we instead discuss the exact solution of the N → ∞ limit
to get a better understanding of the U(1)-symmetry breaking
transition and its signatures in the pf-FRG formalism.

C. Large-N limit

For the strict N → ∞ limit, which is fundamentally dif-
ferent from any finite N , special attention is in order. Most
notably, it does not continuously connect to any large but finite
value for N . The N → ∞ limit no longer shows any sign of a
flow breakdown in the susceptibility. Yet we have established
already that this limit should be exact and that we expect the
two-particle vertex to diverge. We can shed light onto this
puzzle by solving the flow equations exactly, which is possible
in the limit N → ∞.

Taking into account only the leading-order terms in 1/N

the flow equation for the spin-channel of the two-particle
vertex only contains the particle-hole diagram which is local
in the lattice site index, i.e., only those vertices evolve that
have a nonzero initial condition (cf. flow equations in Fig. 6
in the Appendix). The density channel remains strictly zero
throughout the entire flow due to its initial conditions. The
flow of the self-energy depends only on the Fock diagram,
whose spatial structure is such that it can become nonzero only
for a finite on-site two-particle interaction, which to leading
order does not exist. Therefore, the only nonzero diagrams
are the spin-channel interactions for nearest-neighbor sites
on the lattice where the initial value is already finite. From
here on we will only consider those vertices and simplify
notation by suppressing lattice site indices as well as us-
ing energy conservation to reduce the number of frequency
arguments. Furthermore, we rescale all vertices by a factor
of N to eliminate the explicit N dependence from the flow
equations,


�
s,i1i2

(ω1′ ,ω2′ ; ω1,ω2)

→ 1

N

(ω1′ + ω2′ ,ω1′ − ω1,ω1′ − ω2). (33)

With those simplifications we arrive at a compact expression
for the flow equations of the spin channel of nearest-neighbor
interactions:

d

d�

�(s,t,u)

= − 1

4π

∫
dω′[
�(ω′

2 − ω′, − ω1 − ω′,u)

×
�(ω2 − ω′,ω′
1 + ω′,u)
�(ω1 + ω′,

−ω′
2 + ω′,u)
�(ω′

1 + ω′,ω2 − ω′
1,u)]

×δ(|ω′| − �)

ω′
�(|u + ω′| − �)

u + ω′ (34)

with the initial condition


�→∞(s,t,u) = J, (35)

and the transfer frequencies s, t , and u are defined as

s = ω1′ + ω2′ ,

t = ω1′ − ω1, (36)
u = ω1′ − ω2.

Note that here the Katanin truncation is indeed equivalent to the
conventional truncation, since all corrections by the Katanin
scheme depend on the derivative of the self-energy, which
is strictly zero. Since the initial condition for the vertices is
constant in frequency space, the flow also remains constant
in the s and t directions. We therefore further simplify our
notation and suppress those indices and only explicitly state the
nontrivial dependency on u. Solving the frequency integration
over the δ and θ functions one obtains the simplified flow
equation

d

d�

�(u) = − 1

2π

[
�(u)]2

�(u + �)
, (37)
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which is solved in a straightforward manner by


�(u) = J

1 − J
2πu

ln
(
1 + u

�

) . (38)

Structurally, this result is exactly what we expected. The first
vertex to diverge is the u = 0 component at a critical cutoff
scale �c = J

2π
. Applying the rescaling from frequency cutoff

to temperature (32), the critical cutoff is equivalent to a critical
temperature of Tc = J/4 and exactly matches the mean-field
result. The divergence of a vertex tells us that we must not trust
our solution below Tc.

Yet the question remains of why we cannot observe the
vertex divergence in the magnetic susceptibility measurement.
To understand this, we explicitly calculate the susceptibility
which to leading order in N only depends on the single-particle
propagator

χ� = − 1

4π

∫
dω[G�(ω)]2. (39)

It is important here that the direct contribution of the two-
particle vertex is suppressed in the large-N limit, and since
the self-energy remains strictly zero, the expression for the
susceptibility becomes trivial,

χ� = − 1

4π

∫
dω

(
�(|ω| − �)

w

)2

. (40)

Solving the integral yields χ� = (2π�)−1 which allegedly
is valid for any � and remains smooth even below �c. We
have learned from the vertex divergence, however, that we
must not trust the result below Tc. Rescaling the expression
to temperature units we recover the exact mean-field result
χ (T ) = 1

4T
for T > Tc.

Although we have seen that all results are consistent with
the exact mean-field solution, the present model serves as
an important example that reminds us that not always is all
relevant information accessible via the magnetic susceptibility,
and one must be careful about how to interpret possible flow
breakdowns and the absence thereof.

V. CONCLUSIONS

In this paper we have generalized the established pf-FRG
flow equations for conventional SU(2)-symmetric spins to
SU(N ) symmetry. We have demonstrated that the general-
ization is straightforward to implement and that it ultimately
requires only the adjustment of prefactors in the flow equations.
The resulting flow equations complement the generalization to
arbitrary spin length S that has recently been formulated [35].
In principle, both the large-S and the large-N generalizations
can even be implemented simultaneously by combining the
corresponding prefactors.

We have demonstrated that in the N → ∞ limit the solution
of the flow equations reproduces the exact mean-field results. In
combination with the spin-S generalization [35], this provides
qualitative guidance as to why the pf-FRG approach has proven
quantitatively correct in the analysis of many quantum spin
models in the past—despite the fact that the approach relies
on a number of presumptions and approximations. The flow
equations represent what is a delicate balance of diagrams—
those diagrams that reproduce the exact large-S limit help

stabilize magnetic order, while those diagrams that dominate
in the large-N limit induce spin liquid behavior. While this
balance of 1/S and 1/N diagrams surely does not amount
to an entirely unbiased approach, it does explain why the
pf-FRG approach has been able to independently capture both
magnetically ordered and spin liquid ground states in the phase
diagrams of various spin models with competing interactions
in the past.

As a case study, we have studied the SU(N ) Heisenberg
model on the square lattice that in the large-N limit is
known to host a staggered flux spin liquid. We analyzed the
symmetry-breaking transition within the pf-FRG framework
and found that—similar to the established flow breakdown
associated with a magnetic ordering transition—the U(1)
symmetry breaking can indeed be detected by a breakdown
of the smooth susceptibility flow. This demonstrates that a
flow breakdown in pf-FRG calculations must not always be
associated with the transition into a magnetically ordered
phase [breaking the conventional SU(N ) spin symmetry] and
one should in general be careful about its interpretation. In
the present example, the staggered flux spin liquid is easy to
identify by its featureless real-space correlations. However,
this does not always need to be the case. To uniquely determine
the kind of symmetry breaking underlying a certain transition
one may therefore extend the pf-FRG formalism to explicitly
probe the symmetry-broken phase, as demonstrated in our
companion paper [41].

For future developments it would be desirable to not
only identify the spontaneous breaking of a symmetry (with
or without access to the symmetry-broken phase), but also
to directly probe the underlying gauge structure. Doing so
would be an important step towards the full characterization
of spin liquids within pf-FRG approach. This also raises the
question of whether the pf-FRG approach in its current form
can actually capture arbitrary gauge structures: In the present
example the underlying U(1) structure is inherently encoded
in the definition of the pseudofermions. It remains an open
issue, however, whether the current pseudofermion approach
is equally suited to faithfully capture a Z2 gauge structure. This
might be of particular interest for two- and three-dimensional
Kitaev models [5,7] where the most natural spin decomposition
is phrased in terms of Majorana fermions and not complex
fermions as discussed here.

Our work also provides a different perspective [51] on the
relevance of the Katanin scheme. It has already been known
that the Katanin scheme is essential to overcome what is
otherwise a strong bias towards magnetically ordered phases
[17]. Here we report complementary behavior when studying
generalized SU(N ) models. The symmetric phase in the large-
N limit seems easy to reproduce even without the Katanin
scheme. But as one moves into the symmetry-broken phase
or away from the mean-field limit and closer to the true SU(2)
quantum model the Katanin truncation becomes important and
is found to significantly alter the results.

Last but not least, we identified a situation (in the N → ∞
limit) where a divergence of the interaction vertex exists,
but it is not observable in the magnetic susceptibility. This
is a formidable pitfall, which should be circumvented by
developing a better understanding of the mechanism behind the
flow breakdown and studying signatures thereof not only in the
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magnetic susceptibility but also in the multitude of fermionic
interaction vertices. We leave such a more systematic study to
future work.
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APPENDIX: SU(N)-SYMMETRIC FLOW EQUATIONS

In this Appendix we present the full set of flow equations for generalized SU(N ) Heisenberg models. For the sake of brevity
we present the flow equations diagrammatically, where the diagrams should be read ast

= ΓΛ
d,i1i2(ω1 ω2 ; ω1ω2) = ΓΛ

s,i1i2(ω1 ω2 ;ω1ω2) . (A1)

Each term in the two-particle flow equations (Fig. 6) has two internal propagator lines, G1 and G2. They should be read as
combinations of the full propagator and the single-scale propagator, i.e., the pair of propagators is replaced according to

(G1,G2) → (
G�,S�

kat

) + (
S�

kat,G
�
)
, (A2)

where we have explicitly denoted that the Katanin scheme is applied to the single-scale propagator. Internal propagator lines in
the single-particle flow equation should be understood as single-scale propagators S�(ω) and remain unaffected by the Katanin
replacement.

FIG. 6. Generalized flow equations for the SU(N )-symmetric Heisenberg model. The spin dependency has been calculated explicitly by
splitting the two-particle vertex into the two symmetry-allowed terms, a spin contribution (dashed lines) and a density contribution (solid lines).
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