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Abstract

In the last few decades, quantum criticality in itinerant electron systems has
become a central focus of condensed matter physics. On the one hand, it
represents a candidate mechanism for high-temperature superconductivity, an
exciting state of matter with relevance to technical applications. On the other
hand, it can lead to a breakdown of Fermi liquid theory, which is inherently
fascinating from a theory perspective. Experimentally, there is ample of evidence
that quantum criticality is responsible for essential features in the phase diagrams
of many materials, most notably the unconventional superconductors.

The formation of a comprehensive understanding of these quantum critical
phenomena has, however, been significantly hampered by the fact that in many-
fermion systems, fluctuations of a critical order parameter can couple to extensive
gapless modes on a finite Fermi surface. This interplay, while giving rise to
intriguing physical phenomena, also leads to strong electronic correlations, which
are notoriously di�cult to handle by analytic methods. For this reason, despite
numerous attempts, only few definite statements about the properties of metals
at the verge of quantum phase transitions could be made.

In this thesis, we investigate metallic quantum criticality by means of large-
scale quantum Monte Carlo simulations and contribute unbiased, rigorous results
to the discussion. Focusing on the case of antiferromagnetic, collinear, spin-
density wave ordering, we present the numerically exact phase diagram of a
spin-fermion model whose solution has so far been out of reach. In particular,
we highlight the emergence of high-temperature d-wave superconductivity and
rigorously establish the quantum critical properties of the model. Specifically,
we determine the unusual low-energy scaling of order parameter correlations and
study the decoherence of fermionic quasiparticles. In addition to generic energy
dispersions, we also consider the case of (almost) local Fermi surface nesting
near the hot spots.

Combining the Monte Carlo method with a quantum loop topography approach,
we demonstrate that important features of quantum critical metals can be
autonomously identified by machine learning current-current correlations. In
comparison to conventional techniques, the introduced approach is characterized
by a significantly improved numerical e�ciency. This allows us to analyze the
electronic transport characteristics of two quantum critical metals, including the
spin-fermion model, over a large parameter range and leads to the identification
of extended non-Fermi liquid regimes in their respective phase diagrams.





Kurzzusammenfassung

Die Erforschung von Quantenkritikalität in elektronischen Vielteilchensyste-
men ist in den letzten Jahren zu einem zentralen Fokus der Physik der kon-
densierten Materie geworden. Zum einen können kritische Fluktuationen zu
Hochtemperatur-Supraleitung führen, einem faszinierenden Materie-Zustand mit
großer Relevanz für technische Anwendungen. Zum anderen können sie zur
Dekohärenz von Quasiteilchen und damit einem Zusammenbruch der Fermi-
Flüssigkeits-Theorie führen. Zahlreiche experimentelle Hinweise deuten ferner
darauf hin, dass Quantenkritikalität für wesentliche Merkmale der Phasendi-
agramme von Festkörpersystemen, wie insbesondere den unkonventionellen
Supraleitern, verantwortlich ist.

Der Aufbau eines umfassenden, theoretischen Verständnisses dieser quantenkri-
tischen Phänomene wird jedoch erheblich dadurch erschwert, dass in fermionis-
chen Vielteilchensystemen quantenkritische Fluktuationen eines Ordnungsparam-
eters an eine Fülle von niederenergetischen Moden auf einer Fermi-Fläche koppeln
können. Dieses Wechselwirkung führt typischerweise zu starken elektronischen
Korrelationen, die sich in theoretischen Untersuchungen einer Handhabung durch
analytische Techniken entziehen. Trotz zahlreicher Forschungsstudien konnten
aus diesem Grund bisher nur wenige definitive Aussagen über die Eigenschaften
von Metallen am Rande von Quantenphasenübergängen gemacht werden.

In der vorliegenden Dissertation untersuchen wir quantenkritische Metalle
mit Hilfe von großskaligen Quanten-Monte-Carlo-Simulationen und bringen
wertvolle, rigorose Ergebnisse in die thematische Diskussion ein. Mit speziellem
Fokus auf antiferromagnetische Spin-Dichte-Wellen-Ordnung präsentieren wir das
numerisch exakte Phasendiagramm eines Spin-Fermionen-Modells, dessen Lösung
bisher unzugänglich war. Darauf aufbauend diskutieren wir die Entstehung von
Hochtemperatur-Supraleitung, untersuchen die Dekohärenz von fermionischen
Quasiteilchen und extrahieren die quantenkritischen Eigenschaften des Modells,
wie insbesondere die spezifische, funktionale Form der bosonischen Korrelationen.
Hierbei betrachten wir neben generischen Energiedispersionen auch den Grenzfall
einer lokalen Fermi-Flächen-Verschachtelung in der Nähe der sogenannten “hot
spots”.

Im Anschluss kombinieren wir die Monte-Carlo-Methode mit einer neuen
“Quanten-Topographie”-Technik und demonstrieren, dass essentielle quantenkri-
tische Phänomene durch maschinelles Lernen von Strom-Strom-Korrelationen
autonom identifiziert werden können. Dabei zeichnet sich der entwickelte Ansatz
im Vergleich zu konventionellen Methoden durch eine deutlich verbesserte nu-
merische E�zienz aus. Dies ermöglicht die Untersuchung der elektronischen
Transporteigenschaften zweier quantenkritischer Metalle über große Parame-
terbereiche hinweg und führt zur robusten Identifikation von ausgedehnten
“Nicht-Fermi-Flüssigkeits”-Bereichen in deren Phasendiagrammen.





Acknowledgements

First and foremost, I would like to express my sincere gratitude to Simon Trebst,
my supervisor, for giving me the opportunity to work on exciting research
projects and mentoring me as a PhD student. I am highly grateful for his
support and, in particular, the great freedom with which I could pursue my
physics, programming, and teaching interests. Second, I wish to thank Achim
Rosch, not only for acting as a referee of this thesis, but also for his valuable
comments and lively discussions in the condensed matter theory group seminar.
I further thank Markus Braden for agreeing to chair the committee of my thesis
defense.

Fortunately, in the course of my research, I had the pleasure of collaborating
with many inspiring scientists around the world. Above all, I owe a great debt
of gratitude to Erez Berg and Yoni Schattner. Our regular meetings over the
last four years have been a great pleasure and have significantly impacted both
this thesis as well as my general perception of physics. In particular, I am highly
grateful for the enlightening discussions and the warmhearted hospitality during
my extended research stays at the Weizmann Institute of Science, the University
of Chicago, and Stanford University. In this context, I would like to also thank
Merav Laniado, Beth Nakatsuka, and Noelle Rudolph, for coordinating my visits,
Snir Gazit, Xiaoyu Wang, and Steven Kivelson, for interesting discussions, as well
as the German Research Foundation for their financial support (CRC1238 and
CRC183). Furthermore, I wish to thank Eun-Ah Kim and her group at Cornell
University, especially Yi Zhang, Samuel Lederer, and George Trey Driskell for
fruitful collaborations and stimulating exchanges about the interface of physics
and machine learning.

My time at the University of Cologne has been a great pleasure, which is why
I wish to kindly thank the people at the Institute of Theoretical Physics and
especially all members of our research group (forgive me that I won’t list all
of you explicitly!). Many thanks go to Ciarán and Christoph for proofreading
parts of this thesis and to my excellent o�ce mates Vaishnavi, Christoph, and
Kai for their pleasant company. I am particularly grateful to Ciarán for many
interesting exchanges on the the sign problem and Zhong-Chao and Frederic for
the in-house collaboration. I further wish to thank Mariela, Benita, and Clara
for there cordial assistance in organizational matters and Andreas for his IT
support. Of course, I can not go without also mentioning “die festen Körper”,
Florian, Tim, Christoph, and Kai, who have always tried to defend the honors
of the institute at the yearly University run.

Abschließend möchte ich mich bei meiner Familie, Oriella, Petra, Maris, und
Rollin bedanken: Ohne euch würde ich diese Zeilen heute sicher nicht schreiben.
Vielen Dank für eure Unterstützung und euer Verständnis!





This thesis is dedicated to Rollin and Petra





Contents

Outline 1

1 Quantum criticality in metals 3
1.1 Quantum phase transitions . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Metallic quantum critical points . . . . . . . . . . . . . . 7
1.2 Unconventional superconductors . . . . . . . . . . . . . . . . . . 10
1.3 The spin-fermion model . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Analytical insights . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Fermi surface reconstruction . . . . . . . . . . . . . . . . 19
1.4.2 Hertz-Millis theory . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Hierarchy of energy scales . . . . . . . . . . . . . . . . . 22
1.4.4 Emergence of a control parameter . . . . . . . . . . . . . 25

2 Determinant quantum Monte Carlo 27
2.1 Solving classical thermodynamics at random . . . . . . . . . . . 27
2.2 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 29
2.3 The Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Proposing moves . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Determinant quantum Monte Carlo . . . . . . . . . . . . . . . . 34
2.5 Measuring physical observables . . . . . . . . . . . . . . . . . . 37

2.5.1 Equal-time Green’s function . . . . . . . . . . . . . . . . 37
2.5.2 Time-displaced Green’s function . . . . . . . . . . . . . . 38
2.5.3 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.1 Statistical error of direct sampling . . . . . . . . . . . . . 40
2.6.2 Statistical error of Markov chain Monte Carlo . . . . . . 42
2.6.3 Functions of observables . . . . . . . . . . . . . . . . . . 44
2.6.4 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Avoiding the fermion-sign problem 47
3.1 Enforced positive semidefiniteness . . . . . . . . . . . . . . . . . 47
3.2 Circumventing the sign-problem of the spin-fermion model . . . 48
3.3 Determinant factorization: Hubbard model . . . . . . . . . . . . 52
3.4 Systematic model classification . . . . . . . . . . . . . . . . . . 54

3.4.1 Theorem of T -invariant decomposition . . . . . . . . . . 55
3.4.2 Majorana time reversal symmetries . . . . . . . . . . . . 57
3.4.3 Majorana reflection positivity . . . . . . . . . . . . . . . 60
3.4.4 A road to new sign-problem free models . . . . . . . . . 61

xi



Contents

4 Aspects of DQMC implementation 69
4.1 Stable linear algebra . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Time slice matrix multiplications . . . . . . . . . . . . . 70
4.1.2 Equal-time Green’s function . . . . . . . . . . . . . . . . 75
4.1.3 Time-displaced Green’s function . . . . . . . . . . . . . . 77

4.2 E�cient DQMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 E�cient adaptive local updates . . . . . . . . . . . . . . 82
4.2.2 Adaptive global updates . . . . . . . . . . . . . . . . . . 92
4.2.3 Checkerboard decomposition . . . . . . . . . . . . . . . . 92
4.2.4 E�ective imaginary time slice propagators . . . . . . . . 96

4.3 Reducing finite-size e�ects . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 Artificial magnetic flux . . . . . . . . . . . . . . . . . . . 97
4.3.2 Twisted boundary conditions . . . . . . . . . . . . . . . . 99

4.4 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.1 Benchmark and open source . . . . . . . . . . . . . . . . 100
4.4.2 Supercomputing infrastructure . . . . . . . . . . . . . . . 102

5 Numerically exact results for the AFM QCP 103
5.1 Fermi surface and model parameters . . . . . . . . . . . . . . . 104
5.2 Phase diagram (⁄ = 2) . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Antiferromagnetic crossover . . . . . . . . . . . . . . . . 105
5.2.2 Unconventional superconductivity . . . . . . . . . . . . . 107
5.2.3 Charge-density wave correlations . . . . . . . . . . . . . 112

5.3 Quantum critical correlations (⁄ = 1) . . . . . . . . . . . . . . . 116
5.3.1 Antiferromagnetic correlations . . . . . . . . . . . . . . . 118
5.3.2 Single-fermion correlations . . . . . . . . . . . . . . . . . 122

5.4 The case of local nesting . . . . . . . . . . . . . . . . . . . . . . 124
5.4.1 Tuning to local nesting . . . . . . . . . . . . . . . . . . . 125
5.4.2 Shift of the AFM QCP . . . . . . . . . . . . . . . . . . . 126
5.4.3 Quantum criticality . . . . . . . . . . . . . . . . . . . . . 127

5.5 First-order quantum phase transition . . . . . . . . . . . . . . . 130
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Machine learning phases of matter 135
6.1 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . 136
6.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . 139
6.2.2 Regularization and dropout layers . . . . . . . . . . . . . 141

6.3 Convolutional neural networks . . . . . . . . . . . . . . . . . . . 142
6.4 Discriminating phases of matter . . . . . . . . . . . . . . . . . . 143

6.4.1 Spin-density wave transition in the spin-fermion model . 145

7 Quantum loop topography of metallic quantum criticality 147
7.1 Quantum loop topography . . . . . . . . . . . . . . . . . . . . . 147

7.1.1 Current-current correlations . . . . . . . . . . . . . . . . 148
7.2 Probing superconducting transport . . . . . . . . . . . . . . . . 150

7.2.1 Attractive Hubbard model . . . . . . . . . . . . . . . . . 150

xii



Contents

7.2.2 Spin-fermion model . . . . . . . . . . . . . . . . . . . . . 153
7.3 Mapping out non-Fermi liquid regimes . . . . . . . . . . . . . . 154

7.3.1 O(2) symmetric AFM QCP . . . . . . . . . . . . . . . . 155
7.3.2 Ising-nematic QCP . . . . . . . . . . . . . . . . . . . . . 160

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Concluding remarks 165

A Hubbard-Stratonovich transformation of the spin-fermion model 169

B Evaluation of the fermion trace 171

C Locating the isotropic AFM QCP 173

D Supplement to QLT classification 175

Bibliography 179

Erklärung

Publikationen

xiii





Outline
In this thesis, we report on large-scale determinant quantum Monte Carlo and
machine learning studies of quantum critical phenomena in metals at the verge
of antiferromagnetic spin-density wave transitions. Specifically, the thesis is
structured as follows.

In Chapter 1, we provide a succinct conceptual introduction into the field of
metallic quantum criticality. We discuss the crucial role of the Fermi surface in
quantum phase transitions and highlight experimental evidence for quantum crit-
ical phenomena in the phase diagrams of many unconventional superconductors.
We then motivate a spin-fermion model for the onset of antiferromagnetism in
metals, the major target of the numerical e�orts in this thesis, and summarize
various analytical attempts to determine its low-energy properties.

Following this, we turn to a discussion of simulation techniques for numerically
studying quantum critical metals. To that end, Chapter 2 introduces the
determinant quantum Monte Carlo (DQMC) method in a pedagogical, self-
contained manner. Starting from classical statistical physics, we describe how
the concept of Markov sampling can be utilized to e�ciently evaluate expectation
values of physical observables and outline how the famous Metropolis algorithm
can be applied to quantum partition functions of metals. Furthermore, we
discuss the numerical error associated with statistical sampling and means
to estimate the same within DQMC. The focus of Chapter 3 is the biggest
limitation of quantum Monte Carlo simulations: the infamous fermion sign-
problem. In particular, we address strategies to circumvent the occurrence of
negative “probabilities” and systematically describe frameworks for categorizing
sign-problem free Hamiltonians. This includes a novel semigroup approach, which
we apply to identify a many-fermion model of a qualitatively new sign-problem
free class. In Chapter 4, we discuss a selection of implementation aspects of
DQMC. Specifically, we highlight how numerical instabilities arise in Green’s
function computations and present a systematic assessment of stabilization
schemes to keep the numerical error under control. We further describe various
means to speed up Monte Carlo simulations and to reduce the impact of finite-size
e�ects.

In Chapter 5, we provide a rigorous, unbiased DQMC study of the spin-
fermion model. We present the numerically exact phase diagram of the e�ective
theory and investigate the intertwined magnetic and electronic ordering tenden-
cies in detail. A special focus of our large-scale simulations are the quantum
critical properties of the model in the vicinity of the onset of antiferromagnetic
order. Specifically, we establish the decoherence of fermion quasiparticles and
provide the precise scaling-form of low-energy order parameter correlations. We
consider regular and (almost) locally nested Fermi surfaces.

Turning to machine learning in Chapter 6, we introduce artificial and convo-
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lutional neural networks and showcase that by means of a supervised training
scheme, these statistical models can be utilized to discriminate phases of matter.

Finally, in Chapter 7, we introduce a novel quantum loop topography scheme
for machine learning longitudinal transport and demonstrate that this approach
can be utilized to probe quantum critical phenomena based on DQMC data.
Specifically, we present studies of quantum many-fermion systems, including the
spin-fermion model, in which we locate superconductivity transitions and map
out extended non-Fermi liquid regimes.

As indicated by the corresponding publications, some of the presented results
have been obtained in international collaborations. In particular, Erez Berg
(Weizmann Institute of Science) and Yoni Schattner (Stanford University) were
close partners in the DQMC study of Ch. 5. Furthermore, Eun-Ah Kim, Samuel
Lederer, and George Trey Driskell (Cornell University) as well as Yi Zhang
(Peking University) were collaborators in the machine learning studies of Ch. 7.
For clarity, we have indicated the contributions by the author of this thesis in
the respective introductions.

Note that we have published the scientific codes developed as part of this
dissertation under open source licenses in Refs. [S1–S4]. This includes a state-of-
the-art DQMC implementation and various single-purpose software libraries.
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1 Quantum criticality in metals

In this chapter, we provide a concise introduction into quantum criticality in
metals with a special focus on antiferromagnetic (AFM) spin-density wave (SDW)
ordering. To that end, we start with a review of the phenomenology of quantum
phase transitions and, in particular, discuss how the presence of a finite Fermi
surface, which fundamentally defines a system of itinerant fermions, qualitatively
impacts the anticipated physical properties and aggravates analytical studies.
Afterwards, we review experimental evidence for metallic quantum criticality
in various classes of unconventional superconductors, such as copper- and iron-
based compounds as well as “heavy-fermion” materials. We then turn to the
theoretical description of the onset of antiferromagnetic order in itinerant electron
systems and introduce the spin-fermion model [1–5], which is the major target
of numerical simulations in this thesis. After highlighting its conceptual origin,
we review the large body of analytical work on the model, including mean-
field, perturbation, and Eliashberg theories. Finally, we discuss the particularly
intriguing studies by Lee et al. [6, 7], in which the authors have identified an
emergent control parameter and a novel strongly interacting fixed-point with
unique characteristics. For more comprehensive introductions into quantum
phase transitions and metallic quantum criticality we refer the interested reader
to Refs. [1, 2, 8–16], which have influenced the compilation below. Note that
the presentation in Sec. 1.4.3 is based on the review section of Ref. [P1], written
by the author of this thesis.

1.1 Quantum phase transitions
Phase transitions mark a qualitative change of the physical properties of a system
upon variation of an external control parameter. Classically, phase transitions are
driven by thermal fluctuations. Any form of structural, magnetic, or electronic
order, present at low temperatures is destroyed at the transition temperature
Tc by these critical fluctuations. Examples include the melting of a (ice-like)
solid, a permanent magnet loosing its macroscopic ferromagnetism, and the
superconductor-metal transition. Quantum phase transitions on the other hand,
while similar in spirit, occur strictly at the absolute zero of temperature and are
governed by quantum fluctuations, whose origin lies in Heisenberg’s uncertainty
principle. Upon tuning a non-thermal parameter r, such as pressure, doping, or a
microscopic coupling, the system transitions between two quantum ground states,
typically of di�erent symmetry, that meet at the quantum critical point (QCP)
rc [14]. The quantum paramagnet transition of the transverse field quantum
Ising model [1], the quantum Hall transition [17], and the interaction-driven
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1 Quantum criticality in metals

Mott-insulator transition of metals [18] represent principle examples of quantum
phase transitions.

Traditionally, phase transitions are classified into first-order and continuous
(second-order) transitions [1, 8, 9, 11, 14]. A distinguishing feature of the former
class is the coexistence of phases near the critical point, such as ice and water
at Tc = 0¶ C. In this case, a finite amount of latent heat is absorbed from or
released to the thermodynamic environment to change the state of the system.
In contrast, when driven through a continuous phase transition the system,
typically, breaks a microscopic symmetry, such as translation, spin-rotation, or a
U(1) symmetry associated with particle conservation, spontaneously and alters
its character by self-organization of the relevant degrees of freedom1. In the
following, we concentrate on this second class of phase transitions which can be
described by an order parameter: a thermodynamic quantity whose average is
finite in the ordered phase and vanishes continuously at the phase boundary. In
terms of fluctuations of the latter, the quantum phase transition is invariably
signified by a diverging length scale of spatial correlations, [1, 8, 11, 19]

› ≥ |r ≠ rc|≠‹ . (1.1)

Here, r ≠rc is the tuning parameter deviation from criticality and ‹ is the critical
correlation length exponent. In addition to this spatial scaling, the quantum
critical point is characterized by a vanishing energy scale �, which may be
identified with the typical energy of long-distance order parameter fluctuations
[8] such as, if nonzero, an energy gap of low-lying excitations in the ordered state
[1]. Consequently, there is an associated timescale ·c ≥ �≠1 which diverges upon
approaching the critical point and, similar to Eq. (1.1), indicates the presence of
long-range correlations in time, [1, 8, 19]

·c ≥ ›z ≥ |r ≠ rc|≠‹z. (1.2)

Here, z is the dynamical critical exponent which relates the scaling in space and
time.

The divergences in Eqs. (1.1) and (1.2) constitute the origin of quantum
criticality [8, 19]. Near the critical point, order parameter fluctuations occur at
all length and timescales such that the associated correlation functions extend
over ever larger regions and their regular exponential decay turns into a slower
power law scaling [11]. Concomitantly, the system becomes scale-invariant,
f(⁄x) = (⁄x)c = ⁄cxc ≥ f(x), and its critical properties are entirely characterized
by the set of critical power law exponents – we have already touched upon ‹ and
z as prominent examples. Figuratively speaking, the system statistically looks
the same at all length scales beyond a microscopic lattice scale2. A fascinating
consequence of this emergent3 self-similarity is universality: The microscopic
structure, that is, for instance, the nature of the elementary degrees of freedom

1Here, the term self-organization should not be confused with its meaning in a di�erent
context: the tendency of a dynamical system to, e�ectively, tune itself to criticality.

2A beautiful visualization of the RG-flow of the two-dimensional Ising model and its scale
invariance at criticality can be found in Ref. [20].

3The microscopic model generally isn’t scale-invariant.
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1.1 Quantum phase transitions
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Figure 1.1: Quantum criticality in insulators. At the QCP (rc) the system transitions
from an ordered phase (green) to a quantum disordered ground state.
This generally gives rise to an extended quantum critical region (orange)
in which the scaling is governed by the QCP. The boundaries of this
“fan” indicate crossovers and are determined by the condition kBT ≥ � ≥
|r ≠ rc|‹z. Energy scales associated with microscopic couplings act as
universality cut o�s at high temperatures. The ordered phase may be
restricted to T = 0 (a) or extend to finite temperatures (b) in which case it
is delimited by a classical phase transition (black) terminating in the QCP.
In the envelope region around this transition line a classical description is
su�cient. Reproduced from Refs. [1] and [8].

and their coupling strengths, is rendered unimportant by the critical divergences,
Eqs. (1.1) and (1.2), such that vastly di�erent physical systems share the same
macroscopic critical behavior. Upon increasing the length and timescales of
consideration, i.e. “zooming out”, the couplings in two microscopically distinct
models get e�ectively renormalized and, if in the same basin of attraction, flow
to the same universal fixed point - a formal implementation of this procedure
is given by the renormalization group (RG) [17, 19]. Generally, only a few
essential qualitative characteristics, such as the dimensionality of space and
the symmetry of the order parameter, determine the long-wavelength critical
scaling and allow for a categorization into universality classes [1]. For instance,
in two-dimensions, the liquid-gas transition of a Lennard-Jones fluid and the
classical Curie transition of an uniaxial magnet are characterized by precisely
the same set of critical exponents4 [19, 21].

In view of the fact that, strictly speaking, quantum phase transitions only
occur in the zero temperature limit, one may ask about their relevance for real
experiments, which are inevitably conducted at finite, though possibly very low,
temperatures. As it turns out, in spite of the fact that one generally needs a fine
tuning to reach the vicinity of a quantum critical point at T = 0, the latter can
govern the universal scaling in an extended region of the phase diagram [1, 8,
15], that is for a broad range of values for |r ≠ rc| and T , Fig. 1.1. By comparing
the energy scale � and the scale set by temperature, kBT , [1, 8]

kBT ≥ � ≥ |r ≠ rc|‹z, (1.3)
4See Ref. [21] for a visualization of this universality.
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1 Quantum criticality in metals

im
ag

in
ar

y 
tim

e

space

Figure 1.2: Visualization of the d + 1-dimensional spacetime grid of the quantum-
classical mapping. For illustration purposes, the d spatial dimensions
have been combined into a single “space” dimension. The finite extent of
the imaginary time axis is — = ~/kBT . Shown are configurations of an
O(2)-symmetric order parameter in the ordered and quantum disordered
phase left and right of a QCP at T = 0. Inspired by Ref. [10].

one can fundamentally identify a quantum critical region, Fig. 1.1, in which
quantum and thermal e�ects are equally important [1]. In the latter, the
system features significant footprints of quantum criticality that are blurred
by thermal fluctuations [8]. This interplay gives rise to a variety of unusual
physical properties such as unconventional power-laws and, for metallic systems,
non-Fermi liquid behavior.

Apart from the quantum critical fan, we can conceptually distinguish two
finite-temperature scenarios, Fig. 1.1, instances of both of which will appear in
this thesis. As shown in Fig. 1.1a, one possibility is that the phase on the ordered
side of the QCP exclusively exists at T = 0. Low-dimensional systems, in which
thermal fluctuations fundamentally preclude the formation of long-range order
at T > 0 according to the Mermin-Wagner theorem [1, 8, 17, 22] are examples
of this case. Alternatively, their might be an ordered phase present at finite
temperatures. In this scenario, the corresponding phase boundary terminates
in the QCP, as illustrated in the schematic phase diagram in Fig. 1.1b. This
T > 0 phase transition, which in our simulations will turn out to be useful as a
practical guide for locating the QCP, is not really a property of the QCP and,
at criticality, can be described by a purely classical theory [1].

A powerful concept for understanding and simulating quantum criticality –
we will make the latter precise in Ch. 2 – is the quantum-classical mapping,
Fig. 1.2, underlying the functional integral formulation of quantum statistical
physics [1, 17, 19, 23]. The key idea is to interpret the functional integral of
a d-dimensional quantum field theory as a conventional statistical ensemble of
a classical field theory in D = d + 1 dimensions5 [1]. Hereby, the additional

5As indicated by Eq. (1.2), correlation functions of the classical theory might scale di�erently
in space and imaginary time direction. In this case, the e�ective dimension is D = d + z,
where z is the dynamical critical exponent [8].
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1.1 Quantum phase transitions

dimension is the imaginary time · . Compared to the d space dimensions it is
distinguished in the sense that it generally is of finite extent: Its size is given
by the inverse temperature6 — = 1/kBT of the quantum system and, to account
for the trace in the partition function Z = Tr

Ë
e≠H/kBT

È
of a Hamiltonian H, it

comes with periodic boundary conditions. According to the quantum-classical
correspondence, quantum fluctuations of the original system may now simply be
viewed as order parameter fluctuations along the imaginary time dimension of
the associated classical theory. Note that, as per custom, we use the designation
“quantum-classical” despite the fact that the resulting classical theories may be
rather artificial and, due to their quantum origin, often involve complex-valued
Boltzmann weights [1], Ch. 3.

As phase transitions and universality depend sensitively on the dimensionality
of a system, the finiteness of the temporal axis7 manifests novel quantum critical
behavior beyond what is captured by canonical classical theories. At the same
time, one can directly deduce important classical limits of quantum criticality
from this point of view. We notice that in the zero temperature limit T æ 0 the
extent of the imaginary time dimension diverges, — æ Œ. This implies that the
criticality of a d-dimensional quantum system at T = 0 may be identified with
the criticality of a truly (d + 1)-dimensional classical system [1, 8, 10]. Similarly,
for T æ Œ (or ~ æ 0) the temporal dimension vanishes, thus representing
a static limit, such that an e�ective d-dimensional classical theory su�ces to
capture the physics of the quantum critical system.

It is important to highlight that beyond the general thermodynamic consid-
erations above, there are crucial limitations to the quantum-classical mapping.
In particular, care has to be taken when considering quantum critical dynam-
ics. Since the mapping only yields correlation functions in imaginary time, the
computation of real time correlations, which are of particular relevance for exper-
iments like nuclear magnetic resonance (NMR), inelastic neutron scattering, and
angle-resolved photoemission spectroscopy (ARPES) [1], generally necessitates a
form of analytic continuation. Unfortunately, the latter represents an ill-posed
problem when combined with any kind of analytical or numerical approxima-
tion scheme and, if circumvented naively, leads to arbitrarily inaccurate and
unphysical predictions [1]. Hence, any attempt to transfer established dynamical
properties of classical (d + 1)-dimensional systems at criticality to correspond-
ing d-dimensional quantum systems is inherently flawed. In the determinant
quantum Monte Carlo simulations in this thesis we will account for this fact by
analyzing relevant imaginary time proxies instead.

1.1.1 Metallic quantum critical points
The critical behavior of a quantum system crucially depends on whether order
parameter fluctuations are the only relevant low-energy degrees of freedom near
the QCP. This is often the case in insulators where the critical theory is of

6Unless stated otherwise, we set ~ = 1.
7For convenience, we will generally treat imaginary time as a “temporal” dimension similar

to real time and only indicate the distinction when necessary.
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1 Quantum criticality in metals

“Cold

spots”

“Hot

spots”

Figure 1.3: Fermi surfaces of metals at the verge of an Ising-nematic (a) and an
antiferromagnetic spin-density wave (b) transition with ordering wave
vectors Q = 0 and Q = (fi, fi), respectively. The surrounding square
indicates the momentum space Brillouin zone. In (a) the original Fermi
surface (blue) is elongated in kx or ky direction as a consequence of the
breaking of the rotational symmetry. Only a few cold spots (blue points)
remain unaltered. For the AFM transition (b), the finite wave vector
connects di�erent hot spots (red points) at which low-energy fermions
can scatter o� order parameter fluctuations while remaining on the Fermi
surface (blue). The red line is the Fermi surface shifted by Q so that the
hot spots correspond to intersection points. Inspired by Ref. [24].

Ginzburg-Landau-Wilson type (see Eq. (1.4)) and can be expressed in terms of
these soft modes and based on symmetry considerations alone [1, 19, 25].

The physics is far richer in a metal where order parameter fluctuations can
couple to gapless excitations on a finite Fermi surface, an inherently quantum
object8 rooted in the Pauli principle. In general, we can distinguish between
two classes of metallic QCPs based on whether the critical fluctuations carry a
finite ordering wave vector Q, Fig. 1.3. If Q = 0, the collective modes induce
scattering on the entire Fermi surface which, pictorially speaking, becomes “hot”.
Only a number of “cold spots”, whose precise location is determined by the
symmetry of the order parameter, are invariant under the continuous symmetry
breaking at the QCP. Examples for quantum phase transitions that fall into this
category are the Ising-nematic transition (shown in the Fig. 1.3), a Fermi liquid
(FL) at the verge of a Pomeranchuck instability to broken rotational symmetry
[26], and a spinon Fermi surface coupled to a gapless gauge boson as emergent
in the low-energy sector of a U(1) spin-liquid [15, 26]. A non-vanishing wave
vector Q ”= 0 on the other hand indicates the onset of density-wave order of e.g.
spin, charge, or orbital degrees of freedom. In this virtually inverted scenario the
order parameter fluctuations couple resonantly only to a discrete set of points
on the Fermi surface: the “hot spots”. As shown in Fig. 1.3, these points are
linked by the wave vector Q and, in the low-energy limit, mark the most relevant
patches of the Fermi surface. Among others, magnetic and charge-density wave
QCPs are described by hot spot theories and have been studied in Refs. [27–32].
With the exception of Ch. 7, we will exclusively consider this second class of

8In light of the quantum-classical mapping, we note that there is no classical limit to a Fermi
surface.
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1.1 Quantum phase transitions

Quantum
critical?

ordered
FL

tuning parameter r

te
m

pe
ra

tu
re

 T

?
disordered

FL

Figure 1.4: Schematic phase diagram of a metal near quantum criticality. Upon
decreasing the value of the tuning parameter r, the system transitions
from a disordered Fermi-liquid state (white) into an ordered Fermi-liquid
state (red) such as a spin density-wave phase. Near the QCP, r ¥ rc,
(black dot) strong quantum fluctuations can give rise to a quantum critical
non-FL regime (orange) and induce the formation of a di�erent kind
of electronic order (beige), for example, superconductivity. Inspired by
Refs. [1, 5, 25].

metallic quantum phase transitions in this thesis; specifically, variants of an
antiferromagnetic spin-density wave transition with Q = (fi, fi), Fig. 1.3. We
note in passing that the ordering wave vector will always be commensurate with
the lattice, a fact which, in principle, can impact the critical behavior and the
universality classification [29, 33, 34].

In Fig. 1.4, we show a schematic phase diagram of a metal at the verge of
a quantum phase transition into a metallic ordered phase. While conventional
Fermi-liquids are remarkably stable against small perturbations, the critical
quantum fluctuations in the vicinity of a QCP can cause a breakdown of Landau’s
theory and lead to a state with unusual power-law scaling [1, 3–7, 15, 26, 35,
36] and a destabilized Fermi surface characterized by incoherent quasi-particle
excitations [1, 24, 26, 35, 37]. As discussed in the previous section, this anomalous
non-FL state is expected to govern the physical features of an emergent quantum
critical regime at finite temperatures [15]. However, yet another intriguing
possibility is that the critical order parameter fluctuations mediate singular
inter-fermion interactions and, in this way, promote a secondary9 electronic
order. Most notably, the collective modes may represent a pairing “glue” for
high-temperature superconductivity [1, 4, 5, 31, 32, 38–42] – the focus of the
next section – or induce charge-, spin-, and pair-density wave phases [5, 34,
43–48]. In this case, the QCP, and potentially even the entire incipient quantum
critical fan, will be overshadowed by this emergent electronic order, Fig. 1.4.

Whether the formation of a novel non-Fermi liquid state is pre-empted by
9This emergent electronic order is generally distinct from the primary order that onsets at

the QCP.
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1 Quantum criticality in metals

such a gapping out of the Fermi surface [41] and, if so, which of these various
competing or cooperating orders dominates the physical behavior in the vicinity
of a particular QCP is one of the central questions of any theoretical analysis.
Similarly, if the secondary order is suppressed or entirely absent, obtaining a
systematic understanding of the nature of the non-FL state and its universal
properties is of central importance. However, as the physical richness of a quan-
tum critical metal is rooted in the presence of strong inherent correlations, a
theoretical analysis of the same poses a substantial challenge. Particularly inter-
esting two dimensional systems are typically below the upper critical dimension
and are characterized by pronounced infrared quantum fluctuations [15]. Despite
numerous attempts over the past decades [1, 3, 4, 15, 34–36, 49, 50] few definite
analytical statements about the properties of metallic QCPs could be made – we
will discuss recent exceptional progress by Lee et. al [6, 7, 15] in Sec. 1.4.4. As a
consequence, even basic aspects of the critical behavior are still under debate
and ask for controlled results by complementary techniques [2, 25].

It is a central purpose of this thesis to provide the latter for the AFM QCP
and to significantly improve the understanding of metallic quantum criticality
in this case by means of numerically exact quantum Monte Carlo simulations,
Ch. 5, and novel machine learning techniques, Ch. 7. With respect to the former,
our work expands on a recent line of numerical e�orts [2] that have targeted
the low-energy properties of metals at the verge of quantum phase transitions
involving the breaking of various magnetic [27–29, 31–33, 51], charge density
wave [30], and nematic [30, 39, 40, 49, 52] orders. Complementary studies have
focused on deconfined QCPs, where fermionic matter fields are coupled to Z2
[45, 53–55] or U(1) [56] lattice gauge theories.

1.2 Unconventional superconductors
Going beyond the theoretical appeal of metallic quantum criticality, the onset
of order in a metal is of vital importance to the understanding of an intriguing
class of correlated electron materials: the unconventional high-temperature
superconductors [1, 25, 34, 57]. Since its discovery in 1911, superconductivity
is arguably one of the most fascinating states of condensed matter. It is a
striking example of a macroscopic collective quantum phenomenon in itinerant
many-electron systems [17, 26]. The realization of a state of matter in which
the charge carriers conduct electricity with zero resistance has quickly spawned
dreams of bringing this alluring quantum feature to room temperature. However,
as Bardeen, Cooper, and Schrie�er (BCS) derived their “Microscopic Theory of
Superconductivity” [58] in 1957 – an achievement worthy of the physics nobel
prize in 1972 – it seemed that superconductors couldn’t exceed a transition
temperature of about Tc ≥ 30K [59], except when put under high pressure [60].
With the discovery of the copper oxide superconductors in 1986 [59, 61], which
ranks among the major scientific highlights of the twentieth century [59], this
picture changed entirely. The predicted upper limit for the critical temperature
was spectacularly surpassed multiple times before the turn of the millennium
with Tc values of up to 138K [16, 59], which is still the record at atmospheric
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1.2 Unconventional superconductors

Figure 1.5: Phase diagram of BaFe2(As1≠xPx)2. The exponent – of the T -dependence
of the resistivity is indicated by the color shading. The temperatures Ts

(yellow triangles), TN (gray circles) and Tc (white squares) correspond to
structural (nematic), spin density wave (SDW), and superconductivity
(SC) transitions. The Weiss temperature ◊ (pink triangles) is determined
by the nuclear magnetic resonance (NMR) relaxation rate. A steep increase
of the e�ective mass mú/mb (right axis) is observed near the QCP in de
Haas–van Alphen (light green squares) and specific-heat measurements
(dark green diamonds). Reprinted with permission from Ref. [57].

pressure today [59]. Crucially, superconductivity in these systems as well as the
later discovered iron-pnictide superconductors [57, 62] is not captured by the
conventional BCS theory [16, 38, 59, 63] and must be emanating from a di�erent
microscopic mechanism. Despite an enormous research e�ort, manifested in over
100000 publications [16], this origin still remains elusive and represents one of
the major challenges of condensed-matter physics [15, 16, 64].

In this thesis we approach unconventional superconductivity from the perspec-
tive of a metallic QCP scenario. To motivate the latter, we discuss experimental
phase diagrams of an iron-pnictide superconductor and doped copper oxides be-
low. We do not attempt to provide a review of the state of experimental research
but rather try to highlight aspects of quantum criticality in these materials.
More comprehensive reviews in this spirit can be found in Refs. [38, 57] for the
Fe-based and in Ref. [16, 38] for the copper-based materials. We note in passing
that although we focus on only two material classes, evidence for a metallic QCP
also exists for heavy-fermion [38, 65, 66] and organic superconductors [67, 68].

Fig. 1.5 shows the phase diagram of the prototypical iron-pnictide supercon-
ductor BaFe2(As1≠xPx)2 which is perhaps the most prominent case for quantum
criticality. While the parent compound BaFe2As2 exhibits antiferromagnetic
SDW order, the isovalent10 partner BaFe2P2 is a conventional Fermi liquid.
Hence, there inevitably is a (quantum) phase transition present in between those
10In contrast to increasing or decreasing the carrier concentration, isovalent doping leads to a

form of microscopic pressure due to di�erent ion sizes [57].
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1 Quantum criticality in metals

Figure 1.6: Phase diagrams of the copper oxide compounds RE2≠xCexCuO4, where
RE = La, Pr, Nd, and La2≠xSrxCuO4. Upon electron- or hole-doping the
antiferromagnetic Mott-insulating systems (AF) turn superconducting
(SC) below a critical temperature Tc. In both scenarios there is a pseudogap
regime (only shown for hole-doping because of copyright restrictions)
entering the SC dome close to optimal doping. Reprinted with permission
from Ref. [63], Copyright (2020) by the American Physical Society.

limits. Specifically, upon increasing the phosphorus content at T = 0, the metal
enters a nodal superconducting state which, initially, coexists with the SDW
order. Right above the11 putative QCP, xc ¥ 0.3, at which the Curie-Weiss
temperature associated with the magnetic susceptibility vanishes, the critical
superconducting Tc finds its maximum value. Quantum oscillation and specific-
heat measurements in the vicinity of xc reveal a sharp increase of the e�ective
electron mass which suggests the presence of strong fermionic correlations due
to the interplay of quasi-particles on the Fermi surface and critical SDW modes.
At finite-temperatures, a striking indication of metallic quantum criticality is
the observed linear T -dependence of the resistivity, – ¥ 1, in an extended region
centered around x ¥ xc. This distinct non-Fermi liquid behavior near the QCP
is in stark contrast to the regular – = 2 scaling observed in the x æ 1 doping
limit and reminiscent of the quantum critical region in Fig. 1.4.

Turning to the cuprate superconductors La2≠xSrxCuO4 and R2≠xCexCuO4,
Fig. 1.6, the situation becomes much more complex. We start by noting that
the antiferromagnetic order of the parent compounds is non-metallic and of a
Mott-insulating kind. While in R2≠xCexCuO4 superconductivity occurs in direct
proximity to this AFM state there is a notable separation between magnetic
long range order and a SC phase in the hole-doped partner at lower band fillings.
Interestingly, in both doping scenarios a pseudogap, indicating a loss of spectral
weight [16, 25], is found to onset below temperatures T ú and seems to originate
from near optimal doping xTc . Similar to the iron-pnictide, Fig. 1.5, linear-T
scaling of the resistivity is observed in a marked “strange metal” regime above this
point [16, 38, 70]. Taken together with the detection of hot spots in photoemission
11We note that it has been questioned whether there is only a single QCP because of an

additional structural (nematic) transition the sets in right above TN [69].
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1.2 Unconventional superconductors

Figure 1.7: Phase diagrams of the organic superconductor TMTSF2PF6 (a) and the
heavy-fermion material CeRhIn5 (b). In both cases, unconventional su-
perconductivity (SC) emerges below Tc in the vicinity of a phase of
antiferromagnetic order (SDW/AF). The critical transition temperature
associated with the latter is indicated by TSDW or TN . Subfigures (a)
and (b) have been reprinted with permission from Ref. [16] and [76],
respectively.

spectra [16, 71] this is indicative of a QCP within the superconducting dome
[16, 38, 72, 73] which is likely to be linked directly to the AFM order (electron-
doping) or to the pseudogap state (hole-doping). However, there is a (somewhat
mysterious) uncertainty about the nature of the latter. Numerous experiments
have identified a plethora of enhanced correlations, perhaps signaling the presence
of intertwined orders [74], and provided evidence for various forms of spontaneous
symmetry breaking at T ú, including the breaking of time reversal symmetry [16,
25]. Quantum oscillation experiments in strong magnetic fields – to suppress
superconductivity – have revealed a diverging e�ective mass at two distinct
doping values suggesting that there might be more than one QCP at play [75].
In any case, antiferromagnetic fluctuations, either short or long-ranged, seem to
be omnipresent in the vicinity of superconducting phases across almost all classes
of unconventional superconductors [16, 34, 76–79]. We show additional phase
diagrams of organic and heavy fermion superconductors in Fig. 1.7, rendering
the AFM QCP one of the most relevant candidates. Augmenting the latter by
an order parameter coupling to an emergent 2 gauge field has most recently
been proposed as a theory for the pseudogap phase of the hole-doped cuprates
[45, 80].

In this work, we will not try to resolve the nature of the QCP in the uncon-
ventional superconductors. Instead, we focus on the AFM QCP and perform
extensive computer simulations to establish its pristine phenomenology in a
rigorous (numerically exact) manner, Ch. 5, and by means of a modern machine
learning approach, Ch. 7. This will serve as an important guide for theory and,
hopefully, contribute a valuable benchmark to the experimental discussion. Let
us highlight that previous quantum Monte Carlo studies have investigated sce-
narios in which the onset of metallic AFM order is of easy-axis [33] or easy-plane
character [31, 32]. While we will consider the latter in the machine learning
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1 Quantum criticality in metals

study presented in Ch. 7, our main emphasis lies on the isotropic case, where the
onset of antiferromagnetism breaks an O(3) symmetry [81]. This focus aligns
with the vast majority of analytic theories12 [3–5, 34, 35, 50, 69, 82] and should
be particularly relevant for systems where spin-orbit coupling is subordinate.
From a technical point of view, our simulations of the isotropic AFM QCP come
at an (up to) eight-fold increased computational cost – see Fig. 4.12 in Ch. 4 for
a more thorough analysis.

1.3 The spin-fermion model
As we have argued above, there are two fundamental low-energy degrees of
freedom near a continuous quantum phase transition in a metal: fluctuations of
the order parameter and fermionic excitations on a Fermi surface. In the following,
we formulate a quantum field theory for the AFM QCP: the spin-fermion model
[1–5]. This minimal model describes the interplay of the gapless modes near the
QCP and captures the universal aspects of the onset of antiferromagnetism in a
two-dimensional system of itinerant electrons.

Our starting point is a quantum-classical version, Fig. 1.2, of the paradigmatic
Ginzburg-Wilson-Landau (GWL) action [1, 8, 19, 83],

S„ =
⁄ —

0
d·

⁄
d2x

5 1
2c2 (ˆ· „)2 + 1

2 (Ò„)2 + r

2„2 + u

4 („2)2
6

, (1.4)

for a N„-component bosonic order parameter field „. Here, c is a velocity, r and
u are mass- and interaction-like coupling constants and the upper limit of the
imaginary time integral is generally finite. The associated partition function is
given by the functional integral

Z„ =
⁄

D„ e≠S„ (1.5)

over „-field configurations periodic in · [1]. For N„ = 1, 2, 3 respectively, the
“„4-theory” above describes the universal physics of quantum Ising, XY, and
Heisenberg models at long-wavelengths and low-energies [1, 84]. As discussed
around Eqs. (1.1) and (1.2), it is mainly characterized by the symmetry of the
order parameter and the number of space-time dimensions. Physically, the
bosonic field „(·, x) may be viewed as a coarse-grained average of local magnetic
moments. As the microscopic degrees of freedom are subject to a hard length
constraint, the magnitude of „ is “softly”13 restricted in Eq. (1.4) by the e�ect
of terms involving higher order powers of „2 [1]. An explicit derivation of a
2-dimensional, rather than (2+1)-dimensional, version of S„ from a microscopic
classical Ising Hamiltonian is presented in Refs. [1, 19].

The relevance of the GWL action for understanding critical phenomena was
already emphasized by Wilson and Fisher in the 1970s [83, 86]. Famously, the
12Note, however, that the number of order parameter components often only enters as a

numerical factor.
13For N„ Ø 2 and in (2+1) dimensions one may alternatively consider a quantum nonlinear

sigma model with a hard constraint which has the same universal properties [1, 84, 85].
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theory displays spontaneous symmetry breaking: the O(N) symmetry corre-
sponding to rotations in order parameter space is spontaneously broken upon
decreasing the tuning parameter r. A Landau-theory of this circumstance is
obtained by applying the saddle-point approximation to the integral in Eq. (1.5)
in which the integrand is estimated at the single field value „0 that minimizes S„.
Clearly, for r > 0 (and assuming u > 0) the optimum is given by the constant
solution „0 = 0. In contrast, for r < 0 a finite „-value will be preferential. Hence,
we expect a quantum critical point at r = rc = 0 that marks a continuous
phase transition between a paramagnetic (È„Í = 0) and a magnetically ordered
(È„Í ”= 0) phase [1]. Of course, fluctuation corrections associated with the quartic
coupling u, or caused by the interplay with gapless fermions in the extended
theory below, will alter this simple picture. In particular, coupling constants
will generally get renormalized and the critical value rc will deviate from zero.
Note that time and space scale in the same way in S„ and the dynamical critical
exponent at the Wilson-Fisher fixed point14 is z = 1.

Turning to the metallic structure, we describe the kinetics of non-interacting
itinerant spin-1/2 fermions by the following action,

SÂ =
⁄ —

0
d·

⁄
d2k

ÿ

s

Â†

sk (ˆ· + ‘k ≠ µ) Âsk. (1.6)

Here, s = ø, ¿ denotes spin and the Â, Â† are conjugated Grassmann valued
fields representing fermions with an energy dispersion ‘k and chemical potential
µ15. Inspired by the cuprates, in which superconductivity originates from two-
dimensional CuO2 layers, we consider the dispersion

‘k = ≠2t [cos kx + cos ky] ≠ 2tÕ [cos(kx + ky) + cos(kx ≠ ky)] , (1.7)

corresponding to nearest (t) and next-nearest (tÕ) neighbor hopping on a square
lattice. The resulting Fermi surface for t = 1, tÕ = ≠0.5, and µ = ≠0.5 is shown
in Fig. 1.3b. In terms of universality, we generally do not expect quantitative
variations of the latter to a�ect the critical properties. We will vary the precise
parameters throught this thesis and will consider a qualitatively distinct local
nesting scenario in Sec. 5.4.

The final step towards a quantum field theory for the AFM QCP is to couple
the (Heisenberg) order parameter „ and the fermions Â, Â† together. In particular,
this interaction must be designed with the targeted symmetry in mind. In order
for the quantum phase transition of S„ to induce antiferromagnetic spin ordering,
that is break the SU(2) spin symmetry of SÂ, we must couple „ to the fermionic
spin-density with an appropriate form factor. To lowest order in the fields, we
consider the following contribution to the action

S⁄ = ⁄
⁄ —

0
d·

⁄
d2x

ÿ

s,sÕ
eiQ·r„r · Â†

sr‡ssÕÂsÕr + h.c. (1.8)

14We consider d = 2 space dimensions which is below the upper critical dimension dc = 4 [19].
15Throughout this thesis, we will label Pauli matrices by ‡, use Â, Â† to indicate Grassmann

fields, and denote fermionic Fock space operators as c, c†.
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1 Quantum criticality in metals

Here, r is a position corresponding to the space integral, ‡ is a vector of the
Pauli matrices, and ⁄ is a Yukawa coupling parameter. The ordering wave vector
is chosen as Q = (fi, fi). Because of the C4 symmetry of ‘k associated with
spatial rotations there are eight hot spots at which the fermion-boson scattering
is resonant, Fig. 1.3b.

In its entirety, the action of the spin-fermion model reads [2, 4, 5, 32, 34, 81]

SSF = S„ + SÂ + S⁄

=
⁄ —

0
d·

⁄
d2k

ÿ

s

Â†

sk (ˆ· + ‘k ≠ µ) Âsk

+ ⁄
⁄ —

0
d·

⁄
d2x

ÿ

s,sÕ
eiQ·r„r · Â†

sr‡ssÕÂsÕr + h.c. (1.9)

+
⁄ —

0
d·

⁄
d2x

5 1
2c2 (ˆ· „)2 + 1

2 (Ò„)2 + r

2„2 + u

4 („2)2
6

,

and the associated quantum partition function is given by

ZSF =
⁄

D
1
Â, Â†, „

2
e≠SSF . (1.10)

The spin-fermion model, Eq. (1.9), should be seen as an e�ective low-energy
theory for the onset of antiferromagnetic spin-density wave order in a metal. It
describes the universal long-wavelength physics of itinerant fermions coupled
to antiferromagnetic order parameter fluctuations independent of their precise
origin.

Physically, the e�ective action SSF may arise from a microscopic many-fermion
Hamiltonian of the generalized Hubbard-form

H =
ÿ

k,s

‘kc†

kscks +
ÿ

kisi

U s1,s2,s3,s4
k1,k2,k3,k4c†

k1s1c†

k2s2ck3s3ck4s4 , (1.11)

in which U s1,s2,s3,s4
k1,k2,k3,k4 is a generic four-fermion interaction, upon integrating out

high-energy modes at short length-scales, Fig. 1.8. Formally, one introduces a
characteristic energy cuto� �, eliminates all degrees of freedom with energies
� < E < W , where W is the fermionic bandwith, and expects that the resulting
low-energy theory captures the essential (universal) aspects of the system [4]. Of
course, such a scheme, although conceptually appealing, is generally impossible
to implement in a rigorous manner [5]. In fact, it is precisely this procedure of
identifying the relevant e�ective degrees of freedom that represents one of the
central tasks and di�culties of condensed matter theory [5, 19]. To obtain the
spin-fermion model, Eq. (1.9), one assumes that the integration over high energies
does not produce any singularities but instead yields conventional antiferromag-
netic fluctuations. Hence, in this picture, it is the magnetic structure (spin) of
the high-energy fermions themselves that gives rise to the order parameter field
„ in Eq. (1.9). Given the regularity of the integral, the fermionic and bosonic
propagators16 are taken to be of conventional Fermi liquid, [5, 17, 19]

G0(k, iÊn) = 1
iÊn ≠ ‘k ≠ µ

, (1.12)

16The Gaussian two-point functions of the spin-fermion model, Eq. (1.9).
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spin-fermion-model

integrate out

antiferromagnetism

Figure 1.8: Sketch of the formal procedure that may generate the e�ective spin-
fermion model, Eq. (1.9), from a microscopic many-fermion Hamiltonian,
Eq. (1.11). Fermionic degrees of freedom with high energies � < E < W
are integrated out and, e�ectively, give rise to antiferromagnetic fluctua-
tions. The resulting spin-fermion model describes the physics below an
artificial energy cuto� �. The fermionic bandwidth W represents a natural
limiting scale at high energies. Reproduced from Ref. [4].

and Ornstein-Zernike type17, [5, 87, 88]

‰0(q, iÊn) = –

r + (q ≠ Q)2 + Ê2
n/c2 . (1.13)

In these expressions, Ên denotes fermionic and bosonic Matsubara frequencies,
and – is a numerical constant.

It is worth highlighting that, in a slightly di�erent manner, one can exactly
derive an action of (almost) the form of SSF from a purely fermionic Hamiltonian
of the kind of Eq. (1.11). Specifically, we consider

HtJ = ≠
ÿ

ijs

1
tijc

†

iscjs + h.c.
2

+ J̃
ÿ

i

eiQ·riS2
i ≠ µ

ÿ

i

ni (1.14)

in which the

Si = 1
2

ÿ

ssÕ
c†

is‡ssÕcisÕ (1.15)

are the conventional spin operators and J̃ is a coupling constant. The key idea
is to perform a Hubbard-Stratonovich (HS) transformation in the spin channel
[17, 89] by applying the exact Gaussian integral identity

e
A2
2– =

Ú
–

2fi

⁄
dxe≠

1
2 –x2

≠xA (1.16)

with the identification A ≥ c†

is [‡]s,sÕ cisÕ to the partition function of the system
(see App. A). This way, at the cost of introducing an auxiliary bosonic field
„, one can decouple the spin-spin interaction term and replace it by a fermion
bilinear that is only quadratic in the fermionic operators, compare Eq. (1.8).
Hence, one is left with non-interacting fermions moving in and coupling to a field
of „ fluctuations. This change in perspective is analogous to viewing the direct
electromagnetic electron-electron interaction as being mediated by a bosonic
17In real space this corresponds to the standard form ‰(r, 0) ≥ e≠|r|/›

|r| in which › is the
magnetic correlation length.
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1 Quantum criticality in metals

Figure 1.9:
Quasi-classical illustration of the processes included in
the Hubbard model, Eq. (1.17), on a two-dimensional
square lattice. Itinerant electrons (dark circles) can
move between neighboring lattice sites with the hopping
amplitude t. If two electrons of opposite spin (arrows)
are situated on the same site they interact with coupling
strength U .

photon field. Setting J̃ = ≠2⁄2/r this HS transformation yields precisely the
spin-fermion action, Eq. (1.9), up to gradient and quartic terms in S„. Apart
from the philosophical aspects of the connection between the spin-fermion model
and the Hamiltonian HtJ, we note that the latter can readily be diagonalized
exactly for small system sizes. This will serve as an accuracy benchmark for our
quantum Monte Carlo simulations.

We want to point out that for Q = 0 there is an exact identity between the
Hamiltonian HtJ and the Hubbard model (Fig. 1.9) [17, 90, 91]

H = ≠t
ÿ

Èi,jÍ,s

1
c†

iscjs + h.c.
2

+ U
ÿ

i

niøni¿ ≠ µ
ÿ

i

ni (1.17)

if one only considers nearest neighbor hopping processes, replaces the spin-
operators in Eq. (1.14) according to Eq. (1.15), and absorbs contributions
proportional to the total electron density operator n = q

i ni = q
i,s c†

iscis into
the chemical potential [91]. One finds U = ≠3J̃/2 = 4⁄2/3r and µ = µ̃ + U/2
where µ̃ is the chemical potential of HtJ. Arguably, the Hubbard model ranks
among the most famous and intensively studied models of solid-state physics [17,
90–96]. Despite its conceptual simplicity, illustrated in Fig. 1.9, it describes the
e�ect of strong correlations in itinerant many-fermion systems. Upon increasing
U/t at half-filling, ÈnÍ/N = 1, it displays a quantum phase transition from a
(paramagnetic) metallic to an antiferromagnetic Mott-insulating ground state
[93, 95, 96]. In the infinite coupling limit, U æ Œ, and to second order in t
the fermions are e�ectively localized and the Hubbard model reduces to the
antiferromagnetic spin-1/2 quantum Heisenberg model, [1, 17]

H = J
ÿ

Èi,jÍ

Si · Sj. (1.18)

Here J ≥ t2/U is a positive exchange constant [17].
The AFM Mott-insulating state serves as the point of departure in many

theoretical e�orts [85, 97–102] to understand the rich physics of the hole-doped
cuprate superconductors [4]. These studies approach the emergence of super-
conductivity and “strange metal” behavior by decreasing the charge carrier
density of Hubbard-like models away from half-filling, that is by “doping a Mott
insulator” [98]. Figuratively speaking, this corresponds to starting at x = 0 in
Fig. 1.6 and working one’s way rightwards to optimal doping [4]. In contrast, the
metallic QCP perspective taken in this thesis departs from a Fermi liquid state
and hence to approaching xTc from the right side of the phase diagram, x & 0.3.
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1.4 Analytical insights

1.4 Analytical insights
As mentioned in Sec. 1.2, the spin-fermion model, Eq. (1.9), has been the central
focus of numerous prominent analytical studies in the last few decades [1, 3,
4, 6, 7, 15, 34–36, 47, 49, 50, 103–109]. In spite of these tremendous e�orts
progress has been significantly hampered by the observation that conventional
Feynman graph expansions are uncontrolled and flow to strong coupling at low
energies [81]. This includes various 1/N expansions [3, 4, 34] and extensions of
the problem to fractional dimensions [6, 110]. Only very recently Lee et al. [6, 7,
15] have made impressive progress in handling strong correlations and gaining
control over calculations. In the following we highlight some of the essential
aspects of this theoretical background.

1.4.1 Fermi surface reconstruction
Based on the expectation value of the order parameter field one can conceptually
distinguish two phases of the spin-fermion model: The disordered Fermi liquid
state, È„Í = 0, and the antiferromagnetic spin-density wave state with È„Í ”= 0.
Within mean-field theory [1, 9], we can monitor the evolution of the Fermi surface
across the quantum phase transition separating these two phases, Fig. 1.10. To
that end, we replace „ by its average value „ = (0, 0, „), representing Néel
ordering in z-direction18 (Fig. 1.10), in which case the fermionic part of the
spin-fermion model, SÂ + S⁄, is described by the mean-field Hamiltonian

HMF =
ÿ

k,s

‘kc†

kscks + ⁄
ÿ

k,s,sÕ
c†

k+Q,s„‡z
ssÕck,sÕ ≠ µ

ÿ

i

ni. (1.19)

Here momenta k and k + Q are coupled together. Diagonalizing the e�ective
2 ◊ 2 Hamiltonian of an individual momentum and spin sector one finds the
energy eigenvalues [1, 9]

E±

k = Ák + Ák+Q
2 ±

A3
Ák + Ák+Q

2

42
+ (⁄„)2

B1/2

. (1.20)

In Fig. 1.10 we illustrate this band structure and the resulting transformation
of the Fermi surface, obtained by filling up the energy states for di�erent order
parameter magnitudes „. Upon developing antiferromagnetism, „ ”= 0, energy
gaps appear and open up the Fermi surface at the hot spots. Concomitantly,
particle and hole pockets associated with the two energy bands E±

k emerge.
Depending on the value of the chemical potential only one sort of pockets survives
for „ = 0.9 before eventually being gapped out as well, „ ∫ 1. In Fig. 1.10
we show the electron-doped case µ > ≠1 (half-filling corresponds to µ = ≠1).
Experimentally, the reconstruction of the Fermi surface has been observed in,
among others, ARPES [71] and quantum oscillation measurements [111] of
the electron-doped cuprate Nd2≠xCexCuO4. It has further been demonstrated
numerically that the phenomenology of Fig. 1.10 is correct beyond a mean-field
treatment [32, 81].
18Because of the O(3) symmetry, all order parameter directions are equivalent and we are free

to choose „ to point in z-direction.
19For illustration purposes, we discretize „ and take it to be two-dimensional.
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1 Quantum criticality in metals

r

Figure 1.10: Reconstruction of the Fermi surface (solid lines) of a metal undergoing a
SDW quantum phase transition. As the bosonic order parameter field
„ (arrows19 in the bottom row) develops a finite expectation value, FS
gaps open up at the hot spots (red points) and electron and hole pockets
form. The three-dimensional plots in the second row show the energy
dispersions ‘k, Eq. (1.7), (one band) and E±

k , Eq. (1.20), (two bands)
of the disordered (r > rc) and ordered (r < rc) phase respectively. We
have set ⁄ = 1 and „ = 0.9, 0.4, 0 from left to right.
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1.4 Analytical insights

1.4.2 Hertz-Millis theory
The traditional approach to AFM metallic quantum criticality is due to Hertz
and Millis [35, 50, 82]. Departing from the e�ective low-energy description,
the strategy is to integrate out the fermions and keep only the leading order
contribution to the bosonic self-energy. Evaluating the corresponding Feynman
diagram, Fig. 1.11a, one finds that the propagator of the bosonic field „ takes
the renormalized form [1, 34]

‰≠1(q, iÊn) = ‰≠1(q, iÊn)0 ≠ �(q, iÊn) (1.21)

= r̃ + q2 + Ê2
n

c2 + “|Ên| (1.22)

indicating Landau damping of the order parameter modes. Specifically, r̃ is the
renormalized tuning parameter and

“ = N⁄2

fiv2
F sin ◊

(1.23)

is a damping constant in which N = 4 is the number of hot spot pairs and
◊ œ [0, fi] is the angle between the Fermi velocities (of magnitude vF ) at opposite
hot spots related by Q. The Hertz-Millis action at the metallic QCP then reads
[1, 34, 50]

SH =
⁄ d2q

(2fi)3 T
ÿ

Ên

1
2

1
r̃ + q2 + “|Ên|

2
|„|2 + u

4

⁄
d

⁄
·d2x

1
„2

22
+ . . . (1.24)

One proceeds by conducting a naive RG analysis. Because of the emergence
of the Landau-damping term “|Ên| the quadratic part of SH shows a scaling
Ê ≥ q2. The dynamical critical exponent z has therefore increased from z = 1
(at the Wilson-Fisher fixed point) to z = 2 [1, 3, 4, 34, 112]. This implies that
the e�ective dimension of the theory is d + z = 4 and the quartic coupling u
is marginal. By power counting, all couplings un associated with higher-order
terms „2n, indicated by the ellipses in Eq. (1.24), are irrelevant and may be
neglected [34]. Hence, up to logarithmic corrections, the Hertz-Millis action
seems to be governed by the Gaussian fixed point.

As has been pointed out by Abanov et al. in Ref. [36] this conclusion is
incorrect [1, 4, 34]. The key shortcoming of the Hertz-Millis analysis is that it
treats the couplings un as mere factors. Instead they turn out to be singular,
non-local functions un(q, iÊn). Upon closer inspection, the dangerous procedure
of integrating out the gapless fermionic degrees of freedom generates an infinite
number of terms which all turn out to be marginal [36]. Consequently, the
Gaussian fixed point is unstable.

A further cause for concern in the Hertz-Millis approach is that the feedback
of the damped magnetic fluctuations on the fermions is entirely neglected. As we
will see below, one generally finds that Fermi liquid theory breaks down because
of this interplay. This raises questions about the self-consistency of the program
above which started by integrating out an assumed Fermi liquid [39].

Despite the fact that Hertz-Millis theory is formally flawed some of its charac-
teristic features, such as the Landau damping, will, remarkably, be confirmed by
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1 Quantum criticality in metals

Figure 1.11: Leading order contributions to the boson (a) and fermion (b) self-energies
� and � as well as the first order correction to the boson-fermion vertex
(c). Solid and wavy lines indicate fermion and boson propagators G0 and
‰0, respectively. Black dots represent the bare Yukawa vertex ⁄.

our simulations of the AFM QCP presented in Ch. 5. Similar observations have
been made in numerical studies of easy-axis and easy-plane antiferromagnetism
[31–33]. Clearly, a controlled theory to unravel this mystery would be highly
desirable.

1.4.3 Hierarchy of energy scales

To identify a number of crossover regimes and to understand the basic impact
of the spin-fermion interactions, it is instructive to perform an analysis for
small Yukawa coupling ⁄ – despite the fact that, strictly speaking, the Yukawa
coupling is a relevant parameter in the sense that conventional perturbation
theory becomes unreliable at small energy scales [7]. Our discussion expands on
the short review by the author of this thesis published in Ref. [P1] (Section III)
and is largely inspired by Ref. [2].

Focusing on the antiferromagnetic order parameter first, we can extract an en-
ergy scale �b, at which the nature of the dynamics of collective boson excitations
changes due to interactions with surrounding fermions. As in Hertz-Millis theory,
magnetic fluctuations can decay into particle-hole pairs, Fig. 1.11a, and, to lead-
ing order in ⁄, the propagator of the bosonic field „ takes the renormalized form
of Eq. (1.22) [8]. By estimating when the dynamically generated contributions
to the action (Ên) dominate over bare ones (Ê2

n/c2) one can identify the energy
scale [2–4, 34, 112]

�b = N⁄2c2

fiv2
F sin ◊

. (1.25)

At frequencies small compared to �b the dynamics of the order parameter modes
is overdamped with a dynamical critical exponent z = 2 [1, 3, 4, 34, 112].

Next, we consider the lowest-order e�ect of the renormalized bosons on the
fermion dynamics at the hot spots. To leading order in ⁄, Fig. 1.11b, one finds
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[3, 34] that, at zero temperature, the fermions acquire a self-energy

�(iÊn) ≥ inb⁄
Ô

sin ◊Ô
N

Ò
|Ên| , (1.26)

where nb = 3 is the number of order parameter components. This implies that
the fermions become strongly damped by the coupling to SDW fluctuations, with
a damping rate that scales as

Ô
Ê, indicating a distinct deviation from ordinary

Fermi liquid character (Ê2 log(1/Ê) in two spatial dimensions). Taking the same
approach as above, we estimate the energy scale �f at which this breakdown
occurs as

�f ≥ n2
b⁄

2 sin ◊

N
. (1.27)

For frequencies Ê π �f the feedback from “dressed” bosons on fermion excita-
tions at the hot spots is strong and leads to quasi-particle decoherence. Away
from the hot spots FL theory survives and fermions remain well-defined.

Apart from entering a non-Fermi liquid regime, the system may eventually
become unstable against pairing at su�ciently low temperatures [34, 113–115].
Close to the critical point collective spin fluctuations can generate attractive
interactions, facilitate the formation of Cooper pairs, and enhance d-wave su-
perconductivity [7, 15, 30, 32, 42, 52, 81, 116, 117]. At the hot spots, and for
small ⁄, one can estimate the energy scale Tc of the onset of superconductivity
within Eliashberg theory [4, 26, 112]. Working in the Landau-damped regime,
i.e. using the boson propagator of Eq. (1.22), one solves self-consistently for the
fermion self-energy at one-loop level: the augmented Green’s function

G≠1(k, iÊn) = G≠1
0 (k, iÊn) ≠ �1(k, iÊn) (1.28)

is used in the computation of �1, the first order diagram shown in Fig. 1.11b.
Vertex corrections, such as the diagram in Fig. 1.11c, are neglected. By pa-
rameterizing the self-energy in the Nambu spinor basis �†

k = (Â†

kø
, Â≠k¿) [17]

as

�(k, iÊn) = (1 ≠ Z≠1
k )iÊn + �k‡1, (1.29)

one obtains Eliashberg equations for the quasiparticle residue Zk and the super-
conducting gap function �k. Solving the latter – in the hot spot approximation
[4, 112] – for the spin-fermion model predicts the superconducting susceptibility
to diverge at a scale [112]

Tc ≥ n2
b⁄

2 sin ◊

N
. (1.30)

We summarize the hierarchy of energy scales obtained from a small ⁄ analysis
in Fig. 1.12. Note that the energy scales Tc and �f are both of the order O(⁄2/N)
and there is, a priori, no parametrically large separation between a non-Fermi
liquid and a superconducting regime. Similarly, note that the scales �b and �f

are both of order ⁄2 in the Yukawa coupling. This is in stark contrast to the
case of an Ising-nematic QCP (where �b ≥ ⁄ and �f ≥ ⁄4 [2]) which shows a
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1 Quantum criticality in metals

(Wilson-Fisher)

(Landau damping)

Figure 1.12:
Scaling regimes suggested by perturba-
tion theory. The energy scales �b, �f ,
and Tc correspond to Eqs. (1.25), (1.27),
and (1.30), respectively. There is a para-
metrically large (in the number of hot
spot pairs N) Landau damped regime.
For the spin-fermion model (1.9) with
a Fermi surface as in Fig. 1.10, N = 4.
Resized from Ref. [P1] under CC-BY 4.0.

parametrically large window of Landau-damped physics (with z = 3) [39, 40].
However, the energy scales are separated by their dependence on the number of
hot spot pairs, N = 4, which may serve as a control parameter for an extended
Fermi liquid regime with relaxational boson dynamics.

Finally, we inspect first-order corrections ”� to the spin-fermion vertex,
Fig. 1.11c. Employing the same procedure as around Eqs. (1.25) and (1.27), one
can extract an energy scale �⁄ at which the dynamically generated higher-order
interactions become comparable to the bare vertex, ”� ≥ ⁄. One finds [34]

�⁄ = �uv exp
3

≠ fiN

fi ≠ ◊

4
, (1.31)

where �uv is an ultra-violet cuto� and 0 < ◊ < fi. We note that the scale �⁄

does not depend on the coupling strength ⁄ – the naive ⁄2 is compensated by the
Landau-damping constant “, Eq. (1.23). Instead, for a fixed number of hot spot
pairs, the scale �⁄ is only sensitive to the relative angle ◊ between the Fermi
surfaces at the hot spots. We illustrate the dependence of �⁄ on ◊ for a set of
two-band Fermi surfaces, which we will describe and study in Ch. 5, in Fig. 1.13.
In particular, we see a moderate increase of �⁄ in the limit of (local) nesting,
◊ æ 0.

Let us point out that Eq. (1.31) is special to the case of an O(3) symmetric
SDW order parameter [7]. Generically, the leading order correction to the
boson-fermion vertex scales as ”� ≥ 2 ≠ nb and vanishes precisely for easy-plane
antiferromagnetism with nb = 2. This can be directly deduced from Fig. 1.11c
by noting that the Pauli matrices, sitting at the three bare vertices in the
diagram, appear in the combination ‡a‡b‡a – implicitly assuming Einstein’s
sum convention. Using the basic properties {‡a, ‡b} = 2”ab and ‡2

a = one
immediately finds

”� ≥ (2”ab ≠ ‡b‡a) ‡a = 2‡b ≠ nb‡b ≥ 2 ≠ nb. (1.32)
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1.4 Analytical insights

Figure 1.13: E�ect of nesting on the vertex energy scale �⁄ given in Eq. (1.31). Here,
◊ is the relative angle between the Fermi velocities (as indicated in the
insets). Perfect local nesting corresponds to ◊ = 0 and anti-nesting to
◊ = fi. Resized from Ref. [P1] under CC-BY 4.0.

In fact, understanding that the argument above is more general, it is actually an
infinite series of “ladder-like” vertex corrections that vanishes for nb = 2. This
indicates a qualitative di�erence in the perturbative structure of Heisenberg and
XY antiferromagnetism in itinerant electron systems [7].

1.4.4 Emergence of a control parameter
Despite the general guidance provided by the perturbative treatment of the
Yukawa coupling, this approach is formally uncontrolled [2, 4, 34, 50] and must
be complemented by a more sophisticated analysis. The main route that has
been pursued in the last decades [4, 34, 118] is to self-consistently solve for the
Landau damping and fermion self-energy, similar to the Eliashberg approach
above [26, 112]. In the generalized case of Nf = Œ fermion flavors, this confirms
the essential features of the perturbative analysis such as the hierarchy of energy
scales in Fig. 1.12. However, departing from those extended theories, all attempts
to taking the physical limit Nf æ 1 turned out to be logarithmically unstable
[118]. In particular, it was observed [3, 4, 34, 103, 110] that, upon approaching
low energies, the Fermi velocity vF gets renormalized in such a way that the Fermi
surface near the hot spots flows towards local nesting, ◊ æ 0 (see Fig. 1.12). This
dynamically induced change of the FS shape is accompanied by the appearance
of anomalous dimensions [34]. Furthermore, related to the renormalization of the
damping factor “ in a 1/Nf expansion [34, 118], the dynamical critical exponent
was found to shift away from the naive prediction z = 2.

Given the unreliability of the extension to Nf = 1, a novel theory that bridges
this gap in a controlled manner is in great demand. A huge leap forward in this
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1 Quantum criticality in metals

direction has recently been made in form of the groundbreaking work by Lee
et al. in Refs. [6, 7, 15]. Rather than treating the fermion-boson interaction
as a perturbation, they employ an interaction-driven scaling scheme [119] in
which the Yukawa coupling and the fermion kinetics are kept marginal – the
irrelevance of the boson kinetics is justified by assuming that dynamical damping
dominates in the low energy limit. Remarkably, by conducting a self-consistent
analysis [7], Lee et al. managed to identify an emergent control parameter: the
ratio v/c where v is the component of vF perpendicular to the ordering wave
vector Q = (fi, fi) and c is the boson velocity. They could show that, to leading
order in v/c, a (self-consistent) diagrammatic expansion is dominated by an
infinite fractal series of Feynman diagrams, based on the two-loop boson and
fermion self-energies [7]. Exploiting this structure, Lee et al. were able to derive
a non-perturbative solution for the spin-fermion model which reveals a novel
“strong coupling” fixed point at low energies.

Noteably, their solution is characterized by heavily “dressed” bosonic modes
[7]. At the “strong coupling” fixed point, the propagator of the order parameter
fluctuations takes the following form20 (up to logarithmic corrections), [6, 7]

‰≠1(q, iÊn) ≥ “Õ|Ên| + |qx + qy| + |qx ≠ qy| , (1.33)

in which “Õ is a parameter. Note that the correlations of the bosons are highly
anisotropic. Furthermore, time and space scale identically and the dynamical
critical exponent is z = 1. Interestingly, because of this decreased value of z [118],
the fermions remain coherent, even at the hot spots [7]. At low temperatures, Lee
et al. find that the AFM fluctuations, Eq. (1.33), promote pairing and d-wave
superconductivity. However, similar to BCS theory, the critical temperature Tc

is exponentially small in
Ò

c/v and, thus, only mildy enhanced. Compared to
Fig. 1.12, these findings naively suggest the modified hierarchy of energy scales
(we use tilde signs to indicate altered scales),

�̃f π T̃c π �̃b. (1.34)

Here, above the onset of superconductivity, there is a parameterically large z = 1
regime in which the SDW susceptibility is described by Eq. (1.33).

Arguably, a confirmation of those predictions with an unbiased method would
be highly desirable and is one of the motivations for the numerical study reported
in this thesis. Practically, a central question is whether the “strong coupling”
fixed point is generic for an antiferromagnetic SDW transition in a metal, in
the sense of having an extensive basin of attraction, or rather nonuniversal and
limited to a narrow parameter range. In particular, the energy window for
the z = 1 scaling might strongly depend on the bare value of v and require
careful fine tuning [7, 118]. Previous numerical studies of metallic easy-plane
antiferromagnetism have not found any indication for a z = 1 regime [31, 32].
To the end of answering questions like the above, we will focus on both “generic”
as well as designed (almost) locally nested Fermi surfaces in our quantum Monte
Carlo simulations in Ch. 5.
20We note that in comparison to Eq. (16) of Ref. [7] we have |qx + qy| + |qx ≠ qy| in Eq. (1.33)

instead of |qx| ≠ |qy|. This is due to the fact that Ref. [7] is working with a coordinate
system that is rotated (clockwise) by fi/4, i.e. k̂x ≥ Q .
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2 Determinant quantum
Monte Carlo

In this chapter, we describe the finite-temperature determinant quantum Monte
Carlo (DQMC) method for numerically simulating itinerant many-fermion sys-
tems. We put our focus on quantum field theories that are of the form of
the spin-fermion model, Eq. (1.9), where interactions are of Yukawa type and
mediated by a bosonic field. Starting with a general presentation of the Monte
Carlo technique for classical degrees of freedom we review the concept of a
Markov process and discuss the famous Metropolis algorithm. Applying the
quantum-classical mapping, Sec. 1.1, we transfer these techniques to quantum
systems of itinerant fermions and derive the simulation technique underlying
the results presented in Chs. 5 and 7. The key feature of the resulting DQMC
method is that it is numerically exact – given su�cient computation time the
systematic errors can be made arbitrarily small – and does not rely on the
smallness of any expansion parameter. Furthermore, provided the absence of
the famous sign problem, Ch. 3, it allows one to explore the relevant regions
of exponentially large configuration spaces in polynomial time. Postponing a
discussion of more technical implementation details such as numerical stabi-
lization methods and e�cient linear algebra computations to Ch. 4, statistical
data analysis considerations will conclude this chapter. For more comprehensive
introductions into quantum Monte Carlo (QMC) methods we refer the interested
reader to Refs. [90, 120–123] which have served as valuable resources for this
thesis.

2.1 Solving classical thermodynamics at random

Suppose we have a physical system with a finite number of classical, microscopic
degrees of freedom. Arguably, the most prominent example would be the Ising
model, named after the Cologne-born physicist Ernst Ising, in which classical
binary spins s œ {ø, ¿} are situated on a two-dimensional lattice. Generally,
we are interested in calculating the thermodynamic expectation value of an
observable,

ÈXÍ =
⁄

�
dC X(C)pB

C
, (2.1)
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in which � denotes the d�-dimensional space21 of all possible configurations of
the microscopic variables22 and X(C) is the observable evaluated for an element
C œ �. For the Ising model, C = {si} could be a particular arrangement of the
spins si and X(C) = M({si}) the corresponding magnetization. Given a fixed
temperature, each configuration C has a certain probability of occurrence in
the canonical statistical ensemble23. Therefore, the observable values X(C) are
weighted by Boltzmann probabilities

pB
C

= exp (≠—E(C))
Z . (2.2)

Here, — = 1/T is inverse temperature, E(C) is energy, and

Z =
⁄

�
dC exp (≠—E(C)) (2.3)

is the partition function of the system, which serves as a normalization factor
such that

s
� dC pB

C
= 1.

Unfortunately, only very rarely can the integral in Eq. (2.1) be solved exactly.
In fact, even computing the partition function, and therefore the Boltzmann
probabilities, is typically intractable and one must rely on approximations and
numerical methods to make progress. One idea that may come to mind is to
use standard integration techniques such as Simpson’s quadrature procedure.
However, in this case the numerical error �S scales with the number of points
N , at which the integrand is explicitly evaluated, as O(N≠4/d�) [124]. Combined
with the fact that the dimension d� of the configuration space of a (quantum)
statistical system typically grows exponentially with system size – a direct
consequence of the tensor product property dim (H1 ¢ H2) = dim H1 dim H2 –
the numerical error quickly approaches unity for fixed N .

In this thesis, we will therefore take a di�erent route for computing the
expectation value ÈXÍ known as statistical sampling. The strategy is to choose
the integrand evaluation points {Ci œ �} randomly, for now according to a
uniform distribution, such that the simple estimator

X̄ = 1
N

Nÿ

i=1
X(Ci) (2.4)

convergences to the desired integral, Eq. (2.1), by the law of large numbers.
While we will postpone a more detailed discussion of the numerical error �MC
associated with the approximation ÈXÍ ¥ X̄ to Sec. 2.6, it is understood that
it is only of statistical nature and therefore famously goes as �MC ≥ O(N≠1/2).
21Note that �, being the sampling space of configurations, is generally distinct from the

quantum mechanical Hilbert space. For the spin-fermion model, Eq. (1.9), it is the space
of the bosonic order parameter „.

22We implicitly assume that � is countable, although possibly infinite. This is not really
a restriction since one can always choose an arbitrarily fine grid in the computation of
Eq. (2.1).

23Although we focus on the canonical ensemble in this general discussion we will later use the
grand canonical ensemble with pB

C = exp (≠—[E(C) ≠ µN(C)])/Z, where µ is the chemical
potential and N is particle number.
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2.2 Markov chain Monte Carlo

(a) Direct (uniform) sampling

Starting
point

(b) Markov chain Monte Carlo

Figure 2.1: Schematic24 visualization of direct statistical sampling (a) and Markov
chain Monte Carlo (b). The surrounding box represents the, typically
high-dimensional, configuration space �. The statistically relevant subset
S µ � with significant Boltzmann weight is illustrated by the gray ellipse.
Configurations are independently drawn from a uniform distribution (a)
and by performing a stochastic walk through � generating a Markov chain
(b).

Importantly, it is independent of d� and hence, from a scaling point of view, is
expected to outperform Simpson’s quadrature for physical systems with d� > 8.

Eq. (2.4) represents the fundamental principle underlying all Monte Carlo
methods which, due to their random nature, are named after the Casino de
Monte-Carlo in Monaco. The goal of calculating the expectation value ÈXÍ,
Eq. (2.1), is reduced to two conceptually simple steps:

• Randomly choosing configurations {Ci œ �}.

• Measuring the observable X by computing and averaging {Xi = X(Ci)}.

Even though we will be drastically adjusting the details of the sampling procedure
in the following sections, the statistical nature will remain the key property
allowing us to e�ciently compute expectation values of observables.

2.2 Markov chain Monte Carlo
In spite of the superior scaling compared to standard numerical integration
techniques, statistical sampling is not necessarily preferable to Simpson’s method.
The most important reason for this apparent contradiction is that the scaling of
the numerical error doesn’t make any statements about its magnitude. Given that
valuable information about the specific integrand enters the regular Simpson’s
construction, whereas the same is completely disregarded in the naive Monte
Carlo approach, one should expect that the numerical prefactor in the error
function is generally smaller in the former case. To obtain a result of similar
24Note that, for simplicity, we assume that there is a rather sharply distinguished statistically

relevant subset S µ �. In general the distribution may be much more complex.
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2 Determinant quantum Monte Carlo

accuracy, this quantitative di�erence needs to be compensated by a potentially
much larger number of intermediate function evaluations overshadowing the a
priori scaling advantage in a practical computation.

Fortunately, we can lift this limitation without sacrificing the scaling advantage.
The key idea is to account for the non-uniform structure of the integrand I in
an importance sampling process. Physically, the statistical ensemble describing
the thermodynamics of the physical system often only covers a fraction of the
exponentially large configuration space � because of the Boltzmann suppression
present in Eq. (2.1). In an e�cient computation of ÈXÍ one should therefore
focus the sampling on those regions S(pB

C
) µ � that contribute with a finite

thermodynamic weight. As indicated in Fig. 2.1a, naively sampling the integrand
from a uniform distribution leads to many unnecessary function evaluations in sub
spaces with I ¥ 0. Unfortunately, the statistical importance of a configuration
C œ � is given by the generally inaccessible Boltzmann probability pB

C
. The

question therefore is: How can one sample configurations from an unknown
distribution?

The answer to this question is Markov chain Monte Carlo (MCMC), which
comes with a qualitative change of the sampling strategy. So far, we have consid-
ered sampling arrangements of the microscopic degrees of freedom independently
from a uniform distribution. Figuratively speaking, this amounts to selecting
configurations {Ci} by randomly throwing darts [125], Fig. 2.1a. In MCMC
this direct sampling is replaced by a stochastic Markov walk through the space
of configurations, as illustrated in Fig. 2.1b. Clearly, to realize a sampling by
importance the navigation through � must, in some way, follow a set of rules
reflecting the non-uniform distribution of the statistical weight. Leaving the
formulation of an explicit algorithm to the next section, let us briefly discuss the
concept of MCMC sampling in more abstract terms.

A Markov walk is a stochastic process that generates a sequence of configu-
rations {Cn œ �} associated with random variables25 {Cn} under the condition
[120, 125]

P (Cn = Cn|Cn≠1 = Cn≠1, . . . , C1 = C1) = P (Cn = Cn|Cn≠1 = Cn≠1), (2.5)

that is the probability P (Cn = C) in step n of the walk is only e�ected by
Cn≠1 immediately preceding it. Consequently, we can describe the process by a
stochastic matrix of transition probabilities,

WCCÕ = P (Cn = C|Cn≠1 = C Õ). (2.6)

Being a stochastic matrix, all entries are non-negative and furthermore
ÿ

C

WCCÕ = 1, ’C Õ œ �, (2.7)

indicating column-wise normalization. Given a probability distribution p(n≠1)
CÕ =

P (Cn≠1 = C Õ), a single step of the Markov walk can be expressed as a simple
25For each value n, the random variable Cn models the statistical distribution of the possible

values for Cn.

30



2.2 Markov chain Monte Carlo

matrix-vector product,

p(n)
C

=
ÿ

CÕ
WCCÕp(n≠1)

CÕ . (2.8)

The usefulness of Markov processes now stems from the powerful insight that,
under quite general conditions, repeated application of Eq. (2.8) leads to conver-
gence to a stationary distribution p̃C [120],

lim
næŒ

p(n)
C

= p̃C. (2.9)

Remarkably, this convergence is independent of the starting distribution p(1)
C

–
we are hence free to start our Markov walk at any point C1 œ �. Combining
Eqs. (2.8) and (2.9), one finds the stationary balance

p̃C =
ÿ

CÕ
WCCÕ p̃CÕ , (2.10)

rendering p̃C an eigenvector of the transition matrix WCCÕ with eigenvalue 1.
With regard to our initial goal of using the Monte Carlo estimator of Eq. (2.4) to

compute the thermodynamic expectation value of an observable X the remaining
question is clear: Can we make the Markov process converge specifically to the
Boltzmann distribution of Eq. (2.2), i.e. p̃C = pB

C
? Fortunately, the answer is

positive. Using the column-wise normalization, Eq. (2.7), it is straightforward
to check that the celebrated detailed-balance condition [120, 125, 126],

WCCÕ

WCÕC
= p̃C

p̃CÕ
, (2.11)

is su�cient for the stationary balance, Eq. (2.10). By simply setting p̃C to
the desired Boltzmann probability pB

C
on the right hand side of the equation

we obtain a criterion for how to choose the transition probabilities WCCÕ such
that the stationary limit of the associated Markov process will be guaranteed
to converge to pB

C
. It is important to note that although the probabilities

p̃C, p̃CÕ themselves are only formally known, Eq. (2.2), the ratio p̃C/p̃CÕ is readily
computable since the normalization, the unknown partition function Z, cancels
out. Similarly, although the sampling space � may be (exponentially) large
fulfilling detailed-balance is simple as it only relates two elements C, C Õ œ �.

In summary, we have established that, under the detailed-balance condition,
a long enough Markov walk through the space of configurations � will sample
elements according to the unknown Boltzmann distribution. The corresponding
Markov chain26 of passed configurations {Ct œ �} therefore becomes a discrete
approximation of the statistical ensemble. Combined with the measurement
step in Eq. (2.4), this allows us to compute thermodynamic expectation values
e�ciently.
26In physics literature, the term Markov chain is commonly used to refer to the sequence of

configurations rather than the Markov process itself. We will adopt this convention in this
thesis.
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2 Determinant quantum Monte Carlo

2.3 The Metropolis algorithm
The detailed-balance condition captures the essential idea of the MCMC scheme.
However, given its abstract form, Eq. (2.11), it is still unclear how to practically
apply it in a Monte Carlo simulation. In a seminal paper [127], Metropolis et
al. at the Los Alamos scientific laboratory famously closed this gap in 1953 by
putting forward what is now known as the Metropolis algorithm. The presented
“general method, suitable for fast electronic computing machines, of calculating
the properties of any substance” [127] has by today become a general purpose
technique across many disciplines, such as chemistry, economics, and social
sciences. According to the first millennium issue of Computing in Science &
Engineering, it is the most influential algorithm of the 20th century [128, 129].
Over time, the algorithm has been refined and extended by many scientists, most
importantly by Hastings in 1970 [130].

Metropolis et al. proposed to split up the transition probability matrix into
two contributions [120, 127],

WCÕC = TCÕCACÕC. (2.12)

Here, TCÕC is a symmetric stochastic matrix representing transition proposal
probabilities and ACÕC is an transition acceptance matrix with elements

ACÕC = min
I

1,
p̃CÕ

p̃C

J

. (2.13)

It is straightforward to verify that this choice of WCÕC respects the detailed-balance
condition which, using the symmetry of T , simplifies to

ACCÕ

ACÕC
= p̃C

p̃CÕ
. (2.14)

Remarkably, this indicates that the stationary distribution p̃C is (almost) com-
pletely independent of how we choose the transition probabilities TCÕC – they only
need to be probabilities in the sense that they are non-negative and (column-wise)
sum up to unity.

Translating this rather formal analysis into an explicit procedure, the Metropo-
lis algorithm for a Markov walk through the space of configurations is as follows:

1. Given the current configuration C œ �, propose a move (a transition) to a
di�erent configuration C Õ œ �.

2. Compute the acceptance probability ACÕC = min
I

1,
p̃CÕ

p̃C

J

.

3. Draw a random number – œ [0, 1] from a uniform distribution.

4. Accept the move if – Æ ACÕC, otherwise reject it.

5. Start over.
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Figure 2.2: Illustration of a local move for a two-dimensional field C © „ of O(2)
degrees of freedom. For more details, see Fig. 4.9.

For the thermodynamic Boltzmann distribution, Eq. (2.2), the probability ratio
in ACÕC is given by the exponential energy di�erence exp (≠— (E(C Õ) ≠ E(C))) of
the current and proposed configuration. This implies that our Markov walker
generally tends to move downhill in the energy landscape. However, at finite
temperature, — < Œ, there is a non-vanishing probability for transitioning into
a state of higher energy as a consequence of thermal fluctuations.

2.3.1 Proposing moves
As seen in Eq. (2.14), the basic Metropolis algorithm leaves a lot of freedom in
proposing moves C æ C Õ, which asks for a bit of structuring. First, we have so-far
neglected the (few) formal preconditions [120] of the Markov process convergence,
Eq. (2.9), the most important of which is irreducibility. From Fig. 2.1b, it is
intuitively clear that only proposing moves for, say, going back and forth between
two configurations CA, CB will be pathological in that the Markov walker could
never reach the statistically relevant region S µ �. Irreducibility, which in
physics is often also referred to as ergodicity27, expresses the idea that every
configuration C Õ must be reachable from every other configurations, by one or
multiple transitions. Typically, this is ensured by consecutively proposing a
sweep of local moves in which every degree of freedom is modified individually and
only slightly28, Fig. 2.2. Being, in a sense, the “quantum of moves” it is plausible
that this strategy will, in principle, make every configuration C œ � accessible.
The same picture, however, also reveals a major disadvantage of local updates in
cases where the equilibrium distribution is spread out in configuration space. To
travel a larger distance in the latter, that is to go from a configuration C œ �
to an entirely di�erent element C Õ œ � one generally needs to perform multiple
successive sweeps. While Eq. (2.9) still guarantees the convergence of the Markov
walk in such a case, it doesn’t make any statement about how long – we interpret
27Technically, ergodicity is a statement about the equilibrium distribution while irreducibility

addresses the Markov transitions itself [120].
28If the degree of freedom is continuous, the proposed value is drawn from a uniform distribu-

tion.
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a sweep as the unit of Monte Carlo time – it takes to reach the stationary limit.
A physical scenario where this slowdown is especially pronounced is given by
a first order phase transition, for instance the transition between the two fully
polarized Ising states - where all spins point upwards or downwards - as a function
of an external magnetic field. In this case, transitioning between the separate
regions of � associated with coexisting qualitatively distinct phases A and B
by a sequence of only minor local modifications is ine�cient and, according to
the Metropolis acceptance, unlikely, since intermediate configurations lie higher
in energy. Similarly, in the vicinity of a (second-order) quantum critical point
the divergence of correlation length and correlation time, Eqs. (1.1) and (1.2),
implies a critical slowing down of local Monte Carlo algorithms [1, 120, 122, 126,
131]. To counter both of these e�ects, we supplement sweeps of local moves by
periodic global updates in which all degrees of freedom (or a significant subset)
are modified collectively. For the Ising model in particular, various forms of
cluster updates have been constructed and proven to improve the Monte Carlo
convergence near the ferromagnet-paramagnet phase transition dramatically [132,
133]. However, for more sophisticated systems no such designed updates are
available and we implement the general shifting scheme described in Sec. 4.2.2.

2.4 Determinant quantum Monte Carlo
With respect to the main focus of this thesis, the numerical simulation of the
spin-fermion model Eq. (1.9), our previous discussion raises a central question:
How to apply the stochastic Markov sampling idea to a quantum system of
itinerant fermions coupled to an order parameter? More specifically asked, is
it possible to identify a classical29 sampling space � for the quantum system
such that the relevant quantum partition function takes the simple form of
Eq. (2.3)? Fortunately, the answer is positive. In fact, there a multiple di�erent
ways to rewrite the partition function of a quantum system such that it becomes
amenable to classical Monte Carlo. Famous examples include World line [122]
and continuous time quantum Monte Carlo [134]. In this thesis we focus on
the determinant quantum Monte Carlo flavor [90, 122, 135–137] which is based
on the quantum-classical mapping of Ch. 1. First introduced by Blankenbecler,
Scalapino, and Sugar in Ref. [135], this method is also known as the BSS
algorithm, and is the de facto standard for simulating itinerant electron systems.

Our starting point is an action of the form S = SB[„] + SF [Â, Â†, „] with
a free bosonic contribution SB and a fermionic part SF comprising hopping
processes and a fermion-boson interaction. We note in passing that while the
spin-fermion model, Eq. (1.9), naturally falls into this class, this is not the case
for the Hubbard model in its standard formulation, Eq. (1.17), featuring direct
fermion-fermion interactions. We will resolve this seeming limitation in Sec. 3.3
by artificially introducing an auxiliary field by means of a discrete Hubbard-
Stratonovich transformation. Because of this necessity, the DQMC method is
also known as “auxiliary field quantum Monte Carlo”.
29We note that one dimension of Cn will typically correspond to imaginary time and therefore

be of quantum nature.
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Structurally, the partition function associated with the action S is given by
the function integral

Z =
⁄

D
1
Â, Â†, „

2
e≠SB [„]≠SF [Â,Â†,„], (2.15)

where Â and Â† are conjugate fermion fields and „ is a N„-component bosonic
field. Generally speaking, the task of a quantum Monte Carlo scheme is to
identify the statistically relevant quantum field configurations and sample them
e�ciently. In DQMC, the strategy to accomplish this goal is to exactly integrate
out the fermionic part of the theory, SF [Â, Â†, „]. This is feasible since, for fixed
„, SF is a free theory in the sense that it is quadratic in the fermionic fields
and can thus be evaluated by standard Gaussian integration rules. However, the
coupling to the bosonic field will lead to a parametric dependence on „.

To derive the DQMC form of Eq. (2.15), we first split the imaginary time
propagation e≠SF [Â,Â†,„] into a sequence of successive propagations. To that end,
we discretize imaginary time as · = l�· , where �· is a step size, l enumerates
di�erent time slices, and — = M�· . An illustration of this discretization is given
in Fig. 4.13 in Ch. 4. Rewriting SF in terms of hopping and interaction coe�cient
matrices T and V„l

associated with fermion bilinear terms30 the partition function
then reads

Z =
⁄

D
1
Â, Â†, „

2
e≠SB

C

exp
A

≠�·
Mÿ

l=1
Â† [T + V„l

] Â

BD

. (2.16)

Next, we factorize kinetic and potential contributions by repeatedly applying a
symmetric Trotter-Suzuki decomposition [138, 139],

e≠�·(T +V„l
) ¥ e≠

�·
2 T e≠�·V„l e≠

�·
2 T + O

1
�· 3

2
, (2.17)

where a systematic numerical error of the order O(�· 3) is due to the fact that
T and V„l

generally do not commute. Writing the integration over the fermionic
sector as a trace over many-fermion states in Fock space [90, 122], one finds

Z =
⁄

D„ e≠SB Tr
C 1Ÿ

l=M

B̂l

D

+ O
1
�· 2

2
. (2.18)

Here, the operators

B̂l = e≠
�·
2 Â†T Âe≠�·Â†V„l

Âe≠
�·
2 Â†T Â (2.19)

can be viewed as imaginary time slice propagators [122]. Note that the numerical
error scales as O(—�· 3) = O(�· 2) since each factor in the imaginary time
product of extent — comes with an error of the order of O(�· 3).

Realizing that, for fixed „, the trace in Eq. (2.18) corresponds to a non-
interacting fermion problem, it can be explicitly evaluated to a matrix determi-
nant (see App. B), reflecting the fermionic anticommutation relations, [32, 90,
120, 122, 135]

Z =
⁄

D„ e≠SB det G≠1
„ + O

1
�· 2

2
. (2.20)

30See Sec. 3.2 and Sec. 3.3 for the spin-fermion model and the Hubbard model, respectively.
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As we will prove below, Sec. 2.5.1, here the fermion matrix G„ is given by the
equal-time Green’s function [90, 120, 122]

G„ = Ècic
†

jÍ„l
=

C

+
1Ÿ

l=M

Bl

D≠1

, (2.21)

with31

Bl = e≠
�·
2 T e≠�·V„l e≠

�·
2 T (2.22)

being the coe�cient matrix equivalent of the operator B̂l.
Eq. (2.20) is the central result of the DQMC reformulation of the quantum

partition function. By comparing it to Eq. (2.3), it becomes apparent that we
may interpret the real-valued bosonic field „ as a Monte Carlo configuration,
C © „, and identify the integral kernel w„ = e≠SB det G≠1

„ as the corresponding
probability weight. Note that the Green’s function G„ is implicitly dependent on
the bosonic field due to the presence of fermion-boson interactions – for simplicity
we will drop the sublabel „ from now on. With the above mapping in mind,
the quantum version of the Metropolis algorithm amounts to a Markov chain
sampling of field configurations {„n} with acceptance probabilities, Eq. (2.13),

A„Õ„ = min
I

1, e≠�SB
det G

det GÕ

J

. (2.23)

As we will discuss in the next section, expectation values of observables, such as
bosonic susceptibilities, may then be calculated directly from the Markov chain
{„n} whereas fermionic imaginary time correlations are accessible via Wick’s
theorem when applied to the equal-time Green’s function [17, 90, 122].

The most severe limitation of DQMC is the famous fermion sign-problem [90,
122, 140–147]. Clearly, the identification

w„ = e≠SB det G≠1
„ (2.24)

as a probability weight is only justified if the resulting weights are real and
positive (sign-problem free). However, since the Green’s function as well as its
determinant are generally complex-valued it is far from obvious why and for
which physical systems this should be the case. In Ch. 3, we will provide a
comprehensive systematic discussion of this issue and will present sign-problem
free variants of the models considered in this thesis: the spin-fermion model,
Eq. (1.9), and the Hubbard model, Eq. (1.17).

It is important to note that the DQMC procedure is unbiased and numerically
exact in that it does not rely on any approximation. Conceptually, the only
systematic sources of error are the statistical nature of the sampling, Secs. 2.1
and 2.6.2, and the imaginary time discretization, Eq. (2.16). Hence, arbitrary
precision can be reached by increasing the simulation time and the resolution
1/�· . However, as we will discuss in detail in Ch. 4, these desirable properties
are associated with a high computational cost. An optimal implementation
31Similar to B̂l we will refer to the objects Bl as (imaginary) time slice propagators.
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of local updates „li æ „Õ

li, Fig. 2.2, scales as O(—N3) as a function of inverse
temperature and system size, N , such that simulations of large systems close to
the absolute zero of temperature are typically out of reach even on state of the
art supercomputers.

2.5 Measuring physical observables
In the DQMC framework, the expectation value of an observable X, Eq. (2.1),
reads

ÈXÍ = ÈÈXÍ„ÍMC = 1
Z

⁄
D„ ÈXÍ„w„, (2.25)

where ÈXÍ„ represents the fermion average of X for a fixed field configuration „.
If the physical observable is bosonic, that is it is directly expressible in terms
of the bosonic field „, the computation of Eq. (2.25) is straightforward: one
simply calculates ÈXÍ„ = X(„) along the Markov chain of field configurations
{„n}. How to evaluate ÈXÍ„ for a fermionic observable on the other hand is
not as obvious. Below we will derive concrete expressions for equal-time and
time-displaced Green’s functions as well as for pairing and density-like imaginary
time correlations.

2.5.1 Equal-time Green’s function
As per custom, we define the time-dependent equal-time Green’s function as32

[23]

Gl = Ècic
†

jÍ„l
=

Tr
Ë
B̂l≠1 . . . B̂1B̂M . . . B̂lclic

†

lj

È

Tr
Ë
B̂l≠1 . . . B̂1B̂M . . . B̂l

È , (2.26)

where we have discretized imaginary time in the same way as in the derivation
of Eq. (2.18) and have dropped spin indices for convenience. Focusing on the
related expectation value Èc†

icjÍ„l
first, we introduce a source term ÷c†

liclj and
take a derivative with respect to the source ÷ to write

Èc†

icjÍ„l
= d

d÷
ln Tr

5
B̂l≠1 . . . B̂1B̂M . . . B̂le

≠÷c†
i cj

6
|÷=0

= d

d÷
ln det

Ë
+ Bl≠1 . . . B1BM . . . Ble

÷Aij
È
|÷=0

= d

d÷
Tr

Ë
ln

1
+ Bl≠1 . . . B1BM . . . Ble

÷Aij
2È

|÷=0.

(2.27)

Here, in the second equality, we have evaluated the Gaussian fermionic trace,
similar to around Eq. (2.18), defined a matrix Aij with elements [Aij]kl = ”ik”jl,

32Note that we define Gl as the fermionic expectation value for fixed bosonic field, i.e. Ècic
†
jÍ„l ,

rather than the full thermal Green’s function Ècic
†
jÍ = ÈÈcic

†
jÍ„lÍMC.
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and used the identity ln det A = Tr det A in the last line. Executing the derivative
and taking the ÷ æ 0 limit, one finds

Èc†

icjÍ„l
= lim

÷æ0

1
÷

{Tr[ln ( + Bl≠1 . . . B1BM . . . Bl ( + ÷Aij))]

≠ Tr[ln ( + Bl≠1 . . . B1BM . . . Bl)]} ,

= Tr
Ë
( + Bl≠1 . . . B1BM . . . Bl)≠1 Bl≠1 . . . B1BM . . . BlAij

È

=
Ë
( + Bl≠1 . . . B1BM . . . Bl)≠1 Bl≠1 . . . B1BM . . . Bl

È

ij
.

(2.28)

This immediately leads to

[Gl]ij = ”ij ≠ Èc†

jciÍ„l

= [ + Bl≠1 . . . B1BM . . . Bl]≠1 ,
(2.29)

which for l = 1 or l = M + 1 coincides with Eq. (2.21) and retrospectively
justifies the labeling of G„ as fermionic Green’s function. Note that as a direct
consequence of translational invariance in imaginary time, the thermal Green’s
function ÈGlÍ = ÈÈcic

†

jÍ„l
Í is independent of imaginary time.

For later convenience we introduce the following alternative continuum notation
of Eq. (2.29),

G(·) © Èci(·)cj(·)†Í„ = [1 + B(·, 0)B(—, ·)]≠1 , (2.30)

where the time slice propagators B(·2, ·1) are defined in terms of their discrete
partners as

B(·2, ·1) ©
l1+1Ÿ

l=l2

Bl (2.31)

with ·1 = l1�· and ·2 = l2�· . Note that in this notation G(0) = G(—) = G„ =
G1 = GM+1.

2.5.2 Time-displaced Green’s function
Utilizing the time ordering operator T , we define the time displaced Green’s
function as [23, 90, 122]

G(·1, ·2) = ÈTci(·1)c†

j(·2)Í„ =

Y
]

[
Èci(·1)c†

j(·2)Í„, ·1 > ·2,

≠Èc†

j(·2)ci(·1)Í„, ·2 > ·1.
(2.32)

Similar to the derivation presented in the previous section it is straightforward
to prove [120, 122, 148] the following more practical expression of G(·1, ·2),

G(·1, ·2) =

Y
]

[
B(·1, ·2)G(·2), ·1 > ·2,

≠ (1 ≠ G(·1)) B(·2, ·1)≠1, ·2 > ·1,
(2.33)

=

Y
]

[
Bl1 · · · Bl2+1Gl2+1, ·1 > ·2,

≠ (1 ≠ Gl1+1) (Bl2 · · · Bl1+1)≠1 , ·2 > ·1.
(2.34)
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Given that both the equal-time Green’s functions Gl as well as the propagators
Bl are readily accessible in DQMC, the time displaced Green’s function may,
in principle, be calculated as per the relation above. However, as we will
demonstrate in Sec. 4.1.3 in detail, a naive computation of G(·1, ·2) based on
Eq. (2.34), that is via a one-sided propagation of the appropriate equal-time
Green’s function G(·2), generally leads to severe numerical instabilities and
unreliable estimates. For this reason, the more sophisticated approach presented
in Ch. 4 should be employed in finite machine-precision DQMC implementations.

2.5.3 Wick’s theorem
To compute fermionic equal-time and time-displaced correlations, for example in
the pairing, charge, or spin channel, we utilize Wick’s theorem [17, 23], which
holds for a fixed bosonic field configuration [90, 120, 122, 135, 149] and may be
applied to fermionic expectation values È·Í„. In the following, we derive concrete
expressions for general pairing- and density-like four-point correlations suited
for computations within the DQMC scheme.

Pairing correlations:

We consider imaginary time correlation functions of the form Èc–(·)c—(·)c†

“c†

”Í„

in which –, —, “, ” are multi-indices consolidating space, spin, and (further) flavor
indices. In this case, the relevant contractions are given by

Èc–(·)c—(·)c†

“c†

”Í„ = Èc–(·)c†

”Í„Èc—(·)c†

“Í„,

Èc–(·)c—(·)c†

“c†

”Í„ = ≠Èc–(·)c†

“Í„Èc—(·)c†

”Í„, (2.35)

Èc–(·)c—(·)c†

“c†

”Í„ = Èc–(·)c—(·)Í„Èc†

“c†

”Í„ = 0,

Here, the third contribution vanishes precisely because of the presence of an exact
U(1)-symmetry for a fixed field configuration „: the DQMC method implicitly
assumes fermion particle-number conservation33 by asserting that the fermionic
part of the action can be expressed in terms of kinetic and potential coe�cient
matrices T and V in Eq. (2.16). Importantly, this fact does not preclude the
occurrence of superconductivity as finite anomalous expectation values may still
emerge under the thermodynamic Monte Carlo averaging over di�erent „-field
configurations. From the contractions in Eqs. (2.35) we conclude that Wick’s
theorem takes the form

Èc–(·)c—(·)c†

“c†

”Í„ = Èc–(·)c†

”Í„Èc—(·)c†

“Í„ ≠ Èc–(·)c†

“Í„Èc—(·)c†

”Í„,

= G–”(·, 0)G—“(·, 0) ≠ G–“(·, 0)G—”(·, 0),
(2.36)

where in the second equality we have identified the time-displaced Green’s
functions, Eq. (2.32). As the latter are accessible in DQMC, this expression may
be used to compute the imaginary time pairing correlation function.
33We will shortly describe in Ch. 3 how to simulate models with explicit U(1)-symmetry

breaking pairing terms.
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2 Determinant quantum Monte Carlo

Density-like correlations:

We now turn to density-like correlation functions of the form Èc†

–(·)c—(·)c†

“c”Í„.
Examples include charge, spin, and pair-density correlations as well as current-
current correlations, if appropriate weighing factors are included. The relevant
non-vanishing (see above) contractions are given by

Èc†

–(·)c—(·)c†

“c”Í„ = Èc†

–(·)c—(·)Í„Èc†

“c”Í„,

Èc†

–(·)c—(·)c†

“c”Í„ = Èc†

–(·)c”Í„Èc—(·)c†

“Í„.

(2.37)

Except the last expectation value, these resulting two-point correlations aren’t
directly interpretable as Green’s functions. However, using anticommutativity,
{c–, c†

—} = ”–—, and defining G̃–—(·1, ·2) = ”–— ≠ G—–(·2, ·1), we find that Wick’s
theorem takes the form

Èc†

–(·)c—(·)c†

“c”Í„ = Èc†

–(·)c—(·)Í„Èc†

“c”Í„ + Èc†

–(·)c—Í„Èc“(·)c†

”Í„

= G̃–—(·, ·)G̃“”(0, 0) + G̃–—(·, 0)G“”(·, 0).
(2.38)

As in the case of pairing correlations, Eq. (2.36), the final expression only consists
of time-displaced Green’s functions and hence serves as a recipe for computing
density-like correlations in DQMC.

2.6 Error estimation
Irrespective of the bosonic or fermionic nature of a physical observable X,
estimating reliable error bounds for the corresponding Monte Carlo expectation
value ÈXÍ takes some caution. Most importantly, statistical correlations between
successive data points, which are inherent to the Markov process, Eq. (2.5), and
may be enhanced by critical divergences, Eqs.(1.1) and (1.2), can easily lead to an
overestimation of confidence intervals and, consequently, to a misinterpretation
of the simulation results. In the following, we describe the methods used in this
thesis to handle these issues as well as derive the famous statistical O(M≠1/2)
scaling. Our presentation is largely influenced by Refs. [120], [126], and [131].
Concrete open-source implementations of all the discussed data analysis methods
have been published in form of the Julia package BinningAnalysis.jl [S2] as
a supplement to this thesis.

2.6.1 Statistical error of direct sampling
Formally, an observable X represents a mapping, X : � æ R, that assigns a
value to each configuration of the sample space, i.e. x = X(C œ �). Denoting
the distribution of the values x as pX

x – which should not be confused with the
Boltzmann distribution of configurations, Eq. (2.2) – the expectation value of X
is formally defined as

ÈXÍ =
⁄

dx xpX
x . (2.39)
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A measure for the dispersion of pX
x is given by the variance

‡2
X = ÈX2Í ≠ ÈXÍ2. (2.40)

These definitions, which assume knowledge of pX
x , are of little practical use in a

Markov chain Monte Carlo context where one has only access to a finite sample
{xi = X(Ci)|i = 1, 2, . . . , N}. We therefore introduce the sample mean [120]

X̄ = 1
N

Nÿ

i=1
xi, (2.41)

already seen in Eq. (2.4), and the sample variance [120]

‡̄2
X = 1

N ≠ 1

Nÿ

i=1
(xi ≠ X̄)2. (2.42)

These quantities are straightforward to calculate and are valid estimators for
the expectation value and variance above in the sense that ÈX̄Í = ÈXÍ and
È‡̄2

XÍ = È‡2
XÍ = ‡2

X . Consequently, we may approximate ÈXÍ ¥ X̄ in our Monte
Carlo simulations.

How can we estimate the error associated with this identification? Analogous
to Eq. (2.40), we introduce the standard error of the sample mean as the root-
mean-square deviation from the true expectation value,

‡X̄ =
Ú

È
1
ÈX̄Í ≠ ÈXÍ

22
Í =

Ò
ÈX̄2Í ≠ ÈX̄Í2. (2.43)

In the case of a direct sampling scheme, Fig. 2.1a, data points are statistically
independent, ÈxixjÍ = ÈxiÍÈxjÍ = ÈXÍ2, and ‡X̄ takes the famous form [120, 126]

‡X̄ =
ı̂ıÙ 1

N2

K
ÿ

i

x2
i +

ÿ

i”=j

xixj

L

≠ ÈXÍ2

=
ı̂ıÙ 1

N

K
1
N

Nÿ

i=1
x2

i

L

≠ 1
N

ÈXÍ2 (2.44)

= ‡XÔ
N

.

It is important to note that while the standard deviation ‡X is an intrinsic
property of the distribution function pX

x the standard error ‡X̄ is determined
by the sampling process. Most importantly, only the latter characteristically
vanishes in the limit N æ Œ as N≠1/2.

Finally, given that the sample mean is essentially an accumulation, the distri-
bution of X̄ is guaranteed to be Gaussian by the central limit theorem. We can
therefore state the following “n-sigma” confidence intervals [120, 126],

P (X̄ ≠ ‡X̄ < ÈXÍ < X̄ + ‡X̄) = 65%,

P (X̄ ≠ 2‡X̄ < ÈXÍ < X̄ + 2‡X̄) = 95%, (2.45)
P (X̄ ≠ 3‡X̄ < ÈXÍ < X̄ + 3‡X̄) = 99%,

indicating the probability that an interval of width n‡X̄ centered around X̄
contains the expectation value ÈXÍ. As per custom, we will visualize one-sigma
intervals as error bars in plots throughout this thesis.
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2 Determinant quantum Monte Carlo

2.6.2 Statistical error of Markov chain Monte Carlo
As we have seen in the derivation of Eq. (2.44), the characteristic N≠1/2 scaling
of the Monte Carlo error assumes the absence of correlations between data points.
This is the case in a direct sampling scheme, Fig. 2.1, where di�erent draws are
independent. The sequence of values generated by Markov chain Monte Carlo on
the other hand is already correlated due to the defining property of the Markov
process: step n is dependent on the previous step n ≠ 1, Eq. (2.5). Additionally,
pronounced thermal and quantum fluctuations in the vicinity of phase transitions
can enhance correlations beyond this process-inherent dependence [1, 120, 122,
126, 131]. This naturally leads to the question of how the statistical analysis of
the previous section is e�ected by the presence of statistical correlations.

To answer the same, we drop the assumption of statistical independence
around Eq. (2.44). In this case, one finds that the Monte Carlo error of an
observable X generally takes the form [120, 126]

‡2
X̄ = ‡2

X

N
(1 + 2·X), (2.46)

where ·X is the correlation time, [120, 126]

·X =
N≠1ÿ

k=1

A

1 ≠ k

N

B
‰k

‰0
. (2.47)

As a function of the autocorrelation ‰|i≠j| © ‰ij = ÈxixjÍ ≠ ÈxiÍÈxjÍ, ·X serves as
a measure for the presence of statistical correlations independent of their origin.
Clearly, in the case ·X = 0 we recover the direct sampling result, Eq. (2.44).
If, however, ·X Ø 0, the numerical error ‡X̄ increases by a factor

Ô
1 + 2·X .

This implies that the correlated data set of length N e�ectively only contains
information of N/(1+2·X) < N statistically independent samples. Consequently,
ignoring the presence of correlations by using Eq. (2.44) can lead to a severe
underestimation of the Monte Carlo error.

Binning analysis

To estimate the correlation time ·X of an observable X from a finite Markov
chain we employ a binning analysis. The approach is to divide the available data
set into M bins, each of size m. Assuming that those batches are long enough
to be statistically independent and to share a common variance, i.e. m & ·X , we
may apply Eq. (2.44) for uncorrelated samples on a block level,

‡2
X̄ = ‡2

block
M

. (2.48)

Here the block variance ‡2
block can readily be estimated from a sample block

variance analogous to Eq. (2.42).
The di�culty of the error analysis now lies in the choice of the bin size m.

On the one hand, one must assure m & · to justify Eq. (2.48). Without prior
knowledge of ·X , this suggests to choose m as large as possible. On the other
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Figure 2.3: The dashed line indicates the maximal bin size leading to at least 32
bins, i.e. for which M Ø 32. The dots indicate bin sizes compatible with
logarithmic binning, see Fig. 2.4. Inspired by Fig. 3.3 in Ref. [120].

hand, a firm computation of ‡2
block requires a su�ciently large number of blocks

M = N/m as otherwise statistical fluctuations, due to a too small sample size,
will spoil the estimate. A strategy for balancing this opposition is to compute
the correlation error factor34, [120]

RX = 1 + 2·X = m‡2
block

‡2
X

, (2.49)

where the second equality follows from a comparison of Eqs. (2.46) and (2.48),
for all compatible35 bin sizes, Fig. 2.3. As a function of the latter, RX first
increases, as a consequence of the presence of correlations, before converging to
a stable plateau once di�erent bins are statistically independent. At even larger
bin sizes, visible fluctuations indicate strong statistical uncertainties due to a
decreasing number of blocks. This last regime can be excluded by requiring a
minimum number of bins Mmin. A common rule of thumb is to choose Mmin ¥ 32
which is typically considered to be statistically su�cient [120, 126].

Estimates for ·X and therefore the standard error ‡X̄ are only reliable for bin
sizes corresponding to the plateau of RX(m). For automation purposes, one may
take RX(mMmin) as an error estimate. However, the absence of a plateau must
be excluded as it is typically indicative of an insu�ciently long Markov chain
and requires a continuation of the Monte Carlo simulation.

On a practical note, it is advantageous to bin individual observable values Xi

logarithmically and calculate standard error estimates (and the sample mean)
34Compared to monitoring ‡X̄ directly, the quantity RX has the advantage of being normalized

to the variance. It may therefore be compared to unity.
35We only consider bin sizes m for which M = N/m is integer.
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Figure 2.4:
Logarithmic binning of observables val-
ues during a Monte Carlo measure-
ment process. The leaves of the bi-
nary tree (top row) represent the un-
modified time series Xi. A node at a
level n indicates an arithmetic mean of
two values of the preceding layer, i.e.
X(n)

i = (X(n≠1)
i + X(n≠1)

i+1 )/2. Di�er-
ent levels correspond to logarithmic bin
sizes mn = 2n≠1 indicated in Fig. 2.3. X1

(3)

X1 X2 X3 X4 X5 X6 X7 X8

X1
(1) X2

(1) X3
(1) X4
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X1
(2) X2
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during the measurement process on-the-fly, Fig. 2.4. This way one can avoid
storing the entire time series such that the binning analysis only has O(log2 N)
space complexity. The resulting subset of bin sizes, which corresponds to di�erent
levels of the binary tree in Fig. 2.4, is indicated in Fig. 2.3.

2.6.3 Functions of observables
We now consider the case in which an observable of interest G is a function of
the expectation values of other observables,36

G = g(ÈXÍ, ÈY Í) (2.50)

In general, X and Y can be correlated such that error propagation is not
straightforward. Prominent examples include the specific heat CV (T ) = (ÈE2Í ≠
ÈEÍ2)/T 2, where X = E and Y = E2, and the Binder cumulant BO = ÈO4Í/ÈO2Í2

[150], with X = O2 and Y = O4. The questions we want to ask is: What is the
statistical error associated with G and how to estimate it?

Formally, statistical correlations between X and Y are captured by the covari-
ance matrix

‡X,Y = È(X ≠ ÈXÍ)(Y ≠ ÈY Í)Í. (2.51)

Taking the sample mean, Eq. (2.41), as an estimate for the expectation values
and approximating g(ÈXÍ, ÈY Í) ¥ g(X̄, Ȳ ) one finds the following squared error,
[120]

(�G)2 ¥
1

ˆXg|X̄,Ȳ

22 ‡2
X

N
+

1
ˆY g|z,Ȳ

22 ‡2
Y

N
+ 2ˆXg|X̄,Ȳ ˆY g

---
X̄,Ȳ

‡X,Y

N2 . (2.52)

Note that in the absence of cross-correlations, ‡X,Y = 0, and taking the identity
for g, this expression reduces to two independent instances of Eq. (2.44).

Computing the full covariance matrix ‡X,Y from finite data sets is generally a
laborious task. To circumvent this cost, we rely on the Jackknife method [120,
36We restrict the discussion to the bivariate case but note that it trivially extends to an

arbitrary number of dependencies.

44



2.6 Error estimation

0 1000 2000 3000 4000 5000
Monte Carlo time t

0

20

40

60

80

100

120

140

O
bs

er
va

bl
e

X

thermalized average

full average

Figure 2.5: Thermalization of a Monte Carlo observable. Shown are the observable
values, evaluated at the current position of the Markov walker in configu-
ration space, as a function of Monte Carlo time. Horizontal lines indicate
the observable average ÈOÍ computed using the entire time series (beige)
and by disregarding the thermalization phase, t . 1000 (red).

123] to practically estimate the standard error �G in Monte Carlo simulations.
The procedure is to resample the Markov chains of X and Y by successively
evaluating g on all subsets with a single disregarded element i, i.e. computing

ḡ = 1
N

Nÿ

i=1
gj ”=i (2.53)

with gj ”=i © g(X̄j ”=i, Ȳj ”=i). In this case, the Jackknife estimates for mean and
standard error are given by [120]

Ḡ = Ng(X̄, Ȳ ) ≠ (N ≠ 1)ḡ, (2.54)

(�G)2 = N ≠ 1
N

Nÿ

i=1
(gj ”=i ≠ g(X̄, Ȳ ))2. (2.55)

Note that if the Markov chains associated with X and Y are by themselves
correlated, the Jackknife method must be combined with the binning analysis of
the previous section. In this case, a single block is disregarded in each Jackknife
sample gj ”=i.

2.6.4 Equilibration
An important property of convergence of the Markov process, Eq. (2.9), is its
independence of the starting point C1 œ �. However, given a randomly initialized
Markov walker the region S µ � of the configuration space associated with
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2 Determinant quantum Monte Carlo

the stationary distribution is generally only reached after a finite number of
steps, Fig. 2.1. This fact, commonly known as thermalization or equilibration, is
obvious in the time series of an observable. In the example shown in Fig. 2.5,
it is only after about 1000 moves that the equilibrium plateau is reached and
the observable starts to fluctuate around a well-defined mean. At shorter Monte
Carlo times, artifacts of the initialization become apparent in form of a stark
increase. For this reason, the thermalization phase should be omitted in all
Monte Carlo measurements. For the case shown in Fig. 2.5, the relative deviation
between a full average, based on the entire time series, and a thermalized average
is approximately 4%.
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3 Avoiding the fermion-sign
problem

Because of the combination of polynomial e�ciency and a controlled systematic
error, determinant quantum Monte Carlo is considered by many to be the gold
standard of numerical methods for studying itinerant electron systems [151].
The major obstacle in applying it to arbitrary physical models is the fact that,
in general, the DQMC determinant det G≠1

„ , Eq. (2.20), is complex valued and
prohibits an interpretation of p © w„ Ã det G≠1

„ , Eq. (2.24), as a probability
weight. This is the infamous fermion-sign problem. Clearly, DQMC as described
in Ch. 2 requires p to be real and positive semidefinite, i.e. p Ø 0. This leads to
two natural questions: (1) Is it possible to circumvent the sign-problem for a
specific model? (2) Which physical models are free of the sign-problem to begin
with?

In the following, we touch upon both of these questions. As for (1), it turns
out that the spin-fermion model introduced in Ch. 1 is sign-problematic and,
in the form of Eq. (1.9), not amenable to DQMC. Following Ref. [81], we
demonstrate below that the sign-problem can nonetheless be circumvented in
this case by designing a two-band version of the model that shares the same
low-energy physics37. With regard to question (2), we provide a compact review
of systematic classifications of sign-problem free models based on symmetries
and beyond. In particular, we discuss an original semigroup approach, recently
put forward in Ref. [144], that unifies all established categorization principles
and, by extending them, describes a novel class of sign-problem free models. We
report on an (unpublished) collaborative e�ort38 with the author of Ref. [144],
which has led to the first implementation of these novel insights in form of the
identification of a new, sign-problem free, physical model and proof-of-principle
DQMC simulations of the same.

3.1 Enforced positive semidefiniteness
The physical origin of the sign-problem in QMC simulations of itinerant many-
electron systems is the exchange statistics of fermions. Since the latter anti-
commute a sign is generated on every exchange of two fermions. If the number
of these exchanges is odd a specific configuration acquires a total minus sign.
37Assuming that the vicinity of the hot spots governs the important low-energy properties.
38The author of Ref. [144] and the author of this thesis (CB) have created the pedagogical

visualization in Fig. 3.3 and identified the specific models in Eqs. (3.59) and (3.52) in the
novel J2

1 = J2
2 = ≠1 class. Frederic Freyer (FF) has performed DQMC simulations of

model Eq. (3.59). CB and FF have written the DQMC code, Ref. [S4].
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More generally speaking, the sign-problem can be traced back to the topological
properties of worldlines, i.e. paths along imaginary time in the sense of the
quantum-classical mapping, Fig. 1.2 [152]. It is hence not restricted to many-
fermion systems but also occurs in worldline QMC39 of spin-systems such as
frustrated Heisenberg antiferromagnets [141, 153].

A formal solution to the sign-problem is to enforce the positivity of the
statistical weights by ignoring the sign ‡ of the same in the Monte Carlo
sampling and rewriting the expectation value, Eq. (2.1), as [120]

ÈXÍ =
s

dCX(C)w(C)
s

dCw(C) =
s

dCX(C)‡(C)|w(C)|
s

dC‡(C)|w(C)| = ÈX · ‡Íabs
È‡Íabs

. (3.1)

Here È·Íabs indicates a Monte Carlo sampling with the strictly positive semidef-
inite weights |wC| = ‡wC and È‡Íabs is the average of the sign. Although this
reformulation is universally valid it is of little avail in practical simulations since
È‡Íabs typically vanishes exponentially. As a function of system size N and
inverse temperature — one finds [120, 140]

È‡Íabs Ã exp(≠—N�f), (3.2)

where �f = f ≠fabs is a free energy density di�erence due to sampling a modified
statistical ensemble. While the average of ‡ approaches zero its variance is still
set by the scale of the possible values +1 and ≠1 and the relative error of the
sign scales as

�rel = �‡

‡
Ã exp(—N�f)Ô

M
. (3.3)

Hence, to keep �rel reasonably small the exponential dependence on N and
— must be compensated by an (exponential) increase of the number of Monte
Carlo sweeps M . This e�ectively spoils the polynomial computational scaling
and defeats the advantage of the Monte Carlo method.

An alternative approach to enforcing positive semidefinite statistical weights
is a basis transformation [151, 154, 155]. For example, it is simple to see that the
eigenbasis of an Hamiltonian H is always sign-problem free [151]: the determinant
reduces to a product of eigenvalue exponentials that are real and non-negative
due to the Hermiticity of H. Similar bases with wC Ø 0, ’C have been found
and utilized in studies of e.g. frustrated spin-chains [153]. However, in general,
the search for a sign-problem free basis is NP-hard [141, 156] and therefore not
e�ciently feasible.

3.2 Circumventing the sign-problem of the
spin-fermion model

Although there is no universal solution to the sign-problem a seminal work by
Berg et al. [81] has demonstrated that a powerful strategy for solving the same
39The sample space is taken to be all possible worldlines.
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Figure 3.1: Fermi surfaces (solid lines) of the original (left) and the two-band spin-
fermion model (right), Eqs. (1.9) and (3.4), respectively. In the vicinity of
the hot spots both Fermi surfaces are locally identical. The surrounding
box represents the first Brillouin zone and the dashed lines indicate the
original FS. The parameters of the energy dispersions are as indicated below
Eq. (1.7) (left) or given by txh = tyv = 1, tyh = txv = 0.5, µx = µy = 0.5
(right), where subscripts h, v indicate horizontal and vertical nearest-
neighbor hopping, respectively.

for a specific set of sign-problematic models is to “deform” the original theory in
such a way that the weights become non-negative while the low-energy physics is
preserved. It is precisely this idea that allows us to circumvent the sign-problem
of the spin-fermion model, which sits at the center of this thesis. The fact
that the original low-energy theory, Eq. (1.9), is subject to the sign-problem is
understood from the fact that the fermionic sector corresponds to the repulsive
Hubbard model, Sec. 1.3, which except for special fillings [90], is famously known
to be sign-problematic – we will consider the attractive and repulsive Hubbard
models in detail below.

As discussed in Ch. 1, in the vicinity of a metallic SDW quantum critical point
the collective order parameter modes with a commensurate antiferromagnetic
ordering wave vector Q = (fi, fi) couple most resonantly to electrons near the hot
spots, a distinct set of points on the Fermi surface, see Fig. 3.1. It is therefore
expected that the behavior of the quantum critical metal at low energies is solely
governed by Fermi surface patches around those hot spots. If this assumption is
justified – it is precisely the working hypothesis of the vast majority of theoretical
works on the spin-fermion model [3, 4, 34, 81] – one may arbitrarily deform
the energy dispersion away from those distinguished points without a�ecting
the quantum critical properties. As shown in Fig. 3.1, we utilize this freedom
to introduce another artificial fermion flavor into the spin-fermion model while
ensuring that the resulting two-band dispersion is tuned such that it precisely
reproduces the original Fermi surface in the close vicinity of the hot spots. In
contrast to many theoretical approaches in which the Fermi surface patches are
linearized, for example Ref. [34], our scheme preserves the curvature of the Fermi
surface in the sense of a Taylor series expansion around khs up to an arbitrary
desired order. The action of the obtained two-band spin-fermion model reads
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3 Avoiding the fermion-sign problem

Figure 3.2:
Illustration of the two-band spin-
fermion model, (3.4), on a two-
dimensional square lattice. Shown
are the local Yukawa interactions
(dashed lines) between the Âx and
Ây fermion flavors as well as the
magnetic order parameter „ (ar-
rows). Modified from Ref. [P1] un-
der CC-BY 4.0.

[81],

SSFL = S„ + SÂ + S⁄

=
⁄ —

0
d·

ÿ

r,rÕ

ÿ

s,–

Â†

–rs [(ˆ· ≠ µ) ”rrÕ ≠ t–rrÕ ] Â–rÕs

+ ⁄
⁄ —

0
d·

ÿ

r

ÿ

s,sÕ
eiQ·r„r · Â†

xrs‡ssÕÂyrsÕ + h.c. (3.4)

+
⁄ —

0
d·

ÿ

r

5 1
2c2 (ˆ· „r)2 + 1

2 (Ò„r)2 + r

2„2
r + u

4 („2
r)2

6
.

Here – œ {x, y} is the additional fermion flavor index and we have discretized
real space such that r, rÕ are discrete coordinates on a square lattice and Ò is a
lattice gradient40. Note that the Yukawa term only couples fermions of di�erent
flavor, i.e. Âx and Ây, since the ordering wave vector Q connects hot spots in
di�erent energy bands, Fig. 3.1. Interpreting – as a layer index, the interaction
can be visualized as in Fig. 3.2. As we will see below this qualitative change,
compared to Eq. (1.9), where S⁄ is of intraband character, is responsible for the
absence of the sign-problem in DQMC simulations of SSF L.

Let us remark that the core ingredient of the “deformation scheme” outlined
above is the existence of hot spots. It should therefore be generally applicable to
models of metallic quantum phase transitions with a finite wave vector Q ”= 0,
i.e. describing the onset of density-wave order. Furthermore, important classes
of unconventional superconductors, Sec. 1.2, such as the iron-pnictides and heavy
fermion materials naturally feature multiple bands. In these cases, the onset
of metallic order associated with interband wave vectors Q can be e�ciently
studied without the introduction of an artificial fermion flavor.

Fermion matrix structure

To prove that the two-band spin-fermion model SSFL is indeed free of the sign-
problem we investigate the structure of the Green’s function G„, Eq. (2.21), and
show that its determinant is strictly positive semidefinite for all configurations
„. The hopping and interaction matrices associated with the fermion bilinear
40We approximate all lattice gradients by first order numerical derivatives.
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3.2 Circumventing the sign-problem of the spin-fermion model

terms in Eq. (3.4) are given by

[T ]ij,––Õ,ssÕ = ”ssÕ”––Õ(≠t–ij ≠ µ”ij), (3.5)
[V ]ij,––Õ,ssÕ,l = ⁄[‡x]––Õ”ij[‡ · „li]ssÕ . (3.6)

Since T is diagonal in fermion flavor space, so is its matrix exponential,

e≠
�·
2 T =

x ø y ¿ x ¿ y ø
Q

cccca

R

ddddb

e≠
�·
2 T ø

x x ø
e≠

�·
2 T ¿

y y ¿
e≠

�·
2 T ¿

x x ¿
e≠

�·
2 T ø

y y ø

. (3.7)

To compute the matrix exponential of V one may apply Sylvester’s formula
[157],

f(a(n̂ · ‡)) = f(a) + f(≠a)
2 + n̂ · ‡

f(a) ≠ f(≠a)
2 , (3.8)

with the identifications f(x) = exp(≠x), a = �· |„|, and n̂ = „/|„|. One finds
that exp(≠�·V ) takes the form

e≠�·Vl =

x ø y ¿ x ¿ y øQ

ccca

R

dddb

C S R x ø
S C ≠R y ¿

≠R C S x ¿
R S C y ø

, (3.9)

in which, with „ = („x, „y, „z)T , the block matrices C, S, and R are diagonal
and given by [32]

Cij = ”ij cosh (⁄�· |„i|) ,

Sij = ”ij
(i„y

i ≠ „x
i )

|„i|
sinh (⁄�· |„i|) , (3.10)

Rij = ≠”ij
„z

i

|„i|
sinh (⁄�· |„i|) .

Postponing a discussion of the absence of the sign-problem for the O(3) symmetry
case to Sec. 3.4.1 below, we note that for N„ < 3, i.e. „z = 0, the block matrix
R vanishes and the interaction matrix exponential simplifies to

e≠�·Vl =
A

X
X

B

, X =
x ø y ¿

3 4
C S x ø
S C y ¿

. (3.11)

Combined with Eq. (3.7) this implies that the Green’s function is block diagonal
as well. Under the condition [32]

T ø

– = T
¿

–, for – œ {x, y}, (3.12)
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3 Avoiding the fermion-sign problem

which is trivially fulfilled if the hopping amplitudes t–ij are real and spin-
independent41, it decomposes into two complex conjugated blocks

G„ =
A

�
�

B

. (3.13)

The DQMC determinant hence factorizes and the probability weight is strictly
positive semidefinite,

w„ Ã det G≠1
„ = | det �|2 Ø 0. (3.14)

Consequently, the two-band spin-fermion model SSFL is sign-problem free.
Beyond indicating the absence of negative fermion-signs, Eq. (3.14) indicates

that instead of having to operate with the full Green’s function of size fN ◊ fN ,
where f = 4 indicates the total number of fermion flavors (2 band and 2 spin),
it is su�cient to work with the four times smaller matrix � in DQMC. The full
Green’s function can always be obtained by Eq. (3.13), if necessary. As we will
see around Eq. (4.33) in the next chapter this, theoretically, leads to a 8-fold
speedup of local updates42. In the case of easy-axis ordering, where the order
parameter „ = „x, one further has S = S such that the matrix � is real. This
leads to an additional speedup of all finite precision linear algebra operations.

3.3 Determinant factorization: Hubbard model
The factorization of the Green’s function determinant, as observed in Eq. (3.14),
is a general scheme that appears in the sign-problem analysis of many physically
relevant models. Arguably, the most prominent example is the Hubbard model,
Eq. (1.17), introduced in Ch. 1. In the following we consider both the repulsive
(U > 0) and attractive (U < 0) variants. DQMC simulations of the latter will
be presented in Ch. 7 in the context of machine learning transport properties.

We start by repeating the definition of the Hubbard model, [158, 159]

H = ≠t
ÿ

Èi,jÍ,s

1
c†

iscjs + h.c.
2

+ U
ÿ

i

3
niø ≠ 1

2

4 3
ni¿ ≠ 1

2

4
≠ µ

ÿ

i

ni (3.15)

where, compared to Eq. (1.17), we have shifted the chemical potential by U/2
such that half-filling corresponds to µ = 0. To bring the Hamiltonian into DQMC
form, that is to decouple the fermion-fermion interaction term, one could employ
a regular Hubbard-Stratonovich transformation as discussed in Sec. 1.3 and
App. A. In this case, the introduced auxiliary field „ would represent continuous
degrees of freedom. However, as has been pointed out by Hirsch [160], it is
more e�cient to perform a modified HS transformation which renders „ to be of
discrete Ising character, i.e. „li œ {+1, ≠1}. Specifically, we apply the following

41We introduce an artificial magnetic flux in Sec. 4.3.1 where we will make sure that this
condition is still satisfied.

42A practical benchmark is provided in Fig. 4.12.
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3.3 Determinant factorization: Hubbard model

Hirsch decouplings of the onsite-interaction,43 [90, 93, 160, 161]

e≠U�·(niø≠
1
2)(ni¿≠

1
2) = “

ÿ

„li=±1
e„li⁄(ni≠1),

“ = 1
2eU�·/4, cosh(⁄) = e≠U�·/2,

(3.16)

and

e≠U�·(niø≠
1
2)(ni¿≠

1
2) = “

ÿ

„li=±1
e„li⁄(niø≠ni¿),

“ = 1
2e≠U�·/4, cosh(⁄) = eU�·/2,

(3.17)

corresponding to transformations in the density and spin channel, respectively.
Note that to keep ⁄ real, we must distinguish between the attractive and repulsive
case and select the appropriate decoupling based on the sign of the interaction,
i.e. Eq. (3.16) for U < 0 and Eq. (3.17) for U > 0. Choosing ø© +1, ¿© ≠1 and
factorizing the individual spin contributions for both cases we obtain

e|U |�·(niø≠
1
2)(ni¿≠

1
2) Ã

ÿ

„li=±1

Ÿ

sœ{ø,¿}

e„li⁄(nis≠
1
2 ), U < 0, (3.18)

e≠U�·(niø≠
1
2)(ni¿≠

1
2) Ã

ÿ

„li=±1

Ÿ

sœ{ø,¿}

es„li⁄nis , U > 0. (3.19)

Hence, the kinetic and interaction matrices after the Hirsch transformation are
given by

[T ]ij,ssÕ = ”ssÕ

Y
]

[
≠t if i and j are nearest neighbors,
0 otherwise,

[V ]ij,ssÕ,l = ≠”ij”ssÕ

�·

Y
]

[
⁄„li ≠ �·µ, U < 0,

⁄s„li + �·µ, U > 0,

(3.20)

Let us now compare the attractive and repulsive scenario. Since di�erent
spin channels do not mix in either case, the Green’s function is block diagonal,
i.e. [G]s,sÕ = ”ssÕG̃s, and, consequently, the DQMC determinant factorizes into
separate spin contributions

det G≠1 = det G̃≠1
ø

G̃≠1
¿

. (3.21)

For negative U , one further observes that the interaction matrix V is independent
of spin such that G̃ø = G̃¿. In this case, the statistical weight reads44

w„ = e≠

q
i,l

⁄„li
1
det G̃≠1

22
. (3.22)

43The identities are easily proven by comparing both sides for all possible eigenvalues of the
density operators on both sides.

44The bosonic factor in Eq. (3.22) is due to the constant 1/2 in Eq. (3.18).
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3 Avoiding the fermion-sign problem

As per construction in Eq. (3.18), the Green’s function is real and it trivially
follows that the attractive Hubbard model is sign-problem free. For positive U
on the other hand, there is an explicit spin dependence of V in Eq. (3.20). Hence,
the generic repulsive Hubbard model is sign-problematic and not e�ciently
solvable by DQMC.

However, as is famously known, the situation is di�erent at half-filling on a
bipartite lattice, such as the square or honeycomb lattices [90, 92, 93, 95, 96, 122].
In this case, the Hubbard model, Eq. (3.15), is invariant under the particle-hole
transformation45

PH :

Y
]

[
ciø æ (≠1)ic†

iø,

ci¿ æ (≠1)ic†

i¿,
(3.23)

where (≠1)i indicates alternating signs between the two di�erent sublattices
[93]. Note that the density operator transforms as nis æ 1 ≠ nis under PH and
hence switches from particle to hole character. Focusing on the spin-up channel,
one sees that the Hirsch transformed interaction term HIø = „li⁄niø, Eq. (3.19),
maps onto ≠HIø + „li⁄ = HI¿ + „li⁄. This implies that Vø æ V¿ and, up to an
unimportant bosonic factor, det G≠1

ø
Ã det G≠1

¿
[93, 149]. Accordingly the model

is sign-problem free.
Let us point out that one may employ another particle-hole transformation in

only one of the spin channels, [145]

PH’ :

Y
]

[
ciø æ ciø,

ci¿ æ (≠1)ic†

i¿.
(3.24)

While the kinetic part of the repulsive Hubbard model is invariant under this
transformation (for nearest neighbor hopping on a bipartite lattice) the chemical
potential term transforms as µni æ µ(mi + 1) where mi = niø ≠ ni¿ is the local
magnetization. Hence, this term is only invariant for µ = 0 and takes the role
of a Zeeman field away from half-filling. The Hirsch transformed interaction
term, Eq. (3.17), which is proportional to mi, maps onto the density operator,
mi æ ni ≠ 1, in which both spin contributions enter with the same sign. The
interaction matrix V , Eq. (3.20), hence becomes spin independent and the model
is sign-problem free. In fact, performing the PH’ transformation before the
Hirsch decomposition one realizes that the interaction term in Eq. (3.15) changes
sign, i.e. U æ ≠U . Hence, the repulsive Hubbard model at half-filling on a
bipartite lattice is PH’-equivalent to the attractive Hubbard model and results
obtained for one model can be transferred to the other.

3.4 Systematic model classification
To systematically identify and classify sign-problem free models we take the
viewpoint of the Hamiltonian as an arbitrary Hermitian random matrix, i.e.
45The term “particle-hole transformation” has di�erent meanings in the literature [162].

Irrespective of details, we will use it for general transformations that involve a mapping
of creation operators onto annihilation operators. Examples are given by Eqs. (3.23) and
(3.24).
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3.4 Systematic model classification

H œ Cn◊n and H = H†. The strategy then is to establish rigorous criteria for H
and its coe�cients that ensure the non-negativity of the statistical weights.

3.4.1 Theorem of T -invariant decomposition
The factorization of the determinant into equal or complex conjugated parts
in the spin-fermion model46 (for N„ Æ 2) and the attractive Hubbard model is
no coincidence but a consequence of inherent antiunitary symmetries relating
di�erent fermion flavor channels, i.e. spin up and down for the latter. As stated in
the following theorem, proven by Wu and Zhang in Ref. [142], the presence of an
antiunitary symmetry that squares to the negative identity operator is su�cient
to guarantee the absence of the sign-problem for an otherwise unrestricted47

Hamiltonian.

Theorem 1 (Wu and Zhang’s theorem) If there exists an antiunitary op-
erator T = UC, where U is unitary and C is complex conjugation, such that

THT ≠1 = H, T 2 = U2 = ≠ , (3.25)

then the eigenvalues ⁄i of G≠1 appear in complex conjugated pairs. Consequently,
the fermion determinant is positive semidefinite,

det G≠1 =
Ÿ

i

|⁄i|2 Ø 0. (3.26)

Note that if G≠1 is Hermitian, the statement above reduces to Kramers’ theorem
of quantum mechanics [142, 163]. For this reason, the set of sign-problem free
models covered by Theorem 1 is referred to as “Kramers class” [143].

Two important remarks are in order. Conventional DQMC, as described in
Ch. 2, is formulated in terms of complex48 fermions and requires the number of
the latter to be conserved. In this context, Wu and Zhang’s theorem implicitly
requires charge conservation [143, 147]. For a model to be in the Kramers class
it must therefore not contain any pairing terms that explicitly break the U(1)
symmetry. Furthermore, it is important to realize that in the application of
Theorem 1 the Hamiltonian H must be considered in – DQMC compatible
– fermion bilinear form, that is, after any Hubbard-Stratonovich (or Hirsch)
transformation. This is because a decoupling of an inter-fermion interaction
term may reduce the number of symmetries. As a consequence, the sign-problem
is dependent on the particular HS decomposition and, in this sense, not a unique
property of a given physical model49.

46For convenience we will refer to the sign-problem free two-band variant, Eq. (3.4), as
“spin-fermion model” in what follows.

47See our remarks below the theorem.
48Complex fermions in contrast to real Majorana fermions.
49We have already touched upon the fact by noting that the sign-problem is basis dependent.
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3 Avoiding the fermion-sign problem

Application: Hubbard model

Let us revisit the sign-problem structure of the Hubbard model by solely con-
sidering symmetries. Starting with the attractive case, U < 0, we note that
the Hamiltonian, Eq. (3.15), is time reversal symmetric. Representing complex
conjugation by C, the corresponding antiunitary operator is TTR = ≠i‡yC with
T 2 = ≠1 [142, 143]. Here the Pauli matrix ‡y operates in spin space. It is trivial
to see that TTRHT ≠1

TR = H since all constants in H are real, kinetic and chemical
potential terms are essentially density operators50 that are clearly TTR-invariant,
and nø and n¿ appear symmetrically in the Hubbard interaction. If we decouple
the latter in the density channel, Eq. (3.16), this symmetry is preserved as the
auxiliary Hirsch field couples to the density operator. As a consequence, the
conditions of Wu and Zhang’s theorem are fulfilled implying the absence of the
sign-problem.

For U > 0, the situation is di�erent. Both Hirsch decouplings, Eqs. (3.16)
and (3.17), break time reversal symmetry as they lead to terms that are odd
under TTR: either ⁄ is imaginary, TTRiT ≠1

TR = ≠i, (density channel) or the
Hirsch field couples to the local magnetization, TTRmiT

≠1
TR = ≠mi (spin channel).

Consequently, Theorem 1 does not apply, indicating51 the sign-problem of the
repulsive Hubbard model.

Application: Spin-fermion model

Besides the attractive Hubbard model, the theorem by Wu and Zhang allows us
to prove the absence of the sign-problem for the spin-fermion model, Eq. (3.4).
This includes the case of isotropic antiferromagnetism, i.e. N„ = 3, left out in
the discussion in Sec. 3.2. The key observation is that, in virtue of the two-band
construction, the action SSFL is invariant under the augmented time reversal
symmetry T = TTRŸz = ≠i‡yŸzC, in which Ÿz is a Pauli matrix in band space
associated with the index – in Eq. (3.4). Assigning the following values to the
spin and band indices,

s : ø © +1, ¿ © ≠1
– : x © +1, y © ≠1,

(3.27)

all density-like terms transform as Â†

–isÂ–js æ (–s)2Â†

–isÂ–js and are trivially
symmetric under T . For the fermion-boson interaction one may calculate the

50The kinetic terms involve operators on di�erent sites i and j but this is irrelevant since T
does not e�ect space indices.

51This is not a proof since Theorem 1 doesn’t state that the absence of an antiunitary symmetry
implies a sign-problem.
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invariance as follows,

T
ÿ

rssÕ
eiQ·r„r · Â†

xrs‡ssÕÂyrsÕT ≠1 = ≠
ÿ

rssÕ
e≠iQ·r„r · Â†

x,r,≠s[„r · ‡]ússÕssÕÂy,r,≠sÕ

= ≠
ÿ

rssÕ
eiQ·r„r · Â†

x,r,≠s[„r · ‡]ússÕssÕÂy,r,≠sÕ

= ≠
ÿ

rssÕ
eiQ·r„r · Â†

x,r,≠s[„r · (≠‡x, ‡y, ‡z)T ]ssÕÂy,r,≠sÕ

= ≠
ÿ

rssÕ
eiQ·r„r · Â†

xrs[„r · (≠‡)]ssÕÂyrsÕ

=
ÿ

rssÕ
eiQ·r„r · Â†

xrs‡ssÕÂyrsÕ ,

where we have shifted the summation indices s æ ≠s and sÕ æ ≠sÕ in the fourth
line. Combined with the fact that T 2 = (≠i)2(‡y)2(Ÿx)2 = ≠1 we may conclude
from Theorem 1 that the spin-fermion model is an element of the Kramers class
and free of the sign problem. This includes the case N„ = 3 which can not be
explained by a simple factorization of the determinant.

The antiunitary symmetry T = TTRŸx also sheds more light onto the two-band
construction of Sec. 3.2. From a sign-problem point of view, the crucial aspect
of the latter is the change from intraband to interband interactions52. This way,
the odd transformation behavior of the spin density bilinear under regular time
reversal, TTR, is compensated by an additional minus sign associated with Ÿx in
T . This balance is explicit in the last step above in form of two canceling signs.

3.4.2 Majorana time reversal symmetries
The theorem by Wu and Zhang establishes the importance of antiunitary sym-
metries in guaranteeing non-negative statistical weights. As it turns out their
approach can be generalized to Majorana “time reversal”53 (MTR) symmetries
which then serve as a fundamental classification principle for sign-problem free
models [147].

First, we switch to a Majorana fermion basis by rewriting the regular complex
fermion operators ci in terms of real Majorana operators “1i, “2i, (we neglect
spin for convenience)

ci = 1
2(“1i + i“2i). (3.28)

Here the latter obey {“–i, “—j} = 2”–—”ij and square to the identity, “2
–i = 1.

Of course, the definition above is not unique and is understood to be modulo
unitary transformations. An Hamiltonian consisting of arbitrary fermion bilinear
terms, that is after a potential Hubbard-Stratonovich decomposition of any
fermion-fermion interaction terms, may now be expressed in this new basis as

H = 1
4“T Ai“, (3.29)

52Despite our wording it is understood from the discussion in Sec. 1.3 that the fermion bilinear
doesn’t represent a fermion-fermion but a fermion-boson interaction.

53As is custom in the literature [143, 145, 147], we will use the terms “time reversal” and
“antiunitary” synonymously. Note, however, that this includes symmetries T with T 2 = + .
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3 Avoiding the fermion-sign problem

Number of anticommuting
MTR symmetries Sign-problem free Sign-problematic

0 none {I} = no symmetry

1 none
{T +

1 }

{T ≠

1 }

2
{T +

1 , T ≠

2 } = Majorana class
{T ≠

1 , T ≠

2 } = Kramers class
{T +

1 , T +
2 }

3
{T +

1 , T +
2 , T ≠

3 }

{T +
1 , T ≠

2 , T ≠

3 }

{T ≠

1 , T ≠

2 , T ≠

3 }

{T +
1 , T +

2 , T +
3 }

Ø 4 all none

Table 3.1: “Periodic table” of sign-problem free and sign-problematic symmetry classes.
Based on the (number of) anticommuting MTR symmetries T ±

i the table
indicates whether a given model is guaranteed to be free of the sign-problem.
Individual models that fall into sign-problematic symmetry classes may or
may not be sign-problem free. Reproduced from Ref. [147].

where “ = (“1, “2)T and A is a 2N ◊ 2N complex coe�cient matrix54 which due
to the Hermitian property of H is skew-symmetric, i.e. A = ≠AT .

As demonstrated in seminal works by Li et al. [143, 146, 147] categorizing
Hamiltonians by their set of MTR symmetries allows one to identify all symmetry
classes that must be sign-problem free, Table 3.1. Because Majorana operators
are real, time reversal transformations can be represented as T ± = J±C with
J± being real orthogonal (instead of unitary) and either symmetric or skew-
symmetric, i.e. (T ±

i )2 = (J±

i )2 = ±155. By considering all combinations of
such operators T ±

i with {T ±

i , T ±

j } = ±2”ij one can show [147] that all models
with Ø 2 MTR symmetries, at least one of which is skew-symmetric, are free
of the sign problem. In particular, there are two (and only two56) fundamental
symmetry classes that are guaranteed to be sign-problem free [143, 147],

{T ≠

1 , T ≠

2 } (Kramers class)
{T +

1 , T ≠

2 } (Majorana class).

The case of two negative57 MTR symmetries corresponds to the Kramers class
associated with Wu and Zhang’s theorem. By pairing up T ≠

1 and T ≠

2 one can
define a charge operator that commutes with the Hamiltonian [147]. Hence, the
conditions of Theorem 1 are fulfilled: particle number is conserved and there
54If spin is incorporated we group the 4 Majorana fermion operators per site into two pairs

“(1) = (“1, “2)T , “(2) = (“3, “4)T and, without loss of generality, take the lattice size to
be reduced by half, i.e. N/2, such that A is always of size 2N ◊ 2N . See the supplement
material of Ref. [145] for more details.

55Since J is orthogonal, i.e. JJT = 1, the condition (J±)2 = ±1 implies J+ = (J+)T and
J≠ = ≠(J≠)T , respectively.

56Higher symmetry classes can be reduced to the two fundamental classes.
57We denote a MTR symmetry represented by a sew-symmetric (symmetric) operator T ≠ (T +

as negative (positive).)
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3.4 Systematic model classification

exists an antiunitary symmetry that squares to minus one. Note that a single
antiunitary symmetry T ≠

1 , i.e. being in the class {T ≠

1 }, doesn’t generally su�ce
to ensure the absence of the sign-problem. This confirms the implicit requirement
of particle number conservation in Theorem 1 [143, 147].

The second fundamental category is the Majorana class {T +
1 , T ≠

2 } which
comprises models that have both a positive and a negative MTR symmetry. In
this case, the coe�cient matrix A can be block-diagonalized into the form [147]

A =
A

B
B

B

(3.30)

where B and B correspond to eigensectors of the real symmetric operator
P = T +

1 T ≠

2 with P 2 = . To utilize this structure one may implement a
Majorana flavor of the DQMC scheme – following Ref. [146] we dub this variant
“Majorana QMC” (MQMC). Specifically, instead of evaluating the fermion trace
in the complex fermion basis, Eqs. (2.18) and (2.20), we compute it in the
Majorana basis, Eq. (3.28), to find [144–146]

w = Tr
Ë
eH1eH2 . . . eHk

È
= det( + eA1eA2 . . . eAk) 1

2 . (3.31)

Here we use the index i = 1, 2, . . . , k to enumerate all occuring exponential
fermion bilinears which arise from a Trotter-decomposition of di�erent contribu-
tions to H, Eq. (2.17), as well as the imaginary time product chain, Eq. (2.18).
For clarity, we have further incorporated all factors of �· into the definition
of the Hi and left the boson field dependence implicit. A proof of the identity
above is given in App. A of Ref. [146]. Note the occurrence of a square root
which, intuitively, originates from the fact that a Majorana fermion represents
only half of a complex fermion.

For models in the Majorana class, the block diagonal structure of A implies
that the determinant in Eq. (3.31) factorizes into complex conjugated parts and
is strictly positive semidefinite. This feature may be viewed as the Majorana
analogon of the factorizations in Sec. 3.3. Importantly, and in contrast to
the latter, the block sectors associated with B and B in Eq. (3.30) may not
correspond to complex fermion flavors, such as spin as in Eq. (3.21). As first
demonstrated in Ref. [146] this allows one to study spinless one-band fermion
models – hosting only a single fermion flavor – that feature Dirac semimetal
to CDW quantum phase transitions. In these cases, natural candidates for
the antiunitary symmetry T +

1 are particle-hole symmetries which, in contrast
to conventional time reversal symmetry TTR, square to the (positive) identity.
An important example is the Majorana reflection symmetry (MRS) �+ = ·xC
where ·x is a Pauli matrix acting in Majorana operator space, i.e. “1 ¡ “2 [143,
145–147]. In terms of complex fermions, Eq. (3.28), the e�ect of �+ is

�+ : cj æ ic†

j, (3.32)

clearly indicating the particle-hole character. Combined with the additional
MTR symmetry T ≠ = i·yC it is precisely this MRS that puts the spinless fermion
model of Ref. [146] into the Majorana class and, consequently, guarantees the
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3 Avoiding the fermion-sign problem

absence of the sign-problem. Similar arguments can be made for SU(N = odd)
negative-U Hubbard models58 on bipartite lattices [146].

A key di�erence between the Kramers and Majorana class is that particle num-
ber conservation is only required in the former. Natural examples in {T +

1 , T ≠

2 }
that utilize this extra freedom are models with explicit pairing terms. This
includes time reversal symmetric topological superconductors with triplet pairing
of (p + ip) and (p ≠ ip) kind for spin-up and spin-down electrons, respectively
[147]. Here a pairing term �c†

isc
†

js clearly breaks the U(1)-symmetry.

3.4.3 Majorana reflection positivity
The MTR symmetry classification by Li et al., Tbl. 3.1, is both elegant and
instructive. However, it is not complete since individual models in the sign-
problematic symmetry classes may still be sign-problem free for reasons other
than symmetry. In Ref. [145] Wei et al. have shown that it is possible to derive
a condition for the absence of the sign-problem for coe�cient matrices A with
only one MTR symmetry T +

1 . The idea is to expand on the symmetry constraint
associated with T +

1 , which is taken to be the Majorana reflection symmetry �+

above, by further requiring Majorana reflection positivity (MRP) [145]. Leaving
a precise definition to Ref. [145], the major result of this approach is summarized
in the following theorem.

Theorem 2 (MRP theorem) The probability weight w, Eq. (3.31), is positive
semidefinite if all the coe�cient matrices A are Majorana reflection positive
kernels, that is they can be brought into the form

A =
A

B iC
≠iCT B̄

B

(3.33)

where B is skew-symmetric, BT = ≠B, and C is Hermitian and either positive
or negative semidefinite, i.e. C Ø 0 or C Æ 0.

First, we note that for C = 0 the condition for the coe�cient matrices Ai

Eq. (3.33) coincides with Eq. (3.30) and we recover the Majorana symmetry
class. Hence, the latter is entirely covered by Theorem 2. The important new
degree of freedom lies in the o�-diagonal part of A. Note that the positive or
negative semidefiniteness of C can not be enforced by symmetry alone [143–145].

Examples of models that fall under Theorem 2 and are not part of the Majorana
class include generalized Kane-Mele-Hubbard models with spin-orbit coupling
and spin-flip terms [145]. The latter explicitly break the time reversal symmetry
of the model indicating the absence of an additional T ≠ MTR symmetry besides
�+. Furthermore, all sign-problem free models studied by the fermion bag [154]
or split orthogonal group approach [164] can also be explained by the MRP
theorem above [144].

58The repulsive Hubbard model away from half-filling is part of the symmetry class {T +
1 , T +

2 }.
A detailed proof can be found in the supplement materials of Ref. [147].
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3.4 Systematic model classification

3.4.4 A road to new sign-problem free models
A novel approach to classifying sign-problem free models based on the identifi-
cation of a Lie group structure [165] in the definition of the probability weight
w, Eq. (3.31), has recently been but forward by Wei in Ref. [144]. As we will
demonstrate below59 this framework unifies the discussion above by covering
both fundamental MTR symmetry classes, i.e. the Kramers and Majorana class,
as well as the MRP extension of {T +}. Even more importantly, it allows us to
identify a new class of sign-problem free models within the (sign-problematic)
{T ≠} symmetry class.

We start by considering all skew-symmetric coe�cient matrices Ai, Eq. (3.31),
that are invariant under the transformation A æ JT

1 AJ1 where J1 is real or-
thogonal and either symmetric or skew-symmetric. In other words, the Ai are
elements of {T +} or {T ≠} with T = J1C and J2

1 = 1 or J2
1 = ≠1, respectively.

It is straightforward to see that this condition already implies the realness of the
statistical weight,

w
Tæ wÕ = det( + eJT

1 A1J1eJT
1 A2J1 . . . eJT

1 AkJ1) 1
2 (3.34)

= det( + JT
1 eA1J1J

T
1 eA2J1 . . . JT

1 eAkJ1)
1
2 (3.35)

= det( + JT
1 eA1eA2 . . . eAkJ1)

1
2 (3.36)

= det( + eA1eA2 . . . eAk) 1
2 (3.37)

= det( + eA1eA2 . . . eAk) 1
2 (3.38)

= w, (3.39)

where we have used the orthogonality of J1 and the cyclic property det( +
ABC) = det( + BCA).

Similar to the MRP scenario above, the strategy is now to establish non-
symmetry conditions that ensure the non-negativity of w. To that end, we
note that given a Hermitian matrix ÷ with ÷2 = , all the complex Majorana
coe�cient matrices A with the property

÷A + A†÷ Æ 0 (3.40)

constitute a Lie contraction semigroup (LCS) [144]: the elements are exponentials
g = eA and the semigroup operation is the regular matrix multiplication. Note
that this structure strongly resembles the second term in the MQMC determinant,
Eq. (3.31). In terms of the group elements g the condition above reads g†÷g Æ ÷.
Interpreting the left hand side as a generalized “inner product” the elements g
preserve (equality) or contract (inequality) the “length” of a vector associated
with the metric ÷. Hence, it is clear that the ÷-unitary group, associated with
pure “rotations”, is a subgroup of the contraction semigroup and corresponds to
the case of strict equality in Eq. (3.40). It is generated by those matrices A that
are invariant under the sign-preserving transformation A æ ÷†A÷, in which case

÷A + A†÷ = ÷A ≠ ÷A = 0. (3.41)
59Our presentation closely follows but extends the discussion in Ref. [144].
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3 Avoiding the fermion-sign problem

This suggests a polar decomposition of the semigroup elements, i.e. g = gUeA0

where gU is ÷-unitary and A0 transforms as A0 æ ≠÷†A0÷ - i.e. it changes sign
[144]. The latter implies

÷A0 + A†

0÷ = 2÷A0 Æ 0 ∆ ÷A0 = ≠A0÷ Æ 0 (3.42)

such that the A0 form an invariant cone under action of the unitary group [144].
Importantly, for strict contraction elements one has ÷A0 < 0 and all eigenvalues
of g are, in magnitude, smaller than 1.

To utilize the above, we consider a real orthogonal matrix J2 and specifically
choose the metric ÷ as ÷ = iJ2. Note that in contrast to J1 above, J2 must
be skew-symmetric, i.e. J2

2 = ≠ , as the invariant cone would otherwise only
contain the zero element (See App. A of Ref. [144] for details). Similarly, to avoid
this trivial case we must require that J1 and J2 anticommute, i.e. {J1, J2} = 0
[144]. Postponing a proof of the non-negativity of w under these conditions we
obtain the following theorem.

Theorem 3 (LCS theorem) If there exist real orthogonal and anticommuting
matrices J±

1 and J≠

2 with (J±

1 )2 = ± and (J≠

2 )2 = ≠ such that the Majorana
coe�cient matrices A fulfill the following conditions

(J±

1 )T AJ±

1 = Ā, (3.43)
i

1
J≠

2 A ≠ ĀJ≠

2
2

Æ 0, (3.44)

then the probability weight w, Eq. (3.31), is positive semidefinite.

The argument that Eq. (3.44) of the LCS theorem indeed implies non-negative
statistical weights is based on the continuity of the Lie semigroup [144]. Note
that Eq. (3.44) corresponds to the invariant cone condition in Eq. (3.42). As seen
above, the eigenvalues of strict contraction elements exp(A) are smaller than 1.
This also trivially holds for any matrix product chain of semigroup elements, i.e.
eA1eA2 · · · eAk , involving the same. As a consequence all eigenvalues of the matrix
M = + eA1eA2 · · · eAk are non-zero which, when applied to Eq. (3.31), implies
that the probability weight w = det(M) 1

2 does not vanish. In this case, one is left
with two possibilities: w is either positive or negative definite. Given that the
conditions of Theorem 3 also include known sign-problem free symmetry classes
– we will explicitly demonstrate this fact below – the Lie semigroup continuity
rules out the second scenario60. Therefore, w is generally positive semidefinite.

Let us highlight how the semigroup framework reduces to the classification
schemes discussed in the previous sections. An illustration of these relations is
provided in Fig. 3.3. In the case of strict equality Eqs. (3.43) and (3.44) represent
two independent antiunitary symmetry conditions. We may therefore define
the MTR operators T ±

1 = J±

1 C and T ≠

2 = J≠

2 C and conclude that, depending
on the symmetry of J±

1 , the unitary subgroup of the contraction semigroup
coincides with the Majorana or Kramers symmetry class, i.e. {T +

1 , T ≠

2 } or
60As a continuous function of the Majorana coe�cients [A]ij the probability weight w(A)

never vanishes and is known to be non-negative for a particular choice of A.
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3.4 Systematic model classification

New class of
sign-problem
free models

Figure 3.3: Conceptional illustration of model space divided into sign-problem free
classes. The inner circles (light and dark blue) correspond to the funda-
mental MTR symmetry classes of Table 3.1 and strict equality in Eq. (3.44)
of Theorem 3. The outer circles (beige and red) represent the Lie con-
traction semigroups corresponding to J2

1 = +1 and J2
1 = ≠1 and to

subsets of the symmetry classes {T +
1 }, {T ≠

1 }, respectively. The former
case J2

1 = +1 coincides with the MRP class covered by Theorem 2. The
models in Eqs. (3.52) and (3.59) lie inside of the red circle but outside of
the Kramers class.

{T ≠

1 , T ≠

2 }. As discussed in Sec. 3.4.2, the latter corresponds to the sign-problem
free models covered by Wu and Zhang’s theorem, Th. 1. Note that for models in
the intersection of {T +

1 , T ≠

2 } and {T ≠

1 , T ≠

2 }, see Fig. 3.3, it is possible to choose
either a symmetric J+

1 or skew-symmetric J≠

1 , if necessary in an appropriately
chosen Majorana basis. Examples include the attractive Hubbard model and the
repulsive Hubbard model on a bipartite lattice at half-filling. One can also recover
the MRP form of the Majorana coe�cient matrices, Eq. (3.33), by considering
the case of a symmetric J+

1 . Specifically choosing J+
1 = ·x and J≠

2 = i·y [144] in
the Majorana basis of Eq. (3.28) the first condition, Eq. (3.43), restricts models
to the symmetry class {T +

1 } and the second condition, Eq. (3.44) reduces to the
semidefiniteness criterion of Theorem 2 for the o�-diagonal matrix elements.

New sign-problem free models

Having established these connections, one realizes that the semigroup framework
defines a novel class of sign-problem free models: the strict contraction elements
in case of a skew-symmetric J≠

1 , Fig. 3.3. These models are part of the symmetry
class {T ≠

1 } and, as a function of the coe�cients, have the Kramers class as
a limiting case (strict equality in Eq. (3.44)). To the end of deriving specific
sign-problem free Hamiltonians it is natural to consider two complex fermion
flavors and choose J1 = i‡y, i.e.

J1 :

Y
]

[
ciø æ ci¿

ci¿ æ ≠ciø

, (3.45)
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3 Avoiding the fermion-sign problem

as in the conventional time reversal symmetry, TT R in Sec. 3.4.1. In the adjusted
Majorana basis

ciø = 1
2(“1i + i“2i),

ci¿ = 1
2(“4i + i“3i),

(3.46)

the unitary matrix J1 thus takes the form J1 = ·x ¢ i·y and operates on the
vector “ = (“1, “2, “3, “4)T . The first condition of the LCS theorm, Eq. (3.43),
then selects arbitrary bilinear Hamiltonians of the symmetry class {T ≠

1 } which
can generally be written as [144]

H = 1
4“T A“ = Hh + Hp, (3.47)

Hh =
1
c†

ø
, c†

¿

2
M

A
cø

c¿

B

≠ (cø, c¿)MT

A
c†

ø

c†

¿

B

, (3.48)

Hp = (cø, c¿)RJ1

A
cø

c¿

B

≠
1
c†

ø
, c†

¿

2
SJ1

A
c†

ø

c†

¿

B

. (3.49)

Here Hh and Hp are hopping-61 and pairing-like contributions, respectively.
Furthermore, J1 = i‡y, as stated above, and M , R, and S are complex coe�cient
matrices such that RJ1 and SJ1 are skew-symmetric. Upon choosing J2 = i‡x,
i.e.

J2 :

Y
]

[
ciø æ ici¿

ci¿ æ iciø

, (3.50)

which in Majorana basis reads J2 = ≠i·y ¢ 2, the second condition of Theorem 3,
Eq. (3.44), translates into the requirement that R and S are Hermitian and
positive semidefinite62 [144], i.e.

R† = R Ø 0, S† = S Ø 0. (3.51)

Under these conditions, all complex fermion Hamiltonians of the form of Eq. (3.47)
are guaranteed to be sign-problem free.

Note that besides the antiunitary symmetry associated with J1 the contribution
Hh conserves particle number. Hence we conclude, in accordance with Wu an
Zhang’s theorem, Th. 1, that Hamiltonians with Hp = 0 are part of the Kramers
class. Rewriting the condition as R = S = 0, it is clear from our discussion above
that these models correspond to the unitary subgroup of the LCS whereas strict
contraction elements H = Hp with R > 0, S > 0 form the invariant cone. In this
light, a specific example of a sign-problem free model that lies in the symmetry

61A more precise description is that Hh is particle number conserving as, besides hopping
terms, it may include spin-flip and chemical potential terms.

62Note that via a Majorana basis transformation this condition may be turned into negative
semidefiniteness, compare Theorem 2.
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3.4 Systematic model classification

class {T ≠

1 } and is part of the novel J≠

1 semigroup is the repulsive Hubbard model
at half-filling on a bipartite lattice with an explicit singlet-pairing term, [144]

H = ≠t
ÿ

Èi,jÍ,s

c†

iscjs + t‹

ÿ

i

1
c†

iøc
†

i¿ + h.c.
2

≠ U
ÿ

i

3
niø ≠ 1

2

4 3
ni¿ ≠ 1

2

4

(3.52)

However, as elaborated around Eq. (3.31) conventional DQMC, Ch. 2, implicitly
requires the absence of any explicit U(1) symmetry breaking terms. For this
reason the Hamiltonian above may only be treated by MQMC.

Particle-hole transformation

To derive a model of the J≠

1 semigroup outside of the Kramers class which, at
the same time, is amenable to DQMC simulation we must consider a di�erent
operator J Õ

1. Taking J1 = ·x ¢ i·y from above as a reference point, a useful
strategy is to employ the particle-hole transformation PH’, Eq. (3.24), where we
drop the sublattice factor (≠1)i. For Majorana fermions this corresponds to the
sign change “3 æ ≠“3 such that J1 becomes J Õ

1 = i·y ¢ ·x. Similarly, one finds
that J2, Eq. (3.50), turns into J2 æ J Õ

2 = i·y ¢ ·z. In terms of complex fermions
this reads

J Õ

1 :

Y
]

[
ciø æ c†

i¿

ci¿ æ ≠c†

iø

, J Õ

2 :

Y
]

[
ciø æ ≠ic†

i¿

ci¿ æ ic†

iø

. (3.53)

Under the transformation PH’ the spin-¿ channel of the hopping term in
Eq. (3.52) acquires a minus sign and, as seen in Sec. 3.3, the Hubbard interaction
becomes attractive. More importantly, the contributions Hh and Hp in Eq. (3.47)
mix and the singlet-pairing term in Eq. (3.52), associated with the invariant
cone, turns into an onsite spin-flip term, i.e. c†

iøc
†

i¿ æ c†

iøci¿. Note that in the
original case, Eq. (3.47), such a spin-flip term would have corresponded to the
unitary subgroup. In summary, the PH’-transformed partner model of Eq. (3.52)
reads

H Õ = H0
ø

≠ H0
¿

+ t‹

ÿ

i

1
c†

iøci¿ + h.c.
2

+ U
ÿ

i

3
niø ≠ 1

2

4 3
ni¿ ≠ 1

2

4
,

H0
s = ≠t

ÿ

Èi,jÍ

c†

iscjs.
(3.54)

It is straightforward to verify that H Õ, when Hirsch decoupled in the spin
channel63, Eq. (3.17), fulfills the conditions of the LCS theorem with J Õ

1 and J Õ

2
as specified above. To demonstrate this, we note that the Hamiltonian has the
general form

H =
A

c†

ø

c†

¿

B A
T T‹

T‹ ≠T

B A
cø

c¿

B

, (3.55)

63As density terms in di�erent spin channels must appear with opposite sign we need to
decouple in the spin- rather than the density channel.
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3 Avoiding the fermion-sign problem

where [T ]ij and [T‹]ij are coe�cient matrices corresponding to conventional
hopping and spin-flip terms, respectively. For generality, we allow T to be
arbitrary and complex despite its simple structure in H0

s above. Choosing
the Majorana fermion basis as in Eq. (3.46) and dropping irrelevant numerical
prefactors, we find that the Hamiltonian may be written as H ≥ “T A“, where

A = i

Q

ccca

Im(T ) Re(T ) T‹ 0
≠Re(T ) Im(T ) 0 ≠T‹

≠T‹ 0 ≠Im(T ) Re(T )
0 T‹ ≠Re(T ) ≠Im(T )

R

dddb . (3.56)

For J1 = J Õ

1 = i·y ¢ ·x, the first condition of the LCS theorem, Th. 3, is fulfilled
as

JT
1 AJ1 = ≠A = A. (3.57)

Note that the equality only holds because T appears with opposite sign in the
di�erent spin channels of Eq. (3.55). Choosing J2 = J Õ

2 = i·y ¢ ·z, the second
condition of Th. 3 becomes

i
1
J≠

2 A ≠ ĀJ≠

2
2

= T‹”–— Æ 0, (3.58)

where –, — œ {1, 2, 3, 4} are Majorana fermion indices. Clearly, as per LCS
theorem, this implies sign-problem free DQMC if T‹ is negative semidefinite.
Since a sign change of T‹ in H may be absorbed into a redefinition of the
Majorana basis, i.e. “2 æ ≠“2 and “3 æ ≠“3, without a�ecting the first
condition of the theorem, the absence of the sign-problem is also guaranteed
if T‹ is positive semidefinite64. This requirement is trivially fulfilled for the
Hamiltonian H Õ, Eq. (3.54), since in this case T‹ = t‹”ij Ø 0. Note that as a
function of the coe�cient t‹, one has strict equality or inequality in Eq. (3.58),
indicating the unitary subgroup of the LCS for t‹ = 0. As a consequence DQMC
simulations of H Õ are free of the sign-problem and for t‹ > 0 in the novel J≠

1
semigroup class65, Fig. 3.3.

Interacting flat band model

It is clear from the demonstration above that beyond the requirement that
hopping terms for spin-ø and spin-¿ fermions are identical in magnitude and have
opposite sign, the conditions of the LCS theorem do not impose any restrictions
on the kinetic Hamiltonian. One may therefore derive further interesting sign-
problem free models in the J≠

1 semigroup by varying H0
s in Eq. (3.54). As an

explicit example, one may consider the following triangular lattice bilayer system,

64Compare this to the semidefiniteness condition in the MRP theorem, Th. 2. We have
numerically verified this statement for the flat band in Eq. (3.59).

65Note that at the time of this writing we can not rule out the possibility that H Õ lies in the
intersection of the MRP and J≠

1 classes in Fig. 3.3 since a Majorana basis transformation
may turn J≠

1 into J+
1 .
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3.4 Systematic model classification

Figure 3.4: The triangular bilayer structure of model HFB, Eq. (3.59), (a) and its
non-interacting (U = 0) band structure along a high-symmetry path of the
Brillouin zone (b). The parameters in (b) are t = 1, tÕ = 0.2, and t‹ = 0
and di�erent colors correspond to di�erent spin-layers in (a). Each layer
features a flat and a dispersive band according to the two-site unit-cell.
Due to the occurence of ≠H0

¿
the combined band structure is symmetric

around E = 0.

Fig. 3.4a, based on the non-interacting Hamiltonian studied in Ref. [166],

HFB = H0
ø

≠ H0
¿

+ t‹

ÿ

i

1
c†

iøci¿ + h.c.
2

+ U
ÿ

i

3
niø ≠ 1

2

4 3
ni¿ ≠ 1

2

4
,

H0
s = t

ÿ

Èi,jÍ“

1
‡“c†

jscis + h.c.
2

+ tÕÕ
ÿ

ÈÈÈi,jÍÍÍ

1
c†

jscis + h.c.
2

≠ µ
ÿ

i

ni.
(3.59)

Here the terms proportional to t and tÕÕ represent nearest and third nearest
neighbor hopping whereas the former is direction dependent and complex66,
“ = x, y, z. The 2 ◊ 2 dimensional matrix structure of H0

s corresponds to the
two-site unit cell of the triangular lattice [166]. As illustrated in Fig. 3.4b, each
individual spin-layer features a flat and a dispersive band both of which are
topological and come equipped with a non-trivial Chern number ±1 [166]. For
U = 0, Kourtis et al. [166] have observed the formation of a fractionalized
Chern insulating state upon adding nearest-neighbor interactions V between the
(spinless) fermions within a single sheet.

For specific parameter values, the sign-problem free model HFB represents a
platform for studying interactions between topological flat bands in a numerically
exact manner. The physics associated with the latter has been in the spotlight of
condensed matter research at least since the recent discovery of superconductivity
in two-dimensional materials with moiré superlattices [167–171]. By tuning the
chemical potential µ, which due to sign structure of H0

ø
≠ H0

¿
plays the role

of a Zeeman field, one can readily shift the flat bands in Fig. 3.4b in opposite
directions and make them overlap at the Fermi energy (µ ¥ ≠2.4). The interlayer
spin-flip amplitude t‹ can be seen as a magnetic field parallel to the layers and
66For “ = y, ‡y is purely complex.
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3 Avoiding the fermion-sign problem

may be used to split and hybridize bands associated with di�erent spin flavors.
Although our initial DQMC simulations of HFM do not show any indication of
superconductivity – but instead a tendency towards ferromagnetic ordering –
the same has been theoretically predicted and numerically observed [172–174] in
similar flat band scenarios. The question of what sets the scale Tc in this case is
an active matter of research [173, 175].

Beyond the specific Hamiltonians in Eqs.(3.52) and (3.54), the LCS scheme
provides a general route towards identifying novel physical models amenable to
sign-problem free DQMC simulations. While we have implemented the bilayer
structure shown in Fig. 3.4a in terms of spin, one may just as well replace the
spin indices in Eq. (3.55) by indices corresponding to, for instance, sublattice or
pseudospin degrees of freedom. In this case, an onsite Hubbard term turns into
a neighbor interaction between sites of di�erent sublattices. Combined with the
freedom of choosing the fermion kinetics, H0

s , this indicates the richness of the
novel J≠

1 semigroup class and the diversity of the physical models it contains.
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4 Aspects of DQMC
implementation

Supplementing the general description of determinant quantum Monte Carlo in
Ch. 2, it is the purpose of this chapter to present the most important numer-
ical aspects of practical DQMC implementations. As we demonstrate below,
numerical instabilities inherent to the DQMC method due to finite machine
precision require careful stabilization of matrix products and inversions [P2, 90,
120, 122, 136, 176–178] in the computation of equal-time and time-displaced
Green’s functions, Eqs. (2.29) and (2.34). We highlight the conceptual origin
of these instabilities and present a systematic empirical assessment of various
proposed stabilization schemes [122, 136, 176, 178, 179] with respect to accuracy
and e�ciency. Note that our presentation in Sec. 4.1 is a close adaption67 of
the corresponding publication by the author of this thesis, Ref. [P2]. Concrete
implementations of the discussed techniques are provided in the open-source
software library StableDQMC.jl, Ref. [S3].

The second major focus of this chapter is computational e�ciency. For a naive
DQMC implementation, the computational cost of a spatial lattice sweep of local
updates increases with the fourth power of the number of lattice sites, O(—N4).
This scaling severely limits the range of accessible system sizes, even when
simulations are run on state of the art supercomputers, and therefore asks for
systematic performance optimizations as well as techniques to reduce the impact
of finite-size e�ects. In Sec. 4.2, we present an e�cient algorithm for performing
local and global DQMC updates based on intermediate Green’s function caching
[90, 120, 122, 149, 161] and the checkerboard decomposition method [90, 122].
This way, the computational complexity of a DQMC sweep is reduced to the
optimal O(—N3) scaling [90, 120, 122]. Furthermore, we discuss methods to
improve the quality of simulations for a fixed system size, in particular the
utilization of a magnetic flux-quantum [31, 32, 149, 161] and the imposition of
twisted fermionic boundary conditions [149, 180, 181].

Finally, we will conclude this chapter with general notes on the extensive
DQMC simulations underlying the physical results presented in Chs. 5 and 7 and
the deployed DQMC implementation. Specifically, we will provide a performance
benchmark of the open-source Julia code [S1] developed for this thesis as well as
information about the utilized supercomputing facilities and scientific long-term
data storage.

67Apart from a general restructuring, we have extended the discussion of the time-displaced
Green’s function in Sec. 4.1.3.
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4 Aspects of DQMC implementation

4.1 Stable linear algebra
Although conceptually straightforward, care has to be taken in the implemen-
tation of DQMC because of inherent numerical instabilities arising from ill-
conditioned matrix exponentials, such as Eqs. (3.7) and (3.9). Over time,
stabilization schemes [122, 136, 176, 178, 179] based on various matrix factoriza-
tions, such as the singular value decomposition (SVD) [124, 182], the modified
Gram-Schmidt method [122, 124], and the QR decomposition [122, 124], have
been proposed for lifting these numerical issues. In this section we review a subset
of these techniques and systematically compare them with respect to accuracy
and speed. Unless otherwise noted, our test platform is the one-dimensional
Hubbard model, Eq. (3.15), at half-filling,

H = ≠
ÿ

Èi,jÍ,s

1
c†

iscjs + h.c.
2

+ U
ÿ

i

3
niø ≠ 1

2

4 3
ni¿ ≠ 1

2

4
, (4.1)

where we set the hopping amplitude to unity, t = 168.

4.1.1 Time slice matrix multiplications
To showcase the first kind of numerical instability arising in the DQMC framework
we focus on the non-interacting part of Eq. (4.1),

H = ≠
ÿ

Èi,jÍ,s

1
c†

iscjs + h.c.
2

. (4.2)

As seen in Eq. (2.21), the building block of the equal-time Green’s function G„

is a matrix chain multiplication of imaginary time slice matrices Bl. Because of
the absence of interactions in Eq. (4.2), this chain reads69

B(—, 0) © BMBM≠1 · · · B1 = BB · · · B¸ ˚˙ ˝
M factors

. (4.3)

As shown in Fig. 4.1, a naive computation of B(—, 0) strikingly fails for — Ø
—c ¥ 10. Leaving a discussion of the stabilization of the computation to the
next section, let us highlight the origin of this instability. The eigenvalues of the
non-interacting system are readily given by

‘k = ≠2t cos(k), (4.4)

such that energy values are bounded by ≠2t Æ ‘k Æ 2t. A single positive definite
time slice matrix B = e≠�·T therefore has a condition number [124] of the
order of Ÿ ¥ e4|t|�· and, consequently, B(·, 0) has Ÿ ¥ e4|t|M�· = e4|t|—. This
implies that the numerical scales present in B(·, 0) broaden exponentially at low
temperatures T = 1/— leading to inevitable roundo� errors due to finite machine
precision.
68We consider the canonical discrete Hirsch decoupling in the spin channel, Eq. (3.17).
69For simplicity, we will take the Bl to be independent of imaginary time throughout our

purely numerical analysis even in the presence of interactions. This amounts to working
with a constant bosonic field „ = const.
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(a) 64-bit floating point (Float64)
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(b) 128-bit floating point (Float128)

Figure 4.1: Numerical instabilities due to finite machine precision arising in the cal-
culation of the time slice matrix chain product BM BM≠1 · · · B1 for free
fermions in one dimension, Eq. (4.2). Di�erent lines represent logarith-
mic singular values as observed in naive (green) and arbitrary precision
computations (orange) for a N = 4 system. Due to (quasi) degeneracies
only 5 out of 8 singular values are visually distinguishable. The dashed
line (grey) indicates the expected floating point accuracy70. Resized from
Ref. [P2] under CC-BY 4.0.

We can estimate the expected inverse temperature of this breakdown for double
floating-point precision according to the IEEE 754 standard [183], implemented
in Julia in the data type Float64, by solving Ÿ(—) ≥ 10≠17 for —c. One finds
—c ¥ 10 in good agreement with what is observed in Fig. 4.1a. Switching to
the data type Float12871 (quadruple precision) with —c ¥ 20 in Fig. 4.1b, the
onset of roundo� errors is shifted to lower temperatures in accordance with
expectations.

How can we get a handle on the numerical instabilities in a floating point
precision computation? As has been realized [176] soon after the introduction
of the DQMC method in 1981 [135], an e�cient strategy is to keep the broadly
di�erent scales in the matrix exponentials separated throughout the computation
(as much as possible) and only mix them in a final step, if necessary. To extract
the scale information of a time slice matrix Bl we employ matrix decompositions
of the form

Bl = UDX. (4.5)

Here, U and X are matrices of the order of unity and D is a real diagonal
matrix hosting the exponentially spread singular values72 of Bl. Various matrix
decompositions can be used to obtain the factorization in Eq (4.5). In the
following we will consider the two most popular choices deployed in DQMC
simulations [90, 122, 176, 184–187].

71The datatype Float128 is provided by the Julia package Quadmath.jl.
72We will refer to the elements of D as singular values irrespective of the matrix decomposition.
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4 Aspects of DQMC implementation

Singular value decomposition

The singular value decomposition (SVD) is given by

B = UDV †, (4.6)

where U and V † are unitary and D is real and diagonal. We will use and compare
three heavily optimized routines [182] provided by LAPACK73 [188] to compute
the SVD of the time slice matrix B:

• gesdd: Divide-and-conquer (D&C)

• gesvd: Bidiagonal QR iteration (conventional)

• gesvj: Jacobi algorithm74

QR decomposition

The QR decomposition reads

B = QR = UDT, (4.7)

where Q is unitary and R is upper-triangular. In the second step, we have
renamed U = Q and split R into a real diagonal part D = diag(R) and an
upper-triangular part T with diag(T ) = 1. We will consider the pivoted QR
[124], which is deployed in the public DQMC implementations ALF [185] and
QUEST [184], in form of LAPACK’s geqp3 in our analysis.

Using Eq. (4.5), we can stabilize the matrix multiplication of two time slice
matrices Bi and Bj as follows [90, 122, 161, 176],

BiBj = UiDiXi¸ ˚˙ ˝
Bi

UjDjXj¸ ˚˙ ˝
Bj

= Ui (Di((XiUj)Dj))¸ ˚˙ ˝
U ÕDÕXÕ

Xj) (4.8)

= UrDrXr.

Here, Ur = UiU Õ, Dr = DÕ, Xr = X ÕXj, and U ÕDÕX Õ indicates an intermediate
matrix decomposition. If we follow this scheme, in which parentheses indicate the
order of operations, largely di�erent scales present in the diagonal matrices won’t
be additively mixed throughout the computation [90, 122, 161]. Specifically, note
that the scale information is preserved in the matrix multiplication involving
73We will report on results obtained with the LAPACK implementation OpenBLAS that ships

with Julia. Qualitatively similar results have been found in an independent test based on
Intel’s Math Kernel Library (MKL).

74To access gesvj in Julia we use the exernal package JacobiSVD.jl.
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4.1 Stable linear algebra

the well-conditioned unit-scale matrix U = XiUj: the diagonal matrices merely
rescale the columns and rows of U ,

DiUDj =
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(4.9)

As we will see below, repeating the procedure, Eq. (4.8), allows us to obtain
a numerically accurate UDX decomposition of the full time slice matrix chain
B(·, 0), Eq. (4.3). We note that, in practice, it is often unnecessary to stabilize
every individual matrix-matrix product. Instead, one typically performs a
mixture of naive and stabilized products for the sake of speed while still retaining
numerical accuracy [122, 149, 187].

Benchmark

We test the accuracy of the matrix product stabilization procedure, Eq. (4.8),
with respect to varying the SVD and QR factorization algorithms. Fig. 4.2
shows the logarithmic singular values of the time slice matrix chain B(—, 0) as a
function of inverse temperature — = 1/T . Clearly, the accuracy of the computed
singular values shows a strong dependence on the chosen factorization algorithm.
While the curves for the QR decomposition and Jacobi SVD seem to fall on
top of the exact result75, we observe large deviations for the conventional and
D&C SVD algorithms. This e�ect is particularly pronounced at low temperatues,
— & 25. The fact that small scales are lost in these SVD variants, while large
ones are still correct, can be understood from LAPACK’s SVD error bounds
[189]: The error is bounded relative to the largest singular value. Thus, large
scales are computed to high relative accuracy and small ones may not be.

Turning to computational e�ciency, we illustrate runtime cost measurements
for the considered SVD variants relative to the QR decomposition in Fig. 4.3. We
find that both the conventional SVD and Jacobi SVD are an order of magnitude
slower than the QR decomposition while only the divide-and-conquer algorithm
shows comparable speed. Among the SVD variants, the Jacobi SVD is the most
costly by a large margin, having about twice the runtime of the conventional
SVD for small matrix sizes.
74We estimate the precision as p = log10(2fraction), where fraction is the mantissa of a given

binary floating point format. This gives p ≥ 16 for Float64 and p ≥ 34 for Float128.
75The exact B(·, 0) can be determined in an arbitrary precision computation.
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Figure 4.2: Comparison of matrix decompositions to heal the numerical instabilities
in the calculation of the time slice matrix chain product BM BM≠1 · · · B1
for free fermions in one dimension, Eq. (4.2). Di�erent lines represent
logarithmic singular values as observed in stabilized computations. The
QR (orange) and Jacobi SVD singular values (yellow) lie on top of the
exact result (red) whereas both the regular SVD (green) and the divide-
and-conquer SVD (purple) show large deviations at low temperatures
— & 25 (�· = 0.1). Resized from Ref. [P2] under CC-BY 4.0.
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4.1 Stable linear algebra

4.1.2 Equal-time Green’s function

Similar to the considerations above, a naive computation of the Green’s function
according to Eq. (2.21) is potentially unstable because of numerical roundo�
errors due to finite machine precision. In particular, adding the identity to the
ill-conditioned slice matrix chain B(·, 0) will generally wash out small singular
values and will lead to a non-invertible result such that the subsequent inversion
in Eq. (2.21) is ill-defined. This clearly prohibits a safe calculation of the Green’s
function and asks for numerical stabilization techniques.

Inversion schemes

As for the time slice matrix products in Eq. (4.8), the strategy is to avoid an
uncontrolled mixing of exponential scales during the computation. A straightfor-
ward scheme (inv_one_plus) to add the unit matrix and perform the inversion
of 1 + B(·, 0) in a stabilized manner is given by [90, 122]

G = [1 + UDX]≠1

= [U (U †X≠1 + D)
¸ ˚˙ ˝

udx

X]≠1

= [(Uu)d(xX)]≠1 (4.10)
= UrDrXr,

where Ur = (xX)≠1, Dr = d≠1, and Xr = (Uu)≠1. Here, the intermediate
addition of unit scales and singular values (parentheses in the second line) is
separated from the unitary rotations such that U †X≠1 only acts as a clean cuto�,

U †X≠1 + D =

S

WWWU

s s s s
s s s s
s s s s
s s s s

T

XXXV +

S

WWWU

s
s

s
s

T

XXXV =
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s s s s
s s s s
s s s s
s s s s

T

XXXV . (4.11)

As we will demonstrate for the time-displaced Green’s function in Sec. 4.1.3,
the procedure inv_one_plus, based on a single intermediate decomposition, will
still fail to give accurate results for some of the matrix decompositions. For this
reason, we consider another stabilization procedure (inv_one_plus_loh) put
forward by Loh et al. [136, 176], in which one initially separates the scales of
the diagonal matrix D into two factors Dp = max(D, 1) and Dm = min(D, 1),

Dp =

S

WWWU

s
s

s
s

T

XXXV , Dm =

S

WWWU

s
s

s
s

T

XXXV , (4.12)
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Figure 4.4: Accuracy of the Green’s function obtained from stabilized computations
using the listed matrix decompositions and inversion schemes. Shown
is �G = log(max(abs(G ≠ Gexact))) for U = 0 (solid) and U = 1 (alpha
transparent) for the Hubbard model, Eq. (4.1). Resized from Ref. [P2]
under CC-BY 4.0.

and performs two intermediate decompositions,

G = [1 + UDX]≠1

= [1 + UDmDpX]≠1

= [(X≠1D≠1
p + UDm)DpX]≠1 (4.13)

= X≠1 [D≠1
p (X≠1D≠1

p + UDm
¸ ˚˙ ˝

udx

)≠1]

¸ ˚˙ ˝
udx

= UrDrXr,

where Ur = X≠1u, Dr = d, and Xr = x.

Benchmark

Starting from a stabilized computation of B(—, 0), Sec. 4.1.1, we calculate the
equal-time Green’s function by performing the inversion according to the schemes
outlined above and by varying the applied matrix factorization. In Fig. 4.4a
we show our findings for inv_one_plus, where we have taken the maximum
absolute di�erence between the computed and the exact Green’s function as an
accuracy measure. At high temperatures and for U = 0, we observe that all
decompositions lead to a good approximation of Gexact with an accuracy close
to floating point precision. However, when turning to lower temperatures the
situations changes dramatically. We find that only the QR decomposition and
the Jacobi SVD produce the Green’s function reliably. Compared to the other
SVD variants, which fall behind by a large margin and fail to reproduce the
exact result, they consistently show about optimal accuracy even in the presence
of interactions. As displayed in Fig. 4.4b, switching to the inversion scheme
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Figure 4.5: E�ciency of the stabilized Green’s function calculation using the listed
matrix decompositions and inversion schemes. Shown are results for the
non-interacting model, Eq. (4.2). Resized from Ref. [P2] under CC-BY
4.0.

inv_one_plus_loh generally improves the accuracy but deviations of the regular
SVD and D&C SVD remain of the order of unity at the lowest temperatures.

Independent of the employed inversion scheme, matrix decompositions are
expected to be the performance bottleneck in the Green’s function computa-
tion. We hence expect the speed di�erences apparent in Fig. 4.3 to dominate
computation time benchmarks of the full Green’s function calculation as well.
This anticipation is qualitatively confirmed in Fig. 4.5, which shows the runtime
cost of the Green’s function computation for both inversion schemes and all
matrix decompositions relative to the QR. While the divide-and-conquer SVD is
in the same ballpark as the QR decomposition, the other SVD algorithms fall
behind by a large margin (an order of magnitude) for both inversion procedures.
Importantly, this apparent runtime di�erence is increasing with system size.
The observation that the relative slowdown factor is larger for the inversion
scheme inv_one_plus_loh can be understood from the fact that it requires one
additional intermediate matrix decomposition.

In summary, these findings suggest that only the QR decomposition and the
Jacobi SVD, irrespective of the inversion procedure, are suited for computing
the equal-time Green’s function in DQMC reliably. Since the QR decomposition
has a significantly lower runtime cost, it is to be preferred over the Jacobi SVD.

4.1.3 Time-displaced Green’s function

We now turn to the stabilization of the time-displaced Green’s function, which
is required for computing time-displaced pairing and density-like correlations, as
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Figure 4.6: Onsite time-displaced Green’s function G(·, 0)ii of the spin-fermion model
in the form of Eq. (1.14), as obtained by a naive implementation of
Eq. (4.14) (green), a stabilized computation (orange) using the QR de-
composition and the inversion scheme inv_sum_loh, Eq. (4.17), as well as
exact diagonalization (purple). The model parameters are L = 2, ⁄ = 1,
and — = 8. For convenience, we also show G1, Eq. (2.29), and highlight
· = —/2 (dashed line). The ED curve deviates from the stabilized com-
putation around · ¥ 0, and · ¥ —, because only the 20 smallest energy
states have been considered in the diagonalization.

discussed in Ch. 2. In principle, Eq. (2.34), which we repeat here for convenience,

G(·1, ·2) =

Y
]

[
B(·1, ·2)G(·2), ·1 > ·2,

≠ (1 ≠ G(·1)) B(·2, ·1)≠1, ·2 > ·1

=

Y
]

[
Bl1 · · · Bl2+1Gl2+1, ·1 > ·2,

≠ (1 ≠ Gl1+1) (Bl2 · · · Bl1+1)≠1 , ·2 > ·1,

(4.14)

is a prescription for how to calculate G(·1, ·2) from the stabilized equal-time
Green’s function, Sec. 4.1.2. However, when |·1 ≠ ·2| is large, a naive calculation
of the matrix products in Eq. 4.14 will be numerically unstable. Furthermore,
by first computing the equal-time Green’s function, one inevitably mixes (and
therefore looses) scale information in the last recombination step, G = UDX.
We demonstrate the instability of a naive implementation of Eq. (4.14) for the
spin-fermion model in Fig. 4.6.

For the reasons stated above, it is advantageous to rewrite Eq. (4.14) and com-
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pute the time-displaced Green’s function as (we focus on ·1 > ·2 for simplicity)

G(·1, ·2) = Bl1 · · · Bl2+1Gl2+1

= Bl1 · · · Bl2+1 [1 + Bl2 . . . B1BM . . . Bl2+1]≠1

=

S

WWUB≠1
l2+1 · · · B≠1

l1¸ ˚˙ ˝
ULDLXL

+ Bl2 . . . B1BM . . . Bl1+1¸ ˚˙ ˝
URDRXR

T

XXV

≠1

= [ULDLXL + URDRXR]≠1 .

(4.15)

Inversion schemes

Similar to the equal-time Green’s function in Sec. 4.1.2, one must be careful to
keep the scales in DL and DR separated when performing the summation and
inversion to avoid unnecessary floating point roundo� errors. As a first explicit
procedure, we consider a simple generalization of Eq. 4.10 (inv_sum),

G(·1, ·2) = [ULDLXL + URDRXR]≠1

= [UL (DLXLX≠1
R + U †

LURDR)
¸ ˚˙ ˝

udx

XR]≠1

= [(ULu)d≠1(xXR)]≠1 (4.16)
= UrDrXr,

where Ur = (xXR)≠1, Dr = d≠1, and Xr = (ULu)≠1.
Analogously, we can generalize the scheme by Loh et al. [136], Eq. 4.13, in

which we split the scales into matrix factors Dm = min(D, 1), Dp = max(D, 1),
(inv_sum_loh)

G(·1, ·2) = [ULDLXL + URDRXR]≠1

= [ULDLmDLpXL + URDRmDRpXR]≠1

=

S

WWWWU
ULDLp

A
DLm

DRp
XLX≠1

R + U †

LUR
DRm

DLp

B

¸ ˚˙ ˝
udx

XRDRp

T

XXXXV

≠1

= X≠1
R

1
DRp

[udx]≠1 1
DLp¸ ˚˙ ˝

udx

U †

L (4.17)

= UrDrXr,

where Ur = X≠1
R u, Dr = d, and Xr = xU †

L.

Benchmark

In Fig. 4.7, we show the logarithmic, maximal, absolute deviation of the time-
displaced Green’s function from the arbitrary precision result as a function of
time-displacement · at inverse temperature — = 40. Focusing on the inversion
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Figure 4.7: Accuracy of the time-displaced Green’s function obtained from stabilized
computations using the listed matrix decompositions and inversion schemes.
Shown is �G = log(max(abs(G(·, 0) ≠ Gexact(·, 0)))) for — = 40.

scheme inv_sum first, Fig. 4.7a, both regular and D&C SVD clearly fail to
capture the intrinsic scales su�ciently and errors much beyond floating point
precision are visible. Although the QR decomposition systematically leads to
equally or more accurate results for all considered imaginary times, it fails to
be reliable at long times · ≥ —/2 (the Green’s function is anti-periodic in ·
[17, 23]). Only the Jacobi-method based SVD leads to an accurate Green’s
function at all imaginary times. Switching to the inversion scheme inv_sum_loh,
the situation changes, as illustrated in Fig. 4.7b. While the non-Jacobi SVDs
still have insu�cient accuracy, the result for the QR decomposition improves
dramatically compared to inv_sum and leads to stable Green’s function estimates
up to floating point precision along the entire imaginary time axis.

Finally, we compare the computational runtime cost associated with both
stable approaches: the Jacobi SVD combined with the regular inversion and the
QR decomposition paired with inv_sum_loh. As shown in Fig. 4.8, we find that
the latter is consistently faster for all considered system sizes. In relative terms,
the SVD based approach falls behind by at least a factor of two and seems to
display inferior scaling with system size.

Similar to the equal-time Green’s function discussion (Sec. 4.1.2), our findings
suggest that only the Jacobi SVD and the QR decomposition are reliable for
computing time-displaced Green’s functions in DQMC. In spite of the need to
pair the QR decomposition with an inversion scheme of higher complexity, an
observation that, to the best of our knowledge, has not been mentioned in the
literature before, the QR-based approach appears to be preferable due to the
superior computational e�ciency.

We end this section by noting that Hirsch and Fye [90, 190, 191] – and
similarly Assaad et al. [122] – have proposed an alternative method for stably
computing the equal-time and time-displaced Green’s functions based on a
space-time matrix formulation of the problem. Although this technique has been
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Figure 4.8: E�ciency of the time-displaced Green’s function obtained from stabilized
computations using the QR decomposition in combination with the in-
version scheme inv_sum_loh, Eq. (4.17) and the Jacobi SVD paired up
with the regular inversion scheme inv_sum, Eq. (4.16). Measurements are
taken over multiple runs at · = —/2 = 20. The inset shows the slowdown
of the Jacobi SVD relative to the QR based approach. Resized from
Ref. [P2] under CC-BY 4.0.

successfully deployed in many-fermion simulations of Hubbard models [94, 148,
159, 192], we exclude it from our discussion because of its subpar memory scaling:
for a system composed of N lattice sites, f fermion flavors, and imaginary time
extent M one needs to invert (naively a O(n3) operation [124]) a matrix which
takes up O((NMf)2) memory. For the spin-fermion model with f = 4, Eq. (3.4),
and system sizes of about N ¥ 100 lattice sites, this approach turned out to be
impractical for the large-scale simulations in this thesis.

4.2 E�cient DQMC
The determinant quantum Monte Carlo method, as presented in Ch. 2, requires
the computation of the equal-time Green’s function and its determinant in every
(proposed) step of the Markov walk, Eq. (2.23). All matrix operations involved
in the process – multiplication, inversion, and determinant calculation – typically
scale as O(n3) [124], where n is the linear matrix dimension, and a sweep of
local updates, Fig. 2.2, across the space-time lattice of extent —N therefore
has a computational complexity of O(—N · (fN)3) = O(—f 3N4) = O(—N4) 76.
In particular, the fourth-power scaling of the asymptotic runtime cost as a
function of N severely limits the accessible system sizes - for the square lattice
spin-fermion model, Eq. (3.4), L =

Ô
N ¥ 6 would have been the practical upper

bound for our simulations in this thesis on the available hardware, Sec. 4.4.
76The Green’s function is generally a Nf ◊ Nf matrix, where N is the number of spatial

lattice sites and f is the number of fermion flavors (including spin).

81

https://creativecommons.org/licenses/by/4.0/


4 Aspects of DQMC implementation

Figure 4.9:
Illustration of a local update „li æ „Õ

li of a
N„-component order parameter at lattice
site i and imaginary time slice l. A move
vector �„, indicating a rotation and scaling
of „li, is uniformly drawn at random from
a N„-dimensional box of side length �box.
During the equilibration phase, the scale
�box is adapted to approximately realize a
50% acceptance rate. Inspired by Ref. [149].

In the following, we describe a series of strategies, applied in the simulations
of Chs. 5 and 7, to improve the e�ciency of Monte Carlo updates and linear
algebra operations in DQMC. For simplification, we focus our discussion on
the spin-fermion model but note that the presented concepts are largely model
independent [120, 122, 148].

4.2.1 E�cient adaptive local updates
As shown in Fig. 4.9, we implement a local update at a space-time lattice site
(l, i) by a small rotation and scaling of the bosonic field „li. Specifically, we draw
a random vector �„ from a box with side length �box and propose the new field
value

„Õ

li = „li + �„. (4.18)

Generally, a small value of �„ leads to a small change of the associated action
and to Metropolis acceptance with high probability. However, in this case the
autocorrelation time · is large, since subsequent configurations in the Markov
chain are highly correlated. In contrast, if �„ is large, one expects a higher
Monte Carlo rejection rate and a decrease of · . To balance between these
extremes and ensure ergodicity, Sec. 2.3.1, we dynamically adapt the scale �box
during the equilibration phase of our DQMC simulations, Sec. 2.6.4, such that a
stable acceptance rate of about 50% is observed [122, 149].

To decide between accepting and rejecting individual proposals, Eq. (4.18),
we must evaluate the DQMC Metropolis acceptance probability, Eq. (2.23).
Focusing on the bosonic contribution first, we note that the change of the
bosonic action �S„ can be e�ciently computed for the spin-fermion model as
[149],

�S„ = S Õ

„ ≠ S„ = �S„1 + �S„2 + �S„3, (4.19)

�S„1 = 1
c2�·

(≠ („l+1i + „l≠1i) · �„li) , (4.20)

�S„2 = �·

2

Q

a4
1
|„Õ

li|2 ≠ |„li|2
2

≠ 2�„li ·
ÿ

jœN(i)
„lj

R

b , (4.21)
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�S„3 = �·
3

r

2
1
|„Õ

li|2 ≠ |„li|2
2

+ u

4
1
|„Õ

li|4 ≠ |„li|4
24

, (4.22)

in which we have replaced the spatial and imaginary time gradients in Eq. (3.4)
by numerical lattice derivatives [32, 124].

Turning to the fermionic determinant ratio, it is advantageous [90, 120, 122,
161] to replace the Green’s function G„ in Eq. (2.23) by its time-dependent
partner Gl, Eq. (2.29). This is justified since, due to the property det (1 + AB) =
det (1 + BA), the acceptance probability is invariant under this exchange,

A„Õ„ = min
I

1, e≠�S„
det G„

det GÕ

„

J

= min
I

1, e≠�S„
det ( + BM . . . Bl+1BÕ

lBl≠1 . . . B1)
det ( + BM . . . Bl+1BlBl≠1 . . . B1)

J

= min
I

1, e≠�S„
det ( + Bl≠1 . . . B1BM . . . Bl+1BÕ

l)
det ( + Bl≠1 . . . B1BM . . . Bl+1Bl)

J

= min
I

1, e≠�S„
det Gl

det GÕ

l

J

.

(4.23)

As we will see below, this form will allow us to exploit the space-time locality of
the proposed update and reduce the cost associated with the determinant ratio
computation, naively an expensive O((fN)3) operation, to O(f ¥ 1).

First, we define R = det Gl/ det GÕ

l and rewrite

R = det (Gl [ + Bl≠2 . . . B1BM . . . BÕ

l])
= det

1
Gl

Ë
+ (G≠1

l ≠ )B≠1
l BÕ

l

È2

= det
1
Gl + ( ≠ Gl)B≠1

l BÕ

l

2

= det

Q

ca + ( ≠ Gl)(B≠1
l BÕ

l ≠ )
¸ ˚˙ ˝

©Kl

R

db .

(4.24)

The structure of the matrix Kl, representing the Green’s function ratio for a
local update, is visualized in Fig. 4.10. Introducing [32, 90, 122]

�l = B≠1
l BÕ

l ≠ = e�·Vle≠�·V Õ
l + O(�· 2) ≠ , (4.25)

in which the numerical error is of Trotter type, Eq. (2.17), we realize that under
a local update „li æ „Õ

li only a single element (i, i) in every N ◊ N flavor sector
of the interaction matrix exponential e�·Vl is being altered. As a consequence,
only f 2 of the (fN)2 entries of the matrix �l are finite77, Fig. 4.10. While
preserving the order, we extract these non-vanishing elements into a reduced
f ◊ f matrix �̃li which, using slice indexing notation78, reads

�̃li = �l[i:N :end]
= e�·Vl [i:N :end] · e≠�·V Õ

l [i:N :end] ≠ f◊f + O(�· 2).
(4.26)

77For the spin-fermion model with O(3) symmetry, 4 flavor sectors vanish exactly such that
only 16 ≠ 4 = 12 elements are finite, Eq. (3.9).

78We choose the Julia syntax M [start : step : stop].
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4 Aspects of DQMC implementation

Figure 4.10: Illustration of the structure of the matrix Kl appearing in the determinant
in Eq. (4.24). The local nature of an update at lattice site i and time
slice l leads to a sparsity pattern (colored dots) which can be exploited
by expanding the determinant of Kl by minors, det Kl = det K̃li.

Crucially, as illustrated in Fig. 4.10, the matrix Kl, appearing in the determinant,
inherits the sparsity of �l. Analogous to �̃li above, we define79

K̃li = f◊f + �̃li ( f◊f ≠ Gl[i:N :end]) . (4.27)

The determinant in Eq. (4.24) may now be Laplace expanded by minors to give
[32, 90, 120, 122, 161]

R = det Kl = det K̃li. (4.28)

Note that compared to the original Kl, the matrix K̃li only is of size f ◊ f
and, importantly, independent of system size. The determinant can therefore
be computed e�ciently. If the number of flavors f is small enough, it may even
be implemented explicitly, for example using Sarrus’ scheme [193]. In this case,
the cost associated with the Green’s function determinant ratio computation
according to Eq. (4.28) is strictly O(1) – otherwise it scales as O(f 3).

In-slice Green’s function update

Although the determinant computation can be performed “on-site”, Eq. (4.28),
the e�ect of a local update of the bosonic field according to Eq. (4.18) on
the fermions is highly non-local and reflects the metallic nature of the system.
Fortunately, the sparsity discussed above can nonetheless be utilized to derive an
e�cient update rule for the equal-time Green’s function. We start by expressing
GÕ

l through Gl,

GÕ

l = [ + Bl≠1 . . . B1BM . . . Bl+1B
Õ

l]
≠1

= [ +
1
G≠1

l ≠
2

B≠1
l BÕ

l]≠1

= [ + ( ≠ Gl)
1
B≠1

l BÕ

l ≠
2

¸ ˚˙ ˝
�l

]≠1Gl.
(4.29)

79At this point, it might seem more natural to define K̃li = f◊f + ( f◊f ≠ Gl[i:N :end]) �̃li.
However, in Eq. (4.33) the chosen form will turn out to be more convenient. Note that
both variants give the same determinant since det( + AB) = det( + BA).
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4.2 E�cient DQMC

Since only f rows (and columns) of �l are non-zero, Fig. 4.10, the second
summand in this expression only has rank f (rather than fN) and allows for
the application of the Shermann-Morrison-Woodbury formula [122, 124],

Ë
+ uv†

È
≠1

= 1 ≠ u
1
1 + v†u

2
≠1

v† (4.30)

in which, in our context, u, v are matrices of size N ◊ f . Identifying

v† = �l[i:N :end, :], u = ( ≠ Gl) [:, i:N :end], (4.31)

one obtains

GÕ

l =
Ë

+ uv†
È

≠1
Gl

= Gl ≠ u
Ë

+ v†u
È

≠1
v†Gl

= Gl ≠
Ó
( ≠ Gl) [:, i:N :end] · K̃≠1

li

Ô
· {�l[i:N :end, :] · Gl} .

(4.32)

Understanding that �l[i:N :end, :]Gl = �̃liGl[i:N :end, :], we can formulate the
Green’s function update rule [32, 90, 122]

GÕ

l = Gl +
Ó
(Gl ≠ ) [:, i:N :end] · K̃≠1

li

Ô
·

Ó
�̃li · Gl[i:N :end, :]

Ô
, (4.33)

where parentheses indicate the order of operations. Rather than having to
invert a fN ◊ fN matrix, Eq. (4.29), this update scheme only requires the
inversion of the reduced f ◊ f matrix K̃li, which has already appeared in the
determinant ratio calculation, Eq. (4.28). Furthermore, since the two factors
(curly braces) are sparse, a computation of GÕ

l according Eq. (4.33) takes only
O(f 3N2) operations – ideally O(1) for the inversion and O(f 3N2) for each of
the sparse matrix multiplications80. The computation cost of a DQMC sweep of
local updates across the entire space-time lattice of extent —N is therefore of the
order of O(—N ·f 3N2) ¥ O(—N3). Compared to a naive DQMC implementation,
the optimizations therefore reduce the complexity by one power of system size.
In Fig. 4.11, we demonstrate this O(—N3) scaling for the DQMC implementation
used in this thesis [S1].

We note that in the presence of symmetries, the e�ective size of the Green’s
function matrix used in the DQMC formalism may be smaller than the physical
fN ◊ fN . As mentioned around Eq. (3.13) in Ch. 3, for the O(2) and O(1)
symmetric spin-fermion models, the number of fermion flavors, f = 4 is e�ectively
reduced to f e� = 2. From the scaling above, we hence theoretically expect an
eightfold speedup compared to the O(3) symmetry case. Empirically, we observe
a smaller but still significant performance di�erence between the O(2) and O(3)
variants81, Fig. 4.12. We find that a DQMC sweep of local updates for a system
of linear size L = 16 takes about six times longer when switching from two to
three order parameter components.
80We estimate the complexity of a sparse matrix multiplication of a fN ◊ f matrix A with

fN non-vanishing entries per column and a f ◊ fN matrix B with f non-zero elements
per column as O(fN · f · fN) = O(f3N2).

81We leave out the O(1) model in the comparison here for two reasons: First, the matrices
are real in this case and therefore of a di�erent data type. Second, it would be superior to
implement a Z2 order parameter.
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Figure 4.11: Scaling of the computation time of a sweep of local updates with inverse
temperature — and cubic system size N3. Markers indicate measurements
of our DQMC implementation [S1] of the spin-fermion model, Eq. (3.4),
for L = 8, 10, 12 and — = 2, 3, 4, 5, 10, 20, 30, 40. Simulations have been
performed with a mean acceptance rate of 50%. The theoretical O(—N3)
scaling (dashed line) is shown for comparison.
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Figure 4.12: Comparison of the computation time of a sweep of local updates for
the O(3) and O(2) symmetric spin-fermion models, Eq. (3.4). Shown is
the relative factor tO(3)/tO(2) such that unity corresponds to the case
of equal sweep durations. An acceptance ratio of 50% has been strictly
enforced to avoid statistical fluctuations. Time measurements have been
obtained by averaging over 100 up-down sweeps at inverse temperature
— = 5.
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4.2 E�cient DQMC

Figure 4.13: Discretization of imaginary time in our DQMC simulations. The interval
[0, —] is split into M blocks of size �· . The index l enumerates all
imaginary time slices (solid lines). We iterate downwards and upwards
in imaginary time and perform u-turns at the boundaries. At every
time slice, we compute the equal-time Green’s function by propagation,
Eqs. (4.34) and (4.35), or from scratch (red solid lines) and propose local
updates along the spatial dimension (not shown).

Green’s function propagation and caching

We implement the DQMC sweep of local update proposals on the space-time
lattice by successively sweeping downwards and upwards in imaginary time,
Fig. 4.13, and iterating over all spatial sites i within each time slice l. In the last
section, we have shown that such a sweep can be e�ciently performed in O(—N3).
We thereby implicitly assumed the availability of the equal-time Green’s function
Gl in every imaginary time slice. Repeatedly computing the latter from scratch
according to Eq. (2.29) is, however, a costly operation of the order of O(—N3)
by itself. Below, we describe a systematic procedure which, by exploiting the
locality of the update, improves the e�ciency of DQMC and significantly reduces
this cost in a practical simulation.

We start by highlighting an important relation between equal-time Green’s
functions at neighboring imaginary time slices. By symmetrically factoring out
time slice propagations in the definition of Gl≠1, Eq. (2.29), one sees that [90,
120, 122]

Gl≠1 = [ + Bl≠2 . . . B1BM . . . Bl≠1]≠1

=

S

WUB≠1
l≠1

Q

caBl≠1B
≠1
l≠1¸ ˚˙ ˝

Bl≠1 . . . B1BM . . . Bl

R

db Bl≠1

T

XV

≠1

= B≠1
l≠1GlBl≠1,

(4.34)
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4 Aspects of DQMC implementation

Figure 4.14: Visualization of the Green’s function computation in a DQMC simulation.
A stack of UDT decompositions, Eq. (4.7), of time slice matrix propaga-
tors B(·, 0) (dark blue) and B(—, ·)† (light grey) is filled in down- and
up-sweeps (vertical axis). Stack slots correspond to the stabilization time
slices ⁄ œ �, see Fig. 4.13, at which the Green’s function is recomputed
according to Eq. (4.40). If the entire stack is single colored, the matrix
product chain in the latter is maximally unbalanced, Eq. (4.41).

and analogously,

Gl+1 = BlGlB
≠1
l . (4.35)

Hence, the Green’s functions can be propagated in imaginary time by multipli-
cation with time slice matrices Bl.

In principle, this suggests the following sweeping strategy: compute the
initial Green’s function from the ground up, Eq. (2.29), update it, Eq. (4.33),
when accepting local moves, and propagate it, Eqs . (4.34) and (4.35), when
switching between time slices. However, as demonstrated in Sec. 4.1, successive
multiplications of time slice matrices lead to severe numerical round o� errors
such that the propagation of the Green’s function becomes instable after a few
steps [122]. Assuming that �s factors of Bl can be multiplied without significant
loss of accuracy, it is therefore necessary to recompute a fresh Green’s function
at every time slice ⁄ œ � = {l | mod (l ≠ 1, �s) = 0}, Fig. 4.13. Empirically,
we find that values of the order of �s ¥ 10 represent a reasonable compromise
between floating-point precision and simulation speed for the spin-fermion model,
Eq. (3.4), and the Hubbard model, Eq. (1.17), considered in this thesis.

To improve the e�ciency of stabilized Green’s function calculations, it is useful
to cache intermediate results of previous from scratch computations. Realizing
that a local update in a time slice l only changes the corresponding factor Bl in
Eq. (2.29), we may temporarily store partial time slice matrix product chains
corresponding to imaginary time segments that have already been visited in
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4.2 E�cient DQMC

the DQMC sweep [122, 149, 194]. Concretely, we rewrite the Green’s function
definition in continuum notation, Eq. (2.30), as

G(·) =
Ë

+ B(·, 0)(B(—, ·)†)†
È

≠1
(4.36)

and cache the UDT decompositions, Eq. (4.7), of the contributions B(·, 0) and
B(—, ·)†. Depending on whether we are sweeping downwards or upwards in
imaginary time, Fig. 4.13, at every stabilization time ·⁄ = ⁄�s�· with ⁄ œ �
we overwrite slots in a stack S of length M⁄ = M + 1 with UDT representations
of updated time slice propagators B(—, ·⁄)† or B(·⁄, 0). A visualization of this
procedure is provided in Fig. 4.14. In each step, we use partial results, that have
been previously stored in the stack, by making use of the transitivity relations

B(—, ·⁄≠1)†

¸ ˚˙ ˝
S[⁄]

= B(·⁄, ·⁄≠1)† B(—, ·⁄)†

¸ ˚˙ ˝
S[⁄+1]

, (4.37)

B(·⁄, 0)
¸ ˚˙ ˝

S[⁄+1]

= B(·⁄, ·⁄≠1) B(·⁄≠1, 0)
¸ ˚˙ ˝

S[⁄]

, (4.38)

for downwards and upwards sweeps, respectively. Here, it is left implicit that
multiplications are performed on UDT representations, for example

B(·1, ·2) · UDT = ((B(·1, ·2) · U) · D)
¸ ˚˙ ˝

udt

T = U ÕDÕT Õ (4.39)

with U Õ = u, DÕ = d, and T Õ = tT Õ. Given the UDT decompositions of B(·⁄, 0)
and B(—, ·⁄)† from the stack, we may compute the equal-time Green’s function
at a stabilization time slice ⁄ œ � according to

G(·⁄) =
Ë

+ B(·⁄, 0)(B(—, ·⁄)†)†
È

≠1

=
Ë
1 + ULDLTL (URDRTR)†

È
≠1

=

S

WWU1 + UL

1
DL

1
TLT †

R

2
DR

2

¸ ˚˙ ˝
udt

U †

R

T

XXV

≠1

= [1 + UDT ]≠1 ,

(4.40)

with U = ULu, D = d, and T = tU †

R, which may then be substituted into
Eq. (4.10).

In Algs. 1 and 2, we summarize the described Green’s function propagation
of downwards and upwards DQMC sweeps in schematic pseudocode. We note
that our discretization of imaginary time leads to an asymmetric distribution of
stabilization time slices over the interval [0, —] as illustrated in Fig. 4.13. We
formally include the time slices l = 0 and l = M + 1 in our DQMC procedure to
account for this asymmetry and to obtain reliable Green’s functions at the time
boundaries of the simulation grid. There, the contributions to Eq. (4.36), and
equivalently Eq. (4.40), are maximally unbalanced in the sense that

G = [ + B(—, 0)]≠1 =
5

+
1
B(—, 0)†

2
†
6

≠1
, (4.41)

and one of the propagators is the identity matrix. We hence special case these
situations in the provided pseudo-implementation.
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4 Aspects of DQMC implementation

1 function greens_downwards()
2 l

Õ = l - 1 # time slice we�re heading to
3 # stabilization time slice?
4 if l œ �
5 ⁄ = (l

Õ-1)/�s + 1 # stack index
6 # upper boundary: l = M + 1, lÕ = M, ⁄ = M⁄

7 if ⁄ == M⁄

8 B_L = S[⁄] # read B(—, 0)
9 B_R = 1 # set BR = B(—, —)† =

10 S[M⁄] = B_L # overwrite last stack slot
11 compute_G(B_L,B_R) # Eq. (5.56)
12 l = l� # update time slice index
13

14 # intermediate time slice
15 elseif M⁄ > ⁄ > 1
16 B_L = S[⁄] # read B((⁄ ≠ 1)�s�·, 0)
17 # S[⁄] = B(—, (⁄ ≠ 1)�s�·)† and S[⁄ + 1] = B(—, ⁄�s�·)†

18 S[⁄] = compute_B_dagger(⁄�s�·,(⁄-1)�s�·) * S[⁄+1]
19 B_R = S[⁄] # BR = B(—, (⁄ ≠ 1)�s�·)†

20 compute_G(B_L,B_R) # Eq. (5.56)
21 l = l� # update time slice index
22

23 # lower boundary: l = 1, lÕ = 0, ⁄ = 1
24 else
25 # S[1] = B(—, 0)† and S[2] = B(—, ⁄�s�·)†

26 S[1] = compute_B_dagger(�s�·,0) * S[2]
27 l = l� = 0 # update time slice index
28 greens_upwards() # switch direction (u-turn)
29 end
30

31 # regular time slice
32 else
33 propgate_G_downwards() # Eq. (5.53)
34 l = lÕ # update time slice index
35 end
36 end

Algorithm 1: Green’s function propagation and stack logic for a DQMC downwards
sweep. The function greens_downwards safely computes GÕ

l at the next
time slice lÕ = l ≠ 1 by either propagating the current Green’s function
Gl, Eq. (4.34), or computing it from the stack, Eq. (4.40) and Fig. 4.14.
When the lower imaginary time boundary is reached, lÕ = 0, the sweep
direction is reversed (u-turn) and greens_upwards takes over. The
indices are as visualized in Fig. 4.13 and as described in the main text.
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1 function greens_upwards()
2 l

Õ = l + 1 # time slice we�re heading to
3 # stabilization time slice?
4 if l

Õ œ �
5 ⁄

Õ = (l
Õ-1)/�s + 1 # stack index

6 # lower boundary: l = 0, lÕ = 1, ⁄Õ = 1
7 if ⁄

Õ == 1
8 B_R = S[1] # read B(—, 0)†

9 B_L = 1 # set BL = B(0, 0) =
10 S[1] = B_L # overwrite first stack slot
11 compute_G(B_L,B_R) # Eq. (5.56)
12 l = l� # update time slice index
13

14 # intermediate time slice
15 elseif 1 < ⁄

Õ < M⁄

16 B_R = S[⁄
Õ] # read B(—, (⁄Õ ≠ 1)�s�·)†

17 # S[⁄Õ ] = B((⁄Õ ≠ 1)�s�·, 0) and S[⁄Õ ≠ 1] = B((⁄Õ ≠ 2)�s�·, 0)
18 S[⁄

Õ] = compute_B((⁄
Õ-1)�s�·,(⁄

Õ-2)�s�·) * S[⁄
Õ-1]

19 B_L = S[⁄
Õ] # BL = B((⁄Õ ≠ 1)�s�·, 0)

20 compute_G(B_L,B_R) # Eq. (5.56)
21 l = l� # update time slice index
22

23 # upper boundary: l = M, lÕ = M + 1, ⁄Õ = M⁄

24 else
25 # S[M⁄] = B(—, 0) and S[M⁄ ≠ 1] = B((M⁄ ≠ 2)�s�·, 0)
26 S[M⁄] = compute_B((M⁄-1)�s�·,(M⁄-2)�s�·) * S[M⁄-1]
27 l = l� = M+1 # update time slice index
28 greens_downwards() # switch direction (u-turn)
29 end
30

31 # regular time slice
32 else
33 propgate_G_upwards() # Eq. (5.54)
34 l = lÕ # update time slice index
35 end
36 end

Algorithm 2: Green’s function propagation and stack logic for a DQMC upwards
sweep. The function greens_upwards safely computes GÕ

l at the next
time slice lÕ = l + 1 by either propagating the current Green’s function
Gl, Eq. (4.35), or computing it from the stack, Eq. (4.40) and Fig. 4.14.
When the upper imaginary time boundary is reached, lÕ = M + 1, the
sweep direction is reversed (u-turn) and greens_downwards takes over.
The indices are as visualized in Fig. 4.13 and as described in the main
text.
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4 Aspects of DQMC implementation

4.2.2 Adaptive global updates
We supplement the local updates discussed in Sec. 4.2.1 by global updates in
which the bosonic field „ is altered at all space-time lattice points at once. This
drastically improves the rate of convergence of the Markov walk and reduces the
autocorrelation time · , Eq. (2.47) [120, 122, 131, 149]. Specifically, we apply
a uniform constant shift to all elements „li. As for the local updates, Fig. 4.9,
we draw the modification vector from a box of width �̃box and, during Monte
Carlo equilibration, tune the latter to achieve a Metropolis acceptance rate of
approximately 50%.

Since all slices and lattice sites are involved in the update, we need to rebuild
(O(—N3) operations) the entire time slice matrix stack, Fig. 4.14, to compute
the equal-times Green’s function G. Afterwards, given the UDT decomposition
of G, we can write each determinant factor in the Metropolis acceptance rate as
[149]

det G
sign-free= | det G| = | det (UDT )≠1 | = | det D≠1| =

Ÿ

‹

‡≠1
‹ , (4.42)

where the ‡‹ are the singular values of G≠1. The determinant ratio in Eq. (2.23)
hence takes the form

R =
r

‹ ‡≠1
‹r

µ ‡Õ≠1
µ

. (4.43)

Care has to be taken in the evaluation of this expression to avoid a numerical
mixing of singular values of vastly di�erent magnitude. Practically, we order the
singular values by their absolute value, pair up ‡‹ and ‡Õ

‹ of similar scale, and
perform the division logarithmically,

R =
r

‹ ‡≠1
‹r

µ ‡Õ≠1
µ

=
Ÿ

‹

‡Õ

‹

‡‹

= exp
A

ln
A

Ÿ

‹

‡Õ

‹

‡‹

BB

= exp
A

ÿ

‹

[ln ‡Õ

‹ ≠ ln ‡‹ ]
B

.

(4.44)

4.2.3 Checkerboard decomposition
A central numerical operation in DQMC is the computation of matrix multi-
plications of the form BlM involving an arbitrary matrix M and a time slice
matrix Bl. Examples are given in Eqs. (4.39) and (4.35). Generally, the Bl

factor is dense. To see the reason, we consider its building blocks e≠�·Vl and
e≠

�·
2 T , Eq. (2.22). We first note that inter-particle interactions in condensed

matter systems like the Hubbard model, Eq. (1.17), and the spin-fermion model,
Eq. (1.9), are of on-site nature. In matrix representation, this implies that both
Vl as well as its matrix exponential are diagonal and hence sparse. Hopping
processes on the other hand, while also local in the sense of typically being
restricted to neighboring lattice sites, generally lead to dense matrix exponentials
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(a) “Checkerboard” decomposition (b) Generic partitioning

Figure 4.15: Decomposition of nearest neighbor hopping processes (bonds) on a two-
dimensional square lattice into groups G (di�erent colors) of commuting
elements T (i)

g . Shown are the square lattice specific “checkerboard”
decomposition [122] with G œ {A, B} (a) and a generic partitioning with
G œ {1, 2, 3, 4} (b). The latter has been produced using a graph-agnostic
edge coloring algorithm, Alg. 3. Subfigure (a) is inspired by Ref. [122].

because of their purely o�-diagonal character. Note that this is true in spite of
the fact that the hopping matrix T itself is sparse and contains only O(N) finite
elements. With respect to the product above, the time slice matrix Bl inherits
the denseness of e≠

�·
2 T and the number of numerical operations associated with

a straightforward evaluation of the matrix-matrix multiplication scales as O(N3)
[122, 124].

As pointed out in Refs. [90, 122, 149, 177], it is possible to e�ectively reduce
this computational cost at the expense of introducing a systematic numerical
error. The strategy is to divide the kinetic matrix T into smaller sub-blocks and
replace the dense multiplications in

BlM = e≠
�·
2 T e≠�·V„(l)e≠

�·
2 T M (4.45)

by a series of successive sparse multiplications. This way, the dense matrix
exponential e≠

�·
2 T is never computed explicitly and the sparsity of T is propa-

gated to each of the individual sub-multiplications. Various implementations of
this idea, di�ering in how the decomposition is designed, have been proposed
in the literature [90, 122, 177]. Focusing on a square lattice with exclusive
nearest-neighbor hoppings first, we discuss the most e�cient variant in this case,
the so-called checkerboard decomposition [122].

In the checkerboard decomposition [122] hopping processes are divided into two
groups G œ {A, B} as visualized in Fig. 4.15a. Each colored square represents a
four-site hopping plaquette capturing the fermion movements along the bordering
bonds. Explicitly, within a fixed fermion flavor sector, the associated N ◊ N
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hopping matrices T (i)
g are of the form

T (i)
g =

i1 i2 i3 i4Q

ccccccccccccccccca

R

dddddddddddddddddb

≠tv ≠th i1
≠tv ≠th i2

≠th ≠tv i3
≠th ≠tv i4

, (4.46)

where i1, i2, i3, i4 are linear indices specifying the lattice sites of the i-th plaquette
in group g and th, tv are (positive) hopping amplitudes in horizontal and vertical
direction. Given the spatial separation between di�erent plaquettes within a
group, two elements T (i)

g and T (j)
g commute. Analytically, one finds that the

corresponding matrix exponentials read [149]

e≠
�·
2 T

(i)
g = +

i1 i2 i3 i4Q

ccccccccccccccccca

R

dddddddddddddddddb

chcv ≠ 1 chsv cvsh shsv i1
chsv chcv ≠ 1 shsv cvsh i2

cvsh shsv chcv ≠ 1 chsv i3
shsv cvsh chsv chcv ≠ 1 i4

,

(4.47)

in which c– = cosh (�· t–/2), s– = sinh (�· t–/2), and – œ h, v. Importantly,
since the T (i)

g only represent hoppings between four sites, the individual matrix
exponentials e≠

�·
2 T

(i)
g have only eight non-vanishing entries irrespective of the

size of system and are therefore sparse in the N æ Œ limit. Defining

TA =
N/4ÿ

i=1
T (i)

A , TB =
N/4ÿ

i=1
T (i)

B , (4.48)

we can approximate the dense sub-products of Eq. (4.45) as [122]

e≠
�·
2 T M = e≠

�·
2 TAe≠

�·
2 TB M + O(�· 2)

=
N/4Ÿ

i=1
e≠

�·
2 T

(i)
A

N/4Ÿ

j=1
e≠

�·
2 T

(j)
B M + O(�· 2).

(4.49)
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1 function generic_partitioning(bonds::Set)
2 uncolored_bonds = copy(bonds)
3 coloring = Dict()
4 color = 1
5

6 while !isempty(uncolored_bonds)
7 visited_sites = Set()
8 for bond in uncolored_bonds
9 if !(bond.site1 in visited_sites ||

10 bond.site2 in visited_sites)
11 coloring[bond] = color
12 delete!(uncolored_bonds, bond)
13 push!(visited_sites, bond.site1)
14 push!(visited_sites, bond.site2)
15 end
16 end
17 color += 1
18 end
19

20 return coloring
21 end

Algorithm 3: Schematic description of an edge coloring algorithm that colors the
bonds (edges) of a lattice (graph) such that no two bonds sharing a
common site (vertex) end up with the same color. For a square lattice
with nearest neighbor connections, the algorithm leads to the coloring
shown in Fig. 4.15b.

Here, each sparse factor e≠
�·
2 T

(i)
g may be multiplied to M individually, which

is feasible in O(N) operations [122, 124]. This implies that the overall compu-
tational complexity of the right hand side of Eq. (4.49) is O(N · N) = O(N2)
which, compared to the original O(N3) scaling, is significantly improved by one
power of system size. The introduced numerical error is of Trotter type and due
to the fact that TA and TB do not commute – the splitting between di�erent
group elements T (i)

g is exact since [T (i)
g , T (j)

g ] = 0 as ensured by the decomposition
scheme. It is of the same order as the already present systematic error associated
with the discretization of imaginary time, Eq. (2.20), so that the checkerboard
decomposition does not diminish the DQMC precision.

While the strategy underlying Eq. (4.49) is general, the specific two-group
checkerboard decomposition is fine-tuned to the square lattice with nearest
neighbor hopping. In particular, it is not be compatible with the inclusion of
higher order hopping processes, see Fig. 5.1, which we will utilize to construct
locally nested Fermi surfaces in Ch. 5. In DQMC simulations of the latter, we
implement the generic partitioning scheme shown in Alg. 3. Here, we make use of
the observation that the task of identifying distinct groups of commuting hopping
processes represents an edge coloring problem, in which the edges (bonds) of an
arbitrary graph (lattice) shall be colored in such a way that no two edges sharing
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4 Aspects of DQMC implementation

a common vertex (lattice site) have the same color and the number of colors is
minimal. Although finding an optimal edge coloring is known to be NP-hard
[156], the simple Alg. 3 su�ces to obtain significant speed ups in our DQMC use
case. Applying it to a square lattice with nearest neighbor hopping, we obtain
the four-group partitioning illustrated in Fig. 4.15b. In this case, Eq. (4.49)
takes the general form

e≠
�·
2 T M =

Ÿ

gœG

Ÿ

iœg

e≠
�·
2 T

(i)
g M + O(�· 2). (4.50)

Upon including further range second and third order hoppings (see Fig. 5.1
in Ch. 5), the number of groups increases to 14 (not shown). Although the
scaling arguments discussed around Eq. (4.49) still hold in this case, having
more distinct “checkerboard” groups implies that the numerical – system size
independent – prefactor in the computational cost function of a practical DQMC
simulation is larger.

4.2.4 E�ective imaginary time slice propagators
To decrease the necessary total number of sparse matrix multiplications in our
DQMC simulations, in particular in products described by Eqs. (4.49) and (4.50),
we replace the time slice matrices Bl, Eq. (2.22), by modified e�ective time slice
propagators B̃l [149]. Focusing on the square lattice checkerboard decomposition,
Eq. (4.50), for simplicity, we define

B̃l = e≠
�·
2 TB e≠�·TAe≠

�·
2 TB e≠�·V„(l) , (4.51)

which relates to the original time slice matrix as

Bl = e≠
�·
2 T e≠�·V„(l)e≠

�·
2 T

= e≠
�·
2 TAe≠

�·
2 TB e≠�·V„(l)e≠

�·
2 TB e≠

�·
2 TA + O(�· 2)

= e
�·
2 TAe

�·
2 TB

1
e≠

�·
2 TB e≠�·TAe≠

�·
2 TB e≠�·V„(l)

2

¸ ˚˙ ˝
©B̃l

◊ e≠
�·
2 TB e≠

�·
2 TA + O(�· 2).

(4.52)

Here, we have performed the checkerboard splitting of T into parts TA and TB

as described in the previous section, Eq. (4.48), and the numerical Trotter error,
stemming from [TA, TB] ”= 0, is hence of the same kind and order as in Eq. (4.49).
Since an e�ective time slice propagator B̃l includes one less kinetic matrix
exponential than the corresponding Bl, we save one sparse matrix multiplication
per application.

The crucial point is that the switch to e�ective time slice propagators does
not spoil the numerical exactness of the DQMC procedure. To highlight this
fact, we consider the e�ective equal-time Green’s function

G̃„ =
C

1 +
1Ÿ

l=M

B̃l

D≠1

, (4.53)
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and realize that it is related to the original Green’s function, Eq. (2.21), by

G„ = [1 + BM · · · B1]≠1

= e
�·
2 TAe

�·
2 TB

Ë
1 + B̃M · · · B̃1

È
≠1

e≠
�·
2 TB e≠

�·
2 TA

= e
�·
2 TAe

�·
2 TB G̃„e≠

�·
2 TB e≠

�·
2 TA .

(4.54)

In combination with the matrix identity

det
1
1 + X≠1B̃lX

2
= det

1
1 + B̃lXX≠1

2
= det

1
1 + B̃l

2
, (4.55)

this proves that the Metropolis acceptance, Eq. (2.23), is invariant under the
operational substitution Bl æ B̃l. However, the hopping matrix exponentials
must be incorporated according to the last line of Eq. (4.54) when computing
fermionic observables directly from the Green’s function, Sec. 2.5.3.

4.3 Reducing finite-size e�ects
As discussed around Eq. (4.33), the scaling of the computational cost of local
updates in DQMC is cubic in system size, O(—N3). As a consequence, depending
on the number of fermion flavors and the performance of the available hardware,
only small to moderately large physical systems are accessible in practical
simulations. To reliably extrapolate results for physical observables to the
thermodynamic limit, potential finite-size e�ects must be under control. In the
following we describe two methods employed in this thesis to artificially improve
the quality of DQMC simulations in this regard.

4.3.1 Artificial magnetic flux
As shown in Refs. [32, 122, 149, 161] threading a single magnetic flux quantum
„0 through the simulation cell can drastically improve the accuracy of physical
observables. For this reason, in most of our simulations, we introduce Peierls
phases into the kinetic part of a given model [31, 32, 161],

ÿ

–,s

ÿ

Èi,jÍ

t–s
ij eiA–s

ij c†

i–scj–s + h.c.. (4.56)

Thereby, we choose the vector potential A–s(r) = ≠B–syx̂ in Landau gauge
such that the magnetic field82 B–s = Ò ◊ A–s = B–sẑ is perpendicular to the
two-dimensional square lattice and the phases are given by A–s

ij = 2fi
„0

s j
i A–s · dl.

To retain the antiunitary symmetry T = ≠i‡yŸzC that renders our model sign-
problem free, Sec. 3.4.1, we choose the following flavor and spin dependent
amplitudes,

Bxø = By¿ = „0
L2 = ≠Bx¿ = ≠Byø. (4.57)

Clearly, in the thermodynamic limit L æ Œ the magnetic field vanishes and we
recover the original system.
82For simplicity, we will refer to B as a magnetic field despite the fact that the (signs of the)

amplitudes are unphysical in the sense that they are fermion flavor dependent, Eq. (4.57).
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Figure 4.16: Inverse AFM susceptibilities ‰≠1
“ =

s
·

q
r È„r,“(·)„0,“(0)Í, with “ œ

{x, y, z} labeling the order parameter components, across the SDW
transition. Simulations have been performed with a small perpendicular
magnetic field, Eq. (4.57), a linear system size of L = 12 and ⁄ = 1.
The approximate location of the quantum critical point is rc ¥ ≠1.89,
compare Fig. 5.14.

Note that our choice for B–s, Eq. (4.57), explicitly breaks the SU(2) spin
rotation symmetry of the model. However, the symmetry breaking field scales as
L≠2, rendering it unimportant as long as the critical correlation length is smaller
than the system size. Numerically, we find that for the spin-fermion model,
Eq. (3.4), the parallel and perpendicular components of the antiferromagnetic
susceptibility agree (up to error bars) for r > rc and only start to diverge at low
temperatures on the ordered side of the QCP, Fig. 4.16.

In fixing the explicit phases A–s
ij we need to take into account that a square

lattice with periodic boundary conditions is topologically equivalent to a torus.
We therefore require (dropping band – and spin indices s for clarity) [122, 161]

eiAi+Lx̂,j+Lx̂c†

i+Lx̂cj+Lx̂
!= eiAij c†

icj, (4.58)

eiAi+Lŷ,j+Lŷc†

i+Lŷcj+Lŷ
!= eiAij c†

icj, (4.59)

for all lattice sites i = (ix, iy) and j = (jx, jy). This condition can be realized by
implementing the following boundary conditions, [122, 161]

ci+Lx̂ = ci, (4.60)

ci+Lŷ = cie
i 2fi

„0
BLix , (4.61)

in which the extra phase factor in y-direction explicity depends on ix. Considering
nearest, next-nearest, and next-next nearest neighbor hopping processes (see
Fig. 5.1 in Ch. 5) and restoring fermion flavor indices one finds the following
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Peierls phases.

Nearest neighbor:

A–s
ij =

Y
________]

________[

≠2fi
„0

B–siy, Ω hopping,

+2fi
„0

B–siy, æ hopping,

0, ø, ¿ hopping,

≠2fi
„0

B–sLix, ø hopping (boundary crossing),
+2fi

„0
B–sLix, ¿ hopping (boundary crossing).

(4.62)

Next-nearest neighbor:

A–s
ij =

Y
__________________]

__________________[

≠2fi
„0

B–s

1
iy + 1

2

2
,

�
hopping,

+2fi
„0

B–s

1
iy + 1

2

2
, � hopping,

≠2fi
„0

B–s

1
iy + 1

2

2
, �hopping,

+2fi
„0

B–s

1
iy + 1

2

2
, � hopping,

+2fi
„0

B–s

1
Lix + 1

2

2
,

�
hopping (boundary crossing),

≠2fi
„0

B–s

1
Lix + 1

2

2
, � hopping (boundary crossing),

+2fi
„0

B–s

1
Lix ≠ 1

2

2
, � hopping (boundary crossing),

≠2fi
„0

B–s

1
Lix ≠ 1

2

2
, �hopping (boundary crossing).

(4.63)

Next-next-nearest neighbor:

A–s
ij =

Y
________]

________[

≠4fi
„0

B–siy, Ω hopping,

+4fi
„0

B–siy, æ hopping,

0, ø, ¿ hopping,

≠2fi
„0

B–sLix, ø hopping (boundary crossing),
+2fi

„0
B–sLix, ¿ hopping (boundary crossing).

(4.64)

4.3.2 Twisted boundary conditions
The artificial magnetic flux, introduced in the previous section, clearly breaks
lattice translation symmetry. It must therefore be generally avoided in studies of
momentum resolved fermionic observables such as the single-particle self-energy,
Eq. (1.29). As an alternative measure to reduce finite-size e�ects in these cases,
we follow Refs. [31, 32, 149, 180, 181] and run separate batches of simulations in
which we apply twisted boundary conditions. Dropping fermion flavor indices
for simplicity, these read

ci+Lx̂ = eiÏnx ci, (4.65)
ci+Lŷ = eiÏny ci. (4.66)

The Ïn“ , with “ œ x, y, are twist angles [180] and may be interpreted to be
due to an in-plane vector potential A = (nx, ny, 0)T „0/4L [149]. Note that
B = Ò ◊ A = 0 in contrast to the discussion of Sec. 4.3.1.
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Specifically, we choose the angles

Ï =
A

Ïnx

Ïny

B

= fi

2

A
nx

ny

B

, (4.67)

in which we vary n“ = 1 . . . 4 in each individual simulation. In this case, the
discrete momenta associated with the twisted boundary conditions, Eq. (4.66),
are given by [180]

km = (2fim + Ï)/L. (4.68)

Here, the two-component index m œ 2 enumerates the L2 distinct momenta
in the Brillouin zone. Combining the results of simulations for all possible
combinations of nx and ny, we obtain a 16 fold enhancement of the momentum
resolution and, in this sense, probe an e�ectively larger system.

When fixing the twist angles Ï, one must be careful to not reintroduce a sign
problem, similar to the considerations taken around Eq. (4.57). For the spin-
fermion model, we therefore supplement our choice in Eq. (4.67) and introduce
orbital and spin dependent signs,

Ïxø = Ïy¿ = ≠Ïx¿ = ≠Ïyø. (4.69)

This way, the antiunitary symmetry T = ≠i‡yŸzC, Sec. 3.4.1, is respected and
a DQMC study can be conducted e�ciently. However, it is important to note
that this flavor dependency propagates to the momentum grid, Eq. (4.68), such
that individual simulations deliver results at di�erent km-points for each fermion
flavor. Only when combined with other DQMC runs does one obtain data for
all flavors at the same momenta.

4.4 General remarks
Let us conclude this chapter with a few notes on the DQMC implementation
of this thesis, Ref. [S1], and the supercomputing infrastructure utilized for the
simulations of Chs. 5 and 7.

4.4.1 Benchmark and open source
As mentioned in Sec. 4.2.1, there is a high computational cost associated with the
DQMC method. In practice, apart from the asymptotic O(—N3) scaling the total
runtime of simulations is largely influenced by raw CPU power and the e�ciency
of the programming language – more precisely the produced binary code. For
the DQMC implementation of this thesis, we have chosen the open-source, high-
level programming language Julia [195, 196] which has proven to be capable of
reaching state of the art performance in the field of numerical computing [197,
198]. For linear algebra operations we utilize the highly optimized Intel Math
Kernel Library (MKL) [199].

In Fig. 4.17 we show a benchmark of our DQMC code against the imple-
mentations of Ref. [186] and Ref. [187] which were used in multiple studies of
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Figure 4.17: Performance comparison of our Julia DQMC code [S1] and independent
implementations in C++ [186] and Fortran [187]. Time measurements
have been obtained by averaging over 100 up-down sweeps for the O(3)
symmetric spin-fermion model, Eq. (3.4), at — = 5 and are indicated
by markers. In the simulations, an acceptance ratio of 50% has been
enforced to avoid statistical fluctuations. Solid lines are guides to the eye,
and dashed lines are linear least square fits. First appeared in Ref. [S1],
used under the MIT license.

many-fermion systems, Refs. [2, 27, 31, 32, 39, 46, 81, 112, 200], and are written
in the established “low-level” languages C++ and Fortran, respectively83. We
observe that, on average, our highly optimized Julia code is approximately 40%
faster than the Fortran and about 80% faster than the C++ pendant. Note that
upon exchanging Intel MKL for OpenBLAS [201] (Julia default) we observe a
slowdown by ≥ 30%.

To the end of maximizing transparency and reproducibility, we have open
sourced the DQMC implementation of this thesis in Ref. [S1]. Submodules han-
dling the stabilization of Green’s function computations, Sec. 4.1, and statistical
error estimation, Sec. 2.6, have been separately released as standalone Julia
packages in Refs. [S2, S3] and may thus be readily integrated into foreign DQMC
codes. Furthermore, as an attempt to improve the accessibility of DQMC for the
wider physics community, we have published a more general DQMC framework
in Ref. [S4], which has been derived from the specific implementation in Ref. [S1].
Among others, this framework has enabled the DQMC study of the sign-problem
free flat band model of Sec. 3.4.4 in Ref. [202].

83The benchmark has been conducted on the JUWELS supercomputer. The sweep duration
is measured in single-core mode. The Fortran and C++ codes have been compiled with
Intel compilers icc and ifort (version 19.0.3.199), respectively.
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4.4.2 Supercomputing infrastructure
Being supported as part of the excellence project “Simulation of quantum-
mechanical many-fermion systems” of the John von Neumann Institute for
Computing, the numerical simulations of this thesis have been performed on the
JUWELS cluster at the Jülich Supercomputing Centre of the Forschungzentrum
Jülich and, partially, on the CHEOPS high-performance computing cluster of
the University of Cologne. In terms of performance, the former ranks among
the top 3 (top 40) supercomputing facilities in Germany (world-wide) [203].
The total computational e�ort of the presented work surpasses 10 million CPU
hours and has involved the processing of more than 80 Terabytes of raw data84,
obtained in large scale DQMC simulations. To ensure the long-term availability
of this raw data for future research projects, we have utilized the Tivoli Storage
Manager (TSM) services of both supercomputing facilities and have backed up
the scientific data on magnetic band drives.

84This mostly comprises Markov chains of boson configurations as well as equal-time and
time-displaced Green’s functions.
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5 Numerically exact results for
the AFM QCP

Utilizing the techniques of the previous chapters, we present numerically exact re-
sults for the O(3) symmetric metallic AFM QCP as obtained in extensive DQMC
studies of the sign-problem free spin-fermion model, Eq. (3.4). The underlying
large-scale simulations have been performed on the JUWELS supercomputer
at the Forschungszentrum Jülich – ranking 40 on the TOP500 list [203] – and
correspond to a total computing time of more than 10 million CPU hours.

In the following, we showcase the full phase diagram of the spin-fermion model,
and discuss in detail the appearing intertwined magnetic and electronic ordering
tendencies. In particular, we investigate the AFM crossover, as indicated by
a growing magnetic correlation length, and the emergence of charge-density
fluctuations as well as high-temperature superconductivity by calculating the
superfluid density and the relevant susceptibilities. We then zoom into the close
vicinity of the AFM QCP and study the quantum critical region by dissecting
the inherent bosonic and fermionic correlations. Specifically, we determine the
precise form of the low-energy propagator of the collective AFM modes and
compare it to the analytical theories discussed in Ch. 1. Moreover, we investigate
the fate of fermionic quasiparticles on the Fermi surface, e.g. in the vicinity of
the hot spots, by considering (a proxy for) the spectral function and computing
the Matsubara frequency dependence of the fermionic self-energy. As we will
see below, our numerical results are in stark contrast to the theoretical z = 1
fixed-point discovered by Lee et al., Sec. 1.4.4. As an attempt to verify physical
traces of the latter, we report on an ultra-low temperature study of a series
of Fermi surfaces, which approaches the limit of (almost) perfect local nesting
near the hot spots. To the best of our knowledge, the considered temperature
T = 1/100 is among the lowest ever accessed in finite-temperature DQMC
simulations. Finally, we demonstrate that for certain parameters the onset of
metallic antiferromagnetism in the spin-fermion model is marked by a first-order
quantum phase transition – rather than a continuous one. Note that this chapter
is largely based on the corresponding publication by the author of this thesis,
Ref. [P1]85.

85Except for the twisted boundary condition analysis in Sec. 5.3.2, the author of this thesis
has generated all presented results.
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5.1 Fermi surface and model parameters
We consider the sign-problem free spin-fermion model, Eq. 3.4, on a two-
dimensional square lattice. For convenience, we repeat the corresponding action
here in a slightly di�erent form86,

SSFL =
⁄ —

0
d·

ÿ

k

ÿ

s,–

Â†

–ks (ˆ· + ‘k,– ≠ µ) Â–ks

+ ⁄
⁄ —

0
d·

ÿ

r

ÿ

s,sÕ
eiQ·r„r · Â†

xrs‡ssÕÂyrsÕ + h.c. (5.1)

+
⁄ —

0
d·

ÿ

r

5 1
2c2 (ˆ· „r)2 + 1

2 (Ò„r)2 + r

2„2
r + u

4 („2
r)2

6
.

With the exception of Secs. 5.4 and 5.5, we choose the following model parameters:
a boson velocity of c = 3 and a quartic boson coupling of u = 1. As for the
fermions, we consider the canonical energy dispersion

‘k,– = ≠ 2 [t–h cos kx + t–v cos ky] , (5.2)

associated with nearest neighbor hopping on a square lattice. In particular, we
choose the chemical potential such that it has opposite signs for the two fermion
flavors, i.e. µx = ≠µy = ≠0.5, and set the hopping amplitudes to txh = tyv = 1
and tyh = txv = 0.5. Here, as illustrated in Fig. 5.1, subscripts h, v indicate
horizontal and vertical lattice directions, respectively.

Note that for this choice of parameters, the energy dispersion changes sign upon
swapping the space dimensions and fermion flavors, i.e. ‘x(kx, ky) = ≠‘y(ky, kx).
As a consequence, the spin-fermion model has a two-fold rotational symmetry,
consisting of a combination of a fi/2 real-space rotation, shifting momenta by Q,
a particle-hole transformation, and interchanging fermion flavors. Specifically,
the action SSFL, Eq. (5.1), is invariant under the transformation

Â–rs æ seiQ·rÂ†

≠–Rfi/2(r)≠s, (5.3)

where Rfi/2 indicates a fi/2-rotation and we assume values for the spin and band
indices s and – as in Eq. (3.27). This symmetry implies that the hot spots,
86We have expressed the free fermion part in terms of an energy dispersion ‘k,–.

Figure 5.1:
Illustration of nearest (green), next-nearest (blue),
and next-next-nearest neighbor (red) fermion hop-
ping processes on the considered two-dimensional
square lattice. Modified from Ref. [P1] under
CC-BY 4.0.
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5.2 Phase diagram (⁄ = 2)
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Figure 5.2: Fermi surface with hot spots across the Brillouin zone. The black lines
correspond to the Fermi surfaces of the two fermion flavors Âx (solid),
Ây (dashed). One band has been shifted by Q = (fi, fi) such that hot
spot pairs (red) occur at crossing points. The energy of the Âx band is
indicated by color shading in the background. Resized from Ref. [P1]
under CC-BY 4.0.

where the AFM scattering is resonant, occur on the momentum space diagonals
with kx = ky. This is apparent in Fig. 5.2, where we provide a visualization
of the considered Fermi surface. As we will see explicitly below, a further
consequence of the invariance above is that most fermionic correlation functions
are C4 symmetric.

5.2 Phase diagram (⁄ = 2)
In Fig. 5.3, we present the numerically exact phase diagram of the spin-fermion
model obtained in large-scale DQMC simulations. We show results for a system
of linear size L = 12, i.e. of 144 sites, and inverse temperatures in the range
3 Æ — Æ 40. Note that the Yukawa coupling is set to ⁄ = 2. In the following,
we will systematically discuss the magnetic and electronic features of the phase
diagram based on the corresponding susceptibilities.

5.2.1 Antiferromagnetic crossover
In two spatial dimensions, the O(3) symmetry of the spin-fermion model asso-
ciated with rotations of the AFM order parameter can not be spontaneously
broken at finite temperatures according to Mermin and Wagner’s theorem [22].
Magnetic correlations are therefore bound to be finite-ranged at any nonzero
T and, instead of a classical phase transition, a crossover originates from the
QCP at T = 0, Ch. 1. To highlight this aspect, we consider the AFM SDW
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Figure 5.3: Phase diagram of the spin-fermion model, Eq. (5.1), for ⁄ = 2 and
parameters chosen as specified in Sec. 5.1. The correlation length ›AFM,
Eq. (5.5), is shown for a L = 12 system (color coding, paramater grid
indicated by grey points). In accordance with the Mermin-Wagner theorem
there is no magnetic phase transition at finite temperatures but only a
crossover originating from the AFM QCP at r = rc ¥ 3.8. For large
tuning parameter values r ∫ rc the system is in an ordinary Fermi-liquid
phase. In the opposite limit, r π rc the SDW correlation length diverges
as T æ 0. An extended dome-shaped d-wave superconducting phase
is masking the QCP (blue). The maximal Tc is of the order of EF /20.
Resized from Ref. [P1] under CC-BY 4.0.

susceptibility

‰(q) =
⁄

·

ÿ

r
e≠iq·r È„r(·) · „0(0)Í , (5.4)

in which we measure momenta q relative to the antiferromagnetic ordering wave
vector Q = (fi, fi). Note that ‰0 can be e�ciently computed from the (fast)
Fourier transform of the order parameter field by means of the convolution
theorem [124]. Anticipating that, at large length scales, the susceptibility is of
conventional Ornstein-Zernike form [87], Eq. (1.13), we can define a correlation
length of the antiferromagnetic fluctuations as [87, 88]

›AFM = L

2fi

ı̂ıÙ ‰(q = 0)
‰(q = 2fi/L) ≠ 1 . (5.5)

Here q = 2fi/L is the smallest non-vanishing momentum of a finite system of
linear size L. In Fig. 5.3, we display ›AFM across the (r, T )-plane using a linear
interpolation between a discrete set of r values and temperatures (indicated
by dots in the figure). As apparent from the visualization, the data manifestly
reveals a finite-temperature magnetic crossover that culminates into a quantum
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Figure 5.4: Tuning parameter dependence of the inverse magnetic susceptibility,
Eq. (5.4), for the spin-fermion model with ⁄ = 2 close to the AFM
QCP at inverse temperature — = 40. The black solid line indicates a linear
fit of the DQMC data (markers) for the largest system size, i.e. L = 12.
Extrapolating this fit to T = 0 we find the root rc ¥ 3.8.

critical point marking the onset of SDW order at T = 0. To determine the
location of this AFM QCP, we perform a heuristic finite-size analysis (see App. C)
and extrapolate the tuning-parameter dependence of the inverse susceptibility
‰≠1 to T = 0. As shown in Fig. 5.4, this procedures leads to the estimate
rc ¥ 3.8.

5.2.2 Unconventional superconductivity
While the Mermin-Wagner theorem also holds for the continuous U(1) symmetry
breaking associated with the onset of superconductivity (SC), in this case there
is the possibility of a Berezinskii-Kosterlitz-Thouless (BKT) transition [17, 204]
for the corresponding two-component order parameter. To determine the critical
temperature Tc across the phase diagram we follow Refs. [32, 137] and characterize
the superconducting state by its diamagnetic linear response to a static magnetic
field B(q). In terms of the current density operator87,

jx(ri, ·) = i
ÿ

–s

t–s
ij Â†

–isÂ–js ≠ t–s
ji Â†

–jsÂ–is
¸ ˚˙ ˝

j–is
x (·)

, (5.6)

in which rj = ri + x̂, the latter reads [32, 137]

jx(q) = ≠4iFxx(q)
qy

B(q). (5.7)

87Without loss of generality we focus on the x-direction.
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Here, the response function

Fxx(q) = 1
4 [�xx(qx æ 0, qy = 0) ≠ �xx(q)] (5.8)

is given by the imaginary time current-current correlator

�xx =
ÿ

i

⁄
d·e≠iq·riÈjx(ri, ·)jx(0, 0)Í

= ≠
ÿ

i

ÿ

–s
–ÕsÕ

⁄
d·e≠iq·riÈj–is

x (·)j–Õ0sÕ

x Í.
(5.9)

To evaluate �xx in DQMC, we note that each expectation value in Eq. (5.9)
unfolds to

Èj–is
x (·)j–Õ0sÕ

x Í =
e
t–s
ij t–ÕsÕ

00Õ ÈÂ†

–is(·)Â–js(·)Â†

–Õ0sÕÂ–Õ0ÕsÕÍ„

≠ t–s
ij t–ÕsÕ

0Õ0 ÈÂ†

–is(·)Â–js(·)Â†

–Õ0ÕsÕÂ–Õ0sÕÍ„

≠ t–s
ji t–ÕsÕ

00Õ ÈÂ†

–js(·)Â–is(·)Â†

–Õ0sÕÂ–Õ0ÕsÕÍ„

+ t–s
ji t–ÕsÕ

0Õ0 ÈÂ†

–js(·)Â–is(·)Â†

–Õ0ÕsÕÂ–Õ0sÕÍ„

f

MC
,

(5.10)

where 0 and 0Õ indicate reference points r0 and r0Õ = r0 + x̂, respectively88.
Successively employing Wick’s theorem in the form of Eq. (2.38) to each of the
fermionic expectation values È·Í„ one finds the following expression involving
only equal-time and time-displaced Green’s functions,

Èj–is
x (·)j–Õ0sÕ

x Í =
eË

t–s
ij G–js;–is(·) ≠ t–s

ji G–is;–js(·)
È

◊
Ë
t–ÕsÕ

00Õ G–Õ0ÕsÕ;–Õ0sÕ(0) ≠ t–ÕsÕ

0Õ0 G–Õ0sÕ;–Õ0ÕsÕ(0)
È

≠ t–s
ij t–ÕsÕ

00Õ G–Õ0ÕsÕ;–is(0, ·)G–js;–Õ0sÕ(·, 0)
+ t–s

ij t–ÕsÕ

0Õ0 G–Õ0sÕ;–is(0, ·)G–js;–Õ0ÕsÕ(·, 0)
+ t–s

ji t–ÕsÕ

00Õ G–Õ0ÕsÕ;–js(0, ·)G–is;–Õ0sÕ(·, 0)
≠ t–s

ji t–ÕsÕ

0Õ0 G–Õ0sÕ;–js(0, ·)G–is;–Õ0ÕsÕ(·, 0)
f

MC
.

(5.11)

As established by Scalapino et al. in Ref. [137], a reliable criterion for detecting
superconductivity is whether the superfluid density of the system, [137]

fls = lim
qyæ0

lim
LæŒ

Fxx(qx = 0, qy), (5.12)

surpasses the universal BKT value �fls = 2T/fi [32, 137]. Given the finite-size
nature of our DQMC simulations, we can not compute fls in the thermodynamic
limit. Instead, we consider the system size dependent proxy [32]

fls(L) = Fxx(qx = 0, qy = 2fi/L), (5.13)

which we denote by the same label for convenience. As in the definition of
the magnetic correlation length, Eq. (5.5), the momentum q = 2fi/L is the
88We average over these reference points in our computation of �xx.
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Figure 5.5: Temperature dependence of the superfluid density of the spin-fermion
model, Eq. (5.1), for ⁄ = 2. The colors indicate three di�erent tuning
parameter values r = 4.2 ¥ rT max

c
(blue), r = 5.1 > rT max

c
(orange), and

r = 6.0 ∫ rT max
c

(green). The dashed line indicates the critical BKT value
�fls = 2T/fi. Resized from Ref. [P1] under CC-BY 4.0.

smallest non-zero momentum of the finite system such that fls(L) æ fls in the
limit L æ Œ. Applying Scalapino’s criterion to the spin-fermion model, we
identify the critical temperature Tc for each value of the tuning parameter r as
the temperature for which fls(Lmax; r) = �fls. Here, Lmax indicates the largest
available system size, i.e. L = 12. In Figs. 5.5 and 5.6, we show the temperature
and tuning parameter dependence of the superfluid density for three values of
r and nine values of T , respectively. The biggest source of error in resolving
Tc(r) is the limitation to finite system sizes, see Fig. 5.5. However, based on the
available data we anticipate that deviations originating from finite-size e�ects
are typically . 10% of the determined transition temperature.

Employing the strategy above, we find that the spin-fermion model hosts an
extended dome-shaped superconducting phase, as visualized in the phase diagram
in Fig. 5.3. Notably, the maximal critical temperature T max

c = max(Tc(r)) ¥ 0.09
occurs close to the AFM QCP, which is indicative of the intertwined character
of magnetic and electronic ordering: the critical antiferromagnetic fluctuations
both facilitate and compete with superconductivity. Remarkably, compared to
the Fermi energy EF , the value of T max

c is of the order of EF /20. This marks that
the onset of superconductivity occurs at high temperatures. Compared to theory,
we note that T max

c is in good agreement with an independent self-consistent
Eliashberg calculation89, Sec. 1.4.3, which gives T El

c ¥ 0.08. Anticipating that
fermions at the hot spots dominate in the formation of superconductivity [112]
and, furthermore, that the associated energy scale Tc is independent of the
89Up to the di�erent model parameters, Sec. 5.1, the calculation corresponds to the one

presented in Ref. [112].
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Figure 5.6: Superfluid density of the spin-fermion model, Eq. (5.1), as a function of
the tuning parameter r for various temperatures and ⁄ = 2. The dashed
line indicates the critical BKT value �fls = 2T/fi.

precise band structure, our results may be compared to those of Refs. [31, 32],
which consider an O(2) symmetric spin-fermion model featuring easy-plane
antiferromagnetism. For the maximal critical temperatures, we find the ratio
T O(3)

c /T O(2)
c ¥ 2.2, which is consistent with a quadratic dependence of Tc on the

number of order parameter components as suggested by weak-coupling theory,
Eq. (1.30).

Pairing correlations

It is important to note that the superfluid density criterion is unbiased towards
particular pairing symmetries. To investigate the nature of the superconducting
state we define order parameters

�÷(ri, ·) = Â†

xiøÂ
†

xi¿ ≠ ÷Â†

yiøÂ
†

yi¿, (5.14)

with ÷ = ±1, and consider the zero-frequency pairing susceptibilities

P÷(ri) =
⁄

d·È�†

÷(ri, ·)�÷(0, 0)Í. (5.15)

Note that under a fi/2 rotation �÷ æ ÷�†

÷ such that �≠ and �+ have d-wave
and s-wave character, respectively. Similar to the current-current correlation
function, the expectation value in Eq. (5.15) may computed in DQMC via Wick’s
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Figure 5.7: Nature of the superconducting state. Momentum resolved equal-time
pairing correlations across the first Brillouin zone with d-wave (left) and
s-wave symmetry (right) close to the quantum critical point, r ¥ 4.2,
for ⁄ = 2, — = 20, and L = 12. The pairing correlations have been
normalized to system size. While the s-wave correlations are featureless
there is a distinct peak in the d-wave channel. Taken from Ref. [P1] under
CC-BY 4.0.

theorem in the form of Eq. (2.36). Specifically, we find the expression

È�†

÷(ri, ·)�÷Í = ÈGxi¿;x0¿(·, 0)Gxiø;x0ø(·, 0) ≠ Gxi¿;x0ø(·, 0)Gxiø;x0¿(·, 0)
+ ÷ [Gxi¿;y0¿(·, 0)Gxiø;y0ø(·, 0) ≠ Gxi¿;y0ø(·, 0)Gxiø;y0¿(·, 0)]
+ ÷ [Gyi¿;x0¿(·, 0)Gyiø;x0ø(·, 0) ≠ Gyi¿;x0ø(·, 0)Gyiø;x0¿(·, 0)]
+ Gyi¿;y0¿(·, 0)Gyiø;y0ø(·, 0) ≠ Gyi¿;y0ø(·, 0)Gyiø;y0¿(·, 0)ÍMC .

(5.16)

In Fig. 5.7, we show the Fourier-transformed correlation functions P÷(q) across
the first Brillouin zone. While the s-wave susceptibility is featureless, there is a
pronounced peak in the sign-changing symmetry channel. This is strong evidence
for a d-wave superconducting state. Note that the pairing correlations are C4-
symmetric because of the corresponding rotational symmetry of the spin-fermion
model, Eq. (5.3).

Since the SC transition is of BKT character, we anticipate that the correlation
length ›SC is infinite in the entire superconducting phase. Accordingly, spatial
correlation functions are expected to decay exponentially above Tc and with a
power law below Tc [32], i.e.

È�†(r)�(0)Í ≥

Y
]

[
e≠r/›SC , T Ø Tc,

r≠÷(T ), T Æ Tc.
(5.17)
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5 Numerically exact results for the AFM QCP

Here, ÷(T ) is a temperature dependent exponent – not to be confused with
÷ = ±1 above – which, at the critical temperature, takes the universal BKT
value ÷(Tc) = 1/4 [32]. Note that Eq. (5.17) implies a finite-size scaling of the
pairing susceptibility P≠ = q

i P≠(ri) of the form P≠ ≥ L2≠÷(T ) for T . Tc
90. In

Fig. 5.8, we show the tuning parameter dependence of the pairing correlations
for three di�erent system sizes and temperatures: T > T max

c , T . T max
c , and

T < T max
c . Upon cooling, we observe that P≠ develops a pronounced, strongly

system-size dependent peak in the vicinity of the AFM QCP, r & rc. In
contrast, the s-wave susceptibility P+, shown in the insets in Fig. 5.8, is small in
magnitude, featureless, and essentially system-size independent across the entire
phase diagram. This confirms the d-wave symmetry of the superconducting state.
Determining the transition line Tc(r) based on the criterion ÷(Tc(r)) Æ 1/4 and a
finite-size scaling analysis of the pairing correlation P≠ at di�erent temperatures,
we find a critical temperature curve that is in reasonable agreement with the
superfluid density study above.

5.2.3 Charge-density wave correlations
As discussed in Ch. 1, besides superconductivity, quantum critical fluctuations
can, in principle, also promote other electronic orders, such as charge-density
wave (CDW) states [43, 44, 47]. For example, for particle-hole symmetric
electron dispersions, d-wave superconductivity and d-wave CDW are found to
be degenerate due to an emergent SU(2) symmetry [46]. In order to investigate
the possibility of the presence of charge-density fluctuations we inspect the
susceptibilities [32]

C÷(r) =
⁄

d·È�̃†

÷(ri, ·)�̃÷(0, 0)Í, (5.18)

�̃÷(ri, ·) =
ÿ

s=ø,¿

Â†

xisÂxis + ÷Â†

yisÂyis, (5.19)

with ÷ = ±1. As for the current-current correlation function �xx, Eq. (5.9), we
apply Wick’s theorem in the form of Eq. (2.38) to obtain the following expression
in terms of Green’s functions accessible in DQMC,

È�̃†

÷(ri, ·)�̃÷(0, 0)Í =
ÿ

ssÕ
È[Gxis;xis(·) + ÷Gyis;yis(·)]

◊ [Gx0sÕ;x0sÕ(0) + ÷Gy0sÕ;y0sÕ(0)]
≠ Gx0sÕ;xis(0, ·)Gxis;x0sÕ(·, 0)
≠ ÷Gy0sÕ;xis(0, ·)Gxis;y0sÕ(·, 0)
≠ ÷Gx0sÕ;yis(0, ·)Gyis;x0sÕ(·, 0)
≠ Gy0sÕ;yis(0, ·)Gyis;y0sÕ(·, 0)ÍMC .

(5.20)

90For temperatures slightly above Tc the correlation length ›SC may still be e�ectively infinite
in the sense of being larger than the considered system size.
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Figure 5.8: Zero-frequency pairing susceptibility P≠ =
q

i P≠(ri) as a function of the
tuning parameter r for three system sizes and temperatures, T = 0.2 >
T max

c (top), T = 0.083 . T max
c (middle), and T = 0.071 < T max

c . The
insets show the featureless susceptibility P+ =

q
i P+(ri) at the same

temperatures. The black circle indicates the location of the putative QCP.
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Figure 5.9: Momentum dependence of charge-density correlations, Eq. (5.18), across
the first Brillouin zone in the vicinity of the AFM QCP, r ¥ 4.2, for ⁄ = 2,
— = 20, and L = 12. The peak at q = 0 is excluded.
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Figure 5.10: Momentum cut of the charge-density susceptibility C≠, Eq. (5.18), in the
vicinity of the AFM QCP, r ¥ 4.2, for ⁄ = 2 and — = 20. The maxima
positions are qy ¥ 0.83fi and qy = 1.17fi. The solid line is a guide to the
eye based on the L = 12 data points.
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Figure 5.11: Charge-density correlations, Eq. (5.18), across the phase diagram for
⁄ = 2 and L = 10. Shown is the temperature dependence of the
maximum (excluding q = 0) of the susceptibilities C±, Eq. (5.18), for
di�erent tuning parameter values r π rc (purple), r & rc (green), and
r ∫ rc (pink). The dashed, grey line indicates the temperature at which
superconductivity sets in (for r = 4.3 & rc). Modified from Ref. [P1]
under CC-BY 4.0.

In Fig. 5.9, we show the momentum dependence of C+ and C≠ in the vicinity
of the QCP at temperature T = 0.05. We find that both C+ and C≠ are
peaked close to (but not quite at) the corners of the Brillouin zone at wave
vectors qmax

≠
= (fi, qmax ¥ 0.83fi) and qmax

+ = (fi, qmax ¥ 0.67fi), respectively. A
momentum space cut of C≠ for fixed qx = fi is provided in Fig. 5.10. As for the
pairing susceptibilities, the apparent C4 symmetry of both C+ and C≠ is due to
the symmetry in Eq. (5.3). Note that the maximum of the susceptibility C+ is
much smaller than the maximum of Cmax

≠
indicating that CDW correlations are

predominantly of d-wave character.
In Fig. 5.11, we show the temperature dependence of the maxima of the

susceptibilities C±(q) for three di�erent tuning parameter cuts through the phase
diagram (Fig. 5.3). First, we notice that C+ < C≠ consistently for all chosen
parameters. Second, we observe that while C+ is suppressed with decreasing
temperature for r π rc, indicating a competition with SDW fluctuations, C≠

is enhanced for all tuning parameter values. Focusing on C≠(T ), we observe
that the amplification is most pronounced close to the QCP, r & rc, and seems
insensitive to the onset of superconductivity at T = Tc. Note that for the O(2)
symmetric spin-fermion model, i.e. antiferromagnetism of easy-plane character,
C≠ was found to drop sharply below Tc [32].

Investigating the tuning parameter dependence of CDW correlations in more
detail, Fig. 5.12, we notice that C≠ is moderately peaked right above the QCP,
r = rc ¥ 3.8, and decreases upon going to smaller or larger values of r. In
agreement with our assessment in Fig. 5.11, the magnitude of the maximum
increases when cooling the system to lower temperatures. On the other hand,
s-wave correlations indicated by C+ do not show a distinct peak as a function
of r but instead appear to be suppressed by the onset of SDW fluctuations for
r . rc. Noting that the system size dependence of both C≠ and C+ is very weak
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Figure 5.12: Charge-density correlations, Eq. (5.18), across the phase diagram for
⁄ = 2 and L = 10. Shown is the tuning parameter dependence of the
maximum (excluding q = 0) of the susceptibilities C±, Eq. (5.18), for
di�erent temperatures T < Tc (green), T . Tc (purple), and T ∫ Tc

(yellow). The dashed, grey line indicates the position of the AFM QCP.

across the phase diagram (not shown but qualitatively similar to P+ in Fig. 5.8),
we conclude that despite a mild enhancement of d-wave CDW correlations at
low temperatures there is no evidence for CDW quasi long-range order.

5.3 Quantum critical correlations (⁄ = 1)
We now turn to the low-energy quantum critical properties of the spin-fermion
model. An obstacle in extracting the low energy scaling is the dome of high-
temperature superconductivity masking the QCP, see the phase diagram pre-
sented in Fig. 5.3 for ⁄ = 2. In order to uncover and probe the “bare” AFM QCP
we must, in some way, lower the critical temperature Tc of the SC transition.
In experiments, this suppression is typically implemented by applying a strong
magnetic field [16, 205–207]. However, since the latter spoils time reversal
invariance, it also inevitably breaks the T = ≠i‡yŸzC symmetry discussed in
Sec. 3.4.1 and would, thus, reintroduce a sign-problem into the DQMC simula-

Figure 5.13:
Superfluid density of the spin-
fermion model, Eq. (5.1), as a
function of the tuning parameter
r for T = 1/40 = 0.05 and ⁄ = 1.
The dashed line indicates the crit-
ical BKT value �fls = 2T/fi.
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Figure 5.14: Phase diagram of the spin-fermion model, Eq. (5.1), for ⁄ = 1. The
correlation length ›AFM, Eq. (5.5), is shown for a L = 12 system (color
coding, paramater grid indicated by grey points). In accordance with the
Mermin-Wagner theorem there is no magnetic phase transition at finite
temperatures but only a crossover originating from the QCP at r = rc.
For large tuning parameter values r ∫ rc the system is in an ordinary
Fermi-liquid phase. In the opposite limit, r π rc the SDW correlation
length diverges as T æ 0. The quantum critical point, marking the onset
of SDW order at T = 0, lies at rc ¥ ≠1.89, see App. C. Resized from
Ref. [P1] under CC-BY 4.0.

tions. Instead, we take an alternative approach and reduce the superconducting
Tc by considering the spin-fermion model at smaller91 Yukawa coupling. Clearly,
one expects Tc(⁄) to be monotonously decreasing for ⁄ æ 0 given that the
non-interacting system is a conventional metal. According to Eliashberg theory,
Tc is quadratic in the Yukawa coupling, Eq. (1.30), a scaling which has been
numerically confirmed for the O(2) symmetric spin-fermion model in Ref. [31].
As indicated by the superfluid density in Fig. 5.13, choosing ⁄ = 1, we find
that the onset of superconductivity is suppressed below the lowest temperature
considered in our DQMC simulations, i.e. Tc < 1/40. In this case, we obtain the
phase diagram presented in Fig. 5.14. In the following, we will extract quantum
critical correlations slightly above the (presumably) remaining SC phase, i.e. at
temperature T = 0.05 and in close vicinity to the AFM QCP, r ¥ ≠1.74 (see
App. C).

It is important to note that while decreasing the Yukawa coupling has the
desired e�ect of lowering Tc, it also, eventually, leads to a collapse of the hierarchy
of energy scales discussed in Sec. 1.4.3. In particular, the putative quantum
critical fan, Sec. 1.1.1, inevitably vanishes in the ⁄ æ 0 limit. Its survival
in form of non-Fermi liquid behavior at finite temperatures above the QCP
91Relative to ⁄ = 2. Note that the chosen ⁄ = 1 is still of the order of unity.
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Figure 5.15: Charge-density correlations, Eq. (5.18), across the phase diagram for
⁄ = 1 and L = 10. Shown is the temperature dependence of the maximum
(excluding q = 0) of the susceptibilities C÷ defined in Eq. (5.18) for
di�erent tuning parameter values r π rc (purple), r & rc (green), and
r ∫ rc (pink). Modified from Ref. [P1] under CC-BY 4.0.

must therefore be verified a posteriori. Moreover, anticipating that orders are
intertwined [74], the suppression of superconductivity can, in principle, favor the
formation of other electronic states. To rule out such an indirect promotion, we
analyze the CDW susceptibilities, Eq. (5.18), across the ⁄ = 1 phase diagram.
As indicated in Fig. 5.15, we find that both C≠ and C+ have the same qualitative
temperature and tuning parameter dependence as for ⁄ = 2, c.f. Fig. 5.11.
Compared to the latter, CDW correlations in the d-wave channel are reduced
whereas the susceptibility C+ appears to be slightly enhanced.

5.3.1 Antiferromagnetic correlations
We investigate the low temperature antiferromagnetic correlations by studying
the bosonic SDW susceptibility

‰(q, iÊn; r, T ) =
⁄

·

ÿ

r
eiÊn·≠iq·r È„r(·) · „0(0)Í (5.21)

for momenta q, taken relative to the ordering wave vector Q, and Matsubara
frequencies Ên = 2finT , cf. Eq. (5.4). Specifically, in our DQMC simulations, we
consider linear system sizes in the range of 8 Æ L Æ 14 and, as described above,
probe the vicinity of the AFM QCP at temperature T = 0.025.

First, we illustrate the dependence of the inverse susceptibility ‰≠1(q, iÊn)
on Matsubara frequency close to the QCP in Fig. 5.16. The data very visibly
has linear character for small Matsubara frequencies Ên, both for q = 0 and
small finite momenta q > 0, with an apparent cusp at Ên = 0. To establish
the presence of a |Ên|-term in ‰≠1 we perform a linear regression for the small
frequency data. The resulting fits to the form a1|Ên| + a0, displayed in Fig. 5.16
as black lines, are in good agreement with the data and confirm the linear
Matsubara frequency dependence. This finding suggests overdamped dynamics
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Eq. (5.21), close to the quantum critical point at inverse temperature
— = 40 and ⁄ = 1.0. We show a linear fit of the data (light green line)
with root rc ¥ ≠1.89, an estimate for the location of the QCP. Resized
from Ref. [P1] under CC-BY 4.0.

of the boson field „ due to interactions with the fermions, see Sec. 1.4.3. At
vanishing momentum, finite-size e�ects are negligibly small (within error bars),
as evident in the data collapse of ‰≠1(q = 0, iÊn) for di�erent system sizes.

Turning to the momentum dependence of ‰≠1(q, iÊn) next, we find that the
momentum dependence shown in Fig. 5.17 is consistent with a quadratic form
q2 for small momenta q. This holds both for Ên = 0 and small non-vanishing
Matsubara frequencies Ên. Similar to above we establish the presence of a q2

term in ‰≠1(q, iÊn) by fitting the data to the form a1q2 + a0. The results are
indicated in Fig. 5.17 as black lines, showing good agreement with the DQMC
data. In combination with the observed linear Matsubara frequency dependence,
this provides strong evidence for a dynamical critical exponent z = 2.

Next, we illustrate the dependence of the inverse susceptibility ‰≠1(q =
0, iÊn = 0) on the tuning parameter r in Fig. 5.18. For tuning parameter
values r Ø rc ¥ ≠1.89 we find that the data for di�erent system sizes follows a
linear dependence. Due to finite-size and finite-temperature e�ects the onset of
a finite value of ‰≠1 does not appear to be as abrupt but instead is moderately
continuous [31].

Finally, we inspect the temperature dependence ‰≠1(T ) close to the critical
point in Fig. 5.19. Within the limits of our numerical accuracy, we find that
the DQMC results are consistent with a T 2 term at low temperatures. We
highlight this point by fitting the data to a second degree polynomial (black line)
which is able to adequately capture the temperature trend over a broad range
0.025 < T . 0.5. At higher temperatures, the situation changes and we find a
linear T -dependence, as shown in the inset of Fig. 5.19.
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Taken together, these findings indicate that the inverse SDW susceptibility
near the metallic AFM QCP (at low temperatures) has the form,

‰≠1(q, iÊn; r, T æ 0) = cÊ|Ên| + cqq2 + cr(r ≠ r0). (5.22)

Remarkably, this is precisely the functional dependence predicted by Hertz-Millis
theory [50, 82], Sec. 1.4.2, in spite of the fact that the latter is understood to be
formally uncontrolled [36]. Also, note that this agreement is in strong analogy
to what has been observed in Refs. [31, 32] for the O(2) symmetric AFM QCP,
describing the onset of SDW order of XY type.

However, as a function of temperature, our DQMC result for ‰≠1 deviates
from Hertz-Millis theory. Most importantly, the SDW susceptibility seems to
scale quadratically with temperature instead of showing a linear T -dependence.
Furthermore, note that in Hertz-Millis theory the correlation length exponent
‹, Eq. (1.1), takes the mean-field value ‹ = 1/2 such that the combined critical
exponent ‹z appearing in the scaling of temporal correlations, Eq. (1.2), is unity,
i.e. ‹z = 1. On the other hand, the fixed-› contours of the magnetic crossover in
the DQMC phase diagram, Fig. 5.14, seem to be non-linear and bended, which
hints towards ‹ ”= 1/292.

Finally, in comparison to the studies by Lee et al. [6, 7, 15], Sec. 1.4.4, we
note that there is no evidence for a z = 1 dynamical scaling. The extracted
critical boson propagator, Eq. (5.22), is furthermore manifestly isotropic in q
and therefore inconsistent with the highly anisotropic form in Eq. (1.33). Given
92Here we identify 1/· = � ≥ Tcrossover and conclude from ‹z = 1 that the crossover from the

AFM SDW region to the quantum critical Landau damped regime is linear in Hertz-Millis
theory.
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the generic nature of our DQMC study – the considered Fermi surface, Fig. 5.2,
does not appear to be special in any relevant manner – this strongly suggests
that the strong-coupling fixed point by Lee et al. does not, in general, govern
the physics of the AFM QCP at temperatures T Ø T min

DQMC = 1/40 = 0.025. Of
course, based on our DQMC study, we can not rule out the possibility that traces
of z = 1 scaling appear at even lower temperatures.

5.3.2 Single-fermion correlations
Having discussed the scaling of antiferromagnetic correlations we now turn to
the fermionic spectral properties of the spin-fermion model. Given that the
extraction of real-time dynamics from DQMC simulations involves a form of
numerical analytic continuation, which is generally an ill-defined procedure, we
can not access the desired spectral function Ak(Ê) directly. Instead we utilize
the following relation, [31, 208]

Gk(·, 0) =
⁄

Œ

≠Œ

dÊ
e≠Ê(·≠—/2)

2 cosh —Ê/2Ak(Ê). (5.23)

Here Gk(·, 0) is the momentum space Fourier transform of the time-displaced
Green’s function, which is accessible in DQMC as discussed in Secs. 2.5.2 and
4.1.3, and we focus our discussion on a single flavor of Âx fermions. Recognizing
that for · = —/2 the fraction in Eq. (5.23) has a Gaussian-like structure as a
function of frequency, i.e. it is symmetric and smoothly peaked at Ê = 0 with
a width of the order of 1/—, one realizes that Gk(—/2, 0) corresponds to the
spectral function integrated over a frequency window of size T [31].

In the right panel of Fig. 5.20, we show the time-displaced Green’s func-
tion Gk(—/2, 0) over the first Brillouin zone and across the antiferromagnetic
transition. We have increased the momentum space resolution by conducting
simulations at di�erent twisted boundary conditions as explained in Sec. 4.3.2.
In the disordered Fermi liquid phase, r > rc, Fig. 5.20a, the Fermi surface is
distinctly visible as a continuous line of the approximately constant maxima
of Gk(—/2, 0). However, upon moving to the vicinity of the AFM QCP we
notice a significant loss of spectral weight at the hot spots on the momentum
space diagonal. Away from the latter the Fermi surface peak of Gk(—/2, 0)
remains comparably sharp. Going further to the ordered side of the QCP, r < rc,
we observe a reconstruction of the Fermi surface in form of the emergence of
pronounced gaps at the hot spots. This is in qualitative agreement with the
mean-field analysis of Sec. 1.4.1.

Next, we study the fate of the fermions at the hot spots and near the QCP by
investigating the imaginary part of the self-energy

�(k, iÊn) = G≠1
0 (k, iÊn) ≠ G≠1(k, iÊn) (5.24)

= iÊn ≠ ‘k ≠ µ ≠ G≠1(k, iÊn). (5.25)

Here G0 and G are the non-interacting, Eq. (1.12), and full Green’s functions,
respectively. To compute �(k, iÊn) on the Fermi surface, we combine the data
from simulations with di�erent twisted boundary conditions and identify the
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Figure 5.20: Imaginary part of the fermionic self-energy as a function of Matsubara
frequency (left column) and time-displaced Green’s function Gk(—/2, 0)
(right column) for r = ≠1.55 > rc (a), r = ≠1.85 ¥ rc (b), and r =
≠1.95 < rc (c). Shown are results for ⁄ = 1, L = 12, and — = 20 (right
panel). The dotted line indicates the non-Fermi-liquid crossover scale
≠Im�(Ên) = Ên. The solid lines represent the self-energy at the hotspots,
k = khs, and dashed lines represent the self energy at the point of the
Fermi surface with ky = 0, namely �(k = kx = (kF , 0)). The data points
are averaged over di�erent twisted boundary conditions and the width of
the line is the standard deviation of Im� between the di�erent boundary
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Left column modified from Ref. [P1] under CC-BY 4.0.
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local maxima of the Gk(· = —/2) at higher temperature T = 0.2 as the Fermi
surface. The hot spots are then determined as the closest point to the intersection
of the Fermi surfaces of the two bands Âx and Ây. Since finite-size e�ects are the
dominating error source, we take the self-energy to be the average of the self-
energies at the hotspot and the 4 adjacent momenta, corresponding to di�erent
boundary conditions, and take the standard deviation across the aforementioned
momenta as the numerical error. The statistical error due to Monte Carlo
sampling is entirely overshadowed by the latter.

As shown in the left panel of Fig. 5.20, we find that upon approaching the
QCP the fermions at the hot spots lose their coherence as manifested in a
substantial growth of the imaginary part of the self-energy. Remarkably, for
r ¥ rc, Fig. 5.20b, the self-energy at the hotspots is very weakly dependent on
Matsubara frequency and approximately constant. This implies a stark decrease
of the quasiparticle residue93

Z≠1
khs

= 1 ≠ ˆ�(khs, iÊ)
ˆiÊ

-----
iÊ=0

, (5.26)

Eq. (1.29), and hence marks a distinct deviation from ordinary Fermi liquid be-
havior in the vicinity of the AFM QCP. Note that the observed Im�(khs) ¥ const
stands in contrast to the

Ô
Ê dependence suggested by one-loop perturbation

theory, Sec. 1.4.3, but agrees with observations [31–33, 51] for the O(N < 3)
symmetric variants of the spin-fermion model, despite their distinct perturbative
structure. We identify the lowest available temperature, T = 0.05, as the non-
Fermi liquid crossover temperature, at which the dynamical contribution to the
self-energy begins to dominate the bare frequency dependence of the Green’s
function, namely Im�(k, Ên = fiT ) = fiT . Considering fermions away from the
hot spots, specifically at the point kx = (kF , 0) on the Fermi surface, we find
that ≠Im�(kx, iÊn) is steeply decreasing as a function of Matsubara frequency
with an almost vanishing intercept. At small frequencies this decrease is ap-
proximately linear and indicates conventional Fermi liquid behavior as observed
for large tuning parameter values on the entire Fermi surface, Fig. 5.20a. On
the AFM SDW side of the QCP, r < rc, Fig. 5.20c, the imaginary part of the
self-energy tends to diverge, indicating the gapping out of the hot spots across
the transition. Away from these gaps the self energy remains small, and tends
to vanish at low frequencies.

5.4 The case of local nesting
Our findings above establish the phenomenology and the quantum critical
properties of the AFM QCP in a metal with a generic Fermi surface, Fig. 5.2. At
the considered temperatures, most of the observed characteristics are inconsistent
with the recently proposed z = 1 fixed point by Lee et al. discussed in Sec. 1.4.4.
Most notably, close to the QCP the fermions become incoherent at the hot spots
and the AFM collective modes are characterized by an unambiguous dynamical
93Formally, the quasiparticle residue is only well defined at T = 0. At finite temperatures the

proxy Z̃(T ) = Ê1/ImG≠1(Ê1) with Z̃(T æ 0) æ Z may be considered instead [32].
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scaling with z = 2. In the following, we address the question of whether the
distinguished physics associated with the novel strong-coupling fixed point can
be observed in a more fine tuned scenario.

5.4.1 Tuning to local nesting
One of the central features of the self-consistent theory by Lee et al. is the
occurrence of dynamical nesting: In the low energy limit, the emergent control
parameter v/c flows to zero such that patches of the Fermi surface associated
with opposite hot spots become anti-parallel, Sec. 1.4.4. As an attempt to
promote a flow to the strong coupling fixed point, we modify the band structure
of the fermions in the spin-fermion model, Eq. (5.2), and consider a series of
Fermi surfaces, which approaches the case of perfect local nesting. To design the
latter, we include further range hopping terms into the energy dispersion,

‘k,– = ≠ 2 [t–h cos kx + t–v cos ky

+ tÕ

–d cos kx cos ky

+ tÕÕ

–h cos2 kx + tÕÕ

–v cos2 ky

È
.

(5.27)

Here, t, tÕ, and tÕÕ are first, second, and third order nearest neighbor hopping
amplitudes as illustrated in Fig. 5.1. Next, we evaluate the Fermi velocity
v– = ≠Òk‘k,– along the momentum diagonals kx = ky = khs. Retaining the
relation ‘x(kx, ky) = ≠‘y(ky, kx) and the symmetry discussed in Sec. 5.1, we
obtain

A
vx1
vx2

B

= 2 sin (khs)
A

txh + 2tÕÕ

xh cos(khs) + txd cos(khs)
txv + 2tÕÕ

xv cos(khs) + txd cos(khs)

B

=
A

≠vy2
≠vy1

B

(5.28)

where the integer index in v–i enumerates the components of v–. The relative
angle between the two Fermi velocities, Fig. 5.21, is given by

sin(◊) = ≠v2
x1 ≠ v2

x2
v2

x1 + v2
x2

, (5.29)

which entails that nesting, ◊ = 0, occurs for vx1 = vx2 or, equivalently,

cos(khs) = ≠1
2

tx ≠ ty

txx ≠ tyy
. (5.30)

Note that the next-nearest neighbor hopping amplitude txd drops out and, for
simplicity, may be set to zero. Finally, solving for the chemical potential one
finds the perfect nesting condition

µx = ≠2
Ë
(txh + txv) cos(khs) + (tÕÕ

xh + tÕÕ

xv) cos(khs)2
È

= ≠µy. (5.31)

For the particular parameter choice txh = 1 = ≠tyv, tÕÕ

xv = 0.45 = ≠tÕÕ

yh this im-
plies that local nesting in the vicinity of the hot spots occurs precisely for a chem-
ical potential of µ0 = ≠0.77. As illustrated in Fig. 5.21, we may thus generate a
series of Fermi surfaces characterized by a decreasing nesting angle ◊ œ [fi/2, 0] by
defining the deviation µ̃ = µ ≠ µ0 and considering µ œ {1.5, 1.2, 0.9, 0.6, 0.3, 0.0}.
Note that for these values, µ̃ is approximately proportional to the sine of the
nesting angle, i.e. µ̃ ≥ sin ◊, and the magnitude of the Fermi velocity does not
change significantly.
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Figure 5.21: Series of Fermi surfaces obtained by tuning the chemical potential
µ̃ = µ ≠ µ0 with µ0 = ≠0.77. For µ̃ æ 0 the Âx (dark grey) and Ây (blue)
bands become locally nested in the vicinity of the hot spots (red points),
i.e. ◊ ¥ 0. The underlying energy dispersion is given in Eq. (5.27) and
the hopping amplitudes are as described below Eq. (5.31).

5.4.2 Shift of the AFM QCP

Performing DQMC simulations of the spin-fermion model for each of the Fermi
surfaces in Fig. 5.21 and a Yukawa coupling of ⁄ = 1.0, we investigate the
dependence of magnetic correlations on the chemical potential µ̃ and, thus, the
nesting angle ◊. In particular, we compute contour cuts of the AFM susceptibility,
Eq. (5.4), as defined by the condition ‰≠1 = 0.0194 . As shown in Fig. 5.22,
these magnetic contours clearly bend to larger tuning parameter values upon
decreasing the chemical potential µ̃. This trend is especially pronounced at
lower temperatures: Comparing the extremal cases µ̃ = 1.5 and µ̃ = 0.0, we
observe a displacement � ¥ 0.15 for T = 0.2 and � ¥ 0.38 for T = 0.05. These
findings indicate that upon approaching local nesting at the hot spots, ◊ æ 0,
the AFM QCP shifts to larger tuning parameter values. Note that this movement
is consistent with the expectation of an e�ectively enhanced Yukawa coupling
because of the increased low-energy scattering phase space.

94In practice, we compute ‰≠1(r) by linearly interpolating between the DQMC data points
‰≠1(ri) for a discrete set of values ri and, if possible, determine the root of f(r) = ‰≠1(r)≠
0.01.
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Figure 5.22: Fixed contour cuts of the AFM susceptibility (‰≠1 = 0.01). Shown is
the shift to larger tuning parameter values upon approaching perfect
local nesting, µ̃ æ 0. Although in good approximation sin ◊ (right axis)
is proportional to µ̃, the right axis should be seen as a specification of
the nesting angle for the shown data points only. The considered system
size is L = 10 and the Yukawa coupling is ⁄ = 1.0.

5.4.3 Quantum criticality

We now turn to the low-energy properties of the spin-fermion model in the
case of almost local nesting near the hot spots. Working close to but slightly
away from the perfect nesting limit, µ̃ = 0, we focus on the chemical potential
µ̃ = 0.3, i.e. we set µx = ≠0.47 and µy = ≠µx = 0.47 for the Âx and Ây fermions,
respectively. Note that compared to the generic Fermi surface considered in
Sec. 5.2, which has ◊ ¥ 36.9¶, the relative angle between the Fermi velocities for
these parameters is ◊ ¥ 8.6¶, Fig. 5.21, and is decreased by about a factor of four.
To enhance the Matsubara frequency resolution, we perform simulations at the
ultra-low temperature T = 1/100. Recalling the optimal O(—N3) scaling of the
DQMC method, Sec. 4.2.1, this implies that in comparison to the studies above,
where we have considered temperatures as low as — = 40, the computational
cost is increased by a factor of 2.5. As for the remaining model parameters, we
set the quartic boson coupling to zero, i.e. u = 0, and the Yukawa coupling to
⁄ = 1.0.

We start o� by discussing a potential superconducting transition. Numerically,
by investigating the superfluid density, we find no indication of superconductivity
down to the lowest temperature T Ø 0.01. This is qualitatively consistent with the
prediction that in an almost locally nested system antiferromagnetic fluctuations
will only slightly enhance Tc [4, 7, 112]. From a weak-coupling viewpoint,
Eq. (1.30), the energy scale associated with the onset of superconductivity is
expected to decrease as a function of the angle, Tc ≥ sin ◊. This relation has

127



5 Numerically exact results for the AFM QCP

been numerically confirmed for a generic Fermi surface coupled to an O(2) order
parameter in Refs. [31, 112]. Anticipating that superconductivity, arising from
fermions at the hotspots, is independent of the precise band structure [112], one
expects about a fourfold reduction of Tc for the almost locally nested Fermi
surface compared to the one considered in the studies of the previous sections,
Fig. 5.2.

Next, we turn to the critical AFM fluctuations in the vicinity of the QCP. Note
that we estimate the location of the latter by extrapolating the tuning parameter
dependence of the SDW susceptibility down to T = 0, see App. C. In Fig. 5.23,
we show the Matsubara frequency dependence of the inverse SDW susceptibility
‰≠1(q = 0, iÊn). In contrast to the case of a generic Fermi surface, we notice a
distinct curvature over the interval 0 < Ên < 1, which is more pronounced at
smaller Matsubara frequencies – the focus on ultra-low temperatures improves
the resolution of this nonlinearity. For Ên > 0, data points obtained from DQMC
simulations of di�erently sized systems fall on top of each other, indicating the
absence of significant finite size e�ects.

Although this curvature might, in principle, stem from enhanced low-energy
scattering in the vicinity of the hot spots, and, figuratively speaking, might be
caused by relevant higher-order Feynman diagrams, it is instructive to compare
our DQMC result to the non-interacting fermionic susceptibility �0, Fig. 1.11a.
Explicitly, the latter evaluates to the Lindhard form [17, 23]

�0(q, iÊn) = 2
—N„N

ÿ

k–

G–(k)G≠–(k + q) (5.32)

= 2
N„N

ÿ

k–

n–(k) ≠ n≠–(k + q)
iÊn ≠ ‘–,k + ‘≠–,k+q

, (5.33)

where n–(k) = [exp(—(‘–(k) ≠ µ–)) + 1]≠1 is the Fermi distribution and the
factor of 2 is due to spin. As illustrated in Fig. 5.23, the fermionic susceptibility
�0(q = 0, iÊn) qualitatively shows the same trend as the SDW correlations
‰≠1(Ên) for small Matsubara frequencies. In particular, noting that the pro-
nounced curvature of the non-interacting fermionic susceptibility develops upon
tuning to local nesting, Fig. 5.24, this strongly suggests that the observed non-
linearity in the AFM correlations is primarily due to low-energy features of the
band structure.

Finally, we show the dependence of the inverse SDW susceptibility on squared
momentum in Fig. 5.25. For finite q > 0 the DQMC results for ‰≠1(q, iÊn = 0)
are consistent with a q2 term, while a noticeable drop is visible at q = 0. We
perform a linear regression to establish the quadratic momentum dependence,
illustrated in Fig. 5.25, and find good agreement with the numerical data over the
range 0 < q2 Æ 2 (excluding q = 0). Importantly, all finite-q data points collapse
onto a single line and do not branch out as a function of squared momentum. We
note that the momentum dependence is similar at higher temperature (T = 0.025,
see inset to Fig. 5.25). The isotropic behavior of the boson propagator lies
in stark contrast to an anisotropic |qx + qy| + |qx ≠ qy| term predicted at the
novel z = 1 fixed point [7], Eq. (1.33). However, the apparant discontinuity at
q = 0 hints towards features at low momenta that can not be resolved with the
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Figure 5.23: Frequency dependence of the inverse AFM susceptibility close to the
quantum critical point (r = 1.625) at ultra low temperature T = 1/100
for ⁄ = 1.0 and the almost locally nested Fermi surface with µ̃ = 0.3, see
Fig.5.21. The solid line is the non-interacting fermionic susceptibility �0.
Resized from Ref. [P1] under CC-BY 4.0.

Figure 5.24:
Evolution of the Matsubara fre-
quency dependence of the non-
interacting fermionic susceptibility
�0(q = 0, iÊn), Eq. (5.33), upon
approaching local nesting near the
hot spots, µ̃ æ 0. The values of the
chemical potential µ̃ correspond to
the series of Fermi surfaces shown
in Fig. 5.21 (lines in di�erent grey
scales).
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Figure 5.25: Momentum dependence of the inverse AFM susceptibility close to the
quantum critical point (r = 1.625) at ultra low temperature T = 1/100
(T = 1/40 in the inset) for ⁄ = 1.0 and the almost locally nested Fermi
surface with µ̃ = 0.3, see Fig.5.21. The solid lines are linear fits. Resized
from Ref. [P1] under CC-BY 4.0.

available system sizes. Hence, an anisotropy, as appearing in the critical theory
by Lee et al., may emerge at smaller momenta, i.e. q < 2fi/14.

5.5 First-order quantum phase transition
In the DQMC studies presented above, we have considered the spin-fermion
model, Eq. (5.1), to investigate the quantum critical properties associated with
the onset of antiferromagnetism in metals. In this context, it is important to
remark that it is always a possibility that the SDW quantum phase transition
is of first order rather than continuous character. Specifically, considering the
generic Fermi surface of Fig. 5.2, we find that setting the bare quartic boson
coupling to zero, i.e. u = 0, leads to a region of coexistence of magnetic and
non-magnetic states near the phase transition point. As shown in Fig. 5.26,
this is indicated by a jump-like tuning parameter dependence of the magnetic
susceptibility ‰≠1(q = 0, iÊn = 0; r). In particular, ‰≠1(r) is continuous at
temperatures T Ø 0.1 but very visibly becomes discontinuous upon cooling the
system down to lower temperatures. To verify that this feature is indeed due
to the coexistence of “phases” of similar energy, we inspect the (unnormalized)
distribution function of the AFM susceptibility, which may be extracted from
DQMC by binning the corresponding Markov chain values {‰j}. In Fig. 5.27,
we show the obtained histogram, which clearly displays a double-peak structure.
Here, the first peak at ‰ = 0 corresponds to the disordered Fermi liquid phase
whereas the one centered around ‰ ¥ 2600 indicates a state with finite AFM
SDW correlations.
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Figure 5.26: First order transition in the spin-fermion model occurring for the Fermi
surface of Fig. 5.21 at low temperatures and for u = 0. Shown is the
tuning parameter dependence of the inverse magnetic susceptibility ‰≠1

close to the quantum critical point for various temperatures. Resized
from Ref. [P1] under CC-BY 4.0.
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Disordered FL

AFM SDW

Figure 5.27: Distribution of the values of the antiferromagnetic susceptibility ‰ ob-
tained along the DQMC Markov chain in the vicinity of the AFM QCP.
The Fermi surface is as shown in Fig. 5.2 and the parameters are r ¥ 1.42,
L = 10, and — = 40.

While it is understood from Landau theory, that a vanishing quartic term
favors the occurrence of a first order phase transition, we find that this is not the
case for the almost locally nested system of Sec. 5.4. Here, despite the fact that
we set u = 0 and that one might argue on general ground that nesting favors a
first-order transition [209], our numerics shows no indication of a jump of the
antiferromagnetic susceptibility (see Fig. C.2 in App. C). Instead the onset of
SDW correlations is continuous down to temperatures as low as T = 0.025.

5.6 Discussion
In this chapter, we have deployed large-scale DQMC simulations to explore
the phase diagram of itinerant fermions coupled to an isotropic AFM order
parameter in an unbiased and rigorous manner. By inspecting fermionic and
bosonic correlations, we were able to unveil the critical low-energy behavior
associated with the O(3) symmetric metallic AFM QCP up to numerical accuracy.
Our main finding is that, over a broad range of temperatures, the critical SDW
fluctuations are remarkably well described by Hertz-Millis theory. The dynamical
exponent in this regime, within our accuracy, is z = 2. This is surprising in view
of the fact that Hertz-Millis theory neglects infinitely many marginal couplings
that are generated when integrating over the gapless fermion degrees of freedom
at the Fermi surface, Sec. 1.4.2. Qualitatively similar observations have been
made for metals with easy-plane XY [31, 32] and Z2 [33] antiferromagnetic
order, despite noticeable di�erences in the perturbative structure, which hints
towards a generic property of the AFM QCP. A further important aspect of our
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DQMC results is that, at finite-temperatures above the QCP, the fermions loose
their coherence as a result of strong scattering. In particular, we find that the
imaginary part of the self-energy at the hot spots is only weakly dependent on
Matsubara frequency, in stark contrast to the behavior expected within Fermi
liquid theory. On the ordered side of the QCP the self-energy seems to be
diverging, which is consistent with a Fermi surface reconstruction and a gapping
out of the hot spots.

Motivated by the recent prediction of a novel z = 1 fixed point [6, 7, 15]
by Lee and collaborators, we considered a variant of the spin-fermion model
where the Fermi surface in the vicinity in the hot spots is (almost) locally nested.
In this case, the QCP is shifted to higher tuning parameter values and the
superconducting Tc is strongly suppressed below the lowest temperature available
in our study, T ¥ EF /200. Above this temperature, we find substantial deviations
from the z = 2 Hertz-Millis behavior, but no evidence for the predicted z = 1
criticality. Notably, the momentum dependence of the SDW order parameter is
isotropic up to numerical accuracy.

Considering the general phase diagram of the spin-fermion model, we have
shown that the onset of collinear SDW order at T = 0 gives rise to a magnetic
crossover at finite-temperatures and, most remarkably, is associated with the
emergence of an extended phase of high-temperature superconductivity. The
corresponding superconducting order parameter is unambiguously of d-wave
character, i.e. it changes sign under fi/2-rotations. Our DQMC results reveal
that the maximal critical temperature T max

c ¥ EF /20 (for ⁄ = 2) occurs close
to the QCP, i.e. for r ¥ rc, which is indicative of the intertwined character of
magnetic and electronic ordering. Note that while we have detected finite CDW
fluctuations, they are (partially) competing with superconductivity and seem to
play a minor role. Overall, our findings bear close resemblance to the essential
features of the phase diagrams of many unconventional superconductors, such as
the electron-doped cuprates and the iron-pnictides. This suggests that metallic
quantum criticality plays an important role in these materials and, in particular,
provides numerical evidence for the hypothesis that critical AFM fluctuations
are responsible for the unusually high Tc.

The presented DQMC work o�ers many starting points for follow-up studies.
In particular, further investigations of potential manifestations of the z = 1
fixed point, for example by considering even lower temperatures or di�erent
band structures, are highly desirable to connect numerical and analytical results.
Moreover, directly extracting the renormalized three-point vertex function from
DQMC simulations and analyzing its Matsubara frequency dependence seems
to be a viable approach to shed important light onto why Hertz-Millis theory
and Eliashberg theory are capable of capturing large parts of the critical physics
correctly, despite being formally uncontrolled. In view of the fact that besides
AFM correlations and superconductivity a plethora of subtle phenomena has
been observed in unconventional superconductors, it would also be interesting
to consider variants of the spin-fermion model with multiple competing order
parameters. In particular, a finite-temperature DQMC study of the interplay of
AFM and nematic fluctuations could significantly improve our understanding
of the iron-pnictide superconductors – an extension of the preliminary work in
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Ref. [30], which has considered the strict T = 0 limit. Furthermore, it would be
worthwhile to examine the non-Fermi liquid state above the QCP in more detail.
Especially, verifying a linear-in-T resistivity over an extended region of the
phase diagram, as observed in experiments, would be highly desirable. Although
analytic continuation generally prevents the analysis of real-time dynamics,
a promising memory matrix technique to partially circumvent this issue has
recently been put forward in Ref. [210]. In the following chapters, we take an
orthogonal approach and demonstrate that machine learning can be utilized to,
among other aspects, reveal extended non-Fermi liquid regimes in the vicinity of
metallic quantum critical points.
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6 Machine learning phases of
matter

The past decade has seen a phenomenal triumph of machine learning (ML)
techniques in almost all areas of industry. Considered by many to be as disruptive
as the computer revolution of the last century [211], the rise of self-learning
algorithms has, among others, revolutionized manufacturing, stirred up the
service sector, and severely impacted financial trading. The strength of machine
learning methods lies in recognizing patterns of interest in large amounts of
complex data which may then be utilized in classification or decision making
tasks. Famous applications include image recognition, email spam filtering, as
well as autonomous driving.

In a seminal interdisciplinary work, Carrasquilla et al. [212] have, for the
first time, transferred those novel ML ideas to condensed matter physics. In
particular, they have demonstrated that the paramagnet-ferromagnet phase
transition in the two-dimensional Ising model can be detected by combining
classical Monte Carlo simulations with a purely statistical machine learning
approach that, compared to a traditional finite-size scaling analysis, has no prior
knowledge of the order parameter. Triggered by this finding, three conceptual
lines of research have developed within condensed matter physics: First, the
utilization of ML architectures, such as restricted Boltzmann machines (RBMs),
as wave function parametrizations in variational algorithms to obtain ground
states of quantum many-body systems [213–218]. Second, the embedding of
ML models into quantum Monte Carlo simulations to reduce autocorrelation
times [27, 219–223]. Third, the discrimination of phases of matter by employing
artificial neural network (ANN) structures [P3–P5, 212, 224–228].

In this thesis, we focus on the latter and consider a novel ML approach to
probe aspects of quantum criticality in itinerant electron systems. To prepare
the corresponding discussion in Ch. 7, it is the purpose of the following sections
to provide a concise introduction into the essentials of machine learning. More
comprehensive treatises on the topic can be found in Refs. [211, 229–231]. Starting
with a general review of neural networks and there building blocks, we discuss
the concept of supervised training and, especially, the e�cient computation
of gradients. Afterwards, we introduce convolutional neural networks (CNNs),
which have proven to be particularly powerful in classification tasks. Finally,
we apply the ML concepts and showcase that they can be utilized to detect
the antiferromagnetic finite-temperature BKT transition in the O(2) symmetric
spin-fermion model.
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6 Machine learning phases of matter

Figure 6.1: Visualization of a generalized perceptron that takes an input vector x =
(x1, x2, . . . , xn)T and implements the function f : Rn æ R, f(x) = ‡(Ê ·
x + b), where Ê is a vector of weights, b is a bias, and ‡ : R æ R is a
non-linear activation function. For a regular perceptron, ‡ = � is the
Heavyside step function.

6.1 Artificial neural networks
Historically, artificial neural networks, or simply “neural networks” (NNs), have
been introduced as models for information processing in biological systems [232–
234]. In the last century, there development was largely based on the sentiment
that, essentially, the human brain is a highly complex, parallel computer that
is capable of organizing its structural constituents, the neurons, to perform
sophisticated tasks, such as perceptual recognition [231]. The modern field of
machine learning, however, has detached from this biological realism [229] and,
while the terminology is still significantly influenced by the original context,
merely identifies neural networks as particularly e�cient statistical models.

The fundamental building block of most artificial neural networks are percep-
tron neurons as illustrated in Fig. 6.1. Based on a given vector input x œ Rn,
a perceptron produces a binary output f(x) œ [0, 1] by computing a weighted
sum, adding a constant, and applying a Heaviside step function, i.e.

f(x) = �(Ê · x + b). (6.1)

Here, the vector of weights Ê and the “bias” b parameterize the perceptron and
may be tuned such that the latter implements a meaningful operation – we will
discuss this training process in more detail in the next section. Given the binary
structure of the step function, one realizes that a perceptron can be utilized
to implement a classification algorithm that divides a set of inputs into two
categories. In particular, by noting that the argument of the Heaviside function
is a regular linear model, as used in conventional linear regression, it can be
proven that a perceptron is, in general, capable of correctly classifying data that
is linearly separable95 [231].

In practical applications, it is useful to substitute the Heaviside function as
it is discontinuous, not derivable at x = 0, and has �Õ(x) = 0 everywhere else
– features that turn out to be suboptimal for training [235]. Concretely, the
95Figuratively speaking, linear separability means that there exists a hyperplane – a decision

surface – in the potentially high-dimensional data space such that data points corresponding
to the two di�erent classes lie on opposite sides of the plane.
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6.1 Artificial neural networks

Figure 6.2: Illustration of a maximally connected, feed-forward neural network. An
input vector x (green circles) is propagated through two layers of “hidden”
neurons (red circles) before converging into one, or multiple, output
neurons (blue circle). E�ectively, the ANN implements a highly non-linear
function F : Rn æ R, which is parameterized by biases, sitting at the
nodes, and weights, attached to inter-neuron connections (black arrows).

functional form of a neuron is generalized to

f(x) = ‡(Ê · x + b), (6.2)

where ‡ is a continuous activation function, such as a sigmoid,

‡(x) = 1
1 + e≠x

, (6.3)

i.e. a smooth step function, or a rectified linear unit (ReLU), ‡(x) = max(0, x).
In an artificial neural network, many neurons are arranged in a layered

structure as illustrated in Fig. 6.2. An input vector x œ Rn is then processed
by propagating information through multiple layers of hidden96 neurons before
converging to a neural output. Note that while di�erent layers are connected in
series, there are no links between neurons within a layer such that information
can be processed in parallel. On a mathematical level, an ANN represents a
function F (x) : Rn æ R, which takes the form of a systematic composition of
multiple perceptron operations f(x), Eq. (6.2). Furthermore, because involving
nested nonlinear activation functions, F (x) is highly nonlinear. It is precisely
this property that enables complex pattern recognition and classification beyond
linear separability.

We remark that the network in Fig. 6.2 is a maximally connected feed-forward
network, in which the neurons of two layers are all linked to each other and
the flow of information is uni-directional (from left to right in the figure). In
contrast, recurrent neural networks (RNNs), for example, contain backward
connections, i.e. loops, and, in this way, implement memory features [229, 234].
In condensed matter physics, RNNs have been utilized to learn phase transitions
from dynamics [236].
96One categorizes neurons into “visible” input and output neurons as well as “hidden“ neurons

sitting in intermediate layers.
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Figure 6.3:
Schematic e�ective loss land-
scape as defined by the cost
function of a neural network.
Starting from a given point,
corresponding to the initial
values of the weights and bi-
ases, the gradient descent al-
gorithm amounts to moving
“downhill”, i.e. in the direc-
tion opposite to the local gra-
dient. Taken from Ref. [237]
with permission.

6.2 Supervised learning
Artificial neural networks represent nonlinear statistical models that may be
utilized in regression and classification tasks. Fundamentally, they are universal
function approximators [229] and, if designed appropriately, can be shown to
be Turing complete [238]. Depending on the size of a network, the associated
function F (x) is characterized by a large number of free parameters: the weights
and biases associated with individual neurons. In order to have a NN perform
a particular task, these parameters must be optimized with respect to a given
objective.

In the following, we focus on supervised learning, where the network is trained
on input data X = {x1, x2, . . . , xn} that comes associated with desired outputs
Y = {yi, y2, . . . , yn}. In this case, the objective is to learn the relation Y (X) and
correctly reproduce the yi for the training data. Quantitatively, we introduce a
cost function C as a measure for the performance of the neural network. Popular
choices include the quadratic form,

C = 1
2n

ÿ

i

[yi ≠ F (xi)]2 , (6.4)

and the cross-entropy [230]

C = ≠ 1
n

ÿ

i

[yi ln F (xi) + (1 ≠ yi) ln (1 ≠ F (xi))] . (6.5)

Note that the latter is related to the Kullback-Leibler divergence [229], and,
in this sense, quantifies how much the distributions Y (X) and F (X) di�er
from each other. Implicitly depending on the network parameters, the cost
function e�ectively defines a loss landscape [239], Fig. 6.3, whose global minimum
corresponds to the optimal weight and bias configuration. The goal of the training
process is therefore to find this minimum as e�ciently as possible. Given the
nested structure of the neural function F (x) and the extensiveness of the number
of free parameters, an analytic optimization of the weights and biases is rarely
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feasible. Instead, one applies established numerical gradient descent methods
[124, 229]. As indicated in Fig. 6.3, the fundamental strategy is to start from a
random initial configuration and to iteratively approach the minimum by moving
in the opposite direction of local gradients. Hence, in each step, the weights and
biases of a neuron j in a layer l are updated according to

Êl
jk = Êl

jk ≠ ÷
ˆC

ˆÊl
jk

, (6.6)

bl
j = bl

j ≠ ÷
ˆC

ˆbl
j

, (6.7)

in which ÷ is a learning rate (step size). Although the iteration itself is straight-
forward to implement, the demanding part of the training is the computation of
the – large number of – partial derivatives in Eqs. (6.6) and (6.7). Below, we will
discuss the instructive backpropagation algorithm [229, 230], which addresses
this tasks e�ciently.

Before moving on, let us note in passing that numerical optimization of,
potentially non-convex, objective functions is an entire separate research field by
itself. In this thesis, we only focus on the basic concepts and refer the interested
reader to the vast body of literature [124, 240].

6.2.1 Backpropagation

The partial derivates in Eqs. (6.6) and (6.7) indicate how the value of the cost
function is a�ected by a change of a weight Êl

jk, connecting neurons j and k
in layers l and l ≠ 1, and a bias bl

j. The idea of backpropagation is to evalute
these derivatives for all weights and biases in a layer by layer manner starting
with the output layer of the neural network first. The reason for this reverse
traversal is simple: The output neurons in the last layer, l = L, appear directly
in the cost function C, see F (xi) in Eqs. (6.4) and (6.5) for a single output
neuron, whereas hidden neurons only implicitly influence the neural output and
the gradient. By repeated application of the chain-rule, one may nonetheless
derive explicit relations between derivatives of subsequent layers and compute
the network gradient iteratively.

To see this, we start by introducing the compact notation al
j = ‡(zl

j), in which
al

j is the output and zl
j the weighted input of a neuron j in layer l [230]. Focusing

on the bias derivative first, we evaluate

ˆC

ˆbl
j

= ˆC

ˆal
j

ˆal
j

ˆbl
j

= ˆC

ˆal
j

‡Õ(zl
j)

ˆzl
j

ˆbl
j

= ”l
j,

(6.8)
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where we have used that ˆzl
j

ˆbl
j

= 1 and have introduced

”l
j = ˆC

ˆzl
j

= ˆC

ˆal
j

ˆal
j

ˆzl
j

= ˆC

ˆal
j

‡Õ(zl
j).

(6.9)

Note that ”l
j may be interpreted as the “error” associated with the j-th neuron

in layer l in the sense that a value close to zero indicates optimality [230].
Performing a similar evaluation of the derivative in Eq. (6.6), we find

ˆC

ˆÊl
jk

= ˆC

ˆal
j

ˆal
j

ˆÊl
jk

,

= ˆC

ˆal
j

‡Õ(zl
j)

ˆzl
j

ˆÊl
jk

= ”l
ja

l≠1
k ,

(6.10)

which, in contrast to Eq. (6.8), indicates a dependence on the neural output of
the preceding layer.

Having expressed both derivatives in terms of the neural error ”l
j, we now

derive a relation between the errors ”l
j and ”l≠1

j of subsequent layers. Recalling
that zl+1

k = q
j Êl+1

kj ‡(zl
j) + bl+1

k , we obtain [230]

”l
j = ˆC

ˆzl
j

=
ÿ

k

ˆC

ˆzl+1
k

ˆzl+1
k

ˆzl
j

=
ÿ

k

ˆzl+1
k

ˆzl
j

”l+1
k

=
ÿ

k

Êl+1
kj ‡Õ(zl

j)”l+1
k .

(6.11)

This is the central equation of the backpropagation algorithm. It represents an
explicit prescription for how to propagate the neural errors ”l+1

j of layer l + 1
backwards to layer l. Combined with the fact that ”L

j in the final layer L is
straightforward to compute – the cost function directly depends on neural outputs
aL

j = Fj(x) – one may repeatedly apply Eq. (6.11) as well as Eqs. (6.8) and
(6.10) to compute all partial derivatives and, thus, the entire network gradient.
In summary, backpropagation thus consists of two fundamental steps:

• Forward pass: Propagate an input through the network to obtain the
neural outputs and evaluate the cost function.
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• Backwards pass: Compute the errors ”L
j and iteratively backpropagate

them via Eq. (6.11) from the output to the input layer. Use Eqs. (6.8) and
(6.10) to obtain the network gradient (and update the weights and biases
as per Eqs. (6.6) and (6.7)).

In principle, to obtain a good numerical estimate, the procedure above should
be applied to the entire training set X: The gradient then corresponds to the
average over the individual samples. However, since this calculation is the
computational bottleneck of the training, one aims to reduce the number of
backpropagation invocations as much as possible. For this reason, in practice,
one implements a stochastic version of gradient descent in which the network
gradient is approximated based on small subsets of the training data, so-called
mini batches. By choosing the size of the latter, one can trade numerical accuracy
for computational performance.

Let us note that while the described backpropagation algorithm is characterized
by conceptual simplicity and good e�ciency, it requires the storing of the outputs
of all neurons for the backward pass and only produces the first-order gradient.
It is therefore not compatible with more sophisticated optimizers that utilize
higher-order gradients in the updating of weights and biases, Eqs. (6.6) and
(6.7). For these reasons, modern machine learning frameworks are built around
more general and e�cient automatic di�erentiation (AD) methods [241, 242].
In the latter, one typically constructs an adjoint computational graph for the
backward pass to speed up gradient calculations. Based on these techniques,
di�erential programming has recently emerged as a powerful generalization of
machine learning that considers arbitrary code, beyond a network representation,
as a derivable statistical model [242].

6.2.2 Regularization and dropout layers
In comparison to conventional statistical models, e.g. linear regression models,
artificial neural networks host a much larger number of free parameters – quite
often O(10000). While this intuitively explains the superior representation
capibilities of ANNs, it may also lead to the practical issue of overfitting. In
this case, the network over specializes on the presented training data, i.e. it
reproduces the desired output values yi almost perfectly, but fails entirely when
applied to an unknown test input after training.

As a counter-measure to overfitting, a dropout unit [243] can be integrated
into the network architecture between two neural layers, Fig. 6.4. During the
optimization, this component randomly disables a certain percentage – typically
about 50% – of the inter-layer connections for every training input or mini
batch97. This randomization prevents that individual neurons learn and overly
represent the same feature in the data. E�ectively, one is averaging over di�erent
thinned out networks that may overfit in di�erent ways [230].

A second, more direct method to prevent over specialization is L2 regularization.
Here, instead of modifying the network structure one adjusts the cost function.

97Alternatively, one may disable entire neurons [243].
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Figure 6.4: Illustration of the e�ect of a dropout unit (grey rectangle) in a neural
network. During the training, a certain percentage of inter-neuron connec-
tions (black arrows) is randomly selected and disregarded (dashed grey
arrows). Once the network parameters are fixed, the dropout unit acts as
the identity.

Specifically, one introduces a term proportional to the squared norm of the
weights. For the cross-entropy cost function, Eq. (6.5), this reads [230]

C = ≠ 1
n

ÿ

i

[yi ln F (xi) + (1 ≠ yi) ln (1 ≠ F (xi))] + ⁄

2n

ÿ

Ê

Ê2, (6.12)

where ⁄ is a regularization factor. Note that the new term comes with a positive
sign and thus has the e�ect of penalizing large weights. This way, one keeps
the magnitudes of the latter on a similar level and prevents the formation of
singular network paths that dominate the neural output.

6.3 Convolutional neural networks
Although the basic ANNs discussed above, and illustrated in Fig. 6.2, represent
powerful models that can learn a wide variety of patterns in data, it has proven to
be useful to design more specialized machine learning architectures for particular
tasks. For example, correlations in the input data are often known to be primarily
short-ranged, in which case it is meaningful to equip the neural network with a
notion of locality by embedding components beyond the maximal-connection
principle. To that end, we introduce convolutional layers, which, as the name
suggests, implement convolution operations. Specifically, the output of a neuron
in such a layer is given by [230]

al
j,k = ‡

Q

a
Kÿ

l=≠K

Kÿ

m=≠K

Êl
l,mal≠1

j+l,k+m + bl

R

b . (6.13)

Here, as illustrated in Fig. 6.5, a subset of the input vector al≠1, which is
interpreted as a two-dimensional matrix al≠1

j,k , is multiplied by a kernel of size
(2K + 1) ◊ (2K + 1), corresponding to the shared weights Êl

l,m of the layer.
E�ectively, the kernel acts as a two-dimensional filter, which is moved across the
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Figure 6.5: Illustration of a convolution operation. A subregion of an input image
(green) is multiplied element by element with a kernel (red) to produce an
output value (blue), corresponding to the sum of the intermediate results.

entire input to produce an output, commonly referred to as feature map. The
power of convolutions is well established in image processing, where by choosing
Sobel, Laplace, or Gaussian convolution matrices, one can readily implement
edge detection, sharpening, and blurring operations, respectively [244]. In the
present context, the neural network learns and optimizes the kernel autonomously
during the training process. We hence anticipate that convolutional layers allow
for e�cient feature extraction, independent of the precise type and origin of the
input data.

In practice, one typically considers a stack of convolutional layers whose output
is then fed into a maximally-connected ANN. Such a deep98 convolutional neural
network (CNN) architecture is visualized in Fig. 6.6. Here, max pooling layers
have been inserted between the convolutional units. The former divide an input
“image” into quadratic pools, i.e. subregions, and implement a dimensional
reduction by replacing every individual pool by its maximum value. This down-
sampling has at least two e�ects: On the one hand, it reduces the convolutional
feature maps to their most prominent characteristics and, in this way, prevents
overfitting. On the other hand, it represents an (irreversible) compression which
lowers the computational cost associated with further data processing.

Convolutional neural networks have applications in many disciplines, including
natural language and image processing [244]. In particular, they rank among the
best machine learning classifiers in the MNIST benchmark [245] for hand-written
digit recognition [246]. In the next section, we will demonstrate the capabilities
of CNNs in the context of condensed matter physics.

6.4 Discriminating phases of matter
Before we discuss how to employ supervised machine learning for phase classifi-
cation, let us address why this might be useful in the first place. After all, there
already exist many established methods to characterize physical properties and
98As per custom, a machine learning architecture is termed deep, or shallow, based on how

many neural layers it contains.
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conv pool conv pool

feature extraction

Figure 6.6: Illustration of a convolutional neural network. An input “image” (colored
matrix) is first processed by a series of convolutional filters and pooling
layers, which, respectively, extract feature maps (red, green, and blue
rectangles) and perform a dimensional reduction. The result is then fed
into a maximally-connected network component with a hidden layer (pink
circles) and an output layer (blue circles). Modified from Ref. [P3] under
APS copyright.

detect phase transitions, such as, perhaps most importantly, finite-size scaling
analyses of correlation functions. However, while conceptually valuable, these
approaches have important disadvantages. Typically, they make assumptions
about the nature of the phases of a physical system, for example, in requiring
the knowledge of explicit order parameters. In this sense, they are biased and
tailored to specific scenarios. In addition, their implementation often comes at a
high computational cost and, in some cases, isn’t feasible at all – we will see an
example in the next chapter. In contrast, machine learning methods represent
general purpose tools that make no (or few99) prior assumptions about the type
of correlations in input data. Moreover, an evaluation of the neural function
F (x) essentially amounts to computing simple matrix-vector products, which can
be e�ciently parallelized on modern multi-core systems and graphical processing
units (GPUs). We hence expect machine learning to be a valuable supplement
to the existing body of numerical techniques.

To discriminate the phases of a physical system, one combines the idea of
machine learning with quantum Monte Carlo. Formally, QMC may be seen
as a data generation process that, for every point in a, potentially unknown,
phase diagram, produces Markov chains of configurations, which, statistically,
represent the thermodynamic system at hand, Ch. 2. Based on these samples,
one may implement machine learning that tries to identify patterns and recognize
changes of correlations in the data, for example, when crossing a phase boundary.
Focusing on supervised learning in particular, the procedure is as follows: First,
one trains a ML model at certain points p(1), . . . , p(m) in the phase diagram,
which are known or, at least, expected100 to mark qualitatively di�erent physical
states s(1), . . . , s(m). Specifically, the training data set is composed of the Markov
chain elements x(i)

j , generated at these points, and a discrete set of corresponding
labels that indicates to which state s(i) an element x(i)

j belongs, c.f. X and Y in
99For example, convolutional layers implement the assumption that input data might have

translation invariance.
100Consider the spin-fermion model as an example: By construction, it is clear that AFM SDW

correlations are present for tuning parameter values r π rc but are absent for r ∫ rc.
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6.4 Discriminating phases of matter

Sec. 6.2. During the optimization, the ML architecture then learns to classify
QMC samples based on distinct data characteristics associated with the di�erent
states s(1), . . . , s(m). After the training, one freezes the free parameters, e.g. the
weights and biases of a neural network, and utilizes the ML model to classify
QMC data generated at non-training points p /œ {p(1), . . . , p(m)}. In this way, one
can map out the phase diagram based on the learned characteristics of the states
s(1), . . . , s(m). In particular, by tracking how the neural output changes along a
straight path connecting, say, p(1) and p(2), one may identify a phase transition
as the unique point for which the ML model indicates with equal confidence that
the found correlations match those of the states s(1) and s(2) (see Fig. 6.7 below).

The power of supervised learning in the context of condensed matter physics
has been demonstrated in numerous recent studies [212, 227, 247–250]. In
particular, CNNs have proven to be capable of reliably discriminating phases
in itinerant electron systems [227, 228] – we explicitly demonstrate this point
below. Finally, let us note that the described supervised learning scheme can be
turned into a semi-unsupervised approach by repeatedly applying it on a small
scale [228]. Truly unsupervised machine learning studies of condensed matter
systems based on, for instance, principle component analysis (PCA) have been
conducted in Refs. [224, 251, 252].

6.4.1 Spin-density wave transition in the spin-fermion model
Let us demonstrate the supervised learning approach outlined above in the
context of the onset of antiferromagnetism in the spin-fermion model, Eq. (3.4).
To lower the computational cost of DQMC simulations and to facilitate the
ML-based phase discrimination, we consider a two-component order parameter.
In this case, the model has an O(2) symmetry and features an AFM SDW phase
transition of BKT type at finite temperatures [31, 32]. Specifically, we choose
the model parameters as in Ref. [32], i.e. u = 1, c = 2, ⁄ = 3, txh = tyv = 1,
txv = tyh = 0.5, and µ = 0.5.

In principle, there are two choices of what to use as data input for the machine
learning: the bosonic configurations „ or snapshots of the equal-time Green’s
function G„, Eq. (2.21). Clearly, since for the spin-fermion model the former
represent the order parameter, which is understood to develop a finite expectation
value at the AFM transition, they appear as the superior alternative. However,
for other systems, such as the Hubbard model, the „-field is merely a Hubbard-
Stratonovich (or Hirsch) degree of freedom, which may be of either charge or
spin character, and hence not directly related to the transition at all. For this
reason, we follow the study in Ref. [227], an generally prefer the the Green’s
function data over the bosonic configurations.

As for the ML architecture, we use the TensorFlow framework [253] to im-
plement the CNN illustrated in Fig. 6.6, where in the convolutional layers we
use kernels of size 5 ◊ 5 and ReLU activation functions. Specifically, the first
layer consists of 64 independent kernels and the second of 32. The pooling
window size is chosen as 2 ◊ 2. In the subsequent fully connected neural network,
we use 256 hidden and two final neurons. The output of the latter, which is
normalized by a softmax activation to always sum up to unity, is interpreted as
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Figure 6.7: AFM SDW transition in the O(2) symmetric spin-fermion model at inverse
temperature — = 6 as detected by the CNN, illustrated in Fig. 6.6. Shown
is the normalized neural output of the network (blue and pink), which
has been trained at points rA = 6.0 and rB = 11.0. The vertical solid line
indicates the point of “maximal confusion” rmc ¥ rc ¥ 8.67, where both
neurons indicate 50% confidence.

the networks confidence for the presence of a paramagnetic or antiferromagnetic
state, respectively.

As illustrated in Fig. 6.7, we train the CNN based on 4000 Green’s function
samples deep inside of each of the adjacent phases, that is at tuning parameter
values rA = 6.0 and rB = 11.0 for the SDW phase and paramagnetic phase,
respectively. In the stochastic optimization, we consider a cross-entropy cost
function and a mini batch size of 128. Afterwards, we lock the weights and biases
of the network and present it with Green’s function data at tuning parameter
values between rA and rB. The neural output F (r) of the CNN, obtained by
this approach, is shown in Fig. 6.7. First, we note that the network successfully
discriminates the SDW and paramagnetic phases as indicated by the near zero
and unity outputs in the vicinity of the extremal training points. Furthermore,
the neural curves clearly show that upon varying the tuning parameter r one
transitions from one phase to the other, indicating the existence of a phase
transition. Determining the position of the latter by the “maximal confusion”
criterion F (r) = 1/2, we find the estimate rmc ¥ 8.67, which approximately agrees
with the conventional finite-size scaling analysis conducted in Ref. [32]. This
demonstrates that the machine learning approach is capable of discriminating
phases of matter by extracting physical correlations from QMC data.
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7 Quantum loop topography of
metallic quantum criticality

In this chapter, we demonstrate that machine learning, when combined with
DQMC, can be utilized to study two essential aspects of metallic quantum
criticality: superconductivity, the secondary, emergent electronic order, and the
finite temperature quantum critical fan, typically associated with a breakdown of
Fermi-liquid theory, Fig. 1.4. Specifically, we consider a quantum loop topography
(QLT) [225] approach for probing transport in itinerant many-fermion systems,
which is based on the autonomous learning of imaginary time current-current
correlations, Eq. (5.9). We showcase that this physics-inspired ML technique
is capable of recognizing superconductivity in the O(2) symmetric spin-fermion
model and, for comparison, the attractive Hubbard model in good agreement
with established knowledge. As we will discuss, compared to traditional methods,
the QLT approach only requires a fraction of the raw DQMC data and has
a significantly lower computational cost. Because of this numerical e�ciency,
it is perfectly suited for identifying changes in electronic transport properties
across entire phase diagrams. Focusing on Yukawa coupling strengths for which
superconductivity is suppressed, we present such large scale QLT studies for the
AFM QCP of the spin-fermion model and the Ising-nematic QCP considered
in Ref. [39]. As we demonstrate, this analysis unambiguously reveals robust
and distinguished fan-shaped regions in the phase diagrams associated with the
metallic QCPs and strongly indicates the existence of extended non-Fermi liquid
regimes. Note that the presented collaborative101 studies have been published in
Refs. [P3–P5], from which we have compiled this chapter.

7.1 Quantum loop topography
Machine learning based on artificial neural networks has recently emerged as
a powerful method for quantum state recognition in condensed matter physics
[212, 224, 226–228, 247–252, 254–256], see Ch. 6. In particular, it has been
demonstrated that convolutional neural networks can reliably discriminate phases
of matter in itinerant electron systems [227, 228], Sec. 6.4. However, most of
the employed ML architectures stem from applications outside of physics, such
as image recognition (CNNs), email spam filtering (SVMs102), and autonomous

101The author’s contributions to these studies include generating and providing DQMC data
for the AFM QCP, preprocessing the same for QLT, training and applying the CNNs in
Ref. [P3], producing all figures in Ref. [P3] and Fig. 2 in Ref. [P4], as well as participating
in the writing of the manuscripts, Refs. [P3, P4].

102Support-vector machines, which are related to the perceptron discussed in Ch. 6.
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QLT

Figure 7.1: Architecture of the quantum loop topography approach. A dimensional
reduction of the full Green’s function data is obtained by only considering
correlations along (short) spatial loops. For illustration purposes only four
exemplary loops (yellow, red, green, purple) are shown. The resulting
quantum loop vector field (colored lattices) are fed into a maximally
connected feed-forward neural network. First appeared in Ref. [P4].

driving (RNNs), and are not tailor-made for a physical analysis. As a consequence,
from a traditional scientist’s point of view, they often seem rather artificial and
notoriously opaque. Even more importantly, one generally expects that these
problem-agnostic setups need longer training – they need to learn a reliable
discriminator from scratch – and, presumably, do not exhaust the full potential
of ML for condensed matter physics.

Quantum loop topography [225], Fig. 7.1, is a numerical method which aims
to improve upon these limitations by integrating information about the targeted
physical response into the ML scheme. It stands out from other quantum state
recognition approaches as a preprocessing step that selects and organizes DQMC
data by using a physically motivated “loop topography” filter [P3]. The extracted
loop vector field, which contains the dissected and preprocessed information,
is then fed into a regular, shallow neural network, Fig. 7.1, to implement a
quantum state discrimination. So far, variants of QLT have been successfully
utilized to distinguish conventional and fractional Chern insulators from trivial
insulators based on the topological Hall response of a system [225] and to detect

2 quantum spin liquid phases by targeting Wilson loops [226]. In contrast,
our studies below [P3, P4] represent the first implementation of QLT in the
context of interacting itinerant electron systems and, in particular, metals close
to quantum criticality.

7.1.1 Current-current correlations
To the end of being sensitive to superconductivity and a potential “strange metal“
state, which is generally characterized by a linear temperature dependence of
the electrical resistivity, Sec. 1.2, we target longitudinal transport and consider
the zero-frequency current-current correlation function, cf. Eq. (5.9),

�xx(r1, r2) =
⁄

d·Èjx(r1, ·)jx(r2, 0)Í. (7.1)
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Figure 7.2: Illustration of the (i) triangular and (ii) quadrilateral loop operators

employed in the QLT of the longitudinal transport. Taken from Ref. [P3]
under APS copyright.

As discussed in Sec. 5.2.2, in the appropriate limit, the Fourier transform of �xx is
related to the superfluid density fls, which indicates the onset of superconductivity
by surpassing the critical BKT value [137].

To see that the current-current correlator can have an underlying loop structure,
we consider a gapped Hamiltonian with a single flat band, i.e. H Õ = ≠�, where
� © |gÍÈg| projects onto the ground state |gÍ [P3]. In this case, one can compute
the current-current correlation function �xx at zero temperature103, [P3]

�xx(r1, r2) = Èg|jx(r1)(1 ≠ �)jx(r2)|gÍ
= Tr [�jx(r1)(1 ≠ �)jx(r2)] ,

=
ÿ

r3r4

Pr2r4Pr4r1Pr1r3Pr3r2 (x1 ≠ x4) (x2 ≠ x3)

≠
ÿ

r4

Pr2r4Pr4r1Pr1r2 (x1 ≠ x4) (x2 ≠ x1) .

(7.2)

Here, PrÕr © Èg|c†

rÕcr|gÍ = ”rÕr ≠ Èg|crc
†

rÕ|gÍ is essentially the Green’s function,
the position vector is ri = (xi, yi)T , and we have used the definition of the
current density operator, jx(r) = ≠i [H(r), x̂], for the third equality. Note that
the current-current correlation function �xx decomposes into weighted sums of
quadrilateral and triangular loops of two-point functions.

Based on the availability of these Green’s functions in DQMC simulations, our
QLT strategy is to approximate �xx by short loop contributions. At each lattice
site j, we build a loop vector by computing all chained products of two-point
functions corresponding to loops with three, L—

jkl, and four, L⇤
jklm, vertices that

include the site j [P3]. Specifically, we consider the loop products

L—

jkl © ÂPjk|– ÂPkl|— ÂPlj|“ , (7.3)
L⇤

jklm © ÂPjk|–Õ ÂPkl|—Õ ÂPlm|“Õ ÂPmj|”Õ , (7.4)

where ÂPjk|– indicates that we evaluate the two-point functions Pjk for individual
Monte Carlo samples –. In particular, we impose a short-distance cuto� dc

and only take short loops into account. An illustration of the lowest order loop
operators L—

jkl and L⇤
jklm is provided in Fig. 7.2.

103See the supplementary of Ref. [P3] for more details.
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Clearly, the QLT approximation of the current-current correlation function
based on only the contributions L⇤

jklm and L—

jkl built from single Monte Carlo
samples, rather than full thermodynamic expectation values, is no substitute for
a rigorous computation of �xx, especially for a gapless system [P3]. Nonethe-
less, as we demonstrate below, QLT may serve as a valuable proxy in probing
longitudinal transport in itinerant electron systems. In particular, while cal-
culating the current-current correlator in DQMC requires the computation of
the time-displaced Green’s function, which is numerically and computationally
demanding104, Sec. 4.1.3, QLT is straightforward to implement based on the
readily available equal-time Green’s functions.

7.2 Probing superconducting transport
As demonstrated in Ch. 5, one of the prominent features of the onset of antifer-
romagnetism in a metal is the concomitant emergence of superconductivity from
critical order parameter fluctuations. In the following, we will showcase that
the QLT approach is capable of detecting a transition from regular metallic to
superconducting transport. Specifically, to allow a benchmark of the method, we
apply it to well established superconducting transitions of di�erent symmetries
in two metallic systems.

7.2.1 Attractive Hubbard model
First, we consider the prototypical negative-U Hubbard model [137] on a two-
dimensional square lattice, which we already discussed in the context of the
sign-problem in Ch. 3. For convenience, we repeat its Hamiltonian here,

H = ≠t
ÿ

Èi,jÍ,s

1
c†

iscjs + h.c.
2

≠ |U |
ÿ

i

3
niø ≠ 1

2

4 3
ni¿ ≠ 1

2

4
≠ µ

ÿ

i

ni. (7.5)

Being one of the conceptually simplest condensed matter models which, at
the same time, is complex enough to host interesting physics, the attractive
Hubbard model has been the target of various analytical and numerical studies
over the last decades [137, 158, 159, 192, 257, 258]. Given the presence of an
explicit attractive interaction between the itinerant fermions, it is understood
from BCS theory that the model undergoes a superconductivity transition
of Berezinskii–Kosterlitz–Thouless type at su�ciently low temperatures [158].
However, at half-filling, µ = 0, there is a degeneracy between s-wave singlet
pairing and the formation of charge-density wave order due to particle-hole
symmetry [258], Sec. 3.3. This leads to an e�ective three-component order
parameter and a suppression of Tc in two dimensions [258]. Only away from
half-filling is this degeneracy broken in favor of SC order [158, 258]. For this
reason, we choose the parameters as t = 1, |U | = 8, and tune the chemical

104Empirically, we find that measuring the time-displaced Green’s function has approximately
the same computational complexity as performing the DQMC simulation in the first place.
This is plausible, as one needs to construct stacks of time slice propagators similar to the
one discussed in Sec. 4.2.1.
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Figure 7.3: The neural outputs of the QLT and CNN architectures for superconduct-
ing transport as a function of inverse temperature — for the negative-U
Hubbard model, Eq. (7.5). While the inputs for the deep CNN are the
unprocessed Green’s functions, produced by DQMC, the QLT architecture
only regards quantum loops as in Eqs. (7.3) and (7.4), Fig. 7.2. Both
architectures are trained with samples at low temperature — = 20 and
high temperature — = 2. The parameters are |U | = 8, ÈnÍ ¥ 0.9, and
L = 8. Taken from Ref. [P3] under APS copyright.

potential such that the density ÈnÍ = ÈnøÍ + Èn¿Í ¥ 0.9 is slightly below unity.
In this case, the critical temperature takes the value Tc ¥ 0.1 [137].

Focusing on a system of linear size L = 8, we conduct DQMC simulations of
the attractive Hubbard model and use the obtained Green’s function data as
input for the QLT. The latter is then fed into a shallow neural network with
a single hidden layer composed of 40 neurons, Fig. 7.1. To gauge the internal
parameters of the neural network, we train the latter deep in the normal phase,
— = 2, and deep in the superconducting phase, — = 20, based on ≥ 20000 DQMC
samples for each temperature. Hereby, we use a cross-entropy cost function with
L2 regularization to avoid over-training, Eq. (6.12), and a mini-batch size of 10
in the stochastic gradient descent optimization. The value of the single output
neuron, which is normalized by a softmax activation function and, thus, lies
in the interval [0, 1], is interpreted as the networks confidence for recognizing
superconductivity. The optimized network is then used to classify the electric
transport of the system at temperatures between the extremal training points,
i.e. over the range 0.05 Æ T Æ 0.5.

Clearly, as shown in Fig. 7.3, the neural network, fed with compressed QLT
data, is capable of reliably distinguishing normal and superconducting transport
at high and low temperatures as indicated by neural outputs close to zero and
one, respectively. At the critical temperature Tc ¥ 0.1, the network classifies the
Hubbard model as superconducting with a certainty as high as ≥ 90%. However,
one observes that the increase of the neural output with decreasing temperature
is smooth and steady, rather than abrupt. As a consequence, the point of
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Figure 7.4: Mean-field superconducting transition of the attractive Hubbard model
for U = ≠8 and µ = ≠0.5. Comparison of the mean-field s-wave pairing
gap � (green diamonds) and the neural output from the QLT approach
(red dots). The vertical dashed line indicates the mean-field transition
temperature —mf ≥ 0.545 [P3]. Taken from Ref. [P3] under APS copyright.

“maximal confusion”, Sec. 6.4, occurs at approximately Tmc = —≠1
mc ≥ 0.28, which

lies slightly above Tc. We attribute this finding to the presence of diamagnetic
superconducting fluctuations, which are expected to onset before entering the
superconducting phase.

To justify this interpretation, we consider a mean-field analysis of the attrac-
tive Hubbard model, in which fluctuations are neglected entirely. In this case,
we expect that the QLT method is able to sharply detect the onset of supercon-
ductivity at the mean-field transition temperature —mf ≥ 0.545. Specifically, our
approach is as follows: We solve the self-consistent gap equations at each inverse
temperature — to obtain the s-wave pairing gap �(—) [P3]. Then, we perform
Monte Carlo simulations of the corresponding Bogoliubov-de-Gennes mean-field
Hamiltonian with the respective �(—) to generate the necessary QLT input [P3].
The phase diagram resulting from this procedure is presented in Fig. 7.4. Note
that, here, the high and low temperature training points are chosen as — = 0.3
and — = 0.8, respectively. As apparent in the figure, the output of the neural
network has a jump-like character near —mf such that the location of the phase
transition is accurately predicted, i.e. —mc ¥ —mf. This suggests that QLT does
indeed capture the onset of superconductivity at the correct critical temperature
if superconducting fluctuations are absent.

Finally, we benchmark our QLT approach against a regular CNN-based phase
discrimination scheme, Sec. 6.4. A direct comparison of the two methods for the
attractive Hubbard model is shown in Fig. 7.3. Within the expected accuracy,
we observe that both techniques produce essentially the same neural output
and detect the onset of superconducting fluctuations based on the DQMC data.
However, note that the CNN structure contains significantly more free parameters:
About six times the number of hidden neurons and, even more importantly,
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Figure 7.5: Output of the QLT (red) and CNN (blue) architectures indicating the
detection of superconducting transport in the vicinity of the AFM QCP
of the O(2) symmetric spin-fermion model, Eq. (7.6). The vertical lines
indicate the critical transition temperature —c ≥ 12.5 (dashed), derived
from the superfluid density measurements, and the onset of diamagnetic
fluctuations —dia ≥ 6.9 (dotted) where the orbital magnetic susceptibility
changes sign [32]. The inset (modified from [32]) illustrates the chosen
finite-temperature scan cutting into the superconducting dome. Both ML
architectures were trained at — = 30 for superfluid transport and — = 5
for metallic transport. Taken from Ref. [P3] under APS copyright.

the weights and biases associated with every convolutional layer. During the
optimization step, the latter are dynamically adjusted based on the training
data whereas the QLT filtering is entirely static. Furthermore, while the entire
equal-time Green’s functions (of size 2N ◊ 2N) are available to the CNN, the
QLT setup only regards quantum loops of short lengths, i.e. matrix inputs of
size ≥ 2N ◊ dc. It hence achieves similar performance based on a significantly
smaller data set, indicating the potential of the QLT approach.

7.2.2 Spin-fermion model
We now turn to superconductivity arising from quantum critical fluctuations
in the vicinity of an O(2) symmetric AFM QCP [2, 31, 32, 81]. We consider
the sign-problem free spin-fermion model of Eq. (3.4) with an easy-plane order
parameter, i.e N„ = 2, repeated here for convenience,

SSFL =
⁄ —

0
d·

ÿ

r,rÕ

ÿ

s,–

Â†

–rs [(ˆ· ≠ µ) ”rrÕ ≠ t–rrÕ ] Â–rÕs

+ ⁄
⁄ —

0
d·

ÿ

r

ÿ

s,sÕ
eiQ·r„r · Â†

xrs‡ssÕÂyrsÕ + h.c. (7.6)
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Specifically, we choose the nearest-neighbor fermion hopping amplitudes as
txh = tyv = 1 and txv = tyh = 0.5. We further set the Yukawa coupling to ⁄ = 3,
the chemical potential to µ = 0.5, u = 1, and the bare bosonic velocity to c = 2.
The phase diagram of the spin-fermion model for these parameters is shown
in the inset of Fig. 7.5 [32]. To apply the QLT analysis, we tune the system
to the vicinity of the AFM QCP, r = 10.35, and consider a finite-temperature
scan, T œ [0.2, 0.03], cutting into the dome of d-wave superconductivity. The
training points for the shallow neural network are taken as the boundaries of this
temperature interval: T = 1/30 for superconducting and T = 1/5 for metallic
transport.

The results of our QLT study are presented in Fig. 7.5. We find that the normal
state and the d-wave superconducting state are reliably distinguished by the QLT
approach as evident from extremal neural outputs at high and low temperatures,
respectively. Right at the critical temperature Tc ¥ 0.08, which has been
determined in Ref. [32] by means of a superfluid density computation as discussed
in Sec. 5.2.2, the shallow neural network identifies superconducting transport
with about 90% confidence. As for the Hubbard model, the neural output is found
to steadily increase over an extended temperature range. Notably, the latter
coincides with a region above the BKT transition, Tc ¥ 0.08 < T < Tdia ¥ 0.15,
which is characterized by pronounced diamagnetic orbital correlations [32]. This
supports our assessment above, that QLT is even sensitive to the onset of
superconducting fluctuations.

Comparing the QLT architecture to a conventional CNN, Fig. 7.5, we find good
agreement between both ML approaches. As mentioned above, this is in spite
of the fact that QLT has a lower complexity and only uses a fraction (≥ dc/L2)
of the full Green’s function input processed by the CNN. Moreover, we note
that the detection of superconducting transport displayed in Fig. 7.5 has been
obtained by using only O(10) uncorrelated DQMC samples. This constitutes a
huge reduction over the typically required samples in order to obtain statistically
reliable DQMC measurements of the superfluid density [32, 259].

7.3 Mapping out non-Fermi liquid regimes
The findings above establish that our QLT+NN scheme is capable of e�ciently
detecting changes in transport properties of strongly correlated electron systems.
In the following, we investigate [P4] whether the same technique is capable of
identifying more subtle anomalous transport, such as the linear-T resistivity
observed in unconventional superconductors, Sec. 1.2. To that end, we numeri-
cally focus on two types of metallic quantum critical points, the O(2) symmetric
AFM QCP of the spin-fermion model [31, 32] and the Ising-nematic QCP stud-
ied in Refs. [39, 40], and attempt to map out non-Fermi liquid regimes in the
associated phase diagrams. Note that these representative QCPs cover both
conceptual classes of metallic ordering discussed in Sec. 1.1.1. While the onset of
antiferromagnetic order is characterized by a finite commensurate wave vector,
Q = (fi, fi) ”= 0, and, consequently, the opening of gaps at specific hot spots on
the Fermi surface, the Ising-nematic order is of uniform Q = 0 type, Fig. 1.3.
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7.3 Mapping out non-Fermi liquid regimes

Figure 7.6: Phase diagram of the O(2) symmetric spin fermion model overlaid with
machine-learned Fermi liquid to non-Fermi liquid crossover. The color
map shows the output of a shallow neural network with a single hidden
layer of 10 neurons trained on QLT-filtered equal-time Green’s function
data extracted from DQMC simulations – see App. D for the underlying
data grid. A value of 1 (dark red) corresponds to the non-Fermi liquid, a
value of 0 (dark blue) corresponds to the Fermi liquid, and intermediate
values represent the crossover region. White boxes indicate the Fermi
liquid training points, (r = 0.3, T = 0.05) and (r = 1.4, T = 0.05), and the
black circle the same for the non-Fermi liquid, (r = 0.7, T = 0.2). The red
star indicates the location of the quantum critical point, i.e. rc = 0.62 [31].
The solid black line indicates the finite-temperature SDW phase transition.
The dashed black line shows the – largely suppressed – superconducting
Tc(r) [31]. First appeared in Ref. [P4].

7.3.1 O(2) symmetric AFM QCP
To suppress superconductivity and uncover the bare AFM QCP, we consider the
spin-fermion model, Eq. (7.6), at Yukawa coupling ⁄ = 1.5, which, compared
to Sec. 7.2.2, is reduced by a factor of two. We further set the boson velocity
to c = 3 and the quartic boson coupling to u = 1. In this case, the QCP is
found at the critical tuning parameter value rc = 0.62 and is barely masked by a
superconducting dome, see Fig. 7.6 or Fig. 2b in Ref. [31]. Given the easy-plane
character of the order AFM order parameter, the system features a classical
SDW phase transition of BKT character at finite-temperatures in agreement
with the Mermin-Wagner theorem.

Three-point classification

As one anticipates Fermi liquid behavior away from the AFM QCP, i.e. for
r π rc and r ∫ rc, and a putative non-Fermi liquid regime at finite temperatures
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7 Quantum loop topography of metallic quantum criticality

above rc = 0.62, we employ a three-point supervised learning scheme for the
QLT-fed shallow neural network, Fig. 7.6. Specifically, we train the latter
based on 3200 input vectors at the representative points (r = 0.3, T = 0.05),
(r = 1.4, T = 0.05), and (r = 0.7, T = 0.2). Here, we are guided by the fact
that for r = 0.7 and T = 0.05 the non-Fermi liquid character has been explicitly
demonstrated in Ref. [31] by extracting the Matsubara self-energy, cf. Sec. 5.3.2.
While this method for detecting a novel non-Fermi liquid state is theoretically
appealing and numerically exact, it requires the calculation of the time-displaced
Green’s function and is hence associated with a considerable computational cost.
Importantly, this cost is incurred for every parameter point of the phase diagram.
For this reason, in spite of the DQMC simulations of Ref. [31] having a scope of
O(10) million CPU hours on modern supercomputers, i.e. comparable to our
computational e�orts in this thesis, mapping out an extended non-Fermi liquid
region has so far been out of reach.

As illustrated in Fig 7.6, the QLT-fed neural network manages to learn the
qualitative features of the phase diagram of the spin-fermion model and strikingly
reveals an extended fan-shaped non-Fermi liquid regime. Being anchored at
only three points far away from the metallic QCP, it is particularly remarkable
that the identified non-Fermi liquid state, as supported by the high temperature
training point, extends to the lowest temperatures. Moreover, the recognized
NFL region narrows upon decreasing T and clearly culminates into the AFM
QCP. Note that the location of the latter was not provided to the ML model at
any point and, thus, represents a highly non-trivial feature autonomously learned
by the neural network. Focusing on the boundaries of the identified NFL regime,
the QLT architecture reveals the expected steep rise of the NFL-FL crossover
temperature away from the QCP without explicit prior knowledge. For small
tuning parameter values, we find qualitative agreement with the classical SDW
phase transition line at finite temperatures.

To probe the numerical stability of the obtained QLT phase diagram, Fig. 7.6,
we investigate the robustness of the neural output against the choice of training
points. As shown in Fig. 7.7, we find that the identification of the NFL regime
is remarkably stable and shows only modest quantitative changes when the NFL
training point is moved closer to or further from the ordered phase (panels a
and b), and similarly when the disordered FL training point is shifted (panels
c and d). This observation stands in stark contrast to neural networks trained
on snapshots of classical order parameters, which require training points in the
immediate vicinity of the phase boundary [212], or otherwise fail105.

Binary classification

Given the remarkable results of the QLT-based three-point scheme, we further
investigate the neural network’s learning by individually considering the SDW-
NFL phase transition, for r Æ rc, and the NFL-FL crossover, at larger tuning
parameter values. Specifically, we explore the phase diagram by applying a
binary classification in which we take only two of the three training points
considered above and, besides the NFL regime, train the shallow neural network

105We have reproduced the numerical study in Ref. [212] and verified this statement explicitly.
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7.3 Mapping out non-Fermi liquid regimes

Figure 7.7: Robustness of the QLT-based three-point non-Fermi liquid classification
for the spin-fermion model, Eq. (7.6). The di�erent panels indicate that
the identified NFL regime varies only modestly when: (a) the non-Fermi
liquid training point is moved closer to the ordered phase (r = 0.5); (b)
the non-Fermi liquid training point is moved further from the ordered
phase (r = 0.9); (c) the disordered Fermi liquid training point is moved
closer to the QCP (r = 1.1); (d) the disordered Fermi liquid training point
is moved further from the QCP (r = 1.8). Modified from the supplement
of Ref. [P4].
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7 Quantum loop topography of metallic quantum criticality

Figure 7.8: Binary classification for the spin-fermion model. The neural network is
trained on QLT-filtered DQMC data to distinguish (a) the AFM SDW
phase from magnetic disorder and (b) the non-Fermi liquid regime (NFL)
from the disordered Fermi liquid regime (FL). The training points are
indicated by white boxes, (r = 0.3, T = 0.05) in (a) and (r = 1.1, T = 0.05)
in (b), and black circles, (r = 0.7, T = 0.2) in (a) and (b). First appeared
in Ref. [P4].

only in the antiferromagnetically ordered phase or the disordered FL region. The
results of this analysis are presented in Fig. 7.8.

As apparent from Fig. 7.8a, The neural network clearly identifies the entire
magnetic phase transition at finite temperatures in almost quantitative agree-
ment with the systematic finite-size analysis conducted in Refs. [31, 32]. Notably,
this performance is achieved without any explicit reference to the AFM order pa-
rameter. Instead, it is solely based on short quantum loops of equal-time Green’s
functions representing proxies for longitudinal transport, Sec. 7.1. Although in
this respect the observed quality of detection is somewhat surprising, it seems
that signatures of the opening of gaps at the hot spots on the Fermi surface are
still included in the local QLT input [P3]. Remarkably, as shown in Fig 7.8b, a
binary classification targeting the disordered Fermi liquid state reveals a marked
non-Fermi liquid crossover in qualitative agreement with the three-point learning
results in Fig. 7.6. This demonstrates that the feature is stable and independent
of a referencing of the ordered phase. Note that compared to the well-defined
SDW phase transition the neural ouput for the NFL-FL crossover appears more
spread in the transient area – see the pronounced color bleeding in Fig. 7.8b.

Similar to the three-point discrimination above, we further study the robustness
of the binary classification by systematically altering the location of the respective
SDW, NFL, and FL training points. As illustrated in Fig. 7.9, we notice a
remarkable stability for both transitions as indicated by only modest changes of
the neural output. In particular, while a shift of the NFL reference point pNFL
to the close vicinity of the SDW phase boundary leads to the largest observed
deviations, the magnetic phase transition is reliably recognized even when moving
pNFL far away from the QCP and to the lowest considered temperature T = 0.05,
see bottom panel in Fig. 7.9a.
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7.3 Mapping out non-Fermi liquid regimes

Figure 7.9: Robustness of the binary classification for the spin-fermion model. The
panels show that the QLT-based discrimination of SDW order and dis-
order (a) as well non-Fermi liquid and Fermi liquid transport (b) varies
only modestly when shifting the respective training points (cyan arrows).
Modified from the supplement of Ref. [P4].
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7 Quantum loop topography of metallic quantum criticality

7.3.2 Ising-nematic QCP
As a prototype of a metallic quantum critical point associated with uniform Q = 0
order, we consider the sign-problem free lattice model for Ising-nematic quantum
criticality studied in Refs. [39, 40]. The Hamiltonian is H = Hf + Hb + H–,
where

Hf = ≠t
ÿ

Èi,jÍ,s

c†

iscjs ≠ µ
ÿ

is

c†

iscis,

Hb = V
ÿ
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As illustrated in Fig. 7.10, the model’s degrees of freedom are spin-1/2 fermions
cis that live on the sites i of a square lattice, and pseudospins ·a

i,j , with a = x, y, z,
that are situated on the bonds connecting two neighboring sites i and j. While
the fermions do not interact with each other, Hf , the pseudospins are governed by
a d = 2 transverse field quantum Ising model, Hb. Here, V is a nearest-neighbor
Ising interaction – ÈÈi, jÍ ; Èk, lÍÍ denotes a pair of nearest-neighbor bonds – and
h is a transverse field. Upon tuning h, the pseudospins undergo a quantum
phase transition from a paramagnetic to an “antiferromagnetic“ state that breaks
fi/2 rotational symmetry [1, 39]. The latter is indicated in Fig. 7.10: the z
components of the pseudospins on horizontal bonds (white squares) di�er from
those on their neighboring vertical bonds (red squares). When coupled to the
fermion bond density in H–, this ordering implies a nematic transition at h = hc

as the e�ective fermion-hopping becomes anisotropic.
Following Ref. [40], we set the dimensionless pseudospin-fermion coupling to

– = 1.5, the “antiferromagnetic“ interaction to V = 0.5, and both the chemical
potential as well as the hopping amplitude to µ = t = 1. In this case, it has been
established by conventional finite-size scaling and computations of the relevant
susceptibility that there is a nematic finite-temperature phase transition leading
to a metallic QCP at hc ¥ 2.6 [40], Fig. 7.11. As in the AFM spin-fermion
model, the latter is covered by a broad superconducting dome with a high critical
temperature Tc [40], indicated by the dashed line in Fig. 7.11. At temperatures
T > Tc, there exists evidence for a non-Fermi liquid normal state in form of a
linear-in-T resistivity fl(T ) [2, 40]. However, the extraction of real-time dynamics

Figure 7.10:
Illustration of the two-dimensional square lattice model
Eq. (7.7) hosting an Ising-nematic QCP. Itinerant
fermions (dark circles) can move between neighboring
lattice sites with the hopping amplitude t and interact
with antiferromagnetically coupled Ising pseudospins
(red and white squares). The latter are situated on
the lattice bonds and subject to a transverse field (not
shown). Based on Fig. 3 in Ref. [39].
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7.3 Mapping out non-Fermi liquid regimes

Figure 7.11: Phase diagram of the Ising-nematic model, Eq. (7.7), overlaid with
machine-learned Fermi liquid to non-Fermi liquid crossover. The color
map shows the output of a shallow neural network with a single hidden
layer of 10 neurons trained on QLT-filtered and nearest-neighbor equal-
time Green’s function data extracted from DQMC simulations – see
App. D for the underlying data grid. A value of 1 (dark red) corresponds
to the non-Fermi liquid, a value of 0 (dark blue) corresponds to the Fermi
liquid, and intermediate values represent the crossover region. White
boxes indicate the Fermi liquid training points, (h = 1.9, T = 0.17) and
(h = 4.1, T = 0.17), and the black circle the same for the non-Fermi
liquid, (h = 2.7, T = 0.5). The red star indicates the location of the
quantum critical point, i.e. hc = 2.6 [40]. The solid black line indicates
the finite-temperature Ising-nematic phase transition. The dashed black
line shows the superconducting Tc(h) [40]. First appeared in Ref. [P4].

from imaginary time DQMC data necessarily involves a variant of analytic
continuation – or the utilization of proxy quantities – and is therefore subject to
considerable ambiguities.

Three-point classification

To implement the QLT-based three-point learning scheme, we choose a non-
Fermi liquid anchor point at high temperatures above the Ising-nematic QCP,
i.e. (h = 2.7 ¥ hc, T = 0.5), and further train the neural network deep inside of
the nematic and Fermi liquid states at small and large tuning parameter values,
i.e. h π hc and h ∫ hc, respectively. In contrast to the study of the AFM QCP
above, we supplement the QLT feature vectors with nearest-neighbor Green’s
function data as we find a posteriori that this slightly improves the detection
(see Ref. [P4] for a detailed comparison). In the generation of the input data, we
consider a “cold start” of DQMC simulations for h < hc in which the pseudospin
degrees of freedom are initialized in one of the classical ground states of Hb to
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7 Quantum loop topography of metallic quantum criticality

Figure 7.12: Binary classification for the Ising-nematic model. The neural network is
trained on QLT-filtered DQMC data to distinguish (a) Ising-nematic order
from disorder and (b) the non-Fermi liquid regime from the disordered
Fermi liquid regime. The training points are indicated by white boxes,
(h = 1.9, T = 0.17) in (a) and (h = 4.1, T = 0.17) in (b), and black
circles, (h = 2.7, T = 0.5) in (a) and (b). Modified from the supplement
of Ref. [P4].

facilitate the convergence to a local minimum [P3].
As shown in Fig. 7.11, the neural network learns the nematic phase boundary

in striking agreement with the conventional analysis [40], indicated by the solid
line, down to the lowest temperatures. Similar to our findings for the AFM QCP,
it identifies a NFL-FL crossover bending away from the QCP upon increasing
T . In between those transitions, a marked NFL regime is recognized. Note
that the latter extends down to the lowest considered temperatures, despite
the NFL training point being located at T = 0.5, and leads to the vicinity of
the metallic QCP at T = 0. We note that, in comparison to the AFM QCP,
the e�cient learning of the phase diagram using only three training points is
particularly remarkable given that all three states – nematic, NFL, and FL – are
gapless. As discussed in Ch. 1 and illustrated in Fig. 1.3, the Ising nematic order
only elongates the Fermi surface and leaves the same gapless with well-defined
quasi-particles. We hence conclude that the QLT-fed neural network has learned
subtle changes in the fermionic correlations of the three states. Let us note in
passing that, similar to our discussion around Fig. 7.7, we find that the phase
diagram is robust against the choice of the NFL training point (see App. D).

Binary classification

In Fig. 7.12, we illustrate the neural output obtained by a binary classification
in which only two of the training points in Fig. 7.11 are considered. We find
that both the nematic ordering as well as the NFL-FL crossover are reproduced
in almost quantitative agreement with the three-point learning scheme. This
strongly indicates the robustness of our results. The latter is further demonstrated
in App. D, where we observe only modest changes of the neural output under
shifts of the two training points for both transitions.
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7.4 Discussion

7.4 Discussion
We have introduced a quantum loop topography scheme for machine learning
longitudinal transport and have demonstrated that this approach, when applied
to data obtained in DQMC simulations, can be utilized to e�ciently probe
essential aspects of metals near quantum criticality.

In particular, by simply processing readily available equal-time Green’s func-
tions, our QLT-based classification scheme could successfully identify the onset of
superconductivity emerging in the vicinity of an AFM QCP (and in the attractive
Hubbard model). Hereby, our results are in good agreement with rigorous com-
putations of Tc based on the superfluid density [32]. However, while extracting
the latter involves expensive and non-trivial computations of time-displaced
Green’s functions, see Ch. 4, our ML approach has a small numerical footprint
and is straightforward to implement. In comparison to convolutional neural
networks, which have previously been used to study phase transitions in itinerant
electron systems [227, 228], the QLT architecture has the advantage that it has
considerably fewer free parameters, is motivated by physics considerations, and
requires only semi-local information as input.

Applying the novel ML scheme to two models of metallic QCPs, the O(2)
symmetric spin-fermion model and an Ising-nematic theory, we could obtain
detailed features of the associated phase diagrams such as the boundaries of the
ordered phases. In both cases, the QLT approach clearly reveals the location
of the QCP at T = 0, a non-trivial aspect autonomously learned from the
raw DQMC data, and visually highlights the emergence of a striking, broad
non-Fermi liquid regime. This is particularly remarkable in view of the fact
that our analysis relies on only three, rather extremal training points. Even
more notably is the observed robustness of the identified features under shifts
of those training points, which, to the best of our knowledge, is unprecedented
among ML classification studies of condensed matter systems – in many cases,
e.g. Refs. [212, 227], the anchor points are fine-tuned.

Our results indicate that combining DQMC with physics-inspired ML tech-
niques can be powerful way to extract relevant features of phase diagrams of
quantum many-body systems. The simplicity and stability of the QLT approach
combined with its e�ectiveness in detecting subtle NFL behavior make it an
promising tool for numerical condensed matter research. Looking ahead, we
anticipate that it will be valuable in detecting other subtle, elusive states that
are characterized by non-trivial transport properties.
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Concluding remarks
In this thesis, we have investigated the onset of AFM SDW order in a metal
by means of large-scale quantum Monte Carlo simulations and physics-inspired
machine learning. Our presented numerical results establish the general phe-
nomenology of the metallic AFM QCP, a long-standing problem that has been
tackled by many physicists over decades. Most notably, we could rigorously
demonstrate that critical SDW fluctuations can give rise to high-temperature
d-wave superconductivity as well as an extended non-Fermi liquid regime. As
discussed in Ch. 1, these features are characteristic for many unconventional
superconductors and provide strong numerical evidence that antiferromagnetic
quantum criticality plays a central role in those systems.

Despite the remarkable similarities between the obtained numerically exact
phase diagram, Ch. 5, and those of high-Tc materials, Ch. 1, the considered
spin-fermion model fails to capture all aspects of the rich physics of uncon-
ventional superconductors, in particular the plethora of subtle correlations in
the hole-doped cuprates. Starting from the results of this thesis, it would be
highly interesting to see whether the integration of additional terms into the
e�ective theory could give rise to further complex behavior. In particular, it
has been pointed out [45, 80, 260] that coupling the AFM order parameter
to a Z2 gauge field could lead to a topological phase transition and a Fermi
surface reconstruction prior to the onset of AFM order, as observed in ARPES
measurements. Alternatively, in light of the presence of both magnetic and
nematic correlations in some of the iron-pnictides, it would be worthwhile to
investigate the interplay of multiple competing order parameters in a numerically
exact manner [30]. Moreover, studying the spin-fermion model on frustrated
lattices, considering more than two electron bands, and investigating the case of
incommensurate AFM order are natural and highly interesting ways to extend
our e�orts in this thesis. First attempts to explore these directions have been
published in Refs. [33, 51, 52, 259].

Ideally, our numerical DQMC results represent valuable feedback for theory. In
particular, it is intriguing that the low-energy AFM modes are well-described by
the uncontrolled Hertz-Millis theory. Obtaining a deeper analytical understanding
of this phenomenon is highly desirable. In comparison to similar works on easy-
axis and easy-plane antiferromagnetism [32, 33, 39], our findings demonstrate that
many essential aspects of the AFM QCP are independent of the dimensionality
of the order parameter – the maximal critical temperature is a notable exception.
Given that the latter qualitatively changes the structure of a perturbative
Feynman graph expansion, this asks for theoretical clarification. Furthermore, our
DQMC study has unambiguously revealed that, within the accessed temperature
regimes, the z = 1 fixed point discovered by Lee et al. [6, 7, 15] does not
generally govern the physics of the metallic AFM QCP. Even for a fine-tuned
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7 Concluding remarks

Fermi surface that is almost locally nested at the hot spots, we have not found
clear indications of a strong-coupling fixed point. It would be highly interesting
to see what causes this discrepancy between theory and numerical experiment.
A follow-up DQMC study that, if feasible, considers even lower temperatures
than we have done in this thesis could be a first step towards a solution.

In principle, it would also be desirable to study the properties of the AFM
QCP in a finite magnetic field. As superconductivity is suppressed in this
case, one could extract the bare critical properties for larger fermion-boson
interactions, i.e. ⁄ ∫ 1, which might potentially cause further deviations from
weak-coupling theory. Unfortunately, DQMC simulations of the spin-fermion
model in a magnetic field are sign-problematic and, thus, exponentially ine�cient.
Finding ways to circumvent this limitation seems highly desirable. As we have
demonstrated in Ch. 3, it is generally possible to write down interacting many-
fermion Hamiltonians with complex phase factors that have strictly positive
definite DQMC weights – the identified flat-band model represents an example.
Based on our spadework, it would be worth exploring, if the novel semigroup
approach to the sign-problem can be utilized to construct alternative models for
the AFM QCP that allow for a magnetic field and yet are amenable to e�cient
DQMC. If successful, this could represent an important milestone for numerical
simulations of metallic quantum criticality.

Apart from the sign-problem, a limiting aspect of DQMC is its high compu-
tational cost. As shown in Ch. 4, the generation of Markov chains scales as
O(—N3), preventing studies of large systems at low temperatures. Similarly,
measuring fermionic correlations based on time-displaced Green’s functions is
almost equally expensive – a fact that often goes unmentioned – and significantly
hampers desirable large-scale parameter studies of, for instance, the fermion
self-energy. In this thesis, we have showcased that combining DQMC with
modern machine learning represents a powerful way to partially circumvent this
issue and probe important aspects of metallic quantum criticality. In particular,
we have demonstrated that a novel quantum loop topography approach based
on the learning of longitudinal transport correlations can reliably detect the
onset of superconductivity and SDW order in the O(2) symmetric spin-fermion
model. Moreover, the relatively small computational footprint of this technique
has enabled us to study changes in transport across wide parameter regions and,
in this way, to map out an extended non-Fermi liquid regime. The latter has
so-far been elusive, even in large-scale DQMC studies of the order of 10 million
CPU hours. Remarkably, despite training the ML architecture at only two or
three points, we could reproduce many essential aspects of the established phase
diagram of the spin-fermion model, including the location of the QCP [31, 32].

Looking forward, a practical extension of work is to apply QLT to other
e�ective models of metallic quantum criticality, that is beyond the Ising-nematic
theory considered in Ch. 7, and systematically compare the features of di�erent
metallic QCPs. Furthermore, it should be viable to use QLT to identify other
states without traditional representation that are defined by non-trivial transport
properties. In view of the fact that ML methods, despite attempts to physically
anchor them, are always accompanied by a certain opacity, it would be worthwhile
to rigorously assess our results by means of orthogonal numerical techniques.
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An interesting candidate could be the memory matrix approach introduced in
Ref. [210].

Parallel to our work, various machine learning approaches for internally speed-
ing up DQMC simulations have been put forward [219, 220, 222, 223, 261].
Essentially, the idea is to train a ML architecture based on small Markov chains
of configurations such that it approximates the desired distribution function and
may be used to propose e�cient global update. While we have found that for the
spin-fermion model, direct applications of these strategies do not significantly
improve statistical convergence – continuous O(3) order parameters seem to be
more di�cult to handle than Z2 counterparts – exploring this path further seems
promising to reach larger system sizes in DQMC.

As part of this thesis, we have developed state-of-the-art DQMC codes and
various software libraries focused on specific functionalities, such as the intricate
stabilization of Green’s function computations [S3]. To improve the transparency
of the presented research as well as to facilitate further numerical studies on
quantum critical metals, we have published these implementations under open
source licenses, see e.g. Refs. [S1–S4]. In contrast to existing frameworks [184,
185], our codes are written in a “high-level” programming language and, in this
way, will hopefully make DQMC accessible to a wider audience.
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A Hubbard-Stratonovich
transformation of the
spin-fermion model

If we drop the gradient and quartic terms in S„, Eq. (1.4), the parts of the
spin-fermion model, Eq. (1.9), involving the bosonic field „ read
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For convenience we temporarily set Q = 0106. For every imaginary time ·
and every position r we may now consider the inverse Hubbard-Stratonovich
transformation
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where we have substituted y = x + A/– in the second line. Identifying – = r
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⁄
D(Â, Â†) e≠SÂ◊

◊ exp

Q

ccccca
≠

A

≠⁄2

2r

B

¸ ˚˙ ˝
J̃ in Eq. (1.14)

Q

a
ÿ

s,sÕ
„ · Â†

sr‡ssÕÂsÕr

R

b
2

R

dddddb
.

(A.3)

In Hamiltonian language this generated four-fermion interaction reads

HJ = J̃
3ÿ

n=1

ÿ

issÕ

1
c†

is [‡n]s,sÕ cisÕ

22
= J̃

ÿ

i

S2
i , (A.4)

106In the two band version of the model no explicit term eiQ·r is necessary. Instead one may
simply shift the dispersion of one of the bands by Q = (fi, fi).
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where we have used the definition of the spin operators, Eq. (1.15). In combina-
tion with the non-interacting fermion contribution SÂ the total Hamiltonian is
therefore given by

HtJ = ≠
ÿ

ijs

1
tijc

†

iscjs + h.c.
2

+ J̃
ÿ

i

S2
i ≠ µ

ÿ

i

ni, (A.5)

which, after reintroduction of the ordering wave-vector term corresponds to
Eq. (1.14).
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B Evaluation of the fermion
trace

In the following, we prove the identity

Tr
C

Ÿ

l

e≠�·H(l)
D

= det
A

1 +
Ÿ

l

e≠�·h(l)
B

, (B.1)

for a non-interacting Hamiltonian H(l) to fill the gap between Eqs. (2.18) and
(2.20) of the main text. Closely following Ref. [90], we split the proof into two
parts: First, we show that a time product of exponentials of H(l) may be grouped
into a single exponential of a bilinear form H̃. Then, we prove the identity

Tr
Ë
e≠�·H̃

È
= det

1
1 + e≠�·H̃

2
. (B.2)

Grouping products of exponentials

We start with a generic bilinear Hamiltonian

H =
ÿ

ij

hijc
†

icj. (B.3)

In the Heisenberg picture, the time dependence of a fermion creation operator is
given by

c†

i (·) =
ÿ

j

Ë
e≠·h

È

ji
c†

j. (B.4)

Performing a basis transformation to operators

c†

– =
ÿ

i

Èi|–Íc†

i , (B.5)

one finds,

c†

–(�·) =
ÿ

ij

Ë
e≠�·h

È

ji
Èi|–Íc†

j (B.6)

©
ÿ

j

Uj–c†

j, (B.7)

with Uj– defined by the previous line. Now, considering a discretized imaginary
time and H(l) with time-dependent coe�cients hij(l), one has

c†

– =
ÿ

ij

C
Ÿ

l

e≠�·h(l)
D

ji

Èi|–Íc†

j. (B.8)
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B Evaluation of the fermion trace

Defining a coe�cient matrix h̃ element-wise through the relation

Ë
e≠�· h̃

È

ji
=

C
Ÿ

¸

e≠�·h(¸)
D

ji

, (B.9)

and considering the product of exponentials

B =
Ÿ

l

e≠�·H(l), (B.10)

one obtains the identity [90]

Bc†

–B≠1 =
ÿ

ij

Ë
e≠�· h̃

È

ji
Èi|–Íc†

j. (B.11)

This indicates that B e�ectively acts as a single exponential of the e�ective
bilinear Hamiltonian H̃ with coe�cients h̃ij.

Evaluating the trace

Using the result above, we are now in the position to prove Eq. (B.1) by evaluating
the fermion trace in the eigenbasis of H̃, i.e.

H̃ =
ÿ

–

‘–c†

–c–. (B.12)

This way, one obtains the following chain of equalities, [90]
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B
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(B.13)
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C Locating the isotropic
AFM QCP

Given the O(—N3) asymptotic scaling of DQMC simulations, a brute force search
for the QCP is associated with a high computational cost. Scanning a large
range of tuning parameter values at low temperatures is therefore a suboptimal
approach. Instead, a more e�cient method for estimating the position of the
quantum critical point, rc, is to track a finite temperature magnetic transition
down to T = 0 [31, 32]. Although the spin-fermion model with a three-component
order parameter does not spontaneously break the continuous O(3) symmetry
at finite temperatures (Mermin-Wagner theorem) one can nonetheless use this
strategy to obtain a rough estimate of the QCP location. Concretely, we extract
the scaling exponent – from a finite size scaling analysis, ‰ ≥ L–, and heuristically
define a crossover regime by the condition 0.5 < – < 1.5, see Fig. C.1 for the
case ⁄ = 2. Successively following the crossover down to the absolute zero
of temperature and, for a given temperature, taking the mean of the tuning
parameter boundaries (left and right) as an estimate, we obtain the approximate
QCP location 3.55 < rc ¥ 3.85 < 4.15.
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Figure C.1: Heuristic crossover regime (grey) in the ⁄ = 2 phase diagram, Fig. 5.3.
The median of the crossover regime (dark grey line) extrapolated to
T = 0 is the an estimate for the QCP location. Within the limits of this
procedure, one finds 3.55 < rc ¥ 3.85 < 4.15.
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Figure C.2: Tuning parameter dependence of the inverse magnetic susceptibility,
Eq. (5.21), close to the quantum critical point in the case of almost
local nesting near the hot spots. The inverse temperature is — = 40 and
⁄ = 1.0. We show a linear fit of the data (black line) with root rc ¥ 1.41,
an estimate for the location of the QCP.

Building upon this knowledge, we can improve this estimate by resolving the
tuning parameter dependence of the inverse magnetic susceptibility ‰≠1 across
the crossover regime. As shown in Fig. 5.4 of the main text, we observe a linear
dependence which we can extrapolate to ‰≠1 = 0, a diverging susceptibility. For
our model parameters, we find rc ¥ 3.8. Applying the same technique to the
spin-fermion model with an almost locally nested Fermi surface, Sec. 5.4, we find
rc ¥ 1.41. The corresponding tuning parameter dependence is shown in Fig. C.2.
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D Supplement to QLT
classification

Data grids

Figure D.1: Data interpolation for both SDW and nematic models. Both panels show
the corresponding plots from the main text, Fig. 7.6 and Fig. 7.11 with
the data points overlaid as black crosses. In ordered to make the color
plots, a bilinear spline is used to interpolate the values in between the
available data points. Modified from the supplement of Ref. [P4].
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D Supplement to QLT classification

Robustness of classification for nematic model

Figure D.2: Robustness of the QLT-based three-point classification for the nematic
model, Eq. (7.7). Panel (a) is the color plot in the main text, Fig. 7.11:
the nematic ordered training point is located at h = 1.9, T = 0.167, the
non-Fermi liquid training point at h = 2.7, T = 0.5, and the disordered
Fermi liquid training point at h = 4.1, T = 0.167. Panels (b) and (c) move
the non-Fermi liquid training point to h = 2.3 and h = 3.1 respectively
at the same temperature. Panels (d) and (e) move the disordered Fermi
liquid training point to h = 3.5 and h = 4.7 respectively at the same
temperature. Modified from the supplement of Ref. [P4].
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Figure D.3: Robustness of the binary classification for the nematic model, Eq. (7.7).
The panels show that the discrimination of Nematic order and disorder
(a) as well non-Fermi liquid and Fermi liquid transport (b) varies only
modestly when shifting the respective training points (cyan arrows).
Modified from the supplement of Ref. [P4].
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In the last few decades, quantum criticality in itinerant electron systems has 
become a central focus of condensed matter physics. On the one hand, it 
represents a candidate mechanism for high-temperature superconductivity. 
On the other hand, it can lead to a breakdown of Fermi liquid theory. The 
formation of a comprehensive understanding of metallic quantum criticality 
has, however, been significantly hampered by the fact that in many-fermion 
systems, fluctuations of a critical order parameter can couple to extensive 
gapless modes on a finite Fermi surface. This interplay, while giving rise to 
intriguing physical phenomena, leads to strong electronic correlations, which 
are notoriously difficult to handle by analytic methods.

In this thesis, we investigate metallic quantum criticality by means of 
large-scale quantum Monte Carlo simulations and contribute unbiased, rigor-
ous results to the discussion. Focusing on antiferromagnetic spin-density 
wave ordering, we present the numerically exact phase diagram of a spin-fer-
mion model whose solution has so far been out of reach. In particular, we high-
light the emergence of high-temperature d-wave superconductivity and rigor-
ously establish the quantum critical properties of the antiferromagnetic quan-
tum critical point. Combining the Monte Carlo method with a quantum loop 
topography approach, we demonstrate that important features of quantum 
critical metals can be autonomously identified by machine learning of 
current-current correlations. This allows us to analyze the electronic transport 
characteristics of two quantum critical metals, including the spin-fermion 
model, over a large parameter range and leads to the identification of extend-
ed non-Fermi liquid regimes in their respective phase diagrams.
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