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Motivated by the magnetism of pyrochlore oxides, we consider the effect of quantum fluctuations in the
most general symmetry-allowed nearest-neighbor Kramers exchange Hamiltonian on the pyrochlore lattice. At
the classical level, this Hamiltonian exhibits a rich landscape of classical spin liquids and a variety of non-
conventional magnetic phases. In contrast, much remains unclear for the quantum model, where quantum
fluctuations have the potential to alter the classical landscape and stabilize novel magnetic phases. Employing
state-of-the-art pseudo-fermion functional renormalization group (pf-FRG) calculations for the spin-1/2 model,
we determine the quantum phase diagram at relevant cross-sections, where the classical model hosts an algebraic
nodal rank-2 spin liquid and a spin nematic order. We find large regions in parameter space where dipolar
magnetic order is absent and, based on known fingerprints in the correlation functions, suggest that this non-
conventional region is composed of an ensemble of distinct phases stabilized by quantum fluctuations. Our
results hint at the existence of a spin nematic phase, and we identify the quantum analogue of the classical
rank-2 spin liquid. Furthermore, we highlight the importance of assessing the subtle interplay of quantum and
thermal fluctuations in reconciling the experimental findings on the nature of magnetic order in Yb2Ti2O7.

I. INTRODUCTION

In the broad landscape of quantum many-body systems,
Mott-insulating magnets have long stood out as a versatile and
materials-based platform for studying novel quantum phases.
These range from conventionally ordered phases that nev-
ertheless exhibit intricate spin textures such as helices [1],
skyrmions [2, 3], hedgehogs [4] or platonic non-coplanar
structures [5–7], to the scenario of a spin-nematic state [8]
in which a magnet realizes the analogue of a liquid crys-
tal. In even more unconventional cases, quantum spin-liquid
phases [9] are stabilized, which cannot be characterized by
symmetry-breaking order parameters and feature emergent
degrees of freedom. Indeed, one of the recurring and probably
most fascinating themes in condensed matter physics is the
characterization of many-body phenomena involving an ef-
fective description of the low-energy behavior through emer-
gent degrees of freedom. In some of its most interesting real-
izations, these emergent quasi-particles carry quantum num-
bers that are a fraction of those carried by the original de-
grees of freedom. A classic example of such a scenario is
the appearance of phonons and rotons in a superfluid, where
the emergent degrees of freedom are constrained by a set of
conservation laws, which are different from and independent
of the form of interaction between the atoms. Such an ef-
fective description has gained special attention in the con-
text of magnetic systems and the stabilization of spin-liquid
phases whose ground-state manifolds are identified as the set
of ground states whose emergent degrees of freedom fulfill
certain conservation laws. For magnetic lattices composed of
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a set of corner-sharing motifs, this description has been crucial
in identifying and characterizing the distinct types of classical
and quantum spin liquids that prevail in these geometries [10].

In this context, the pyrochlore lattice comprised of corner-
sharing tetrahedra is an excellent platform for the study of a
variety of classical and quantum spin liquids, both theoreti-
cally and experimentally. Among oxide compounds with a py-
rochlore magnetic sublattice [11, 12], conventional magnetic
order [12–16], classical spin liquids [17], and, possibly, quan-
tum spin liquids [18] are realized. One paradigmatic classical
spin liquid phase is “spin ice”, the ground state of the anti-
ferromagnetic nearest-neighbor Ising model [17, 19–21], in
which the low-energy degrees of freedom are subject to an
energetic constraint, the “two-in-two-out” rule – whose anal-
ogy to water ice has led to the term “spin ice”. This local
constraint can be expressed as a Gauss’ law on an emergent
vector gauge field, i.e. ∂αBα = 0 with α ∈ {x, y, z}, defined
on the links of the parent diamond lattice [20, 21]. This math-
ematical construction identifies spin ice as a rank-1 U(1) spin
liquid (named after the rank-1 vector gauge field Bα fulfill-
ing a Gauss’ law and consequently having an emergent U(1)
symmetry) whose low-energy emergent gauge fields exhibit
dipolar correlations [22]. The dipolar correlations between
these emergent fields result in the observation of anisotropic
features in the spin correlation functions in reciprocal space
known as two-fold pinch points [17, 22, 23]. Fluctuations
away from this ground-state manifold are understood as local
violations of the Gauss’ law constraint ∂αBα = ρ and corre-
spond to non-vanishing gauge charges in the system [17].

Recent works [24–26] have further extended the diversity
of classical spin liquids observed for this lattice geometry. In
particular, for the most general nearest-neighbor bilinear ex-
change Hamiltonian, the authors of Ref. [24] identified and
classified all possible classical spin liquids realized on the py-
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rochlore lattice. Such analysis demonstrated that the emergent
degrees of freedom describing the ground-state manifold are
not only rank-1 fields [17, 22, 24, 27] of the form Bα (as intro-
duced above), but can also be higher-rank fields [28, 29] of the
form Bαβ , or even a combination of the two [30]. All of these
classical spin liquids are U(1) spin liquids that have a set of
associated Gauss’ laws characterizing their ground-state man-
ifold [24] and are identified as algebraic classical spin liquids
within a recently developed classification scheme [31, 32].
Within this family of algebraic classical spin liquids, special
attention has been devoted [33–35] to higher-rank spin liquids
whose Gauss’ law takes the form

∂αB
αβ = 0 or ∂α∂βB

αβ = 0 .

The higher-rank gauge theories associated with these Gauss’s
laws underlie the low-energy physics of so-called fracton spin
liquids [36] which feature excitations with restricted mobility
– a consequence of the conservation of multipole moments of
the gauge charges [33].

Although it has been realized, of late, that there exists a
plethora of classical spin liquids realized in the pyrochlore
lattice with a rich variety of emergent tensor gauge theo-
ries [24, 27], much less is known about the quantum coun-
terparts of these spin liquids, partly because frustrated three-
dimensional quantum magnets remain largely invius to state-
of-the-art numerical quantum many-body approaches. This
paucity has, to some degree, been filled by the pseudo-fermion
and pseudo-Majorana functional renormalization group (pf-
FRG and pm-FRG, respectively) approaches [37] which have
enabled various forays into the three-dimensional world, un-
veiling the magnetic correlation profiles of models [30, 38–
42] and materials [18, 43–46]. With the landscape of classical
pyrochlore spin liquids mapped out [24, 27], one might thus
turn to these FRG approaches to explore the impact of quan-
tum fluctuations on these classical spin liquids as parent states
of novel quantum phases. One pressing issue is the fate of the
classical algebraic spin liquids once quantum fluctuations are
introduced. Indeed, away from the classical limit of S → ∞,
quantum fluctuations may lead to tunneling between the de-
generate states that span the ground-state manifold of a clas-
sical spin liquid [47]. These fluctuations are indispensable to
realize a quantum spin liquid descending from a parent clas-
sical spin liquid – the U(1) quantum spin ice serving as the
quintessential case in point [48]. Furthermore, the introduc-
tion of quantum fluctuations not only modifies the effective
theories describing a spin liquid [48] but may also reshape its
immediate vicinity [30], possibly leading to the stabilization
of novel exotic phases that have not been observed in the clas-
sical models.

In this manuscript, we study the phase diagram of the most
general S = 1/2 bilinear nearest-neighbor exchange Hamil-
tonian on the pyrochlore lattice by applying a fully general-
ized pf-FRG approach. We focus, in particular, on the vicin-
ity of a classical higher-rank spin liquid, the so-called pinch-
line spin liquid [29]. This choice is further motivated by the
variety of synthesized pyrochlore compounds that have been
found in the vicinity of this point [14, 15, 49]. We demon-
strate that the introduction of quantum fluctuations results in a

substantial overall shift of the classical phase boundaries and
the appearance of an extended non-conventional phase in pa-
rameter space where no conventional (dipolar) magnetic order
is detected. Surprisingly, this non-conventional phase is not
centered around the classical triple point of maximum phase
competition, see Figs. 1(a) and (b), thus defying conventional
expectations, and highlighting the complete failure of linear
spin-wave theory [50]. Within the non-conventional phase,
we identify different regimes which – based on the analysis of
spin structure factors – we suggest they host a quantum ana-
logue of the pinch-line spin liquid as well as a spin-nematic
phase over a certain range of exchange parameters. The lat-
ter is remarkable as it provides a rare scenario of a quantum
spin-nematic state (i) in the absence of a magnetic field and
(ii) in three spatial dimensions, hitherto unreported for spin-
1/2. The positioning of many rare-earth pyrochlore oxides in
our quantum phase diagram brings the world of spin nematics
within realistic material realizations. Our work also presents
a unique example where a quantum order-by-disorder selec-
tion (beyond linear spin-wave treatment [50]) at the classical
triple point collapses the system into a unique ground state,
thereby inducing conventional magnetic ordering, while ther-
mal order-by-disorder fails to do so forming a classical spin
liquid [29].

The rest of the paper is organized as follows: in Sec. II A,
we introduce the Hamiltonian and the irreducible representa-
tions of the single-tetrahedron point group Td used to clas-
sify the ordered phases and construct the emergent gauge
fields used to construct the low-energy theory describing the
spin liquid at the classical triple point. The model’s classi-
cal phase diagram is summarized in Sec. II B. In Sec. III A,
we present the spin-1/2 quantum phase diagram obtained us-
ing pf-FRG, compare and contrast the quantum and classical
phase diagrams, and identify a region in the quantum phase
diagram where the quantum analogue of the pinch-line spin
liquid can be realized. In Sec. III B, we discuss in further
detail the extended non-conventional region and further char-
acterize some of the possible non-conventional phases within,
such as the putative quantum spin nematic phase. In Sec. IV,
we discuss the implications of our quantum phase diagram for
Yb2Ti2O7, a compound which previous studies have found
to be located near a phase boundary between two conventional
magnetic orders [13, 49, 51, 52]. Lastly, in Sec. V, we summa-
rize our findings and discuss further avenues for exploration
to address the open questions.

II. MODEL

A. Hamiltonian and irreducible representations

Our starting point is the most general symmetry-allowed
nearest-neighbor Hamiltonian on the pyrochlore lattice, which
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FIG. 1. Classical and quantum phase diagram and neutron-scattering structure factors of the pinch-line spin liquid. (a) Exact classical
phase diagram (for J3 < 0, J4 = 0) showing three q = 0 phases meeting at the classical triple point (CTP) at J1 = J2 = 0, where the ground state
forms a classical pinch-line spin liquid. (b) Corresponding quantum phase diagram from pf-FRG. Background colors indicate the dominant
order-parameter susceptibility, where hatched regions mark points where multiple order-parameter susceptibilities are non-vanishing. Different
markers represent the number and type of non-vanishing susceptibilities: ‘○’ for a single susceptibility, ‘+’ for T1− ⊕ T2, ‘x’ for E ⊕ T1− and
‘☆’ for E⊕T1−⊕T2. The dashed lines are guides to the eye, highlighting where the dominant order-parameter susceptibility changes. These
meet at the “quantum triple point” (QTP) at J1 ≈ 0.03, J2 ≈ 0.3, where all three susceptibilities are maximally degenerate. In conventionally
ordered phases, the color saturation inside the “o” markers (quantified by the three colorbars) reflects the critical scale Λc at which a flow
breakdown occurs, signaling the onset of dipolar magnetic order. In the “non-conventional” phase (outlined by gray lines as the approximate
phase boundaries), no flow breakdown occurs, indicating the absence of conventional magnetic order. Structure factors in the non-conventional
phase at the QTP and the points A, B and C are shown in Fig. 3. (c) Neutron-scattering structure factors [see Sec. VI for the definitions] in
the spin-flip (SF) and non-spin-flip (NSF) channel in the classical model at the CTP (left) from SCGA and in the quantum model at the QTP
(right) from pf-FRG in the hhl-plane. (d) The same structure factors in the hk0-plane.

can be written in the form

H = ∑
⟨ij⟩

[JzzS̃z
i S̃

z
j − J±(S̃+i S̃−j + S̃−i S+j )

+J±±(γijS̃+i S+j + γ∗ijS̃−i S−j )

−Jz±(γ∗ijS̃z
i S̃
+
j + γijS̃z

i S̃
−
j + i↔ j)] , (1)

where the sum is over nearest neighbors, S̃z
i is the local-z spin

degree of freedom oriented along the local C3 axis, S̃±i are the
raising and lowering operators, and γij are bond-dependent
phase factors [11] (refer to the Appendix B for complete defi-

nitions). In this Hamiltonian, the classical spin-ice spin liquid
is realized for Jzz > 0 while all other couplings are set to
zero. Furthermore, recent works [30, 53] demonstrated that
for non-Kramers pyrochlores for which Jz± = 0, the introduc-
tion of quantum fluctuations by small non-vanishing J± and
J±± interactions do not destroy the spin liquid phase. Indeed,
in the limit ∣J±∣, ∣J±±∣ ≪ Jzz the quantum spin-ice spin liq-
uid is realized, while for J± ∼ 1/6 and J±± ∼ ±1/3 a mixed
rank-1 and rank-2 U(1) spin liquid is observed [30]. In this
work, we consider pyrochlore materials where the ions are in a
Kramers-doublet crystalline-electric-field ground state, lead-
ing to a generally nonzero Jz±, which prevents the emergence
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of the conventional spin-ice phase [54].
As a consequence of the corner-sharing structure of the py-

rochlore lattice, the Hamiltonian in Eq. (1) can be rewritten as
a sum over tetrahedra t as

H = ∑
⟨ij⟩

SiJijSj = ∑
t

Htet[t] , (2)

with the Hamiltonian on a single tetrahedron

Htet = 1

2
∑

µ,ν∈t

Sµ ⋅ Jµν ⋅ Sν , (3)

where µ and ν label the sublattice structure of a single tetra-
hedron, Jµν is the corresponding spin exchange interaction
between the two sublattices and Sµ = (Sx

µ, S
y
µ, S

z
µ) are spin-

operators in the global frame, related to S̃µ by a basis trans-
formation (see Appendix B for details). In particular, for the
0-th and 1-th sublattice, see Fig. 1(a), the spin exchange ma-
trix takes the form

J01 =
⎛
⎜
⎝

J2 J4 J4
−J4 J1 J3
−J4 J3 J1

⎞
⎟
⎠
, (4)

where {J1, J2, J3, J4} are spin exchange couplings in the
global Cartesian basis, associated to the local spin exchange
couplings {Jzz, J±, J±±, Jz±} by a local rotation [50]. All
other exchange matrices can be obtained via the application
of point group symmetry operations [50]. For conventional
magnetic order, the classical ground state of this Hamiltonian
is described by a q = 0 order [50], i.e., each tetrahedron ba-
sis displays the same spin order on each of the sublattices. It
is, therefore, possible to restrict the classification of the or-
dered states in how these break the point group symmetry of
a single tetrahedron, Td. To this end, we introduce the order
parameters mλ associated with the irreducible representations
(irreps) λ = {A2,E, T1−, T1+, T2} of Td. These order param-
eters mλ are linear combinations of the cartesian spin compo-
nents Sα

µ with α ∈ {x, y, z} within a single tetrahedron [50],
allowing the single tetrahedron Hamiltonian to be rewritten as

Htet = 1

2
[aA2m

2
A2
+ aEm2

E + aT2m
2
T2

+aT1−m
2
T1−
+ aT1+m

2
T1+
] .

(5)

For details on the irrep decomposition and definitions we re-
fer the reader to Appendix B as well as Refs. [24, 27, 50].
The classical ground state is determined by calculating the ir-
rep with the minimal prefactor aλ. In the case where mul-
tiple aλ parameters are minimal, non-conventional magnetic
phases such as spin nematics or non-magnetic states such as
spin liquids may be obtained.

B. Classical phase diagram

The resulting classical phase diagram for fixed J3 < 0 and
J4 = 0 as obtained in Ref. [50] is shown in Fig. 1(a) where

three conventional magnetically ordered phases are indicated,
namely, an E, a T1− and a T2 phase. Right at the boundary
between the T1− and the T2 phase it has been shown, based
on classical Monte Carlo simulations [28], that the system ex-
hibits spin nematicity, signaled by the onset of a quadrupolar
order parameter. The remaining two phase boundaries in this
phase diagram feature a thermal order-by-disorder [39] selec-
tion to a conventional q = 0 state. Lastly, the three magneti-
cally ordered phases meet at an isolated point J1 = J2 = J4 = 0
and J3 < 0. We refer to this as the “classical triple point”
(CTP), which in Fig. 1 is marked by a gray star. At the CTP,
extensive classical Monte-Carlo calculations suggest that no
particular state is selected out of the degenerate ground-state
manifold via a possible thermal order-by-disorder mechanism,
therefore yielding a magnetically disordered state down to the
T → 0 limit. This implies the realization of a classical spin-
liquid (CSL) phase, the so-called pinch-line spin liquid [29].
The classical ground-state manifold for this CSL is defined by
the constraints

mA2 = 0, mT1+ = 0 (6)

for every tetrahedron. These constraints do not fully de-
termine an ordered ground state but leave the remaining
fields mT1− ,mT2 ,mE to freely fluctuate. A soft spin treat-
ment performed via a self-consistent Gaussian approximation
(SCGA) [55] of the classical Hamiltonian reveals a flat band
at the bottom of the spectrum, a consequence of the extensive
ground-state degeneracy. More importantly, the band struc-
ture is gapless, in a peculiar way: the first dispersive band
touches the flat band not only at singular points but along a
one-dimensional line in momentum space – a nodal line. In
more mathematical terms, this degenerate manifold can be de-
scribed by a rank-2 field Bαβ constructed from the E, T1− and
T2 irrep fields,

Bαβ =
⎛
⎜⎜
⎝

2m1
E

√
3mz

T2
−
√
3my

T2

−
√
3mz

T2
−m1

E +
√
3m2

E

√
3mx

T2√
3my

T2
−
√
3mx

T2
−m1

E −
√
3m2

E

⎞
⎟⎟
⎠

− 3 sin θ
⎛
⎜
⎝

0 mz
T1−

my
T1−

mz
T1−

0 mx
T1−

my
T1−

mx
T1−

0

⎞
⎟
⎠
,

(7)

where θ is a function of the coupling interaction parame-
ters {J1, J2, J3, J4}, and mα

λ are the components of the irrep
fields, for more details we refer the reader to Appendix B and
Ref. [24]. In terms of this Bαβ field, the constraints of Eq. (6)
can be expressed as two Gauss’s laws [24, 29], namely

∣ϵαβγ ∣∂αBβγ = 0 and ∂αB
αβ = 0 ,

where ϵαβγ is the fully anti-symmetric tensor. According to
the classification of CSLs in Ref. [31], the ground state is
therefore an algebraic nodal-line spin liquid. The gapless na-
ture itself implies that all spin-spin correlations decay alge-
braically. Furthermore, the nodal line in the band structure
results in a pinch-line singularity, a line in reciprocal space
along which pinch-point features are observed [29]. Indeed,
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within a soft-spin approximation, the resulting polarized neu-
tron structure factor of this CSL, shown on the left-hand side
of Fig. 1(c) and (d), exhibits two-fold pinch points and pinch-
lines along the [111] and symmetry-related directions. We
therefore refer to the CSL at hand as the classical pinch-line
spin liquid in the following.

III. FRG RESULTS FOR THE SPIN-1/2 MODEL

A. Fate of pinch-line spin liquid under quantum fluctuations

We now turn to the question of how quantum fluctua-
tions affect the classical pinch-line spin liquid. Indeed, the
impact of quantum fluctuations on unconventional Coulomb
spin liquids described by higher-rank gauge theories has re-
cently been the subject of much debate. It has been ar-
gued in Ref. [30] that some of the general features, such as
conventional two-fold pinch-points on the pyrochlore lattice
observed in the classical model remain largely unchanged
(with only quantitative modifications). In contrast, on the
octochlore lattice, the pinch-lines (which are conventional
twofold pinch points in all planar cuts) are qualitatively af-
fected while multi-fold pinch-points are completely washed
out [38]. Here, we study the effect of quantum fluctuations
beyond linear spin-wave theory [50] and show that a quantum
analogue of the pinch-line spin liquid can be stabilized for the
spin-1/2 model, see Fig. 1(b).

To study the influence of quantum fluctuations on the classi-
cally observed phase diagram, we employ the pseudo-fermion
functional renormalization group (pf-FRG) approach [37]. It
allows us to study the quantum model (1) for spin S = 1/2
at zero temperature by the introduction of an infrared cut-
off Λ, or RG scale, into the theory. At high enough Λ, this
corresponds to a high-temperature limit where all spins de-
couple and the correlations functions are known exactly. At
Λ → 0 the cutoff vanishes and the physical correlation func-
tions are recovered. The interpolation between these regimes
is governed by the FRG flow equations, an infinite hierarchy
of differential equations for all correlation functions. We ap-
proximately solve these equations numerically, setting corre-
lations beyond a bond distance L to zero – typically we con-
sider up to L = 7 corresponding to 864 lattice sites, resulting
in a total of 2.7 ⋅ 107 coupled differential equations that are
integrated using HPC resources. The main output of the pf-
FRG is the flow of static spin-spin correlations of the form
χαβ,Λ
ij ∼ ⟨Sα

i S
β
j ⟩∣Λω=0. A divergence (or “kink”) in the flow

of the spin-spin correlations in momentum space at a finite
critical scale Λc signals the formation of conventional, dipo-
lar magnetic order characterized by an order parameter that
is linear in the spin operators [37]. Conversely, the absence
of such a flow breakdown implies either a quantum disor-
dered phase or a non-conventional magnetic phase. In the
latter case, although spin rotation symmetry is spontaneously
broken, the phase is described by an order parameter that is
non-linear in the spin operators such as those arising in spin-
nematic phases. While such nematic orders are not directly
captured by our truncation scheme of the flow equations [56],

their presence can sometimes be assessed within pf-FRG via
a linear-response framework [57].

In the case of a flow breakdown, we can determine the
emergent order by calculating the flow of the order-parameter
susceptibilities. For a cartesian component α of the order pa-
rameter associated to the irrep λ, the susceptibility is defined
as

⟨mα
λ(q)mα

λ(−q)⟩ =
1

Nu.c
∑
t,t′

exp [−iq (rt − rt′)] ⟨mα
λ(rt)mα

λ(rt′)⟩ ,
(8)

where the sum runs over the tetrahedron unit cells of the py-
rochlore lattice and rt denotes the position of the tetrahedron
centers. The largest order-parameter susceptibility at the flow
breakdown evaluated at q = 0 hints at the low-temperature
order, see Sec. VI for more details. In the case of non-
conventional phases where a clear flow breakdown is absent,
we can utilize the neutron-scattering structure factor channels
in the limit Λ→ 0+ to compare to results of the corresponding
classical model and experiments.
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FIG. 2. Indication of a pinch-line singularity in the order-
parameter correlations. (a) and (b) show the order parameter
susceptibility ⟨m1

E(q)m
1
E(−q)⟩ and ⟨mz

T2
(q)mz

T2
(−q)⟩, respec-

tively. The left (right) side shows the correlation of the classi-
cal (quantum) model at the classical (quantum) triple from SCGA
(pf-FRG). The correlations show pinch-point singularities along the
[111] direction (indicated by the black circles).

Quantum phase diagram

Employing pf-FRG we derived the quantum phase diagram
in the vicinity of the CTP as shown in Fig. 1(b). Our pf-FRG
calculations identify four distinct regimes; three convention-
ally ordered regimes, signaled by a flow breakdown in the
spin-spin correlations and the strong rise of an irrep suscep-
tibility, and a non-conventional regime without any apparent
magnetic order (i.e. where the flow remains smooth down to
the Λ → 0+ limit) in the center of the quantum phase dia-
gram (indicated by the open symbols in Fig. 1(b), which de-
note the dominant short-range magnetic ordering pattern in
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the absence of true long-range order). We provide a detailed
description of the construction of the phase-diagram from the
initial pf-FRG data in Appendix C.

Quantum fluctuations are expected to have their strongest
impact in regions characterized by competing orders and ex-
tensive ground-state degeneracies. A natural starting point for
analyzing their effects is therefore at the CTP. In contrast to
the classical model, we observe a clear divergence in the flow
of the mE susceptibility at the CTP, implying that quantum
fluctuations stabilize an ordered E phase (see also Fig. 11 in
Appendix C). This constitutes a rare case where quantum fluc-
tuations select an ordered state out of a degenerate ground-
state manifold whereas thermal fluctuations do not. Further-
more, and similar to the results obtained in Ref. [25], the
quantum phase boundaries of the ordered phases are signif-
icantly shifted with respect to those of the classical model,
see Fig. 1(a) and (b) for a side-by-side comparison. A shift
of similar magnitude of the phase boundary between the T1−

and E phase was already observed within non-linear spin-
wave theory [58] and exact diagonalization (at T = 0), as well
as a numerical linked-cluster computation (NLC), and high-
temperature expansion (HTE) (at finite T > 0) [59]. We note
that a comparable shift of all phase boundaries can be obtained
in the classical model by adding a non-zero, negative antisym-
metric exchange of J4/∣J3∣ ≈ −0.13. Although initially zero
in the limit Λ → ∞, such interactions can, in principle, be-
come non-zero in the effective low-energy two-point vertex
functions, as they are generated during the FRG flow. This
mechanism could shift the phase boundaries in our pf-FRG
calculations, favoring the E phase even when the microscopic
value of J4 is zero.

Quantum triple point

The significant shift of the phase boundaries also suggests a
substantial displacement of the triple point where the three or-
derings meet. Indeed we can identify a quantum analogue of
the CTP, which we refer to as the quantum triple point (QTP),
by determining the couplings (in the J3 < 0, J4 = 0 plane)
where the difference between the order-parameter suscepti-
bility of the E,T1− and T2 phase is minimal in the Λ → 0+

limit. This point is significantly shifted towards the upper-
right in the quantum phase diagram (versus the location of
the CTP in the classical phase diagram), with J1/∣J3∣ ≈ 0.03
and J2/∣J3∣ ≈ 0.3, which also places the QTP at the upper-
right boundary of the non-conventional regime in the center
of the quantum phase diagram (discussed in the next section).
At this QTP, the polarized neutron-scattering structure factors
closely resemble those of the classical pinch-line spin liquid,
see Figs. 1(c) and (d), exhibiting broadened pinch lines as well
as two-fold and four-fold pinch points. Moreover, the cor-
relation functions of the m1

E and the mz
T2

irreps, shown in
Fig. 2, also display two-fold and four-fold pinch points along
the ⟨111⟩ directions consistent with the findings in Ref. [29].

These similarities suggest that the magnetically disordered
phase realized at and around the QTP is the quantum ana-
logue of the classical pinch-line spin liquid, which is possibly

described by an emergent higher-rank gauge field Bαβ con-
straint by an emergent Gauss’s laws ∂αB

αβ = 0 leading to
the observation of the two-fold and four-fold pinch points. It
is worth noting that the pinch lines, two-fold, and four-fold
pinch points are not sharp, as is the case for the classical
spin liquid but exhibit a finite broadening. Such a broaden-
ing was also observed when studying other models [38, 42]
and was associated with quantum fluctuations causing local
violations of the energetically imposed Gauss’s law implying
non-vanishing gauge charge fluctuations.

B. Non-conventional phases
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FIG. 3. Order-parameter susceptibility flows and structure fac-
tors in the non-conventional regime for the couplings indicated
in Fig. 1 (QTP, A, B, C). The top panel shows the RG flow of
the order-parameter susceptibility ⟨mλ ⋅ mλ⟩ for the relevant ir-
reps λ ∈ {E,T1−, T2} (where ∣J ∣2 = J2

1 + J2
2 + J2

3 + J2
4 is used

as a normalization). The smooth flow down to very low RG scales
Λ → 0 indicate the lack of conventional magnetic order. The rela-
tive magnitude of the susceptibilities indicate which type of corre-
lations dominate/compete. The bottom three rows show the struc-
ture factor in the total, spin-flip, and non-spin-flip channels, respec-
tively. While at the QTP the correlations resemble those of the clas-
sical pinch-line spin liquid, moving away from this point the corre-
lations drastically change. The parameters considered are (J1, J2)

= (0.03,0.3), (−0.28,0.36), (−0.08,0.0), (−0.08,0.24) for points
QTP, A, B, and C, respectively, with J3 = −1.0 and J4 = 0.

In the previous section, we have established that the QTP
is the quantum analogue of the classical pinch-line spin liq-
uid and sits at the boundary of the non-conventional region
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in the quantum phase diagram. This identification is mainly
based on the overall structure of the distinct spin correlation
functions. Indeed, as we move away from the QTP towards
the center of the non-conventional region, the unpolarized and
polarized neutron structure factors drastically change. This is
illustrated in Fig. 3 which shows the order-parameter suscep-
tibility flow for a set of representative points, labeled QTP,
A, B, and C, and marked in Fig. 1(b), and the correspond-
ing unpolarized and polarized neutron structure factors ob-
tained at the lowest simulated Λ. Interestingly, in the Λ →
0+ limit, the non-vanishing order-parameter susceptibility for
each of these points is distinct. This behavior is highlighted in
Fig. 1(b) by regions with a hatched background, which indi-
cate points where, in addition to the dominant order-parameter
susceptibility, at least one other susceptibility has a relative
magnitude exceeding 20% .

Taken together, our FRG results for the non-conventional
regime in Fig. 1(b) are consistent with (at least) two dif-
ferent scenarios: (I) The regime presents a single quantum
spin-liquid phase, with short-range correlations quantitatively
changing upon parameter variations. (II) The regime contains
one or more non-conventional symmetry-breaking orders with
higher-order multipole order parameters, such as a spin ne-
matic. The present pf-FRG framework which only keeps track
of two-spin correlation functions is not suited to distinguish
these scenarios [39, 57], asking for complementary numerical
techniques to settle this question. Nevertheless, the similari-
ties between the structure factors obtained from FRG and the
ones of the classical model strongly suggest that scenario (II)
applies. In what follows we present a careful discussion for
various parameter sets within the non-conventional regime,
based on the structure factors and the prevailing irreps, which
support this view.

Spin nematics for T1− ⊕ T2 regime

The RG flow at the representative point A shows a quantita-
tive degeneracy between the T1− and T2 fields. At this point,
the unpolarized neutron structure factor exhibits continuous
lines of scattering, similar to the pinch-lines of the classical
pinch-line spin liquid [29]. In the classical model, the bound-
ary between these two phases yields an unconventional mag-
netic order (invariant to time-reversal) – a spin nematic phase
characterized by a quadrupolar order parameter [28, 60]. The
degeneracy between the T1− and T2 fields results in an acci-
dental U(1) symmetry spanned by a set of single-tetrahedron
spin configurations parameterized as mα(θ) = mα

T2
cos(θ) +

mα
T1−

sin(θ) [28, 39]. Furthermore, the band structure of the
classical Hamiltonian Eq. (1) along the T1−⊕T2 line, displays
flat lines in the low-energy bands [27, 28]. The authors of
Ref. [28] showed that the correlation functions in this phase,
henceforth, referred to as T1− ⊕ T2 phase, display continuous
lines of scattering similar to those observed in our pf-FRG
calculations. The presence of these “rods” is ascribed to the
low-energy bands of the Hamiltonian which show flat lines
along the [111], [001] and symmetry-related directions in re-
ciprocal space. Along these lines, there occur band touch-
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FIG. 4. Structure factors of the putative spin nematic phase in the
hhl-plane (top) and the hk0-plane (bottom), as would be measured
using polarized neutron scattering in the spin-flip (left) and non-spin-
flip (right) channels. Each panel compares results from the classi-
cal model obtained via the SCGA (left) with those from the quan-
tum model computed using the pf-FRG (right). The calculations are
performed at (J1, J2, J3, J4) = (−0.28,0.28,−1,0) (classical) and
(J1, J2, J3, J4) = (−0.28,0.36,−1.0,0.0) (quantum), correspond-
ing to the phase boundary between the T1− and T2 phases in the
classical and quantum phase diagrams, as shown in Fig. 1.

ings at the [hkl] = [000], [hkl] = [111], and [hkl] = [200]
points, see Fig. 13 in Appendix E. These features in the en-
ergy contours result in the observation of high-intensity lines
in the correlation functions in reciprocal space, produced by
the flat lines, together with slightly higher intensity at the band
touching points, at the classical level. Indeed, an SCGA anal-
ysis at intermediate temperatures of a point along the T1−⊕T2

boundary, with (J1, J2, J3, J4) = (−0.28,0.28,−1,0), yields
similar structure factors with continuous lines of scattering as
those observed at point A, see Fig. 4. At low-temperatures
the only intensity comes from the continuous line of scatter-
ing and no other features can be observed. Our pf-FRG cal-
culations find these continuous lines of scattering to be ro-
bust features in a narrow region along the T1−–T2 boundary
in the quantum phase diagram [see the hatched region marked
in Fig. 1(b)]. Consequently, we identify the point A and all
those points where only the flow of the T1− and T2 irreps is
non-vanishing, i.e., belonging to the T1−⊕T2 phase, with pos-
sible spin-nematic order in the quantum model. In particular,
this implies that, unlike the classical model where the spin-
nematic state is strictly located at a phase boundary, quantum
fluctuations stabilize it over what appears to be a finite region
in the quantum model, possibly indicating the existence of a
nematic phase. We point out, however, that the rods primarily
indicate the near-degeneracy of the two T1− and T2 irreps.

Lastly, we note that the authors in Ref. [28] showed that
for the classical (S →∞) scenario this system exhibits a first-
order transition driven by an order-by-disorder selection and
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FIG. 5. Structure factors of the spin model at the boundary
between the E and T1− phases in the hhl-plane (top) and the
hk0-plane (bottom), as would be measured using polarized neu-
tron scattering in the spin-flip (left) and non-spin-flip (right) chan-
nels. Each panel compares results from the classical model ob-
tained via the SCGA (left) with those from the quantum model
computed using the pf-FRG (right). The calculations are per-
formed at (J1, J2, J3, J4) ≈ (−0.0189,−0.1,−1.0,0.0) (classical)
and (J1, J2, J3, J4) = (−0.08,0.0,−1.0,0.0) (quantum, point B in
Fig. 1(b)).

characterized by a spin-nematic order parameter which is bi-
linear in the spin degrees of freedom. In this low-temperature
phase, the spin configurations simultaneously break the ac-
cidental U(1) symmetry, by selecting a set of angles {θ} in
the U(1) manifold, as well as the C3 cubic symmetry, where
only certain Cartesian components of the T1− and T2 irreps re-
main thermally populated [28]. Hints of this cubic symmetry
breaking are observed in the low-temperature structure factors
where the intensity of the rods is no longer equivalent along
different directions related by cubic symmetry.

Non-conventional E ⊕ T1− regime

Moving on, for the representative point B, a non-vanishing
RG flow for the E and T1− susceptibilities is found. In the
classical model, a degeneracy between these two irreps oc-
curs at their phase boundary. The pf-FRG correlation func-
tions at this point show two important features: rods of scat-
tering along the [111] directions, and a lobe of intensity at
the [hkl] = [220] and symmetry-related points. These same
features are observed in the structure factors of classical spin
models located at the phase boundary and also between the E
and the T1− phases at intermediate temperatures where a coop-
erative paramagnetic regime is realized, see Fig. 5. The origin
of the rods of scattering lies in the low-energy bands of Hamil-
tonian being flat lines only along the [111] and symmetry-
related directions in reciprocal space. Additionally, along

these lines, there are band touchings at the [hkl] = [000] and
[hkl] = [111] points, hence, these are reflected in the struc-
ture factor (at the classical level) as flat lines with slight en-
hancement of intensity at the band-touching points. It is worth
noting that the lobe of intensity observed at the [hkl] = [220]
point is not associated to band touchings with the flat lines but
instead correspond to a minimum in the band structure where
four bands meet, see Appendix E. In the classical model, how-
ever, a symmetry-breaking transition takes place, selecting an
E phase at intermediate temperatures followed by a transition
into the T1− phase at low temperatures [49, 59, 61]. Just as for
the representative point A, we observe absence of dipolar or-
dering tendencies in our pf-FRG calculations which could be
indicative of a possible non-conventional order or a quantum
spin liquid. We label this phase the E⊕T1− phase as, based on
the RG flow of the order-parameter susceptibilities, configu-
rations in this non-conventional phase would be composed by
a mixture of E and T1− fields.

Indeed, such a proposal for low-temperature spin configu-
rations was provided by the authors of Ref. [49] in the con-
text of Yb2Ti2O7, a compound which lies in close prox-
imity to the classical phase boundary between these two
phases [13, 49, 51, 52]. In that work, the authors concluded
that the magnon spectrum for this compound is best repre-
sented by a mixture of these two irreps and was a clear sig-
nature of the strong competition between the two phases. We
return to this point and discuss the experimental predictions
of our results in the next section.

Non-conventional T1−-only regime

Lastly, we discuss the representative point C. At this point,
only the T1− order-parameter susceptibility grows to a signifi-
cant magnitude. Nevertheless, our pf-FRG simulations detect
no dipolar ordering tendencies. Up to the smallest infrared
cutoff Λ, the structure factor for this point only shows diffuse
features. These features are reminiscent of those observed in
the representative points A and B, and therefore of the E⊕T1−

and spin-nematic T1− ⊕ T2 phase, see Fig. 3. Moreover, we
note that the only common order-parameter susceptibility that
plateaus to a non-vanishing value for these phases is precisely
that of the T1− irrep. Altogether, these results suggest that the
representative point C is located within an intermediate mixed
phase between both the spin nematic T1− ⊕ T2 and E ⊕ T1−

phases. Our overall analysis thus points to the fact that the
non-conventional region in the spin-1/2 quantum phase dia-
gram is composed of an ensemble of phases.

IV. CONSEQUENCES FOR MODELING PYROCHLORE
MATERIALS

Our results for the quantum phase diagram identify an
overall shift of the q = 0 phase boundaries with respect to
those of the classical model as well as the emergence of non-
conventional magnetic phases. These results are most relevant
for those materials whose interaction parameters are located
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close to a classical phase boundary: materials that were as-
sociated to some magnetically ordered phase in the classical
model may be associated with another phase in the quantum
model.

Yb2Ti2O7

One example of such a material is Yb2Ti2O7 [13, 49,
51, 52]. Within a classical model description, there is a
growing consensus that places this compound in a ferromag-
netic T1− phase, however, in close proximity to an E phase.
This proximity leads to a plethora of interesting phenom-
ena associated with the strong competition between these two
phases [51, 59, 61]. Indeed, a recent theoretical and experi-
mental work found that the optimal low-temperature spin con-
figurations of Yb2Ti2O7 used to reproduce the experimen-
tally measured magnon spectra are mixed configurations of
the E and the T1− states [49]. However, this observation is not
compatible with the classical ground state prediction where
only a T1− phase should be observed at low temperatures. In-
deed, in the classical model any E spin configurations in a T1−

phase correspond to excitations above the ground state. The
disagreement between theoretical predictions and experimen-
tal observations may imply either that there exists an interme-
diate mixed phase not captured in the classical analysis, or that
the determined interaction parameters of this compound have
to be revisited. We would like to mention that the fitting to the
experimentally measured magnon spectra identifies the four
interaction parameters in addition to the g-tensor associated to
the model. Although the authors in Ref. [49] did identify the
best interaction parameters associated with their spectra, they
assumed a g-tensor determined by previous work [51]. Al-
though this parameter only affects the overall intensity of the
magnon branches, this assumption may influence the overall
determination of these parameters.

We now revisit the quantum pyrochlore phase diagram in
the vicinity of the boundary between the E and the T1−

phases, compare our results with other existing works study-
ing the S = 1/2 case, and assess the repercussion of these find-
ings from a material perspective. Fig. 6 illustrates the quan-
tum phase diagram obtained via pf-FRG for a plane in the in-
teraction parameter space where the interaction parameters for
Yb2Ti2O7 obtained by Ref. [49] lie on. This quantum phase
diagram displays an overall shift of the phase boundaries
along with the appearance of a non-conventional magnetic
regime. The evolution of the structure factors and the order-
parameter susceptibilities along the phase transition from the
T1− to the non-conventional and ultimately to the E phase are
shown in Fig. 7 (for the exemplary points underlaid by gray
circles in Fig. 6).

For large negative J1, the susceptibility flow of mT1− is
clearly dominant and exhibits a flow breakdown. Addition-
ally, the structure factors feature sharp peaks at the [000] and
[111] points, characteristic of a conventionally ordered T1−

ferromagnetic phase. As J1 increases, the flow breakdown
disappears (see Appendix C for details on our flow-breakdown
criterion), signaling the emergence of a non-conventional

phase. On the left side of this phase, the T1− susceptibility re-
mains dominant, placing it in the non-conventional T1−-only
regime discussed in Sec. III B. The structure factors already
faintly display extended rods of scattering along the [111]-
directions (and symmetry-related axes) in addition to the high-
intensity lobes associated to the locations in reciprocal space
where Bragg peaks related to a T1− symmetry-breaking phase
would be stabilized. These rods fully manifest towards the
right of the non-conventional phase, accompanied by addi-
tional peaks at [220] and symmetry-related momenta. In this
region (marked by “x” markers and a hatched background
color in Fig. 6), both the E and T1− susceptibility are of sim-
ilar magnitude, placing it in the E ⊕ T1− regime discussed in
section III B. The structure factors in this regime are consistent
with those measured in low-energy neutron-scattering experi-
ments on Yb2Ti2O7 at finite but low temperatures above the
critical temperature, where the material realizes a short-range
correlated phase [61]. However, we observe the same behav-
ior at zero temperature, suggesting that quantum fluctuations
alone seem to allow the simultaneous stabilization of T1− and
E correlations. With a further increasing J1, the rods in the
structure factor disappear, leaving only sharp peaks at [220],
[111] and symmetry-related momenta [16], while the E sus-
ceptibility becomes dominant and exhibits a flow breakdown
– clear signatures of a conventionally ordered E phase.

Compared to the classical model, the E phase is signifi-
cantly enlarged, constituting a shift of the phase boundary by
approximately ∆J1 ≈ −0.1/∣J3∣. A shift of similar magnitude
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FIG. 6. Quantum phase diagram in the vicinity of Yb2Ti2O7

from pf-FRG. The couplings J3 and J4 are fixed to the estimates for
Yb2Ti2O7 from Scheie et al. [49] (a). The stars show the estimated
values of J1 and J2 for Yb2Ti2O7 from (a) Scheie [49], (b) Robert
[51], (c) Thompson [52] and (d) Ross [13]. Note that the values of
J3 and J4 for (b)–(d) differ from those in (a), so the corresponding
parameters do not lie exactly in the plane shown in the figure (see
Appendix D for numerical values). Order-parameter susceptibility
flows and structure factors for the four points underlaid by large gray
circles are shown in Fig. 7.
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FIG. 7. RG flows and structure factors along the transition from
the T1− to E phase for the points underlaid by gray circles in Fig. 6.
For these points, J2, J3, and J4 are fixed to the Yb2Ti2O7 param-
eters from Ref. [49]. The right-most panel (J1/∣J3∣ ≈ −0.08) cor-
responds to exact Yb2Ti2O7 parameters. The top panel shows the
RG flow of the order-parameter susceptibilities for the relevant ir-
reps λ ∈ {E,T1−, T2} (where ∣J ∣2 = J2

1 + J
2
2 + J

2
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2
4 is used as

a normalization). The dashed gray lines indicate the critical scale
Λc indicating the onset of conventional magnetic order. The bottom
three panels show the total spin structure factor as well as the struc-
ture factors in the SF and NSF channel, respectively.

was already observed in the spin-1/2 model within exact di-
agonalization (at T = 0), as well as a numerical linked-cluster
computation (NLC), and high-temperature expansion (HTE)
(at high temperatures) [59]. Additionally, we note that the
regime exhibiting E order in the quantum but T1− in the clas-
sical model shows quantitative agreement with a region iden-
tified via non-linear spin-wave theory in a previous study [58]
where an instability of the T1− phase was observed, see Ap-
pendix D for more details. A similar quantitative agreement
between non-linear spin-wave theory and pf-FRG was also re-
ported in a recent study where an instability close to a quan-
tum spin liquid phase is observed by both approaches [62].
This agreement further solidifies the plausibility of our find-
ings and therefore supports the possible experimental obser-
vation of the non-conventional phase between the convention-
ally ordered E and T1− phases. Interestingly, in the quan-
tum phase diagram in Fig. 6, the interaction parameters for
Yb2Ti2O7 obtained by Ref. [49] locate this compound in the
E phase, as opposed to the T1− phase in the classical phase
diagram. Although this would be inconsistent with the ex-

perimental observation which identifies a T1− phase at Tc, we
reiterate that the phase diagram we have obtained is, strictly
speaking, a T = 0 phase diagram. It is therefore possible that
thermal fluctuations lead to an invasion of the T1− over the
E phase at non-zero temperatures. Indeed, a similar behavior
is observed in the RG flow of the order-parameter suscepti-
bilities for the estimated Yb2Ti2O7 parameters. For larger
cutoffs Λ/∣J ∣ > 0.3 (within a mean-field treatment the cutoff
Λ can be interpreted as temperature [57]), the T1− susceptibil-
ity is the most prominent, while the E susceptibility becomes
clearly dominant only at lower cutoffs. We refer the reader to
Appendix C for a more detailed discussion. Such a scenario
is also observed for the classical model [59, 61] where the
long-range ordered phase at intermediate temperatures does
not correspond to the T → 0 order. This discrepancy between
the observed ordered phase at Tc and the predicted ordered
phase as T → 0 motivates further experimental investigation
of this compound and theoretical studies that concomitantly
account for quantum and thermal fluctuations at low tempera-
tures.

Altogether, our findings suggest that the ground state of
Yb2Ti2O7 lies within the long-range ordered E-phase (as
opposed to what has been previously reported). We specu-
late that the proximity of this compounds to the E-T1− phase
boundary may result in the observation of a finite-temperature
phase where the T1− phase is dominant, but the E phase still
prevails at sufficiently low temperatures – a scenario proposed
in a recent work investigating this compound [49].

V. CONCLUSION AND OUTLOOK

We have established the spin-1/2 quantum phase diagram
along selected cuts of the most general symmetry-allowed
nearest-neighbor Hamiltonian on the pyrochlore lattice, accu-
rately treating quantum fluctuations within a pseudo-fermion
functional renormalization group (pf-FRG) approach. The
corresponding classical model hosts a triple point (between
E, T1− and T2 irrep magnetic orders) where thermal order-
by-disorder fails to select a unique ground state and the system
realizes a classical spin liquid characterized by pinch-line sin-
gularities in the spin structure factor reflective of a generalized
rank-2 U(1) electromagnetism [35]. In contrast to thermal ef-
fects, we find that quantum order-by-disorder selects the E-
irrep ordered state at the parametric location of the classical
triple point, thus presenting a rare example where quantum
fluctuations stabilize an ordered phase and thermal fluctua-
tions do not. Nevertheless, we do find an appreciable region
in parameter space where conventional (dipolar) magnetic or-
der is absent but, contrary to conventional expectations, this
region is not centered around the classically degenerate triple
point or phase boundaries. Our results thus call into question
the validity of a linear spin-wave treatment of quantum fluctu-
ations for this model which reported the absence of magnetic
order at the triple point and in a region centered around it.

In the non-conventional magnetic region of our quantum
phase diagram, we identify a parameter set where the suscep-
tibility of the E, T1− and T2 irreps becomes degenerate and
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consequently, there emerges a quantum triple point. Notably,
this degeneracy is found to persist over an extended region
in parameter space. Based on a careful assessment of spin
structure factors, we find evidence for the appearance of a
higher-rank gauge theory in the non-magnetic phase not only
at the quantum triple point but over an extended region. Deci-
phering the precise microscopic nature of this unconventional
phase at and around the quantum triple point, which could pu-
tatively be a quantum spin liquid with nontrivial gauge groups,
would constitute an important future endeavor. This should
involve a projective symmetry-group classification of gap-
less and gapped mean-field Ansätze with different low-energy
gauge groups and subsequently assess the impact of gauge
fluctuations through Gutzwiller projection within a variational
Monte-Carlo approach.

Another intriguing aspect of the classical phase diagram is
the presence of a spin nematic phase along the phase boundary
of the T1− and T2 magnetic phases. Its presence is revealed
in the spin structure factor by the presence of rod-like fea-
tures along given directions together with lobes of intensity at
particular positions. Interestingly, we find these fingerprints
of the spin-nematic phase in the non-conventional region of
our spin-1/2 quantum phase diagram, in a sliver of parame-
ter space along the boundary with the T2 phase. The spin-
nematic is an elusive state and its existence in three spatial
dimensions and in the absence of a magnetic field has been
contested [63]. Thus, it would be important to further sub-
stantiate our findings employing complementary many-body
approaches which can directly access the quadrupole order
parameter correlation functions to establish their long-range
behavior. Furthermore, the regions near the boundaries of the
non-conventional phase with the E and T1− phases present
qualitatively distinct structure factors, thus pointing to yet an-
other distinct non-conventional phase, whose nature remains
terra incognita. Our work thus highlights the rich composi-
tion of the non-conventional region of the quantum phase dia-
gram as being built out of a variety of novel quantum phases,
and sets the stage for future works aimed at identifying their
precise nature.

We show that the opening of an appreciable window of a
non-conventional phase together with a significant paramet-
ric shift of the phase boundaries for the spin-1/2 quantum has
important implications for understanding the physics of py-
rochlore oxides, in particular Yb2Ti2O7. The fact that exper-
imental observation point to the onset of a T1− order at Tc,
while the previously estimated model Hamiltonian parame-
ters based on the classical model [13, 49, 51, 52] place the
material within the E phase of our T = 0 quantum phase di-
agram, highlights a need to better understand the intertwined
effect of quantum and thermal fluctuations for this material.
We argue here that thermal fluctuations could cause subtle
shifts in the phase boundary at T ≠ 0 between E and T1−

so as to locate Yb2Ti2O7 in the T1− or E ⊕ T1− phases,
which would then be consistent with experimental observa-
tions. The joint impact of quantum and thermal fluctuations
could potentially be investigated within the recently devel-
oped pseudo-Majorana functional renormalization group ap-
proach [64], and would constitute an important future line of

investigation towards reconciling theory and experiment on
Yb2Ti2O7. In similar vein, it is important to note that sample
quality for Yb2Ti2O7 [11, 12] has evolved over the years and
this would presumably affect the thermodynamic behavior of
a given sample specimen under investigation.

We note that, in principle, the pf-FRG can also be formu-
lated for arbitrary spin-lengths S > 1/2 [65]. However, it has
so far been implemented and tested only for spin models with
diagonal Heisenberg interactions of the form JijSiSj . This
approach involves an artificial enlargement of the Hilbert
space, assuming the ground state remains unchanged and
the unphysical states do not affect the FRG flow. Although
adding level repulsion terms to the Hamiltonian that favor
the physical subspace support this assumption for Heisenberg
models, its validity for anisotropic pyrochlore Hamiltonians
studied here but with S > 1/2 remains unclear. Although
beyond the scope of this work, confirming this method
for non-Heisenberg models would enable the systematic
study of the transition from the classical S → ∞ to the
quantum S → 1/2 limit. This would prove to be important
in studying materials with spin moments S > 1/2 such as
NaCaNi2F7 [66], which we leave as an investigation for
future work.

VI. METHODS

A. Pseudo-fermion functional renormalization group

As outlined in the main text, applying the pf-FRG requires
numerically solving the flow equations for the correlation
functions of interest. To this end, we have extended the pf-
FRGSolver.jl Julia package [67] to accommodate models fea-
turing arbitrary non-diagonal components in the spin inter-
actions matrices. For an efficient implementation and fea-
sible run times, this extension involved a proper utilization
of combined real-space and spin-space symmetries present in
the model at hand Eq. (1). The package already provides
state-of-the-art integration routines for the pf-FRG flow equa-
tions within the Katanin truncation [68] at zero temperature,
T = 0. The ordinary differential equations are solved using
the Bogacki–Shampine method – a third-order Runge-Kutta
method with adaptive step-size control. To capture the de-
pendence on three continuous Matsubara frequencies of the
four-point correlation functions (the fourth frequency being
fixed by energy conservation), the package utilizes discrete
adaptive frequency grids and multi-linear interpolation to ob-
tain off-grid values. In our simulations, we use a frequency
grid comprising Nω = 35 discrete bosonic frequencies and
Nν × Nν = 30 × 30 fermionic frequencies. To simulate an
infinite lattice, correlations beyond a certain bond-distance L
are set to zero. Unless otherwise specified, we typically use
system sizes of L = 3,5,7, with larger sizes L = 9 employed
for specific points of interest. A more detailed discussion of
our implementation can be found in Ref. [41]. Details about
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the method itself, its capabilities, and caveats are described in
a recent review article [37].

The primary output of our pf-FRG calculations is the flow
of the static (ω = 0) spin-spin correlations

χΛαβ
ij = ∫

∞

0
dτeiωτ ⟨T̂τS

α
i (τ)Sβ

j (0)⟩ ∣
Λ

ω=0
(9)

where T̂τ denotes the time-ordering operator in imaginary
time τ . A straight forward Fourier transform then yields the
corresponding spin-spin correlations in momentum space. If
the ground state of a model spontaneously breaks a symmetry
captured by an order-parameter linear in the spin-operators,
the relevant components of the spin-spin correlations will, in
theory, diverge at a finite critical scale Λc > 0 at certain mo-
menta qmax depending on the type of order. In practice, due
to the approximations applied to the flow equations, this di-
vergence may soften to a cusp or a kink, which becomes more
pronounced as the lattice size L increases.

In the absence of a distinct divergence, there is no definitive
criterion for unequivocally identifying such flow breakdowns
from numerical data. Additionally, the pf-FRG has shown
a tendency to overestimate the extent of disordered regions
in parameter space. To address this, we perform a detailed
analysis of both the flow of the correlations and their second
derivatives, identifying non-monotonic behavior in the second
derivative that intensifies with increasing L as indicative of a
flow breakdown. For examples, we refer the reader to Ap-
pendix C. We note that the phase boundaries between conven-
tionally ordered and “non-conventional” regime in Fig. 1(b)
should not be considered quantitatively precise. These bound-
aries depend on the criterion used for identifying flow break-
downs and the details of the numerical implementation. Nev-
ertheless, the qualitative features – such as the existence and
approximate location of the non-conventional phase – should
be largely robust to these variations. Additionally, numeri-
cally resolving the flow of correlations becomes significantly
more challenging at lower Λ. This may explain the seem-
ingly more diffuse phase boundary between the T1− and the
non-conventional phase in Fig. 1(b), near which critical scales
below Λ/∣J ∣ < 0.02 appear. We have drawn the approximate
phase boundaries as our best estimate beyond which our nu-
merical data show no evidence of a flow breakdown.

To further classify the nature of a phase, we can can di-
rectly calculate the order-parameter susceptibilities, defined
in Eq. (8) (with the mλ given in the Appendix B), as well
as the neutron-scattering structure factors from the spin-spin
correlations χΛαβ

ij (q). For unpolarized neutrons, the structure
factor takes the form

S⊥(q) = ∑
α,β

(δα,β − q̂αq̂β)χαβ(q) , (10)

where we don’t denote the Λ-dependence for brevity. On the

other hand, the polarized neutron structure factors are defined
in terms of the incident neutrons’ polarization ẑN [69], effec-
tively separating the unpolarized neutron structure factor into
two channels, the non-spin-flip (NSF) channel

SNSF
⊥ (q) = ∑

α,β

(ẑαN ẑβN)χ
αβ(q), (11)

and the spin-flip channel

SSF
⊥ (q) = S⊥(q) − SNSF

⊥ (q). (12)

In the above equations, we have assumed for simplicity that
the magnetic moments µi directly correspond to the spin mo-
ments, i.e. µα

i = gαβi Sβ
i = Sα

i where the g-tensor is taken
to be isotropic. All momentum resolved structure factors
shown in this manuscript are calculated at a minimal cutoff
of Λ/∣J ∣ = 0.02 in the non-conventional phase (i.e. in the ab-
sence of a flow breakdown), or close to the critical scale Λc

(right at the flow breakdown) in the conventionally ordered
phases.

B. Self-consistent Gaussian Approximation

The self-consistent Gaussian approximation (SCGA), of-
ten referred to as the large-N approximation [30, 55, 70],
is a classical approximation where the hard spin-length con-
straint, ∣Si∣2 ≡ S2, is replaced by the soft-spin constraint,
1
N ∑i ∣Si∣2 ≡ S2 with N being the number of spins in the sys-
tem, where this constraint is satisfied on average. To enforce
this constraint, we introduce a Lagrange multiplier λ which is
obtained self-consistently for each temperature

1

N
∑
m,q

(εm(q)
T

+ λ)
−1

≡ S2, (13)

where the εm(q) are the eigen energies of the 12 × 12 matrix
Jij in Eq. (2). The resulting theory yields a Gaussian theory
which can be solved exactly and from which all spin correla-
tion functions can be computed from the general correlation
function

χαβ
µν (q) = ⟨Sα

µ (q)Sβ
ν (−q)⟩ = ∑

q

⎛
⎝
Jαβ

µν (q)
T

+ λ
⎞
⎠

−1

, (14)

where the indices µ, ν label the sublattice index, while the
sub-indices α,β label the spin components. From this sus-
ceptibility, the same observables as in the pf-FRG approach
can be straightforwardly computed, including the order pa-
rameter correlations and the neutron-scattering structure fac-
tors defined above.
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Appendix A: Hamiltonian in the global and local frame

In our definition of the Hamiltonian both in the local frame
Eq. (1) and the global frame Eq. (2) we primarily follow the
conventions of Ref. [50], but restate all relevant definitions
here for completeness.

The basis sites of the tetrahedral unit cell shown in Fig. 1(a),
are defined relative to its center as

r0 =
a

8
(1,1,1) r1 =

a

8
(1,−1,−1)

r2 =
a

8
(−1,1,−1) r3 =

a

8
(−1,−1,1)

, (A1)

where a is the lattice spacing. The Hamiltonian Eq. (1) is
defined in the local frame, where the local spin z̃-axis of S̃i

aligns with the vector connecting the tetrahedron center to the
corresponding basis site ri. This directions corresponds to the
local ⟨111⟩ axis with C3 symmetry. The local x̃ and ỹ axes
are chosen following the convention introduced in Ref. [13] in
which all local ỹ-axes lie in the same plane. In this conven-
tion, the spin operators in the global frame Sµ and the local
frame S̃µ are related by the basis transformation

S̃µ =RµSµ , (A2)

with the rotation matrices Rµ for the basis sites µ = 0,1,2,3

defined as

R0 =
1√
6
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−
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2 −
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⎠
.

(A3)

The rows of the matrices correspond to the local x̃, ỹ and z̃
axes, respectively. The bond-dependent phase factors γij ap-
pearing in the Hamiltonian in the local frame are

γ =
⎛
⎜⎜⎜
⎝

0 1 −e−iπ/3 −eiπ/3
1 0 −eiπ/3 −e−iπ/3

−e−iπ/3 −eiπ/3 0 1

−eiπ/3 −e−iπ/3 1 0

⎞
⎟⎟⎟
⎠
. (A4)

The coupling matrices Jµν of the Hamiltonian in the global
frame (2) can be obtained using the basis transformation stated
above, and then collecting the terms coupling the spins on ba-
sis sites µ and ν. This, for example, leads to the coupling
matrix J01 defined in Eq. (4). The coupling matrices are ad-
ditionally related by the symmetries of the pyrochlore lattice.
Concretely, this means they can, e.g., be constructed from J01

by a C3 rotation around the local z̃-axis of basis site µ = 0
and/or a C2 rotation around the global z-axis through the cen-
ter of the tetrahedra

C3 =
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠

C2 =
⎛
⎜
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎟
⎠
. (A5)

Combined with a possible lattice inversion along the corre-
sponding bond (represented by a matrix transpose) the re-
maining coupling matrices are then related to J01 by the sym-
metry transformations that map the corresponding bonds onto
each other, namely

J02 =C3J01C3
T

J03 =C3
TJ01C3

J12 =C3
TC2

TJT
01C2C3

J13 =C3C2
TJT

01C2C3
T

J23 =C2J
T
01C3

T ,

, (A6)

which leads exactly to the matrices stated in Ref. [50].
The relation between the coupling parameters typically

used in the local and global frame is given by

⎛
⎜⎜⎜
⎝

Jzz
J±
J±±
Jz±

⎞
⎟⎟⎟
⎠
= 1
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⎞
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⎠
, (A7)
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allowing a straightforward comparison between the two
frames.

There is a duality in the global parametrization: A rota-
tion by π around the local z̃-axes leads to S̃± → −S̃± and
S̃z → +S̃z , effectively mapping Jz± → −Jz± [11]. The
corresponding dual global frame, which we parametrize by
(J̄1, J̄2, J̄3, J̄4) strongly mixes the exchange constants of the

original global frame as

⎛
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Although not used in the main text, we will use this
parametrization in order to compare to other literature results
in Appendix D.

Appendix B: Irrep decomposition and order-parameters fields

The order-parameter fields used in the irrep decomposition
of the classical Hamiltonian in Eq. (5) are defined in terms of
spin operators in the global frame, following Ref. [50], as
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(B1)

where the angle

θ = 1

2
arctan(

√
8J3

2J1 + 2J2 + J3 − 2J4
) (B2)

is chosen such that the non-zero coupling between the orig-
inal mT1A

and mT1B
fields is removed for mT1− and mT1+ .

Physically, θ represents the canting angle between the spins in
the T1 ground state, which form a splayed ferromagnet around
the ⟨111⟩ (or a symmetry-related) axis. The prefactors aλ of

the order-parameter fields in the Hamiltonian are given by

aA2 = −2J1 + J2 − 2J3 + 4J4 ,
aE = −2J1 + J2 + J3 + 2J4 ,

aT1− = (2J1 + J2) cos2 θ − (J2 + J3 − 2J4) sin2 θ
+
√
2J3 sin 2θ ,

aT1+ = (2J1 + J2) sin2 θ − (J2 + J3 − 2J4) cos2 θ
−
√
2J3 sin 2θ ,

aT2 = −J2 + J3 − 2J4 . (B3)

Each order parameter can reach a maximal value of m2
λ = 1.

The spin-length constraint for classical S = 1/2 spins S2
i =

1/4 implies ∑λm
2
λ = 1. Therefore, the order-parameter field

with the lowest prefactor aλ exactly determines the classical
ground state, which is then of q = 0 type. More exotic ground
states can only be realized at phase boundaries and critical
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FIG. 8. RG flow of the spin-spin susceptibility at the momentum qmax where it is maximal for fixed J1/∣J3∣ = 0.12, J4 = 0 and J3 < 0, but
varying J2/∣J3∣. The dashed gray lines indicate the critical scale Λc at which a flow breakdown is identified. The left and right most two panels
are in the conventionally ordered T1− and E phase, respectively and exhibit a putative flow breakdown manifesting as a non-monotonicity in
the second derivative of the flow. The center two plots show the flow in the non-conventional phase, which appears smooth and monotonous
down to the lowest calculated Λ/∣J ∣ = 0.01.

points, where multiple aλ are degenerate, as is the case for the
non-conventional phase discussed in the main text.

Appendix C: Details on calculating the pf-FFRG phase
diagrams

In this section, we give details on how the pf-FRG phase
diagrams in Fig. 1(b) and Fig. 6 were calculated from our pf-
FRG data.

1. Discerning conventionally ordered from non-conventional
phases

Spontaneous symmetry breaking into dipolar order should,
in theory, lead to a divergence of the relevant components of
the RG susceptibility flow χΛµν(qmax) at a finite critical scale
Λ = Λc [37]. Here qmax refers to the momentum qmax where
the susceptibility is maximal, characterizing the correspond-
ing ground-state order. In our case, the diagonal components
χΛµµ are always clearly dominant. Moreover, due to the sym-
metries of the pyrochlore lattice, they exhibit the same max-
imal flow (although at different symmetry-related momenta
qmax). This allows us to restrict our flow breakdown analysis
to the zz-component χΛzz(qmax). In practice, the numerical

solution of the flow equations necessitates several approxima-
tions that often soften the expected divergence at Λc to a kink
or a hump. Additionally, these features tend to emerge only at
sufficiently large system sizes, defined by the bond-length L,
beyond which correlations are set to zero in the pf-FRG cal-
culations. Hints of these features, however, can often be ob-
served when analyzing not only the susceptibility flow itself,
but also its second derivative ∂2

Λχ
Λµν(qmax). Initially small

non-monotonicities in the second derivative at small system
sizes, may grow to true divergencies for larger L. We there-
fore identify any non-monotonicity in ∂2

Λχ
Λµν(qmax) that

scales with increasing L as a flow breakdown [7]. As an exam-
ple, the flows in Fig. 8 show the susceptibility flows and their
second derivative along a horizontal cut through the phase di-
agram Fig. 1(b) for fixed J2/∣J3∣ = 0.12 and Fig. 9 shows
the evolution of the critical scale for four additional cuts with
fixed J2.

2. Determining the dominant irrep susceptibilities

In addition to distinguishing conventionally ordered from
non-conventional phases, we characterize the nature of the
ground-state spin-spin correlations by identifying the rele-
vant order-parameter susceptibilities. The first step is to dis-
tinguish which order-parameter susceptibility is maximal in
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FIG. 9. Cuts through the phase diagram Fig. 1. The black dots
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tive value of the irrep susceptibilities in the low-cutoff limit. Hatched
background colors mark regions where multiple χrel

λ are above 20%
(dotted horizontal line). The dashed lines mark the points where the
largest irrep susceptibilities changes.

the low-cutoff limit (Λ/∣J ∣ = 0.02 provided the flow has not
stopped at larger Λ due to a flow breakdown), as shown in
Fig. 10(a). This characterizes the dominant correlations in
ground state. In the conventionally ordered phases, only a sin-
gle order-parameter susceptibility clearly dominates (see, e.g.
Fig. 11). At the boundaries of the non-conventional phase,

however, there appear small but extended regions where mul-
tiple order-parameter susceptibilities are relevant. This occurs
in the putative nematic, E ⊕ T1− and quantum pinch-line spin
liquid regimes discussed in the main text. In order to gauge
the extend of these regimes, we define relative susceptibilities
by normalizing with respect to the maximum as

χrel
λ =

⟨mλ ⋅mλ⟩
maxλ′⟨mλ′ ⋅mλ′⟩

∣
Λ→0

q=0

. (C1)

In the phase diagrams shown in the main text, we highlight
regions where more than one order-parameter susceptibility
exceeds χrel

λ > 0.2 by a hatched background color and dis-
tinct markers. To illustrate this, Fig. 9 shows the evolution of
χrel
λ as a function of J1 for different fixed values of J2. Note

how the background colors change when any χrel
λ crosses the

20% threshold. To further highlight the extend of the regions
where multiple order-parameter susceptibilities are degener-
ate, Fig. 10(b)-(d) shows the minimal χrel

λ relevant to the var-
ious non-conventional regimes. These show relatively clear
lines of maximal degeneracy (shown with dashed gray lines)
that occur at the boundary where the maximal order-parameter
susceptibility changes, and meet at the quantum triple point.

We note that the dominant order-parameter susceptibility
can change when considering larger RG cutoffs Λ away from
the low-cutoff limit. This is illustrated in Fig. 11, which de-
picts the flow of the order-parameter susceptibilities at the
CTP and the Yb2Ti2O7 parameters from Scheie et al. [49].
In the classical model, the ground-state at the CTP exhibits
degeneracy among E, T1− and T2 order, while for Yb2Ti2O7

parameters the ground-state adopts T1− order but lies near
the E phase boundary (consistent with experimental find-
ings for Yb2Ti2O7). In the quantum model, on the other
hand, the ground state favors E order in both cases. At large
Λ/∣J ∣ ≈ 0.4, however, the quantum and classical results are
again consistent: at the CTP, all three susceptibilities are of
similar magnitude, and for Yb2Ti2O7, E and T1− dominate,
with a slight advantage for T1−. Only when integrating the
flow equations to lower cutoffs – and thereby incorporating
more quantum fluctuations – does the clear dominance of E
order emerge. This supports our argument made in the main
text, that the zero-temperature phase diagram may differ sig-
nificantly from the finite temperature one, potentially explain-
ing the discrepancies with experiments.

Appendix D: Comparison with non-linear spin-wave theory

One of our main observations – the significant enlargement
of the E-phase compared to the classical model – is absent
in a conventional linear spin-wave treatment [50]. However,
a similar result was found using non-linear spin-wave theory
(NLSWT) which includes the effects of magnon interactions
[58]. Although for slightly different parameter sets compared
to our calculations in the main text, they observed a break-
down of NLSWT in the T1 phase near the classical boundary
to the E phase, resembling the shift seen in our pf-FRG calcu-
lations. To allow a direct comparison to their results (namely
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FIG. 10. Dominant order-parameter susceptibilities in the non-conventional regime. (a) Maximal order-parameter susceptibility in the
low-cutoff limit. (b)-(d) Minimal relative magnitude of the order-parameter susceptibility χref

λ [defined in Eq. (C1)] between the orders
characterizing the different non-conventional regimes (the spin nematic T1− ⊕ T2, the pinch-line spin liquid E ⊕ T1− ⊕ T2 and the E ⊕ T1−
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Label Reference (et al.) J1/meV J2/meV J3/meV J4/meV J1/∣J3∣ J2/∣J3∣ J4/∣J3∣ D/J (K + Γ)/J (K − Γ)/J
(a) Scheie [49] -0.026 -0.307 -0.323 0.028 -0.08 -0.95 0.087 -0.631 0.014 0.151
(b) Robert [51] -0.03 -0.32 -0.28 0.02 -0.107 -1.143 0.071 -0.68 0.03 -0.039
(c) Thompson [52] -0.028 -0.326 -0.272 0.049 -0.103 -1.199 0.18 -0.525 0.11 -0.096
(d) Ross [13] -0.09 -0.22 -0.29 0.01 -0.31 -0.759 0.034 -0.98 0.675 0.883

TABLE I. Exchange constants for Yb2Ti2O7 in different parametrizations. The couplings were converted to the global frame (J1, J2, J3, J4)
using Eq. (A7) if not directly stated in the references, without accounting for uncertainties. The global parameters normalized by ∣J3∣ (with
J3 < 0) are the stars drawn in Fig. 6. The dual global couplings parameterized by D̄, K̄ and Γ̄ (normalized by J̄ > 0) are the stars drawn in
Fig. 12.
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Fig. 7 in Ref. [58]), we have computed a pf-FRG phase dia-
gram using exactly their parameters, which we describe in the
following.

The calculations in Ref. [58] are performed in a different
spin basis referred to as the dual global frame (introduced be-
fore Eq. (A8)). Instead of J̄1, J̄2, J̄3, J̄4, however, they use
a parametrization of the exchange constants in terms of a
dual Heisenberg J̄ , Kitaev K̄, symmetric off-diagonal Γ̄ and
Dzyaloshinskii–Moriya D̄ interaction defined as

J̄ = J̄1 K̄ = J̄2 − J̄1 Γ̄ = J̄3 D̄ =
√
2J̄4. (D1)

They compute a phase diagram for fixed (K̄−Γ̄)/J = −0.096,
matching the estimated value for Yb2Ti2O7 from Thompson
et al. [52] (see Table. I). The classical boundary between the
T1 (in this frame T1+) and E phase then lies at (K̂+ Γ̂)/Ĵ = 0,
placing the parameters from Thompson et al. well inside the
classical T1 phase. Their calculations, however, reveal a large
region in the T1 phase where NLSWT breaks down, extending
from the classical E−T1 boundary to just below the estimated
Yb2Ti2O7 parameters.

Fig. 12 shows the pf-FRG phase diagram for the same pa-
rameters. We again observe an enlarged E phase and the
emergence of a non-conventional phase between the E and
T1 phase boundary. This phase contains ground-states with
either dominant T1+ correlations or mixed E ⊕ T1+ correla-
tions. Its boundary closely resembles the boundary of the
regime where NLSWT breaks down, but extends even further
into the classical T1 phase, placing Yb2Ti2O7 slightly in the
E phase. These findings are consistent with the discussion in
Ref. [58], who propose that the ground-state in the NLSWT
unstable regime is possibly E order, and that the extent of the
unstable regime may be underestimated by their method. This
agreement further supports their conclusion that magnon in-
teractions beyond the linear-spin-wave treatment are crucial
in driving the enlargement of the E-phase.

Appendix E: Evolution of the low-energy Hamiltonian bands

In this appendix, we discuss the evolution of the low-energy
bands of the interaction matrix Jij in Eq. (1) along the T1− ⊕
T2 and E ⊕ T1− phase boundaries. We consider four distinct
sets of parameters along these boundaries which progressively
approach the classical triple point where the classical pinch-
line spin liquid is stabilized, see Fig. 13(a).

Fig. 13(b) and (c) illustrate the five lowest energy bands of
the interaction matrix Jij along the T1−⊕T2 boundary for two
sets of high-symmetry paths, one along the [hhl] plane and
another along the [hk0] plane, respectively. The evolution of
these bands identifies two prominent features: the observa-
tion of low-energy flat lines along high-symmetry directions
(namely the [111], [010] directions, and symmetry-related di-
rections), and the observation of band-touching points along
these lines (observed at [hkl] = [0,0,0] and [hkl] = [1,1,1]).
We note that, as we progressively approach the classical triple
point, the first four low-energy bands become flat, hinting its
proximity to a classical spin liquid.
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FIG. 13. Evolution of the lowest five energy bands of the Hamiltonian along (a) the T1− ⊕ T2 line and (b) the E ⊕ T1− line. Panel (a)
shows the classical phase diagram of the bilinear spin model with J4 = 0 and J3 < 0. The white ‘x’ and ‘+’ markers indicate four sets of
parameters along the T1− ⊕ T2 line and E ⊕ T1− line, respectively. Panels (b) and (c) show the lowest five energy bands of the Hamiltonian
in Eq. (1) for a set of parameters along the T1− ⊕ T2 line (left) and the E ⊕ T1− line (right). The upper (lower) plot shows the evolution along
a high-symmetry path in the [hhl] ([hk0]) plane. In panels (b)-(e) the bands have been slightly shifted by multiples of 0.5 from their actual
low-energy value for ease of comparison.

Fig. 13(d) and (e) illustrate the five lowest energy bands of
the interaction matrix Jij along the E⊕T1− boundary for two
sets of high-symmetry paths, one along the [hhl] plane and
another along the [hk0] plane. As was observed for the T1−⊕
T2, both flat lines and band-touching points along these lines
can be observed. However, for the E ⊕ T1− boundary, the flat
lines are only observed along the [111] direction with band-

touching points with higher energy bands at [hkl] = [0,0,0]
and [hkl] = [1,1,1].

The observation of these low-energy features in the band
spectrum has profound effects in the spin correlation functions
predicted by the SCGA approximation. Indeed, the correla-
tion functions in this theory is proportional to the projection
onto the low-energy modes of the Jij matrix, which, at low
temperatures, result in stronger correlations at these points.
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