
Over the past decade, the frontiers of quantum computing have broadened from
exploring few-qubit devices to developing viable multi-qubit processors. One of
the protagonists of the present era is the superconducting transmon qubit. As
the field progresses with unbridled panache, the question of whether we have a
comprehensive picture of the potential dangers acquires increasing urgency. In
particular, it needs to be thoroughly clarified whether new and hitherto uncon-
sidered obstacles associated with the multi-qubit nature can emerge.

This thesis introduces a novel perspective on multi-qubit processors. We fuse the
field of quantum engineering andmany-body physics by applying concepts from
the theories of localization and quantum chaos to multi-transmon arrays. From
a many-body perspective, transmon architectures are synthetic systems of inter-
acting and disordered nonlinear quantum oscillators. While a certain amount of
coupling between the transmons is indispensable for performing gate operations,
a delicate balancing with disorder − site-to-site variations in the qubit frequen-
cies − is required to prevent locally injected information from dispersing in ex-
tendedmany-body states. We analyze small instances of transmonquantum com-
puters in exact diagonalization studies, using contemporary quantum processors
as blueprints. Scrutinizing the spectrum, many-body wave functions, and qubit-
qubit correlations for experimentally relevant parameters reveals that some of the
prevalent transmon design schemes operate close to a region of uncontrollable
chaotic fluctuations. Our concepts complement the few-qubit picture that is com-
monly exploited to optimize device configurations on small scales. Destabilizing
mechanisms beyond this local scale can be detected from our fresh perspective.
This suggests that techniques developed in the field of many-body localization
should become an integral part of future transmon processor engineering.
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Abstract

The quest for quantum computers is in full swing. Over the past decade, the frontiers of quantum
computing have broadened from exploring few-qubit devices to developing viable multi-qubit
processors. One of the protagonists of the present era is the superconducting transmon qubit.
By harmoniously combining applied engineering with fundamental research in computer science
and physics, transmon-based quantum processors have matured to a remarkable level. Their
applications include the study of topological and nonequilibrium states of matter, and it is
argued that they have already ushered us into the era of quantum advantage. Nevertheless,
building a quantum computer that can solve problems of practical relevance remains a massive
challenge. As the field progresses with unbridled panache, the question of whether we have a
comprehensive picture of the potential dangers lurking in the wings acquires increasing urgency.
In particular, it needs to be thoroughly clarified whether, with viable quantum computers of
O(50) qubits at hand, new and hitherto unconsidered obstacles associated with the multi-qubit
nature can emerge. For example, the high accuracy of quantum gates in small-scale devices is
hard to obtain in larger processors. On the hardware side, the unique requirements posed by
large quantum computers have already spawned new approaches to qubit design, control, and
readout.

This thesis introduces a novel, less applied perspective on multi-qubit processors. Specifically,
we fuse the field of quantum engineering and many-body physics by applying concepts from the
theories of localization and quantum chaos to multi-transmon arrays. From a many-body per-
spective, transmon architectures are synthetic systems of interacting and disordered nonlinear
quantum oscillators. While a certain amount of coupling between the transmons is indispensable
for performing elementary gate operations, a delicate balancing with disorder—site-to-site varia-
tions in the qubit frequencies—is required to prevent locally injected information from dispersing
in extended many-body states. Transmon research has established different modalities to cope
with this dilemma between inefficiency (slow gates due to small coupling or large disorder) and
information loss (large couplings or too small disorder). We analyze small instances of transmon
quantum computers in exact diagonalization studies, using contemporary quantum processors as
blueprints. Scrutinizing the spectrum, many-body wave functions, and qubit-qubit correlations
for experimentally relevant parameter regimes reveals that some of the prevalent transmon de-
sign schemes operate close to a region of uncontrollable chaotic fluctuations. Furthermore, we
establish a close link between the advent of chaos in the classical limit and the emergence of
quantum chaotic signatures. Our concepts complement the traditional few-qubit picture that
is commonly exploited to optimize device configurations on small scales. Destabilizing mecha-
nisms beyond this local scale can be detected from our fresh perspective. This suggests that
techniques developed in the field of many-body localization should become an integral part of
future transmon processor engineering.
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Outline

This thesis applies concepts from the theory of many-body localization (MBL) to the transmon
platform for quantum computing to scrutinize prevalent processor architectures for the emergence
of quantum chaotic behavior. In detail, this work is organized as follows:

Chapter 1 intends to give readers without prior knowledge of quantum computing a brief
outline of the subject. It positions the transmon in the zoo of possible qubit platforms and
discusses its leading role in the current NISQ era. We introduce some frequently used basic
vocabulary. Following this, Chapter 2 acquaints with the concepts of many-body localization
and quantum chaos. The discussion highlights which properties of the chaotic phase constitute
a fundamental obstacle for quantum computing. Furthermore, a selection of diagnostic tools is
introduced, based on which one can distinguish between the chaotic and the harmless regime. In
Chapter 3, attention is focused exclusively on this thesis’s main protagonist: the superconduct-
ing transmon qubit. We discuss its properties in detail and show how many transmons combined
can form a quantum computer. Arrays of interconnected transmons are the main object of inter-
est to which we apply the MBL toolbox. Contemporary processors from companies like IBM or
Google serve as the blueprint for our simulations. Therefore, the second half of the chapter takes
a closer look at the design philosophies to which different groups subscribe. In particular, this
discussion emphasizes the close link between the choice of a specific gate implementation and the
parameters of the static ‘gate-off’ Hamiltonian. The insights from this analysis guide the param-
eter choices for the simulations. Chapter 4 then provides a detailed and rigorous discussion of
the transmon processor from the many-body perspective. We show that a regime of dangerous
chaotic fluctuations can be found in some pervasive design classes. A particular focus lies on
establishing quality indicators for parameter regimes that show deviations from deep localization
but are not in the immediate vicinity of hard quantum chaos. The focus in Chapter 5 is on
the critical examination of one of the most recent engineering enhancements—the implementa-
tion of frequency patterns to augment the precision in the entangling gate operations—from the
many-body perspective. For Chapter 6, we switch perspectives and solve the classical equa-
tions of motion for a system of coupled transmons. In the classical limit, a transmon reduces
to a nonlinear pendulum. Our quantitative analysis of these coupled pendulum systems reveals
a striking similarity between the quantum mechanical and the classical system regarding their
susceptibility to chaos. We conjecture that classical analysis can be a tool to gauge the quality
of specific parameter configurations for system sizes beyond the feasibility of a quantum me-
chanical simulation. Finally, Chapter 7 combines a broad summary, concluding remarks, and
a brief outlook on future research directions. In particular, we highlight again why merging the
theoretical field of many-body physics with the applied field of quantum chip design is fruitful
and why quantum engineers should include many-body concepts in their efforts to design viable
processor architectures.
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Outline

These chapters are further supplemented by three appendices, providing examples of state-of-
the-art transmon processors, additional results, and an extended discussion of some of the more
technical aspects of this work, including details on the implementation.

Last mentioned, Appendix D provides a concise overview of results obtained in an independent
branch of research (field-induced effects in Kitaev spin liquids) conducted during the course of
this thesis.
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Introduction
Chapter 1

No other technology is said to have a similar society-transforming potential as quantum comput-
ing. Its ability to solve specific problems dramatically faster than a classical computer is expected
to lead to groundbreaking new insights in, e.g., pharmaceutical research, materials science, and
a revolution in cryptography [1]. We are only beginning to glimpse the possibilities, with most
applications still in the shadows (just as the invention of the transistor did not preordain the
development of the smartphone). To realize a quantum computer that can solve a problem of
social and practical relevance, one must be able to control many quantum mechanical degrees of
freedom simultaneously. Unfortunately, nobody knows when (and if ever) this will happen be-
cause nobody knows whether “…controlling large-scale quantum systems (is) merely really, really
hard, or (…) ridiculously hard” [2]. Optimists hope for the first to be true and that—maybe after
a decade of further intensive research—a ‘large-scale’ quantum computer can be built. Pessimists
believe in the latter and doubt that we will ever get there in any foreseeable future [3] (they also
like to point out that the optimist’s answer ‘In ten years’ remains unchanged over the years
[4]). Regardless of one’s position, there are two common grounds for agreement: (i) Quantum
computing is in its infancy, and the best current quantum processors are orders of magnitude
too poor to solve any relevant problems. (ii) In recent years, however, impressive experimental
progress has been made, ushering in a new era characterized by O(100)-qubit devices that address
the challenge of integrating an ever-increasing number of qubits into a processor while preserving
phase coherence. In contrast, earlier years focused on proof-of-principle demonstrations of, e.g.,
high-fidelity gates [5, 6] or small instances of quantum algorithms [7, 8] on minimal processors
consisting of two to a few qubits. The single most important platform in this new era is the
superconducting transmon quantum computer.

In this thesis, we attempt to bridge the gap between two previously distinct domains: many-
body localization and transmon processor engineering. This introductory chapter is intended to
provide readers with no expertise in quantum computing with some basic vocabulary that later
chapters will frequently use. Furthermore, we contextualize this work in the burgeoning field
of quantum computing and point out why our approach offers new insights. This chapter was
compiled based on Refs. [9–11] that are recommended to the reader for further details.

1.1 Brief history lesson

Classical computers are powerful tools that fundamentally changed society, but even the best
supercomputers falter when simulating systems of only a few atoms. The (vague) idea that sim-
ulating nature cannot be efficiently done on a classical computer and that a quantum computer,
playing by the same quantum mechanical rules that nature obeys, should be used instead was
already envisioned more than 40 years ago by Manin [12] and later popularized by Feynman
[13]. David Deutsch embraced and formalized these ideas, shaping the modern conception of

3



1 Introduction

a universal quantum computer as a device that is capable of efficiently simulating any physical
system [14]. His pioneering work also contains the first example that quantum computers have
computational resources that classical devices cannot match. Expanding on this initial step,
the following decade has seen essential contributions to the theory of quantum computation.
Outstanding examples include Deutsch’s circuit model for quantum computing [15] and further
demonstrations of quantum algorithms that outperform their classical counterparts [16, 17].

Even though the primacy of specific quantum algorithms over their classical counterparts was
repeatedly shown, the research domain has not received much attention, given the apparent in-
significance and artificiality of the tackled problems. In 1994, Peter Shor [18, 19] liberated the
field of quantum computing from its niche existence and transformed it into one of the most
flourishing research areas. He demonstrated that the related problems of prime factorization
and finding discrete logarithms could be solved exponentially faster1 using a quantum algorithm
than any known classical algorithm. This discovery received widespread attention outside of
physics, as Shor’s algorithm implemented on a large-scale quantum computer would have devas-
tating consequences for current cryptography protocols like RSA [20], whose assumed security is
predicated on the premise that the factoring time grows exponentially in the length of the input.
Grover [21, 22] provided another important example of the superiority of quantum computers in
1995. He considered the problem of finding a target element in an unstructured search space,
e.g., a specific entry in a database with n entries. Classically, the computational resources scale
linearly in n. Grover’s algorithm completes the same task using resources of the order

√
n. Even

if this is only a modest quadratic speed-up, this algorithm has caught considerable attention
because of its countless possible applications. Moreover, in contrast to factorization, the classi-
cal complexity class of the unstructured search is known, which implies that the superiority of
Grover’s algorithm is strictly proven.

Notably, a quantum computer is not superior to its classical counterpart in every task: its
superiority is limited to algorithms tailored to solve specific problems efficiently. We saw examples
of exponential and modest speed-up, but other tasks might not benefit at all [23]. Designing
quantum algorithms that outperform their classical counterparts is tremendously challenging. It
is an important quest to identify tasks feasible for a quantum computer but hard to simulate
classically. Another challenge, needless to say, is to realize a quantum computer capable of
implementing these algorithms. Shor’s algorithm may go down in history as the end of crypto-
graphy, or just a small amusing footnote of it, if it fails to build a device that can achieve the
hypothetical, hardly imaginary speed-up over classical computers. Currently, the record for the
largest prime number reliably factorized with Shor’s algorithm is 21 [24].

1.2 How to build a quantum computer

The theoretical advances that cumulated in Shor’s and Grover’s algorithms were quickly fol-
lowed by an increasing interest in possible realizations of quantum computers. As a guidance,
DiVincenzo [11] formulated a set of five basic requirements that every viable physical implemen-
tation of a quantum computer must obey: One needs (i) well-characterized and scalable two-level
states (qubits) and (ii) a decoherence time that allows many two- and single-qubit gates to be
performed. It must be possible to (iii) initialize and (iv) measure qubit states, and (v) a universal

1Computational complexity is measured by investigating how the number of steps required to complete a task
grows with the size of the input n. In Shor’s algorithm, this number is polynomial in logn, which is an almost
exponential speed-up compared to the sub-exponential scaling of the best classical algorithms.
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1.2 How to build a quantum computer

set of gates must be provided, allowing any unitary operation to be implemented. Some of these
points require further explanation.

Qubits. The two-level system required by the first criterion is called the quantum bit or qubit.
One denotes its two states as |0〉 and |1〉. It replaces the classical bit as the fundamental unit
of information. Contrary to the classical bit (either 0 or 1), the permitted states of a qubit
are all linear combination |ψ〉 = α|0〉 + β|1〉 with |α|2 + |β|2 = 1, α, β ∈ C. Rewriting |ψ〉 =
cos θ|0〉+eiφ sin θ|1〉, a qubit can be visualized as a point on the unit sphere, called Bloch sphere,
defined by the angles (φ, θ). A quantum computer owes its potency to the exponential increase
in information with the number of qubits: An N -bit system contains N pieces of information. A
system ofN qubits can be in a superposition of 2N basis states and contains the information about
2N probability amplitudes. Unfortunately, nature hardly offers us perfect two-level systems. In
any physical hardware, the computational space spanned by the qubit states |0〉 and |1〉 is just
a projection of a more complicated Hilbert space. For a ‘well-characterized’ qubit, one has
to ensure that it faithfully mimics the properties of a true two level-system by shielding the
computational subspace from the complementary Hilbert space such that the noncomputational
states do not compromise the operation of the quantum computer. For the transmon—the qubit
variant that is at the core of this thesis—the ground state |0〉 with energy E0 and the first excited
state |1〉 with energy E1 serve as the two qubit states. The quantity ωq = (E1 − E0)h̄ is called
the qubit frequency. Any physical implementation of a qubit is an erroneous object. It couples
to many environmental degrees of freedom, rendering a coherent superposition unstable due to
a mechanism called decoherence.

Decoherence. Nature is quantum mechanical, yet, we do not perceive quantum mechanical
properties in our daily life. The process behind the emergence of classical behavior is called
decoherence. It describes the loss of quantum coherence in a system due to interactions with
the environment. Originally developed to enrich the discussion of the measurement problem
[25], decoherence is a major threat to the realization of a quantum computer, where coherent
superpositions are to be maintained undisturbed over a time long enough to perform many gate
operations. Broadly simplified, the interactions with the environment transform the coherent
superposition |ψ〉 = α|0〉 + β|1〉 into a classical probability mixture described by the density
matrix ρ = |α|2|0〉〈0| + |β|2|1〉〈1| in a characteristic time known as decoherence time (or qubit
lifetime). Decoherence thus abrogates the superposition principle, nullifying the power of al-
gorithms that harness this property. An adequate description of decoherence takes additional
aspects into account, e.g., a decoherence time that depends on the initial configuration [11]. The
coherence properties of a qubit are characterized by two different times: the relaxation time T1,
which is the characteristic time for the qubit to relax from its |1〉 state to its |0〉 state, and the
dephasing time T2, which, as above, quantifies the lifetime of coherent superpositions [26, 27].
Improving the decoherence time is one of the most critical hurdles on the way to a quantum
computer.

Gates. In the circuit model [15], each computation is a sequence of quantum gates, i.e., elemen-
tary unitary operations that act on the elements of a Hilbert space of one or more qubits. A small
set of gates sufficient to complete any calculation is said to be universal for quantum computing
[28]. It has been shown that single- and two-qubit gates suffice for universality [29, 30]. To be
precise, a complete set of single-qubit gates, enabling arbitrary rotations on the Bloch sphere,
complemented by any entangling two-qubit gate is universal [31–33]. A prototypical entangling
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gate is the CNOT gate, which acts on two qubits, the target (T ) and the control qubit (C), and
flips the target qubit if the control qubit is in the state |1〉. Further common examples are the
CPHASE, iSWAP, or

√
iSWAP gate [28]. Every physical realization of a quantum computer must

be equipped with some control hardware necessary to perform arbitrary single-qubit manipula-
tions and entangling two-qubit gates. Note the intrinsic inconsistency between the criteria (ii)
and (iii)–(v): coupling of qubits to the environment is indispensable for gates and measurement,
but coherence can only be maintained by the best possible isolation from the environment. Just
as every real qubit is an error-prone object, gate implementations also never work to perfection.
A wrong gate output is produced with a certain probability, known as the error rate. A related
(yet different [34]) metric that is easily accessible experimentally and, therefore, widely used
is the gate fidelity [28]. A variety of methods to obtain the gate fidelity exists, e.g., quantum
process tomography [35], randomized benchmarking [36–38], or cross-entropy benchmarking [39]
but finding a reliable, scalable gate validation measure is a complex and as yet unsolved problem.

Platforms. It is a massive challenge to realize a quantum computer that harmonizes good co-
herence properties with the necessary coupling to the environment for gates and readout. Many
different computing platforms have been proposed, some have reached considerable maturity,
and others, like NMR-based quantum computers [40], have been abandoned over time because
they have proven incompatible with the DiVincenzo criteria. Among the most auspicious plat-
forms are optical quantum computers with photonic qubits [41], Rydberg atoms [42, 43], silicon
quantum dots [44], ultracold trapped ions [45, 46], and superconducting circuits. Regarding the
five criteria, all these approaches come with their own merits and drawbacks. It is impossible to
predict which (or if any) of the current major platforms can be used in the long run to build a
fully viable large-scale quantum computer.

1.3 Macroscopic quantum systems and transmons

One expects quantum mechanical effects to play a pivotal role mainly at the level of electrons,
atoms, or molecules, that is, in microscopic systems. Therefore, it seems natural to use mi-
croscopic degrees of freedom to store and process information, as is common in most quantum
computing platforms. In contrast, superconducting qubits rely on quantum effects in circuits
of macroscopic extent. They have the advantage that one can easily manufacture them with
lithographic techniques developed for integrated circuits. The system parameters are not “God-
given constants” [47] but are determined by macroscopic circuit elements that can be adjusted
to specific needs through a suitable chosen system design. Whether macroscopic systems allow
for the observation of quantum mechanical phenomena was already investigated in the early
1980s, pioneered by Leggett [48, 49]. Seminal experiments suggesting that quantum tunnel-
ing [50] and quantized energy levels [51] could indeed be observed in superconducting circuits
containing Josephson junctions followed a few years later. This showed that, remarkably, it is
possible to tailor systems with an atom-like energy spectrum from macroscopic building blocks
[52]. A groundbreaking experiment by Nakamura et al. demonstrated the first coherent control
and manipulation of a qubit in a superconducting circuit in 1999 [53].

The Josephson tunnel junction. Suppose one has built a circuit with discrete energy levels and
aims to process information with the lowest states |0〉 and |1〉. Does this constitute a qubit
in the sense of criterion (i)? The general answer is no! For a well-defined qubit subspace, it
is essential that the qubit frequency ωq is sufficiently different from transitions between higher
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states. Otherwise, it cannot be addressed in a targeted manner as required for gate operations.
In particular, one cannot pick qubits from the spectrum of a harmonic oscillator. The heart of
any superconducting qubit is a Josephson tunnel junction (a thin insulating layer sandwiched
by two superconductors) [54], which, as detailed in Chapter 3, brings the required nonlinearity
in the form of a nonparabolic inductive potential energy and thus generates an energetic barrier
separating the computational subspace from the surrounding Hilbert space [55].

The transmon. There is a plethora of qubits based on superconducting circuits, all founded on
the nonlinearity of the Josephson junction. Most qubit types derive from one of three possible
initial modalities, the charge, flux, and phase qubit [56, 57], named initially after the information-
bearing variable. For example, the qubit states in early charge qubit designs are defined by
the presence or absence of an additional Cooper pair in one of the superconductors [55]. The
transmon [58], a derivative of the charge qubit, is currently the most widely used qubit variant.
Circuits of transmon-type qubits (again, there is a vast zoo) offer a delicate balance between the
nonlinearity and protection from random charge fluctuations in circuit components that cause
rapid decoherence.

Transmon qubits fulfill the DiVincenzo criteria: The nonlinearity of the junction ensures the
existence of a well-defined qubit subspace. Due to its macroscopic extent, transmons decohere
faster than microscopic qubits like trapped ions. However, the superconducting, dissipation-
less metal components combined with careful shielding from environmental noise and operating
temperatures of a few Millikelvins enables sufficiently long decoherence times. In the past two
decades, the coherence time has increased by more than five orders of magnitude, from about
one nanosecond in the first qubit experiment [53] to several hundred microseconds in contempo-
rary chips [59]. The macroscopic size is well suited to engineer strong couplings to resonators,
other transmons, or microwave drive lines, enabling high-fidelity readout [26] and fast gates
(about 1,000 times faster than for trapped ions [10]). Finally, advanced techniques for qubit
state initialization exist [60].

1.4 The current state: NISQ, transmons and quantum advantage

The holy grail of quantum computing, a fault-tolerant large-scale quantum computer, is a distant
dream. Two-qubit gates often have error rates exceeding 0.1%, which restricts the number of
gates that can be performed before the noise overwhelms the encoded information. Quantum
error correction (QEC) [61–63] might eventually enable the realization of fault-tolerant quantum
computers with error-prone components at the cost of overhead in the number of qubits. For
example, an error-free quantum computer could accomplish the factorization of a 2048-bit RSA
integer with 4099 qubits [64], whereas, when using current noisy hardware, this number increases
to 20 million [65]. Alternatives with much lower gate errors, such as topological quantum com-
puting [66, 67] with Majorana qubits [68], are long-term challenges to solve, as they bring their
own experimental hurdles [69].

Despite the promised land not yet being in sight, a few years ago, we entered a new techno-
logical era in which the long-term problem of scalable error-correcting processors is postponed.
The focus, roughly said, is on exploring how far one can get with the hardware now at hand if
suitable problems are picked. This era is dubbed ‘NISQ’ [10], an acronym for noisy intermediate
scale quantum. ‘Noisy’ refers to the imperfect qubit quality and ‘intermediate scale’ to the fact
that arrays of O(100) qubits are reachable, an important landmark as this is beyond what clas-
sical computers can simulate. The guiding philosophy of this epoch is to implement ‘hardware-
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informed’ quantum algorithms [70] that are resilient to noise, optimized for a specific processor,
and run on noisy hardware with erroneous gates unprotected by QEC. NISQ devices will not
solve problems of societal relevance. Instead, one should view this era as a precursor and testing
ground of a more advanced future technology. The NISQ era is not only an advance in hardware:
as quantum computing prototypes continue to improve, the algorithm side needs to catch up,
and problems feasible for NISQ devices but ideally intractable for classical computers have to be
designed [71–73]. Some consortia, pioneered by IBM [59, 74], are making NISQ devices publicly
available to drive the development of suitable algorithms (with the ulterior motive of maturing
quantum computers into a commercial technology).

Quantum advantage and other transmonmilestones. Transmon-based quantum computers are
a NISQ-era protagonist and were used in much pioneering work. A prominent example is Google’s
53-qubit ‘Sycamore’ processor from the headline-grabbing 2019 experiment [39], which claimed
to be the first demonstration of ‘quantum advantage’. Quantum advantage [75, 76] describes a
regime where a programmable quantum computer performs a task that is intractable for a state-
of-the-art supercomputer on any reasonable timescale.2 ‘Sycamore’ completed a computation
in about 200 seconds that was argued to have taken 10,000 years on the then-best supercom-
puter. In many facets, this is a prototypical NISQ experiment: the task—sampling from the
output distribution of a pseudorandom quantum circuit—is only of academic interest, known to
be exponentially hard on classical computers [73], and was specifically designed to characterize
quantum advantage in devices of around 50 noisy qubits [72, 79]. Whether Google has actually
demonstrated quantum advantage, however, has been questioned. It was argued that with op-
timized hardware use, 2.5 days might suffice on a classical machine [80]. Very recently, using a
newly developed classical algorithm, the ‘Sycamore’ task was performed in about 15 hours on
512 GPUs [81], showing that quantum advantage is a volatile, impermanent concept that also
depends on the availability of classical methods. These criticisms and counterexamples—with
all its raison d’être—do not touch the point of why Google’s experiment is considered a NISQ
era milestone [82, 83]. It is a crucial proof of concept, showing that the coherent control of the
states of a 253-dimensional computational space over a sufficiently long time is possible, a feat
whose accomplishment has often been doubted [3, 84]. In 2021, a similar experiment with a
66-transmon processor (‘Zuchongzhi’) was conducted [85], where the cost for a classical simula-
tion is about three orders of magnitude higher, further strengthening the claim that the age of
quantum advantage has already begun [86].3

It was also demonstrated that transmon NISQ-devices are well suited for the study of topo-
logical (e.g., the toric code model [66, 89]) and nonequilibrium phases of matter (‘time crystals’
[90, 91]), and to probe ideas from quantum gravity [92]. Recently, IBM launched the first trans-
mon processor that surpasses the 100-qubit barrier [59]. Primitives of the surface code [93] (a
QEC code with moderate, experimentally feasible error tolerance) were implemented on scalable
smaller devices [7, 94], culminating in the demonstration of repeated quantum error-correction
cycles in a 17-qubit geometry [95]. Further showcases of the potential of the NISQ era can be
found in Ref. [70].

2This definition faces criticism as it depends on the problematic benchmarking of classical computers. Demon-
strations of quantum advantage tend to entail a discussion on optimal classical simulations. Besides, the term
risks exacerbating the hype surrounding quantum computers [77] and gives the false impression that classical
computers will become obsolete [78].

3Other platforms have also followed suit, see, e.g., Ref. [87, 88] for photonic demonstrations of quantum advantage.
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(a) (b) (c)

Figure 1.1 – Transmon hardware. (a) Dilution refrigerator used to house and thermalize the actual processor
that is located on the bottom side and cooled down to about 10 mK. The tangle of wires that travel vertically
transmit the signals for qubit manipulation and readout. Figure taken from Ref. [103] with permission. (b)
Electrical circuit of a seven-transmon processor, showing the hardware required for single- and two-qubit gates
and readout. The transmons are shown in yellow. Figure taken from Ref. [108] with permission. The two panels
illustrate that a quantum computer requires many hardware components to intertwine. In contrast, our model,
cartoonishly shown in (c), neglects all processor functionalities and the associated noise and perturbations and
considers perfect qubits with nearest-neighbor coupling, indicated by the blue lines.

1.5 The art of quantum computing

In the 1990s, Rolf Landauer suggested a mandatory footnote for all papers on quantum comput-
ing: “This proposal, like all proposals for quantum computation, relies on speculative technology,
does not in its current form take into account all possible sources of noise, unreliability and man-
ufacturing error, and probably will not work.” [96]. As shown, the current situation is not quite
as bleak, but operating even a small quantum computer remains a Brobdingnagian task and
demands a whole bundle of technologies to operate seamlessly together, including the actual
processor, readout and control electronics, and control software. Figs. 1.1(a) and (b) give an
impression of the complexity of the task, see the caption for details.

When scaling up to a larger number of qubits, some problems become more pressing, and
others emerge anew: Most importantly, a fault-tolerant computer requires improvements in
coherence times, gate fidelities, and readout errors, which needs progress in engineering and
material science [97], and demands a deeper theoretical understanding of gate Hamiltonians and
new tools to validate gate fidelities [36, 72, 98]. Furthermore, scaling up is only possible if
transmon fabrication and cryogenics techniques are improved [99, 100] and nonplanar packaging
techniques [101, 102], i.e., arranging circuit elements in multiple layers, are refined. Another
major problem is that processors require a tangle of cables, resulting in a vast bulk of wiring
even for small devices when each qubit uses separate sets of control and readout electronics.
Hardware-saving technologies like multiplex readout, where one line is used for several qubits,
must be brought to full fruition, and the list goes on [70, 103]. Danger also threatens from
unexpected directions: recently, it was shown that cosmic rays could be a veritable obstacle for
a large-scale quantum computer [104].

Progress has been made in some of these challenges (for example, IBM’s ‘Eagle’ processor
employs features of 3D integration and multiplex readout [105]), but a plethora of problems
remains unresolved, see Refs. [106, 107] for a concise summary. It is estimated that quantum
computers with more than ∼ 1,000 qubits cannot be realized with current technology. A processor
with 106–107 qubits cannot be built by refining existing methods but requires groundbreaking
new ideas.
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1.6 Changing perspective: the transmonmany-body problem

The road to a fully featured quantum computer is long and paved with intricate challenges, as
shown. In this thesis, we study whether the danger posed by quantum chaotic many-body effects
that may arise in arrays of many transmons also deserves a spot on the list of potential problems.
To do so, we consider a minimal model that can be grasped by looking at the transition from
Fig. 1.1(b) to (c): we throw away all hardware for qubit control, readout, and initialization and
keep only a set of perfectly isolated, noise-free qubits with infinite coherence time and add a
qubit-qubit coupling. So to speak, we model an entirely dysfunctional skeleton that is extended
to a quantum computer with additional hardware. We intend to ascertain whether this device
is already threatened by chaos.

The outwardly isolated array of coupled transmons is approximately described by a Bose-
Hubbard Hamiltonian (Chapter 3 elucidates this connection in full detail) with on-site energies
h̄ωq,i, nearest-neighbor hopping amplitude Jij stemming from the coupling, and an attractive
on-site interaction U ,

Ĥ =
∑
i

h̄ωq,ib̂
†
i b̂i −

U

2

∑
i

b̂†i b̂
†
i b̂i b̂i +

∑
〈i,j〉

h̄Jij

(
b̂i b̂

†
j + b̂j b̂

†
i

)
= Ĥ0 +

∑
〈i,j〉

h̄Jij

(
b̂i b̂

†
j + b̂j b̂

†
i

)
.

(1.1)

The first two contributions, Ĥ0, describe the uncoupled array. The operator b̂†i (b̂i ) creates
(annihilates) a bosonic excitation in the transmon at site i. The on-site and hopping energies
vary from transmon to transmon, either as a result of unavoidable fabrication imprecisions or due
to artificially introduced disorder. Thus, from the many-body perspective, a transmon processor
is a man-made, interacting, and disordered many-particle system.

Specifying the occupation numbers of each transmon completely characterizes the eigenstates
of Ĥ0. For example, in the eigenstate |310〉 of a three-transmon array, there are 3 (1, 0) bosonic
excitations in the transmon at site 1 (2, 3). The computational states are those comprising only
local excitation numbers ‘0’ and ‘1’. Now imagine an initial state |ψ0〉, which is an eigenstate
of Ĥ0 with a nonuniform particle density 〈b̂†i b̂i 〉 = 〈n̂i〉, e.g., the computational state |1010 . . . 〉
sketched in Fig. 1.2(a), that evolves under the full Hamiltonian Ĥ (this is called a quantum
quench). What happens to |ψ0(t)〉 under unitary time evolution in the long term? The natural
answer is thermalization [109, 110]. If subsystems can exchange energy, the system mimics a
reservoir for all its sufficiently small subsystems and reaches an effective thermal equilibrium
that is fully determined by a few global conserved quantities but displays no local features
[111]. For our example, the system thermalizes towards a uniformly distributed energy density,
see Fig. 1.2(b), and the information about the bitstring ‘1010…’ carried by the initial state is
lost. This system cannot be operated as a quantum memory, let alone as a computer. Perhaps
surprisingly, not all interacting systems act as their own reservoirs, and unitary time evolution
supplies an alternative outcome: sufficiently large disorder can block the energy exchange between
subsystems. The long-term state remembers local details, and the system is a suitable quantum
memory (and possibly a computer), see Fig. 1.2(b). This phenomenon is called many-body
localization (MBL) [112, 113], the properties of which we discuss in detail in the next chapter.

The purpose of this work is to investigate whether arrays of interacting transmons tend to
thermalize or whether they host an MBL phase. In particular, we analyze different prevalent
disorder regimes, as found in real processors by, e.g., Google and IBM, and study whether
signatures of quantum chaos might degrade the functionality of these chips.
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HCS(L = 10)
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(a) (b) (c)

Figure 1.2 – Quantum quench probe where (a) an initial state |1010 . . . 〉 evolves under the full interacting
Hamiltonian Ĥ. The colored lattice sites symbolize the nonuniform energy density (red (white): 〈n̂i〉 = 1(0)).
(b) Under unitary time evolution, the system can either thermalize and relax towards the state with uniform
density (top) or many-body localize and remember some details of its initial configuration even after long
times (bottom). (c) Comparison of the Hilbert space dimensions of an L-transmon system restricted to the
states with a fixed excitation number Nex = L/2 (symbolized by the black square) with the number of the
computational states, i.e., those with local excitation numbers ‘0’ and ‘1’. (a) and (b) inspired by Ref. [114].

Another potential hazard arises from the fact that the transmon, albeit used as a qubit, is
a multi-level system. In a many-transmon processor, the eigenstates of Ĥ0 are divided into
computational states and states, where at least one transmon has an occupation greater than
one. The number of these remaining ‘junk’ states far dwarfs that of computational states, as
illustrated in Fig. 1.2(c). The large white square symbolizes the dimension of the total Hilbert
space H spanned by all states with a total excitation number Nex = L/2, where L is the system
size. For L = 6, this includes states of the form |300000〉, |210000〉, and |111000〉. The dimension
of the computational subspace HCS, denoted by the colored squares for L = 10 and 20, accounts
only for a small fraction of this. For realistic disorder, the computational states are wholly
commingled with the much larger set of junk states. To what extent do the computational states
mix with junk states when the interaction is switched on? Are there states still ‘close enough’
to the perfect qubits of the noninteracting system to not compromise the quantum computer?
How can one unambiguously filter out the small subset of computational states from the myriad
of junk states in the interacting system?

Answering these questions requires applying concepts and methods of many-body theory to
the coupled transmon Hamiltonian. The many-body approach adds a new and complementary
facet to the existing theoretical work that often restricts to models of very few transmons,
e.g., two transmons between which an entangling gate is to be executed and one additional
‘spectator’ transmon. As will be demonstrated, naively extending a processor configuration that
is optimized for specific tasks in minimal setups to larger geometries can cause instabilities that
are only resolved from the many-body perspective.

1.7 A comment on the units

The superconducting qubit literature usually provides explicit values of the frequency νq instead
of ωq, e.g., νq = 5 GHz for a typical transmon qubit frequency. To specify all parameters in the
same units, it is common to measure the hopping J in Eq. (1.1) in units of 2π, e.g., J/2π = 5
MHz. Accordingly, the interaction is usually given in the form U/h = 250 MHz. In some cases,
one avoids νq and sticks to ωq/2π instead, e.g., ωq/2π = 5 GHz. Depending on the context, each
variant (νq, ωq, ωq/2π) may be more appropriate at some point; accordingly, all appear in the
further course. Furthermore, it is common to set h = 1 and measure all energies in Hertz, e.g.,
U = 250 MHz. We explicitly include all factors h or h̄ in the introductory chapters but later set
h = 1 in discussing numerical results. We point this out separately.
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Quantum chaos and
many-body localization

Chapter 2
In Chapter 1, we caught a brief glimpse of the system of interest, the superconducting transmon
array for quantum computing. Chapter 2 equips us with an idea of what we want to screen this
system for: the presence and absence of quantum chaos.

Edward Lorenz poetically encapsulated the essence of chaos theory in the famous title of a talk
given in 1972 “Does the flap of a butterfly’s wing in Brazil set off a tornado in Texas?” [115].
Despite its exaggerated formulation, this accurately represents what we naturally associate with
chaos: a high degree of uncontrollability, unpredictability, and sensitivity to minor perturbations.
Indeed, one calls a classical system chaotic if it reacts to small changes in the initial conditions
in such an extreme way that predicting its future behavior is impossible. It stands to reason
that a quantum computer behaving ‘uncontrolled’ and ‘unpredictable’ would fail to achieve its
intended purpose. However, quantum mechanics largely eludes the characterization of chaos in
these familiar terms. Therefore, Sec. 2.1 is devoted to sharpening the concept of quantum chaos.
We discuss eigenstate thermalization, tightly interwoven with and sometimes used synonymously
for quantum chaos in Sec. 2.2. Following this, Sec. 2.3 examines how a system can escape chaos
and transition to the many-body localized (MBL) phase. When contrasting the properties of
MBL and thermalizing phase in Sec. 2.4, particular attention is paid to how they enable or
prevent quantum computing. Several quantitative measures based on which one can distinguish
between these two options are introduced. This provides us with the necessary armamentarium
to diagnose the transmon array. Finally, Sec. 2.5 discusses selected aspects of the many-body
localized phase.

There is extensive literature on all topics we touch upon in this chapter. The main sources of
information from which this compendium was created were Refs. [111, 114, 116–120].

2.1 Quantum chaos

2.1.1 Integrability and classical chaos

Classical systems can show very simple dynamics, that is, the trajectories are a superposition of
periodic motion and uniform translations. This is exemplified in Fig. 2.1(a). The trajectory of
a particle moving in a circular billiard is easily seen to be composed of (quasi-)periodic radial
and angular motions. Evidently, the motion in the Sinai billiard [121], illustrated in (b), is
qualitatively different and appears completely random. One refers to this trajectory as ‘chaotic’.
An important property separating the two models is integrability. A system is called integrable if
one can solve its equations of motion (EOMs) via reduction to quadrature, i.e., by calculating one-
dimensional integrals [116]. A sufficient condition for integrability is due to Arnold and Liouville
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(a) (b) (c)

Figure 2.1 – Trajectories in integrable and chaotic billiards. (a) Particle in an integrable circular billiard.
The path is a superposition of a radial and an angular periodic motion. (b) In contrast, the trajectory in a
Sinai billiard is chaotic. (c) Comparison of trajectories with identical initial positions (yellow star) but slightly
different momenta. After a few bounces, the trajectories diverge (in phase space), a hallmark of classical chaos.

[122], who showed that it is related to the existence of ‘sufficient’ conserved quantities: a classical
system described by a Hamiltonian H (q,p) that depends on S coordinates q = (q1, . . . , qS)
and momenta p = (p1, . . . , pS), is integrable if there exist S independent conserved quantities
Ii(q,p) that are in involution. This guarantees the existence of a canonical transformation
(qi, pi) → (φi, Ii) such that the transformed Hamiltonian H̃ depends solely on the Ii. Solving
the EOMs for the action-angle variables φi, Ii is then trivially achieved by calculating one-
dimensional integrals [116]. In Fig. 2.1, the circular billiard is integrable because energy and
angular momentum are conserved, whereas, in the chaotic Sinai billiard, energy is the only
integral of motion.

Fig. 2.1(c) shows a typical trait of nonintegrable dynamics, often invoked to define chaos,
namely an extreme sensitivity to small perturbations. The blue and red trajectory start their
motion with identical initial positions, marked by the yellow star, but slightly different momenta.
Following their evolution for a few bounces shows that they become quickly uncorrelated in
momentum (direction of motion) and position. In chaotic systems, initially nearby trajectories
diverge exponentially in phase space insofar as it is consistent with energy conservation. Although
the motion is strictly deterministic, any attempt to predict the trajectory becomes arbitrarily
inaccurate for sufficiently late times in practice: even with perfect knowledge about the initial
conditions, small numerical errors in the integration of the EOMs cause large deviations [116].

Unfortunately, defining chaos as the sensitivity of phase space trajectories to small changes
in initial conditions does not translate to the quantum mechanical case. First, there is no well-
defined concept of a trajectory in quantum mechanics where each state is a vector in Hilbert
space instead of a point in phase space and where sharp initial conditions do not exist due to the
uncertainty principle. Second, taking the overlap |〈φ|ψ〉| as a natural measure for the proximity
of two vectors, any two states maintain their distance in time because [123]

|〈φ(t)|ψ(t)〉| = |〈φ(0)|Û−1(t)Û(t)|ψ(0)〉| = |〈φ(0)|ψ(0)〉| . (2.1)

Since transferring the classical manifestations of chaos to the quantum world fails, the question
naturally arises of what constitutes quantum chaos and how it can be distinguished from inte-
grable quantum systems.1 Of peculiar interest for our purposes is the question of whether an
eventual definition of quantum chaos implies properties that conflict with quantum information

1Eq. (2.1) also raises the question of how diverging trajectories emerge from quantum theory in the h̄→ 0 limit.
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processing, as expected from a naive conception of chaos. An unambiguous definition of quan-
tum chaos does not exist. However, the study of quantized versions of classically chaotic systems
reveals recurring universal signatures that have been proposed as identifiers of quantum chaos.
What comes closest to a definition of quantum chaos relies on concepts from random matrix
theory, which is the subject of the next section.

2.1.2 Quantum chaos and randommatrix theory

The sequence of prime numbers derives from fixed, deterministic rules. However, much of what
we know about prime numbers is statistical in nature, like the distribution of spacings between
consecutive primes [118]. In a similar spirit, random matrix theory (RMT) was developed in the
1950s by Wigner [124–126] and successors to explain the spectra of complex atomic nuclei: The
idea is to abandon the idea of calculating the spectra of sufficiently complex systems exactly.
Instead, one concentrates on the statistical properties [127]. This is a perplexing thought: As the
Hamiltonian determines the level spectrum unambiguously, how can statistics come into play?
Wigner’s pivotal insight was that a complex Hamiltonian restricted to a small energy interval
looks like a random matrix. Statistical properties of suitable chosen random matrix ensembles
deliver information on the properties of complex systems, just as statistical concepts enrich our
understanding of prime numbers. ‘Suitable’ means that the random matrices must incorporate
the fundamental symmetries of the Hamiltonian. Expanding on earlier work from Wigner [124–
126], Dyson proposed three universality classes [128], differentiated by their behavior under spin
rotations (SR) and time reversal (TR), whose statistics are described by distinct random matrix
ensembles. More precisely, he distinguished2

(i) TR invariant systems. The Hamiltonian can be chosen to be real and symmetric, i.e., the
matrix elements fulfill Hij = Hji = H∗

ij

(ii) systems with broken TR, where the Hamiltonian matrices fulfill Hij = H∗
ji.

(iii) TR invariant half-integer spin systems with broken SR symmetry, whose matrix elements
can be expressed in terms of quaternions (or, equivalently, Pauli matrices). H can be
viewed as an N ×N matrix with 2× 2 entries [118].

The symmetry properties of the Hij and hence the universality classes are invariant under the
transformation H → U−1HU , where U is an (i) orthogonal, (ii) unitary, or (iii) symplectic ma-
trix. The corresponding random matrix ensembles are called orthogonal, unitary or symplectic
ensembles. Each instance of these ensembles is a random Hermitian matrix in which the entries
not connected by symmetry are stochastically uncorrelated (i) real, (ii) complex, or (iii) quater-
nionic random numbers. The ensembles are characterized by an integer β counting the degrees
of freedom in the matrix elements, i.e., (i) β = 1, (ii) β = 2, and (iii) β = 4.

The Gaussian random matrix ensembles are defined through the matrix probability densities

Pβ (H) ∝ exp
[
− β

2a2
Tr
(
H2
)]

, (2.2)

where a sets the overall energy scale and the choices β = 1, 2 and 4 define the Gaussian or-
thogonal (GOE), unitary (GUE) and symplectic (GSE) ensemble. The definition in Eq. (2.2) is

2This classification scheme is very comprehensive, although novel ensembles, not covered by Dyson’s ‘threefold
way’, may arise when additional symmetries are introduced [129, 130].
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2 Quantum chaos and many-body localization

reasonable as it fulfills two natural requirements [131]: invariance under the respective symmetry
transformation, P (H) = P (U−1HU) and factorization of P (H) in a product of the densities of
the independent matrix elements. For example, for a 2× 2 GOE matrix,

H =

(
H11 H12

H12 H22

)
, (2.3)

one obtains P (H) = P11 (H11)P12 (H12)P22 (H22). A derivation of Eq. (2.2) for a 2 × 2 matrix
from the invariance and factorization requirements is presented in Ref. [132]. A more formal
introduction can be found in Ref. [118]. The exponent in Eq. (2.2) sometimes contains additional
factors accounting for the dimension N or to fix the average level spacing to one.

To make it explicit, Eq. (2.2) implies that a GOE matrix takes the general form

HGOE =

H11 · · · H1N
... . . . ...

H1N · · · HNN

 , (2.4)

where Hij ∈ R. The diagonal entries Hii are independent and identically distributed (i.i.d.)
Gaussian random variables with µ = 0 and σ2 = a2/β, i.e., drawn from N

(
0, a2/β

)
. The off-

diagonal entries are i.i.d. variables drawn from N
(
0, a2/2β

)
. The difference in σ is readily seen

from Eq. (2.2) when rewriting the trace as Tr
(
H2
)
=
∑N

i=1H
2
ii + 2

∑N
i<j H

2
ij .

Level repulsion. To analyze properties of complex systems, the most commonly used observable
is the nearest-neighbor level spacing distribution p(s), which measures the probability density
for two adjacent levels, En and En+1, to have the energy spacing s. For 2× 2 matrices, p(s) can
be obtained analytically [118]. The generic result for all ensembles reads

pW(s) = aβs
β exp

(
−bβs2

)
, (2.5)

where the requirement of normalization and an average level spacing of one set aβ and bβ. This
result is known under the name Wigner surmise [133]. It is shown in Fig. 2.2(a). The essential
characteristic of Eq. (2.5) is that it describes the tendency of levels to repel each other: the
probability of finding two levels close to each other vanishes as sβ for s → 0. Figs. 2.2(b)–(c)
illustrates the prototypical behavior of levels when varying a system parameter in systems with
and without level repulsion. The exact level spacing distributions for N ×N Gaussian matrices,
firming under the name Wigner-Dyson distribution, do not have a closed analytic form but are
well approximated by the 2× 2 result [118]. For example, the correction to Eq. (2.5) for N → ∞
remains below 1% for all s [134]. In particular, level repulsion is a generic feature for all matrix
sizes N .

What RMT can predict: fluctuations, universality, and ergodicity. The Gaussian ensembles con-
tain no system-specific information except for the fundamental symmetries. Therefore, it is
evident that RMT can never exactly reproduce the spectrum of a given system. Why then is
RMT so successful? This relies on a clear distinction between average values of observables and
fluctuations around them [118]. The belief wedded to the application of RMT is that fluctuation
properties are universal, whereas average quantities cannot be modeled. For example, all Gaus-
sian ensembles have a semicircle-shaped average level density ρ(E) hardly encountered in real
physical systems [133]. In Eq. (2.5), the variable s is the level spacing, measured in units of the
mean local spacing. One must therefore cleanse a measured data set from the system-specific
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2.1 Quantum chaos
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Figure 2.2 – Level repulsion and unfolding. (a) Comparison of the level spacing distribution for integrable
quantum systems, i.e., uncorrelated levels with a Poisson distribution, and the Wigner-Dyson distribution
expected for RMT ensembles. The central attribute of the latter is level repulsion, i.e., pW (s → 0) → 0. (b)
and (c) illustrate the behavior of energy levels under variation of a system parameter λ. In integrable systems
(b), the levels intersect, whereas quantum chaotic systems (c) show avoided crossings where levels repel. (d)
Level unfolding. The staircase function N(E) comprises a smooth part N̄(E) and fluctuations Nfl(E). Only
the latter shows universal behavior, and the influence of the local average must be eliminated. The mapping
from an energy Ei to its unfolded value ei is illustrated in yellow. See the main text for details.

average values before RMT can be employed, a procedure referred to as unfolding and illustrated
in Fig. 2.2(d). Shown is the spectral staircase N(E) =

∑
iΘ(E − Ei), which counts the num-

ber of levels Ei smaller than E. Here, Θ(x) is the Heaviside step function. N(E) comprises a
smooth, system-specific average part N̄(E) and fluctuations around that value Nfl(E). Assuming
that N(E) is known, the unfolded levels are obtained as ei = N̄(Ei). The new spectrum has a
mean level spacing of one and can be compared to the predictions of RMT. Unfolding the spec-
trum is a delicate step, since only in rare cases the function N̄(E) is analytically known [135].
To overcome this issue, it has been proposed to study the ratio of consecutive level spacings,
rn = (En+1 − En)/(En − En−1) [136]. As these ratios are independent of the local density, the
unfolding procedure is obsolete, see Chapter 4.

When discussing random matrices, one usually refers to the Gaussian ensembles. However,
the Gaussian (H2) in Eq. (2.2) is convenient but not necessary. In fact, the probability density

P (H) ∝ exp (−Tr [V (H)]) (2.6)

guarantees invariance under the respective symmetry transformations. V (H) must permit the
normalization of P (H) but is otherwise arbitrary. This raises the question of universality: are
the results, e.g., the Wigner surmise or Wigner’s semicircle, generic for all ensembles in Eq. (2.6)
or specific to the Gaussian ones? There is convincing empirical evidence for the former. For
statistically independent matrix elements, one always obtains the semicircle-shaped density of
states. The Wigner surmise is even more universal. For a detailed discussion, see Ref. [133] and
Ref. [118] and references therein.

In RMT, observables are calculated as averages over many members of an ensemble. Applying
these ensemble predictions to experiments, where observables are extracted from an individual
system, requires further justification in the form of an ergodicity statement. More precisely,
the ensemble average must correspond to the experimentally obtained running average, taken
over a sufficiently large interval of the spectrum of a single sample. Although no general proof
of ergodicity in the above sense exists, the equality of the two averages was extensively tested
numerically and proven in specific cases [137–139].
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2 Quantum chaos and many-body localization

BGS and Berry-Tabor conjecture. In the decades following Wigner’s pioneering work, RMT has
been extended and successfully applied to understand the spectra of complex nuclei [140] (these
were the first systems where data sets suitable for the application of RMT existed). However,
when exactly a ‘complex’ system is adequately characterized by RMT had been unsettled until
1984, when Bohigas, Gianonni, and Schmit (BGS) observed that the level statistics of a single
particle in a Sinai billiard-shaped infinite potential well displays Wigner-Dyson statistics at high
energies. They conjectured that the level statistics of any quantum system with a chaotic classical
counterpart are described by RMT [141]. Numerous numerical and experimental studies on
systems as diverse as a hydrogen atom in a magnetic field [142], spinless fermions on a lattice [143],
the aforesaid complex nuclei, or—perhaps surprisingly—the city bus transport in Cuernavaca
(Mexico) [144] have demonstrated the almost universal validity of the BGS conjecture. A formal
proof of the BGS conjecture is missing, but some analytical approaches, usually relying on a
semiclassical approximation, exist [118, 145]. All counterexamples known to date are highly
nongeneric [146]. In fact, the examples for the conjecture are so convincing that the occurrence
of level repulsion and Wigner-Dyson statistics is often taken as the defining property of quantum
chaos, regardless of whether the system has any classical analog at all.

On the other hand, the level spacing distribution in quantized versions of classically integrable
systems3 is often found to be described by Poisson statistics,

pP (s) = exp (−s) . (2.7)

This distribution is compared to the prediction for the Gaussian ensembles in Fig. 2.2(a). Again,
s is measured in units of the local spacing. Most importantly, there is no level repulsion as
pP (s→ 0) 6= 0. Eq. (2.7) is also the expected result for uncorrelated random numbers. A simple
example easily clarifies the connection: Consider the classically integrable system of indepen-
dent oscillators with incommensurate frequencies ωi, occupation numbers ni, and total energy
E =

∑
i h̄ωi(ni + 1/2). For high energies, nearby energies can correspond to an entirely differ-

ent combination of occupation numbers ni, implying that adjacent energy levels are effectively
uncorrelated. The proposition that in quantum systems with an integrable classical analog, the
energies are a sequence of uncorrelated random numbers is known as the Berry-Tabor conjecture
[147]. Whilst found to be true in many systems, there are also some counterexamples [148], often
due to degeneracies caused by additional symmetries of the Hamiltonian. We will discuss an
example of this later.

2.1.3 Chaotic eigenfunctions

The emergence of Wigner-Dyson statistics replaces the divergence of initially adjacent trajectories
as the primary indicator of chaos in quantum mechanical systems. So far, quantum chaos seems
to be just a somewhat eccentric name for level repulsion. It is not yet clear why such systems
are unsuitable for quantum computing. The analysis of eigenvectors of random matrices sheds
light on this conundrum and sets the stage for discussing thermalization in Sec. 2.2.

In the following, we consider the GOE. As the ensemble is invariant under orthogonal trans-
formations, the joint probability distribution P ({ci}) for the eigenvector components ci, i =

3The exact definition of quantum integrability is under debate. A widely used attempt relies on the existence of
local operators Îi that commute with each other and with the Hamiltonian. The analogy to classical Liouville-
Arnold integrability is obvious. We pick up this discussion in Sec. 2.3.
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2.2 Thermalization

1, . . . , N can only depend on the (squared) norm
∑

i c
2
i . Taking into account the normalization

yields

P (c1, . . . , cN ) ∝ δ

(
N∑
i=1

c2i − 1

)
, (2.8)

which states that eigenvectors of random matrices are random unit vectors [117]. In particular,
the correlations between eigenvectors stemming from the required orthogonality can be ignored
because two uncorrelated, sufficiently large vectors are nearly orthogonal (more rigorously, the
first λ < N components of n eigenvectors with n � N are uncorrelated for N → ∞ [149]). To
prevent confusion, we note that this statement holds for matrix ensembles in a fixed basis, even
if it does not apply to a single ensemble instance. Imagine that we pick one random matrix and
write it in its eigenbasis. Obviously, in the diagonal form, the eigenvectors are not uncorrelated.
However, the basis is not particular for all other instances, and the above statement regains
validity for the whole ensemble [117].

As a random unit vector, the eigenvector of a random matrix is distributed over many basis
states. We refer to this as delocalization over a given basis. The following example, adapted
from Ref. [117], illustrates how the concept of delocalization can unify the classical and quantum
mechanical perception of chaos. The underlying idea is to study delocalization in both cases—
in phase space for classical systems and in energy space for quantum systems—using suitable
entropic measures. One option to reveal delocalization in phase space is to perform a quench
experiment, i.e., evolve a stationary probability distribution of H0 under some Hamiltonian
H 6= H0 and calculate the entropy S of the time averaged probability distribution ρ̄. Chaos
causes the system to delocalize and ergodically explore all achievable points in phase space, see
Fig. 2.1(b). S(ρ̄) will then increase to the microcanonical entropy. For the quantum analog, one
considers operators ρ̂, Ĥ0, Ĥ and studies the entropy of the time-averaged density matrix ¯̂ρ. One
can show that

¯̂ρ = lim
t→∞

1

t

t∫
0

ρ̂(t′)dt′ =
∑
i

ρii|i〉〈i| , (2.9)

where |i〉 is the eigenbasis of Ĥ and ρii are the diagonal elements of the initial ρ̂ in the basis |i〉.
This equation states that the spreading of the initial state (in the simplest case, an eigenstate of
Ĥ0, ρ̂0 = |m0〉〈m0|) over the eigenbasis of Ĥ is the quantum version of delocalization in phase
space. In particular, if Ĥ is a random matrix describing a quantum chaotic system, the density
matrix in Eq. (2.9) will generically be delocalized. This puts classical and quantum mechanical
chaos on the common foundation of delocalization. The analogy between quantum delocalization
and classical chaos has been experimentally studied in a transmon processor [150].

2.2 Thermalization

The last 15 years have seen impressive experimental progress in synthesizing isolated quantum
many-body systems, including superconducting transmon arrays. This has triggered increasing
efforts to understand the possible outcomes of their intrinsic unitary dynamics. Consider again a
quantum quench: a system, described by the Hamiltonian Ĥ, is prepared in the nonequilibrium
state |ψ0〉 and undergoes unitary time evolution. |ψ0〉 is typically a ‘simple’ state that is easily
prepared in an experiment, e.g., a product state (quenches are important because the eigenstates
of a generic many-body system Ĥ can only be prepared in an exponentially long time [114]). In
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2 Quantum chaos and many-body localization

the introductory example in Sec. 1.6, |ψ0〉 = |1010 . . . 〉 was an eigenstate of the noninteracting
transmon array described by Ĥ0. Note that such states usually have a high energy density.
Experience shows that many systems thermalize: after a sufficiently long time, they reach an
effective equilibrium, and local observables appear thermal, i.e., their expectation values are
given by the microcanonical ensemble. All sufficiently small subsystems reach a thermal Gibbs
state because the coupling to the remainder of the systems mimics a heat bath, provided that
efficient energy exchange between subsystems is possible.

To put this in more quantitative terms, we consider the initial state |ψ (0)〉 =
∑

i ci|i〉 where
|i〉 are the many-body eigenstates of Ĥ with energy Ei. Its time evolution is (h̄ = 1)

|ψ (t)〉 = e−iĤt|ψ (0)〉 =
∑
i

cie
−iEit|i〉 . (2.10)

The time-dependent expectation value O(t) of some observable Ô in this state is

O(t) = 〈ψ (t) |Ô|ψ (t)〉 =
∑
i,j

c∗i cje
i(Ei−Ej)t〈i|Ô|j〉

=
∑
i

|ci|2〈i|Ô|i〉+
∑
i,j 6=i

c∗i cje
i(Ei−Ej)t〈i|Ô|j〉 . (2.11)

Thermalization of the system (more precisely of the observable Ô) means that after some re-
laxation time, (i) the long-time average of O(t) is equal to the microcanonical prediction and
(ii) that the fluctuations of O(t) around this value are small at most later times [117]. As the
off-diagonal contributions in Eq. (2.11) oscillate, the long-time average of O(t) is

〈O〉∞ = lim
t→∞

1

t

t∫
0

O(t′)dt′ =
∑
i

|ci|2〈i|Ô|i〉 . (2.12)

Reconciling this equation with the above definition of thermalization (and experimental ob-
servations) encounters two difficulties: First, the coefficients |ci|2 appearing in 〈O〉∞ contain
information on the initial state. How can this be equal to the microcanonical expectation value?
In particular, as information on |ψ (0)〉 is seemingly preserved, how can different initial states
thermalize to the same equilibrium? Second, Eq. (2.12) is only valid for t → ∞. Many-body
levels are exponentially close (in system size) such that the time needed for the off-diagonals to
average out can easily exceed the age of our universe [117], in contrast to what is observed in
experiments. A proposal surmounting these problems and explaining how unitary time evolution
leads to thermalization is the eigenstate thermalization hypothesis.

2.2.1 The eigenstate thermalization hypothesis

The eigenstate thermalization hypothesis (ETH) is an ansatz for the matrix elements of few-
body4 operators between eigenstates |i〉, |j〉 of Ĥ with corresponding energies Ei, Ej . It reads

〈i|Ô|j〉 = Omc
(
Ē
)
δij + e−S(Ē)/2RijfO(∆E, Ē) , (2.13)

4Few-body refers to observables that differ on n � N lattice sites, spins, etc., from the identity, where N is the
system size. This is not a true restriction, as these are the experimentally accessible observables. ETH can
apply up to n ≈ N/2 [151] but not to global operators such as projection operators to the eigenstates of Ĥ.
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2.2 Thermalization

where Ē = (Ei + Ej)/2 is the mean energy, S(Ē) is the thermodynamic entropy, and Rij is a
random variable with zero mean and unit variance. Omc is the microcanonical expectation value
of Ô at energy Ē, and fO(∆E, Ē) is a smooth, observable-dependent function of the average
energy and the energy difference ∆E = Ej −Ei. The interpretation of the first summand is that
individual many-body eigenstates are thermal, i.e., they are described by equilibrium statistical
mechanics, and their expectation values 〈i|Ô|i〉 are equal to the microcanonical ones at energy
E = Ei. This explains why different initial states from a narrow energy shell evolve to the
same equilibrium. However, the first term only ensures thermalization after an infinitely long
time. Hence, Srednecki [152] postulated the ansatz (2.13) and demonstrated that it is sufficient
to explain thermalization in the above sense (whether it is also necessary is an open question
[117]). In particular, the form of the off-diagonal elements implies that 〈(O(t)− 〈O∞〉)2〉∞ ∝
exp

(
−S(Ē)

)
, meaning that the long-time average of the fluctuations is exponentially small in

the system size. O(t) remains near its equilibrium value for most of the time, i.e., not only
their time average but the temporal fluctuations themselves vanish. The function fO(∆E, Ē)
determines the relaxation times [111, 152]. They are not exponentially large and, in some cases,
do not even necessarily increase with the system size [117]. The rather strong conjecture on the
matrix elements in Eq. (2.13) has been confirmed in various numerical studies, see Refs. [153,
154] for two prominent examples. One often refers to thermalizing systems as ergodic (although
a quantum mechanical definition of this term must overcome some subtleties [155]). We use the
terms quantum chaotic, ergodic and delocalized interchangeably.

Our initial motivation was the possible outcome of unitary dynamics after a quench. How-
ever, the above discussion reveals that it is appropriate to focus on the static properties of the
Hamiltonian Ĥ under which the system evolves. All information on thermalization is encoded
in its eigenstates; time evolution merely exposes this hidden information. It is further appar-
ent why a quantum computer cannot operate in the thermalizing phase: any locally encoded
initial information is scrambled during relaxation. Unitary time evolution cannot erase informa-
tion, see Eq. (2.10), but hides it in an inaccessible way in nonlocal correlations such that local
measurements cannot regain it. Such a system cannot serve as a quantum memory. Moreover,
eigenstates living at the same energy are similar in that local measurements, e.g., of the state of
a single qubit, give the same thermal result for all states. Therefore, it is impossible to identify
or distinguish computational states at all. A quantum computer must find a way to avoid ther-
malization. Before discussing how systems can escape this fate of failure, let us further elaborate
on the close connection between quantum chaos and thermalization.

2.2.2 ETH and quantum chaos

The first seed of the strong link between thermalization and chaos dates back to work by Berry in
1977 [156]. Considering semiclassical wave functions, he conjectured that the expectation value in
these states takes the form of a microcanonical average if the classical counterpart of the system
exhibits chaos. The importance of RMT for understanding thermalization was emphasized in a
seminal paper by Deutsch in 1991 [110]. Under the assumption that the eigenstates of ergodic
systems are uncorrelated random unit vectors, Deutsch extended Berry’s conjecture beyond the
semiclassical limit. Indeed, if Ĥ were a true random matrix, the caveats to the validity of
Eq. (2.12) discussed above would no longer apply. Using the results from Sec. 2.1.3, one easily
shows that the matrix elements of any operator Ô =

∑
αOα|α〉〈α| in the eigenbasis of the random
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2 Quantum chaos and many-body localization

matrix are [117]

〈i|Ô|j〉 ≈ Oδij +

√
O2

D
Rij , (2.14)

where D is the Hilbert space dimension, Rij is a random variable defined as in Eq. (2.13), and
the bar denotes the average over the eigenstates of Ô, i.e., O =

∑
αOα/D and similar for O2.

Combining Eq. (2.12) and (2.14) yields 〈O〉∞ = Ō, which can be regarded as a microcanonical ex-
pectation value. It is a peculiarity of RMT that all eigenstates have the same energy-independent
expectation value Ō (formally, that corresponds to an effective temperature T → ∞ for the sub-
systems). Regarding the long relaxation times, it has been argued that the values 〈O〉∞ are
approached on timescales shorter than the inverse level spacing required in Eq. (2.11): because
of the exponentially small off-diagonal matrix elements, it is sufficient to destroy phase coherence
between a small fraction of the eigenstates [114, 117].

Thus, RMT explains thermalization, but one must proceed further to obtain predictions con-
sistent with experiments where one encounters energy-dependent thermal expectation values.
Srednicki extended Deutsch’s work [109] to account for the additional information in the matrix
elements of experimental observables, eventually leading to the celebrated formula in Eq. (2.13)
replacing the RMT result (2.14) [152]. The RMT predictions reemerge from Eq. (2.13) when fo-
cusing on narrow energy windows ∆E where f is approximately constant (an energy scale known
as the Thouless energy ET [157]). From this, one can infer another similarity between classically
and quantum chaotic systems: Consider a perturbation εÔ with ε � 1 of the Hamiltonian Ĥ.
The energy window ∆E < ET where f ≈ const vanishes in the thermodynamic limit. The same
holds for the magnitude of off-diagonal matrix elements. However, as the many-body level spac-
ing vanishes exponentially faster, the energy shell still contains exponentially many levels whose
eigenstates strongly mix through εÔ [114]. The eigenstates of Ĥ + εÔ will thus differ strongly
from the original ones. This extreme sensitivity of thermal eigenstates to perturbations can be
thought of as the quantum counterpart of the sensitivity of chaotic trajectories to small pertur-
bations in the initial conditions. It also appears from the above discussion that ETH systems
inherit the Wigner-Dyson statistics from RMT.

2.3 Avoiding chaos by disorder: many-body localization

Imagine a multi-qubit transmon array initialized in the state |10101 . . . 〉. How can one prevent
this state from relaxing towards the equilibrium where local qubit measurements on all sites give
the same result? As of today, there is a single known robust mechanism by which isolated systems
can avert thermalization [114]. This mechanism is known as many-body localization. The
primary ingredient for MBL to occur is strong disorder. In a nutshell, this localizes excitations
normally transporting energy and heat. By blocking these transport processes, the system cannot
operate at a heat bath to thermalize its subsystems. It permanently stays out of equilibrium,
such that the predictions of conventional statistical physics fail. Instead, new concepts are needed
to describe MBL systems adequately.

2.3.1 From single-particle localization to many-body localization

A natural starting point for discussing MBL physics is the model of a single particle moving
in a lattice with a random potential, first discussed by Anderson [158]. It is described by the
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2.3 Avoiding chaos by disorder: many-body localization

Figure 2.3 –
Bloch waves and Anderson localization. (a)
In a clean crystal, the wave functions are Bloch
waves extending over the entire lattice. (b) In a
disordered potential, the particles localize around a
particular lattice position Rj . This mechanism is
known as Anderson localization and occurs at ar-
bitrarily low disorder in one and two dimensions.
Inspired by Ref. [114].
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tight-binding Hamiltonian

Ĥ = −t
∑
〈ij〉

(
ĉ†i ĉj + ĉ†j ĉi

)
+
∑
i

Uiĉ
†
i ĉi , (2.15)

where t is the hopping amplitude, ĉ†i creates a particle at site i and Ui is the lattice-site dependent
potential. For Ui = U , the system exhibits translational symmetry, and the eigenstates are Bloch
waves extending over the entire lattice, as sketched in Fig. 2.3(a). For uncorrelated disorder, i.e.,
if the Ui are independent random numbers, the nature of the wave functions ψ changes, and they
localize around a site Rj , i.e., |ψ(r)| ∝ exp(−|r − Rj |/ξ), see Fig. 2.3(b). Particles remain at
the lattice site where they are initially located. This is easily understood in the strong disorder
limit. If the magnitude of site-to-site variations in Ui exceeds the hopping strength t, transitions
between neighboring sites are off-resonant. A similar argument holds for hopping between more
distant positions that arise in higher-order perturbation theory [114]. In low-dimensional systems,
d = 1, 2, however, single-particle or Anderson localization occurs at arbitrarily weak disorder. In
d ≥ 3, particles localize if the disorder strength exceeds a critical threshold.

The above picture remains valid if we consider Eq. (2.15) to be a many-body Hamiltonian,
describing several noninteracting particles. Imagine, for example, an initial nonuniform particle
density distribution akin to the one shown in Fig. 1.2. As all particles are Anderson-localized, the
entire pattern remains intact, indicating the breakdown of ergodicity also in this many-body set-
ting. Any realistic system, however, contains interactions between particles. Understanding the
fate of Anderson localization at finite energy (or particle) density in the presence of interactions
has been identified as a problem of utmost importance early on [158, 159].

Noninteracting particles moving in a disordered lattice provide the most accessible illustration
of single-particle localization. However, when studying localization in the presence of interac-
tions, it is convenient to consider another paragon in MBL physics that allows for an intuitive
elucidation of some MBL hallmarks, namely the spin 1/2 Heisenberg chain in a random magnetic
field,5

Ĥ = J
∑
i

σ̂iσ̂i+1 −
∑
i

hiσ̂
z
i . (2.16)

Here, σ̂ = (σ̂x, σ̂y, σ̂z), and the fields hi are randomly drawn from a distribution with disorder
strength h, e.g., a box distribution [−h, h]. To capture localization, it is reasonable to ask whether
many-body eigenstates of Eq. (2.16) (with nonzero density for both up and down spins) obey

5Eq. (2.16) maps onto a model of interacting fermions in a disordered lattice using a Jordan-Wigner transforma-
tion [160]. The single-particle Anderson model (2.15) corresponds to a single spin flip in Eq. (2.16).
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the ETH. Arguing similar to above, we start with the h/J → ∞ case, where each eigenstate
is a product state of σ̂z eigenstates and completely specified by a set of single-spin quantum
numbers {σzi }. For a small J 6= 0, the significant level distance between neighboring sites, set
by h, blocks the hybridization over different lattice sites. Early groundbreaking work that also
coined the expression ‘many-body localization’ [112, 113] argued in this perturbative sense (for
disordered fermionic systems) and showed that the nonthermalizing limit withstands the onset
of interactions to any order in perturbation theory [113].6 However, the MBL phase and the
violation of ETH occur even for strong interactions where perturbation theory is not valid, as
has been shown in numerous numerical studies, often focusing on variations of the model in
Eq. (2.16) [162–164] or fermionic models [136]. These models observe a phase transition when
the disorder strength is tuned. The transition reflects in a change in the many-body eigenstate
properties: for small disorder, the system thermalizes because all eigenstates satisfy the ETH,
whereas once the MBL phase is entered for large disorder, the ETH is disobeyed.

2.3.2 Emergent integrability and local integrals of motion

One of the salient features of the MBL phase—often equated with MBL—is its simple but
powerful description through quasi-local operators. Within this picture, many of the pivotal
characteristics can be intuitively captured. We consider a system of N local two-state degrees
of freedom, but one can argue analogously for systems with more levels. These local two-level
systems are referred to as physical bits or p-bits. They can be, for example, spins |↑〉, |↓〉 or
qubits |0〉, |1〉 on a lattice. For concreteness, we proceed with the model (2.16). Switching off
the interaction J , all spins point either up or down and all eigenstates are simply product states,
i.e.,

|{σzi }〉 = |σz1σz2 . . . σzN 〉 , σzi =↑, ↓ . (2.17)

For J = 0, the p-bits σ̂zi form a complete set of independent local integrals of motion as they
commute with the Hamiltonian and each other. Once the spins start interacting, the Hamiltonian
is not diagonal in the |{σzi }〉 basis. The crucial hallmark of MBL is that each eigenstate can still
be specified by providing the individual quantum numbers ↑τ , ↓τ of a two-level object. However,
this new, emergent degree of freedom is not the perfectly local p-bit but a quasi-local integral of
motion (LIOM), the so-called l-bit or localized bit, denoted as τ̂ zi .

More formally, that implies that there exists a quasi-local unitary transformation Û , i.e., a
transformation which intermingles only nearby spins7 and transforms the integrals of motion for
J = 0, the p-bits, into the l-bits according to

τ̂ zi = Û σ̂zi Û
† ∝ σ̂zi +

∑
j,k

∑
α,β=x,y,z

cαβ(i, j, k)σ̂
α
j σ̂

β
k + . . . , (2.18)

where . . . denotes terms with more than two spin operators. The τ̂ zi operators commute with
the Hamiltonian (by definition) and each other, i.e.,[

τ̂ zi , Ĥ
]
= 0 ,

[
τ̂ zi , τ̂

z
j

]
= 0 , (2.19)

6Here, Anderson localization appears to be the noninteracting limit of MBL. This is not generically true; switching
off the interactions in the MBL phase does not necessarily result in Anderson localization [161].

7Û is called quasi-local if it takes the form Û =
∏

i · · · Û
(3)
i,i+1,i+2Û

(2)
i,i+1 where Û

(k)
i,...,i+k acts on k sites and

approaches the identity exponentially fast, i.e., ||1 − Û
(k)
i,...,i+k|| < exp (−k/ξ) with the Frobenius norm || · ||

[114].
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2.3 Avoiding chaos by disorder: many-body localization

Figure 2.4 –
l-bits and p-bits. The physical bits, denoted by σ̂z

i , are truly
local two-state degrees of freedom. Their individual quantum
numbers {σz

i } completely specify the eigenstates of the nonin-
teracting system. Once the interaction is switched on, a new
set of conserved quantities emerges, the l-bits, denoted by τ̂zi .
They are local in the sense that they are concentrated at one
lattice site, but neighboring p-bits also contribute to an l-bit.
The eigenstates of the interacting system are still fully specified
by a set of local quantum numbers {τzi }. The (exponentially
small) overlap between far-apart l-bits induces long-range in-
teractions.

τ̂ zi τ̂ zi+3

σ̂z
i σ̂z

i+3

meaning that the l-bits form a set of independently conserved quantities. Consequently, a set of
l-bit eigenvalues |{τ zi }〉, τ zi =↑τ , ↓τ akin to Eq. (2.17) completely specifies each eigenstate of Ĥ.
The heart of MBL is the quasi-locality of Û , which implies that the coefficients c in Eq. (2.18)
decay exponentially with the distance between site i and the sites j, k, i.e.,

cαβ(i, j, k) ∝ exp (−max{|i− j|, |i− k|}/ξ) . (2.20)

Hence, the τ̂ zi are similar to the σ̂zi in the regard that their support predominantly stems from
the site i, but they are dressed with minor contributions from neighboring sites, as illustrated in
Fig. 2.4. Thus, the l-bits are not only conserved but quasi-local. This property of the MBL phase
is sometimes referred to as emergent local integrability. The length scale ξ can be interpreted
as the MBL localization length, although it should be noted that separate characteristic length
scales can control different properties of MBL systems. In contrast to ETH eigenstates, MBL
eigenstates, being uniquely specified by a set of {τ zi }, τ zi =↑τ , ↓τ , carry local information that
is trivially preserved under unitary time evolution at arbitrarily large times, providing the first
indication that it is the MBL phase one desires for a transmon array serving as a viable quantum
computer.

Expressed in terms of the l-bits, a generic MBL Hamiltonian takes the universal form [165–167]

ĤMBL = E0 +
∑
i

hiτ̂
z
i +

∑
i>j

Jij τ̂
z
i τ̂

z
j +

∑
i>j>k

Jijk τ̂
z
i τ̂

z
j τ̂

z
k + . . . , (2.21)

where the dots denote interaction terms between four or more τ̂ z. E0 is an energy offset that
does not influence the dynamics, the second term is a local field term, and all higher terms
describe interactions between the l-bits. Note that Eq. (2.21) contains long-range interactions
arising because two far-apart l-bits have an (exponentially small) overlap. Crucially, as the
Hamiltonian in Eq. (2.16) only couples nearby p-bits and those are related to the l-bits via a
quasi-local unitary Û , these couplings decrease exponentially with the maximal distance of the
involved operators,8

Jij ∝ J0 exp (−|i− j|/κ) , Jijk ∝ J0 exp (−|i− k|/κ) , . . . , (2.22)

where J0 is the typical interaction scale. The l-bit interactions distinguish the MBL phase from
Anderson localization, where all Js strictly vanish. They cause distant l-bits to dephase slowly,
which leads to the MBL-typical slow dynamics, e.g., the logarithmic spreading of entanglement,

8The length scales κ and ξ emerging in the Eqs. (2.20) and (2.22) satisfy κ−1 ≥
(
ξ−1 + ln 2

)
/2 [114].

25



2 Quantum chaos and many-body localization

see the discussion in the next section. One should note that neither Eq. (2.18) nor the specific
form in Eq. (2.21) are a peculiarity of the MBL phase. The τ̂ zi operators can also be defined
in ETH systems, where they are just of no practical relevance since they are ‘too complicated’
[168] and spread over all p-bits. The essence of MBL is captured in the exponential decay in
Eq. (2.20) and Eq. (2.22) and the simplicity and locality of the associated l-bits.

The description of the MBL phase by LIOMs is a highly successful concept. Their existence has
been confirmed in various numerical studies and can even be proven analytically in specific one-
dimensional systems [169, 170]. In the next section, when we summarize the features separating
ETH and MBL, we frequently invoke Eq. (2.21) to explain MBL properties. Ref. [168, 171]
provide a more in-depth discussion of MBL physics from the LIOM standpoint.

l-bit dynamics. The dynamic of an individual l-bit under Eq. (2.21) is trivial: it precesses in a
magnetic field heff

i such that its z-component is conserved. Notably, the effective field and hence
the precession frequency depends on the τ zj values of all other l-bits j 6= i, which is easily verified
for two l-bits in the initial state (a| ↑τ 〉+ | ↓τ 〉) ⊗ |τ z2 〉. This has direct, detrimental effects on
one of the most widespread two-qubit gates, as discussed in the next chapter.

Robustness of the integrability. There are various examples of systems violating ETH through
integrability (i.e., an extensive number of conserved quantities), e.g., systems satisfying the Bethe
ansatz [172] or Yang-Baxter [173] integrable systems. However, weak perturbations destroy the
integrability and restore ergodicity. In contrast, the emergent local integrability of MBL systems
is robust: for small perturbation of an MBL system, one can define a new ‘deformed’ [114] set of l-
bits. MBL is an extended phase of matter, covering a finite range in the space of the Hamiltonian
parameters, in contrast to the other mechanisms, which are points or lines of measure zero in
this space [114]. We note that in recent years a controversy has ensued whether there can be a
stable MBL phase in the thermodynamic limit [174]. We will touch on this at the end of this
chapter.

2.4 Signatures of many-body localization and eigenstate thermalization

In this section, we revisit some distinguishing characteristics of the ETH and MBL phases and
introduce quantitative measures used to separate between them in subsequent chapters.

Transport. The initial idea in our discussion on how to violate ETH was to introduce strong
disorder to suppress transport between subsystems by making it off-resonant. Indeed, MBL
systems exhibit zero DC conductivity for all conserved densities [119]. Rigorous reasoning within
the l-bit picture can be found in Ref. [175]. Note that MBL differs in this aspect from disorder-free
integrable systems [176]. However, the absence of transport is not the key feature distinguishing
it from the delocalized phase, which, under certain circumstances, displays subdiffusive transport
[177].

Entanglement entropy. The entanglement entropy SEE measures the degree of entanglement
between subsystems in the eigenstates of the system. If we bisect a physical system in two parts,
A and B, then the entanglement entropy for the eigenstate |i〉 is defined as

SEE (|i〉, A) = −Tr (ρ̂A ln ρ̂A) , (2.23)
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2.4 Signatures of many-body localization and eigenstate thermalization

where ρ̂A = TrB (|i〉〈i|) is the reduced density matrix of the subsystem A in the eigenstate
|i〉. In ETH systems, all observables have thermal expectation values, reflecting that every
subsystem’s reduced density matrix ρ̂A is thermal. Eq. (2.23) then becomes the definition of
the thermodynamic entropy of subsystem A. As the thermodynamic entropy is extensive and
scales with the volume of A, SEE obeys the same volume law scaling with the subsystem size,
SEE (A) ∝ vol(A). Eigenstates of MBL systems have a much lower entanglement that scales with
the boundary of the subsystem, SEE ∝ vol(∂A). This area law scaling is intuitively clear from
the l-bit picture: All eigenstates are l-bit product states. Only the l-bits that are intersected
by the bipartition contribute to the entanglement entropy, indicating that SEE is proportional
to the number of LIOMs in the vicinity (∼ ξ) of the boundary. In d = 1 chains of length
L � ξ, for example, SEE is bounded by a constant in the MBL phase and scales with LA, the
length of subsystem A in the ETH phase. This behavior was verified in a variety of models
[136, 178, 179]. Entanglement properties are also displayed by other diagnostics tools like the
entanglement spectrum [180] or bipartite fluctuations [181, 182] of globally conserved quantities,
like the fluctuation of the particle number [183] in subsystem A. In a loose sense, the low amount
of entanglement makes MBL eigenstates at finite energy density similar to the ground states of
gapped systems, which obey the same area law. This paves the way for applying methods initially
targeting at ground states of gapped systems to MBL systems.

Level statistics. As discussed, the spectrum of ETH systems exhibits level repulsion and is
described by the Wigner-Dyson distributions of RMT. In MBL systems, the eigenvalues obey
Poisson statistics, as instantly apparent in the LIOM picture with an argument analogous to
the one provided in Sec. 2.1.2: Each level corresponds to a particular set {τ zi }. Nearby levels
typically differ in many τ zi , making the eigenvalues uncorrelated random numbers.

Wave function statistics. Recall that RMT eigenvectors are random unit vectors delocalized
over a given basis. Two measures to quantify the degree of (de)localization are the inverse
participation ratio (IPR) and the information or participation entropy, defined as

IPR =
∑
α

|cαi |4 , (2.24)

SP = −
∑
α

|cαi |2 ln |cαi |2 (2.25)

for the eigenstate |i〉 =
∑

α c
α
i |α〉, where ci = 〈i|α〉. Both quantities convert the complete infor-

mation about the wave function to a single number carrying all information on the localization
properties. The illustrative meaning of the IPR is easily visualized in real space by considering a
particle in a lattice, as shown in Fig. 2.5(a). Choosing the local eigenfunctions as a basis, an IPR
of 1 describes a particle localized at one lattice point. As the particle spreads out over a larger
region, the IPR decreases and reaches 1/D for a completely delocalized particle. The inverse IPR
can be interpreted as the localization length. For an arbitrary Hilbert space with dimension D,
an IPR of one indicates that the wave function has only support for a single vector |α〉 of a given
basis. If all basis states contribute equally, the IPR approaches 1/D. The inverse IPR measures
how many basis states contribute on average to the wave function. The participation entropy
SP is maximal for uniformly distributed |cαi |2, i.e., maximally delocalized states, and vanishes
for a localized state with cαi = δij for some j.

Both quantities are commonly exploited to measure how much an eigenstate extends over a
given basis that is usually taken to be the p-bit basis, e.g., the σzi -product states for the spin
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IPR=1

IPR<1

IPR=1/D|ψ
|2

MBL

“|n〉 6= |n+ 1〉”

ETH

“|n〉 = |n+ 1〉”

(a) (b)

Figure 2.5 – IPR and eigenvector similarity. (a) In real space, a particle localized at a specific lattice point
has an IPR of one (measured with respect to the local basis vectors). As the particle delocalizes, the IPR
decreases and reaches its minimal value of 1/D for complete delocalization. Here, D is the number of lattice
points. (b) In the ETH phase, eigenvectors belonging to levels taken from the same narrow energy interval
are similar in that all local observables Ô give the same expectation value, i.e., 〈n|Ô|n〉 = 〈n+ 1|Ô|n+ 1〉. In
contrast, local measurements can distinguish between two nearby eigenvectors in the MBL phase. Panel (b)
inspired by Ref. [120].

system in Eq. (2.16). They work with the caveat that their predictive power depends on the
choice of the basis |α〉. However, for our purposes, the IPR is helpful because we are interested
in asking how far the given qubit states deviate from the perfect ones.

As discussed, eigenstates in ETH systems that belong to nearby energies are similar in the
sense that in all states, the same microcanonical expectation value for observables Ô is obtained,
whereas they are different in the MBL phase, as pictographically shown in Fig. 2.5(b). One way
to measure the similarity of two eigenfunctions |i〉, |j〉 is to compare the distributions of the
coefficients cαi , cαj . A suitable measure to evaluate the distance between the two distributions is
the eigenvector similarity (EVS)

EVS =
∑
α

|cαi |2 ln

(
|cαi |2

|cαj |2

)
. (2.26)

This specific form of proximity measure for probability distributions (here ci and cj) firms under
the name Kullback-Leibler divergence. In Chapter 4, we utilize Kullback-Leibler divergences to
examine level statistics, see the discussion there for more details on their properties.

Quantum quench experiments. Following a quench, where some initial state |ψ0〉 is prepared
and evolves under the Hamiltonian Ĥ, local observables relax towards the thermal expectation
values in ETH systems. Information is transferred rapidly through the system and effectively
erased. Consider, for example, the Néel state |↑↓↑↓ . . . 〉 and, as an observable suitable to record
the alternating up-down pattern, the staggered magnetization σ̂zstag = 1

L

∑
i(−1)iσ̂zi whose ex-

pectation value is 1 for t = 0 and approaches 0 for t→ ∞. A ballistic spreading of entanglement
accompanies the information spread in ETH systems, i.e., the entanglement entropy grows as
SEE (|ψ0(t)〉, A) ∝ t [184]. In contrast, MBL systems obey a characteristic, logarithmically slow
spreading of entanglement SEE (|ψ0(t)〉, A) ∝ ξ̃ ln (J0t) [166, 167, 171, 185], where J0 is the typ-
ical interaction scale as in Eq. (2.22) (ξ̃ is yet another length scale, see Ref. [114] for a careful
discussion). Again, the l-bit picture provides an explanation: In Eq. (2.21), two l-bits dephase
on a timescale τ determined by the inverse effective interaction strength, which in turn decreases
exponentially with the l-bit distance r, i.e., τ ∝ J−1

0 exp(r/ξ̃). At a time t, degrees of freedom
with a distance r(t) ∝ ξ̃ ln (J0t) dephase. When starting in a product state, the entanglement
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entropy is proportional to the volume in which degrees of freedom are dephased, resulting in
the above log(t) spreading. For t → ∞, the entanglement entropy is bounded by the system
size because the volume containing dephased l-bits cannot exceed the actual system. A similar
line of arguments can be exploited to examine the relaxation properties of observables in MBL
quench experiments. One can show that dephasing leads to the relaxation of all local observ-
ables in a power-law fashion [186]. Most importantly, although MBL systems equilibrate, they
approach a nonthermal state from which locally encoded initial information can be reconstructed
[187]. This implies that in our example, for t→ ∞, there is a remanent staggered magnetization
〈ψ0(t)|σ̂zstag|ψ0(t)〉 → σ∞stag > 0 [188].

These attributes are such characteristic traits of MBL systems that they are often considered to
be defining properties in numerical simulations (entropy spreading) and experiments (relaxation
of observables). In particular, they provide a way to distinguish MBL from its noninteracting
cousin, Anderson localization, where neither entanglement spreading nor equilibration occur.

2.5 Selected aspects of many-body localization

Localization in configuration space. Early work heralding the existence of an MBL phase relied
on a mapping of the interacting many-body problem to a single particle Anderson problem
on a high-dimensional Fock or configuration space lattice [189]. For the model (2.16), one
can interpret the simultaneous eigenstates of all σ̂zi as the 2N corners of an N -dimensional
hypercube. Eq. (2.16) then describes a single particle hopping on that high-dimensional cube,
with disordered on-site energies stemming from the diagonal terms in Eq. (2.16) and hopping
between neighboring corners due to the spin-flip terms (see Chapter 4 for a visualization for the
transmon model). Various works exploit this analogy and studies the MBL problem from the
perspective of localization on complex lattices, confirming an almost perfect delocalization in
the ETH phase, i.e., IPR ∼ 1/D, and a clear ergodicity breaking in the MBL phase [164, 190].
Interestingly, for the MBL phase, the numerics suggest a multifractal scaling of the hypercube
volume covered by the wave functions with the Hilbert space dimension D [164]: localized wave
functions extending over a finite set of states obey IPR = const. Eigenstates in the MBL
phase, however, seem to comply with an IPR = 1/DD scaling, where D is the (basis-dependent)
multifractal dimension (D = 0(1) for completely (de)localized states) [191]. Subsequent work
has suggested the existence of an intermediate phase between MBL and ETH [192]. This phase is
proposed to be nonergodic but delocalized with multifractal scaling (in the context of Anderson
localization, this is dubbed a ‘bad metal’). The existence of such a phase has not yet been
conclusively solved, with arguments in favor [193] and against [194]. The takeaway here is that
MBL wave functions are not genuinely localized in Fock or configuration space. For a detailed
discussion, see Ref. [120] and references therein.

MBL in higher dimensions. Numerical hints and—for specific spin systems—analytical proofs
[169] confirm the existence of a stable MBL phase in d = 1. For d > 1, numerical studies cannot
make credible statements, and heuristic arguments must be used. Consider a ‘rare fluctuation’
with an atypical large disorder amplitude (e.g., hi+1 − hi � 1 in Eq. (2.16)). In a d = 1 system,
this can block energy exchange and prevent thermalization, whereas it does not constitute an
obstacle in d ≥ 2, where the large-disorder barrier can be circumvented. More quantitatively,
employing the heuristic condition that delocalization occurs when the hopping amplitude exceeds
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2 Quantum chaos and many-body localization

Figure 2.6 –
Many-body mobility edge in the disor-
dered spin-chain from Eq. (2.16), as numer-
ically calculated in Ref. [164]. For a fixed in-
termediate disorder strength, localized and er-
godic states coexist, with the localized states
sitting at the boundary of the spectrum. In
general, one finds that the critical disorder
strength hc is a function of the energy density
ε. The figure is intended to give a qualitative
impression, for details see Ref. [164].
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one can show that a thermal region (called ‘ergodic grain’), generated by atypical small disorder
amplitudes, destabilizes a surrounding MBL region for d ≥ 2 but is harmless in d = 1 [195,
196]. There is indeed no unambiguous evidence for the existence of a d > 1 MBL phase. It was
argued that d ≥ 2 systems might host an ETH phase with MBL traits: thermalization happens
on diverging timescales such that the systems obey MBL-typical slow dynamics (compared to
the times probed experimentally) and experiments are consistent with an MBL picture [197].

Mobility edge. Although the τ -Hamiltonian provides an intuitive explanation for many MBL
traits, a few observed features cannot be described in terms of LIOMs. Most notably, reconciling
the existence of a many-body mobility edge with the LIOM picture is an open challenge [171]. By
that, one means the dependence of the critical value of the transition driving parameter, usually
disorder or interaction strength, on the energy density ε = (E − Emin)/(Emax − Emin). Such an
edge, indicating the coexistence of localized and thermal eigenstates, is found in many numerical
studies [164, 179]. Usually, states near the edges of a bounded spectrum or below some critical
density are localized. Fig. 2.6 pictographically sketches the disorder-density phase diagram for
the random-field Heisenberg model in Eq. (2.16) obtained numerically in Ref. [164].

The existence of a mobility edge is not only indecipherable in the LIOMs picture, but the
phenomenon in its entirety has been called into doubt. It has been argued that ‘hot bubbles’, rare
spontaneous fluctuations with high density on a low-density background, can act as a mobile bath
and thermalizes the localized remainder [198]. Following this reasoning, the observed mobility
edges are merely finite-size effects and vanish in the thermodynamic limit. This perspective
also excludes the possibility of an MBL-ETH transition as a function of temperature. Such a
transition follows from the presence of a mobility edge, as was highlighted early on [113].

Why finite-size effects matter. As already echoed, studying MBL and ETH is numerically hard.
A clear transition between the two phases at a critical interaction or disorder strength only
occurs in the thermodynamic limit. For numerically accessible system sizes, a smooth crossover
substitutes the sharp distinction, giving rise to a finite-size MBL regime, where systems show
MBL-like characteristics as indicated in Fig. 2.7. In this work, we do not aim to study the MBL-
ETH transition via an appropriate finite-size scaling but to link the properties of the finite-size
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Figure 2.7 –
ETH-MBL phase transition and crossover.
The distinction between ETH and MBL phases is
only sharp in the thermodynamic limit. For fi-
nite system size N , an MBL regime occurs, where
the system exhibits MBL behavior in most re-
spects. Recent work has brought this regime into
focus. For realistic transmon arrays, the properties
of the regime matter, not the actual phase transi-
tion, which only occurs for N → ∞. Inspired by
Ref. [204].

increasing disorder
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finite N
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MBL regime to its potential application as a quantum computer. After all, a transmon quantum
computer does not operate in the thermodynamic limit.

This approach seems exceptionally reasonable in light of the newly awakened, controversial
discussion about the stability of the MBL phase, even in d = 1. A series of works [174, 199,
200] claims that the MBL phase cannot be stable in the thermodynamic limit. Even if the harsh
conclusions drawn there are viewed extremely critically9 [201, 202], some valid points are touched
on: The critical disorder strength, e.g., for the paradigmatic model (2.16), seems to lie at much
higher values [203, 204] than previously thought. Furthermore, there is also agreement that
finite-size effects are strong and that the extrapolation to the thermodynamic limit might give
ambiguous results. While the question of the fragility of the MBL phase remains unsolved for
the time being, the emergent discussion nevertheless has a few important consequences: First,
it establishes the MBL regime in finite-size systems as an independent research object, whose
characteristics may be very different from the actual MBL phase and that should be treated as a
distinct phenomenon [204]. Second, as properties of the ETH-MBL transition probably cannot
be explored with current numerical and experimental available resources [202], previous results
on the transition should be critically reevaluated [205], especially in view of the dramatic shift
of the critical disorder strength towards larger values. In addition, in our specific case, current
transmon processors usually exploit two-dimensional geometries, and thus, given the unlikely
existence of a d = 2 MBL phase, an MBL regime in a finite-size geometry is already the ultima
ratio.

Experiments. Experimentally studying isolated quantum systems is an inherently contradictory
endeavor, and improving isolation from the environment (apart from the necessary coupling to
measuring devices) remains a crucial challenge. The synthetic systems whose realization triggered
the interest in the dynamics of closed quantum systems in the first place are also the preferred
platforms for probing signatures of MBL: ultracold atoms [206], trapped ions [207], and, more
recently, superconducting circuits. A favored setting are quench experiments where the initial
state is a density wave or Néel configuration. The conservation of information on the initial
pattern indicates the presence of MBL, see Refs. [208–210] for an example for each mentioned
platform. Novel many-body spectroscopy techniques also allowed for the direct probe of many-
body levels and level statistics in transmon arrays [211].

Another experimental challenge is to distinguish MBL from Anderson localization. Both share
9The field of MBL is currently surrounded by an aura of uncertainty: The work that initially cast doubt on the

stability of MBL [174] exploits a finite-size scaling in the ergodic phase. Related to this, Ref. [201] has argued
that finite-size effects severely impact the utility of the metrics used in Ref. [174] in a scaling analysis. However,
other studies cast doubt on more (supposedly) established findings (e.g., the saturation of the number entropy
[199]). Yet, there is no serious evidence about a loophole in Imbrie’s proof [169].
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some properties, e.g., a vanishing DC conductivity of all conserved densities [119], which are
therefore excluded as a reliable indicator for the presence of an MBL phase. What to look for are
signatures of dephasing resulting from the weak coupling between far-apart l-bits that is absent
in Anderson localization. One distinguishing feature is the logarithmic growth of entanglement
entropy in MBL systems. This was recently observed in systems of ultracold atoms [212] and
superconducting circuits [210]. Other dynamical properties that can be measured to distinguish
between Anderson localization and MBL have been proposed [213, 214], but the experimental
implementation is still lacking.

2.6 Summary

This chapter introduced two phases whose properties are in diametrical opposition to each other:
the ETH phase, a quantum computer’s nemesis, and the MBL phase, where every quantum com-
puter must be. The ETH phase cannot serve as a quantum memory since initial states thermalize,
not because of the coupling to an external bath, but by their unitary dynamics: the system can
act as its own bath. In addition, it is impossible to identify a unique set of distinct computational
states because nearby ETH eigenstates are ‘similar’, i.e., they have the same expectation val-
ues for local observables. This contrasts with the MBL phase, which possesses many properties
necessary for storing and processing quantum information. MBL is a very active and expanding
research field. Few aspects are fully understood, and, as previously mentioned, controversial
debates question even the existence of MBL as a stable phase [174, 200]. This chapter presented
a little excerpt of the field, with topics chosen according to (subjectively perceived) importance
and relevance to the results shown later. Other essential and open topics have been completely
neglected. Most notably, we did not touch upon the attempts to understand the nature of the
phase transition from ETH to MBL, which possesses some unique features distinguishing it from
conventional phase transitions. For example, it manifests itself only in dynamical quantities as
entanglement propagation but not necessarily thermodynamic signatures [215]. Other exciting
areas are, e.g., the interplay of symmetries and localization [216, 217], the possibility of MBL
in translational invariant (i.e., disorder-free) systems [217] or many-body localization in Floquet
systems [218, 219]. From the methodological side, exact diagonalization studies of small systems
provided many insights into MBL. Besides, one should mention the application of density matrix
renormalization group (DMRG) methods to extract MBL eigenstates, reflecting the similarity
between these and ground states of gapped systems [180] as well as RG approaches to obtain ex-
plicit (approximate) expressions for the LIOMs [220]. Recently, the concept of out-of-time-order
correlators (OTOCs) [221] has become an increasingly widespread and vital tool for studying
the logarithmically slow spread of information in MBL systems [220, 222]. All these topics are
covered in the reviews commonly cited in this chapter [111, 114, 120, 171] and references therein.
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The transmon platform for
quantum computing

Chapter 3
In the previous chapter, we discussed how the phenomenon of many-body localization enables
specific interacting systems to eschew the fate of thermalization and the concomitant erasure
of the memory of an initial state. This chapter presents in more detail the territory we will
explore with the diagnostic tools of MBL theory: the superconducting transmon qubit platform
for quantum computing. The transmon (transmission-line shunted plasma oscillation qubit [58])
is the most extensively studied type of superconducting qubit [223]. In Sec. 3.1, we discuss two
complementary approaches to derive the Hamiltonian of a single transmon. The fundamental
properties, which have led to the transmon becoming the most widely used superconducting
qubit, are reviewed in Sec. 3.2. To build a functioning quantum processor, transmons have to be
equipped with the capability of communicating with each other. How this can be accomplished
is the subject of Sec. 3.3. Looking at the transmon array through the eyes of an MBL physicist,
two parameters are of particular importance: the disorder and the interaction strength. In
our model, these quantities cannot be chosen arbitrarily; instead, they are deeply rooted in
the concrete choice of the transmon hardware, which in turn is determined by the way two-
qubit gates are performed. Therefore, in Sec. 3.4, we advance beyond our actual model of
a ‘nonfunctional’ quantum computer and discuss variants of entangling gates. This lays the
foundation for introducing the central transmon computer design schemes in Sec. 3.5. The
experimental studies and example processors showcased serve as blueprints for our simulations,
the results of which are discussed in subsequent chapters.

The enormous popularity of the transmon is also reflected in the number of reviews dedicated
to it. Special mention should be made to Refs. [26, 47, 58, 223, 224], which have guided the
synopsis presented here and are excellent resources for further study.

3.1 The transmon

In this section, we motivate the Hamiltonian of a single transmon and show how the phenomenon
of superconductivity opens up the possibility of building ‘artificial atoms’, i.e., macroscopic
systems composed of innumerable microscopic building blocks, yet with an energy spectrum
that is no more complex than that of a hydrogen atom. This section closely follows Refs. [47,
224]. For a more in-depth discussion of the physics of Josephson junctions, see, for example,
Ref. [225].
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3.1.1 Superconductivity and the Josephson junction

One can think of the electrodes of an ordinary tunnel junction as an infinite potential well with
level spacings that, even for mesoscopic systems, are small enough to consider the density of states
as a continuum, as shown in Fig. 3.1(a). In a conventional BCS superconductor, the situation
is thoroughly different: Due to an effective, attractive interaction arising from virtual phonon
exchange, electrons of opposite spin form so-called Cooper pairs. The ground state, which has
all electrons paired up, is separated from the excited states by the energy 2∆ needed to break a
Cooper pair (typically a few Kelvin). In experiments with superconducting qubits, frequencies
and temperatures are small compared to the gap, h̄ω, kBT � 2∆. Hence, the principal effect
of superconductivity is that, by inducing the gap in the density of states, it drastically reduces
the Hilbert space dimension of the relevant states to the single state |N〉, characterized by the
number of Cooper pairs N , as depicted in Fig. 3.1(b). A Josephson tunnel junction—the prim-
itive building block of all superconducting qubits—consists of two superconducting electrodes
separated by a thin insulating layer, see Fig. 3.1(c). The junction can be modeled as a pure
Josephson tunnel element in parallel with a capacitor. The latter describes the plate capacitor
formed by the two electrodes, see the discussion in Sec. 3.1.3. In the ground state, all electrons
in both superconductors are paired up. Cooper pairs can tunnel through the thin insulating
barrier such that only the total number of pairs N is conserved. To fully characterize a state,
the number of Cooper pairs in the left and right electrodes must be specified. Starting from a
reference state with NL (NR) Cooper pairs in the left (right) electrode, each possible state is
labeled with an integer m that counts the number of pairs transferred through the junction:

|m〉 = |NL −m,NR +m〉 . (3.1)

These states are eigenstates of the Cooper pair number operator (also called charge operator)

n̂ =
∑
m

m|m〉〈m| . (3.2)

Neglecting the Coulomb energy for the moment, all states |m〉 are degenerate in energy. Coherent
tunneling of Cooper pairs through the barrier couples the degenerate |m〉 states, as shown in
Fig. 3.1(c). The tunneling processes are described by the phenomenological Hamiltonian

Ĥt = −EJ
2

∑
m

(|m〉〈m+ 1|+ |m+ 1〉〈m|) . (3.3)

The Josephson (coupling) energy EJ is a macroscopic parameter measuring the ability of the
Cooper pairs to pass the tunnel barrier. It is given by the Ambegaokar-Baratoff relation [226]

EJ =
h

8e2
GN∆ , (3.4)

whereGN is the normal-state conductance and ∆ the superconducting gap. Eq. (3.3) is equivalent
to the Hamiltonian of a one-dimensional tight-binding model with hopping amplitude EJ between
nearest-neighbor ‘lattice sites’ m. By this analogy, one immediately gets

Ĥt|ϕ〉 = −EJ cosϕ|ϕ〉 , (3.5)

where we introduced the ‘wave vector’ ϕ characterizing the plane-wave-like eigenfunctions of the
Hamiltonian (3.3):

|ϕ〉 =
+∞∑

m=−∞
e+imϕ|m〉 . (3.6)
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Figure 3.1 – Normal-metal and superconducting electrodes. (a) In an ordinary mesoscopic electrode,
the electronic density of states forms a continuum. States up to the Fermi energy εF are occupied (solid
background). (b) Superconductivity greatly simplifies the spectrum: the energy gap 2∆ separates a single
ground state, characterized by the number of Cooper pairs N , from the (near) continuum of excited states. (c)
A Josephson junction consists of two superconducting electrodes separated by a thin insulating layer. Each
electrode is characterized by a Cooper pair number NL, NR and a superconducting phase ϕL, ϕR. For an
isolated junction, the total number of Cooper pairs N = NL +NR is constant, but tunneling processes change
NL and NR. Inspired by Ref. [224].

The wave vector ϕ is nothing else than the phase difference of the two superconductors across the
junction, ϕ = ϕR−ϕL [225]. As the number of tunneled Cooper pairs m in Eq. (3.6) is an integer,
the states |ϕ〉 and |ϕ + 2π〉 are identical. The operator ϕ̂ associated with the superconducting
phase ϕ is conjugated to the number operator n̂ [225]. Symbolically, one can write

[ϕ̂, n̂] = i , (3.7)

keeping in mind that only operators that preserve the periodic boundary condition, like cos ϕ̂ or
n̂ (but not ϕ̂) are well-defined.

3.1.2 The transmon Hamiltonian

When a current flows through the junction and charge accumulates in one of the electrodes, the
Coulomb energy that was neglected so far becomes crucial. The charging energy EC necessary
to transfer one electron through the junction is defined as

EC =
e2

2CΣ
, (3.8)

where CΣ is the total capacitance between the two electrodes. It contains one contribution from
the intrinsic capacitance of the junction CJ , but depending on the design of the complete circuit,
more capacitances might add to it. Adding the Coulomb energy to the pure tunneling element
in (3.5) yields the total transmon Hamiltonian

ĤT = 4EC (n̂− ng)
2 − EJ cos ϕ̂ . (3.9)

The factor 4 appears because EC measures the energy per electron, and the Coulomb energy
to transfer a Cooper pair is four times larger. The parameter ng is called gate charge or offset
charge. It is a continuous variable that describes either the influence of an external gate voltage,
a microscopic junction asymmetry, or unwanted degrees of freedom in the environment of the
transmon [223, 224]. Charge noise, i.e., uncontrollable fluctuations in ng, significantly reduces
the lifetime of a transmon qubit. As detailed in the subsequent sections, the transmon owes
its success to the fact that it can be made insensitive to charge noise by a suitable choice of
the parameters EC and EJ [58]. To be more specific, it is the ratio EJ/EC that controls the
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3 The transmon platform for quantum computing

Figure 3.2 –
Energies and wave functions of
the transmon Hamiltonian. Illustrated
are the wave functions |ψi (ϕ) |2 for
EJ/EC = 20 and ng = 0. The two
lowest states are identified as the qubit
states |0〉 and |1〉. The figure advocates
a reading of the transmon as a particle
moving in a cosine potential. The red
arrow indicates ‘tunneling processes’ be-
tween adjacent potential wells. This is
fully elucidated in Sec. 3.2.1. |0〉
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properties of ĤT . Modern circuit designs work in the transmon regime where EJ/EC & 20 [223].
Characteristic values for EC/h range from 100 MHz to 400 MHz. The Josephson energy typically
takes values EJ/h & 5 GHz.

Fig. 3.2 gives a first impression of the properties of the Hamiltonian ĤT . Shown are the
wave functions in the ϕ representation |ψi (ϕ) |2 = |〈ϕ|ψi〉|2 and the corresponding energies for
EJ/EC = 20 and ng = 0. The chosen representation suggests a natural interpretation of the
transmon as a particle characterized by real space (not momentum!) coordinate ϕ moving in a
cosine potential, a train of thought we pick up again later. As stated above, the spectrum is of
captivating simplicity, even though the transmon is so large that it is visible to the naked eye.
The ground state and the first excited state serve as the qubit states. Prototypical values of the
qubit frequency νq = ωq/2π = (E1 − E0)/h lie between 4 GHz and 6 GHz, which is convenient
for precise manipulation with standard microwave techniques. Only a few states are bound, i.e.,
have an energy smaller than the ‘cosine potential’ height.

From the Cooper pair box to the transmon and beyond. The Hamiltonian in Eq. (3.9) describes
the transmons from the celebrated first qubit experiment in 1999 [53], just like the qubits used
in state-of-the-art processors with lifetimes that are better by a factor of up to 105 [59]. In
the past two decades, experimental progress has been tremendous. Nowadays, a whole family
of qubits is captured by Eq. (3.9). The pioneering experiment by Nakamura et al. [53] used a
charge qubit or Cooper-pair box (CPB) consisting of a small superconducting island connected
to a large reservoir via a Josephson junction. It operates in a regime where the charging energy
dominates, EJ/EC < 1, and the eigenstates of ĤT are nearly eigenstates of the charge operator
n̂ (hence the name charge qubit). The qubit states are |m〉 and |m + 1〉, corresponding to the
absence or presence of an additional Cooper pair on the island. Qubits with EJ/EC < 1 are
very sensitive to charge noise, limiting the lifetime to a few nanoseconds. Derivatives of the CPB
use different circuit designs to mitigate this problem by working at different parameter points
EJ/EC or ng.

A first attempt to soothe the charge noise sensitivity was the ‘quantronium’ [227, 228], a
variant of the CPB that aims to work near specific values of ng, where the system is immune to
first-order fluctuations in ng, which significantly increases the lifetime. Groundbreaking progress
came with the introduction of the actual transmon qubit in 2007 [58]: adding an extra, large
shunting capacitance CS to the CPB increases the total capacitance entering the definition of

36



3.1 The transmon

EC , CΣ = CJ + CS , and pushes the ratio EJ/EC to the transmon regime EJ � EC where the
qubit is fully protected from charge fluctuations. Typical values range from EJ/EC = 20 to 80.
Ref. [58] also introduced the flux-tunable transmon variant, which allows for modulations of the
qubit frequency during experiments and is used in some of the most sophisticated processors.
We discuss this development at the end of this section. Many facets of the transmon were refined
for further enhancements of the coherence time (without leaving the defining EJ/EC regime).
Examples include modifications of the geometry [229] and material [230] of the shunt capacitance
or the environment in which the transmon is embedded for readout.

Occasionally, the individual enhancements are accompanied by a renaming of the qubit. Impor-
tant transmon variants are the ‘xmon’ [231–233], whose cross-shaped shunt capacitance facilitates
the coupling of qubits in 2D arrays, the ‘3D transmon’ [234–237], where the transmon is coupled
to 3D resonators instead of planar cavities [238, 239] to minimize dielectric losses [97], and the
‘gatemon’, where the two superconducting electrodes are bridged by a semiconducting nanowire
instead of the small insulating barrier which simplifies the frequency tunability [240–243]. For
more details on the different derivatives of the CPB, we refer the reader to Refs. [70, 244].

While these improvements aim to ameliorate the properties of individual qubits, we are in-
terested in arrays of perfect transmons with infinitely long lifetimes. Our analysis applies to all
variants for which Eq. (3.9) holds, regardless of the hardware realization, except that specific
hardware choices influence the variation of EJ in multi-transmon arrays, see Sec. 3.5.

3.1.3 Quantum circuit theory

The microscopic discussion of the transmon Hamiltonian in the previous section explains how
the cosine-shaped potential emerges as a consequence of the tunneling of discrete Cooper pairs.
It proves useful to discuss a complementary concept based on the systematic quantization of
electrical circuits. This approach highlights the role of the Josephson junction as a nonlinear
circuit element that provides the anharmonicity needed for an unambiguous identification of a
computational subspace. The toolbox described here enables the translation of arbitrary circuits
into a Hamiltonian. It can, for example, be used for a cleaner derivation of the Coulomb energy
contribution in Eq. (3.9) or to derive the Hamiltonian for capacitively coupled transmons, see
Sec. 3.3.1. This section follows Refs. [26, 47]. Refs. [245, 246] offer more detailed introductions
to circuit quantization.

The starting point is the observation that circuit components can be treated as lumped ele-
ments when their spatial dimensions are small compared to the relevant wavelength [47]. For a
typical transmon qubit frequency ωq/2π ≈ 5 GHz, the wavelength is much larger than the size of
the circuit. The extended system is then described in excellent approximation by a circuit with
discrete entities like inductors, capacitors, or Josephson junctions. This abstraction is shown
in Fig. 3.3(a) for the transmon: the Josephson junction can be modeled as a Josephson tunnel
element, symbolized by the cross, in parallel with a capacitor. The whole junction is usually
represented by a crossed square.

The general problem of systematically finding the Hamiltonian that describes an arbitrary
circuit topology was first tackled by Yurke and Denker [247] and expanded in Refs. [47, 248].
In a nutshell, the main steps are to first consider the circuit as a network whose branches
consist of two-terminal electrical elements. Each branch is characterized by a voltage and a
current. Second, one uses the constraints that the circuit topology imposes on the branch
variables (‘Kirchhoff’s law’) to identify the independent degrees of freedom of a circuit. These
are called the node fluxes, denoted as φi, and they are defined as the time integral of the voltage
measured along the path connecting the node to a chosen ground. The equations of motion for
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Figure 3.3 – Lumped element circuits and potentials for the LC oscillator and the transmon. (a) A
Josephson junction can be considered as a pure tunneling element LJ in parallel with the intrinsic capacitance
CJ . The whole junction is often schematically depicted as a crossed square. (b) A quantum LC resonator
consisting of only linear circuit elements, a capacitance C in parallel with an inductor L, has an equidistant
spectrum with level spacing h̄ωr = h̄/

√
LC. (c) Replacing the linear inductor with a Josephson junction that

serves as a nonlinear inductor LJ , yields an anharmonic potential with nonequidistant levels and enables the
identification of a computational subspace.

the φi, obtained by equating incoming and outgoing currents at each node, are precisely the
Euler-Lagrange equations associated with a Lagrangian L that is obtained by subtracting the
energies of the inductive elements Eind (‘potential energy’ U) from the capacitive elements Ecap
(‘kinetic energy’ T ).1 A Legendre transformation that replaces the time derivatives φ̇i by the
conjugate momenta of the node fluxes, the node charges qi = ∂L/∂φ̇i, yields the Hamiltonian.
Promoting the classical variables qi, φi with the standard Poisson bracket {φi, qi} = 1 to quantum
operators satisfying [φ̂i, q̂i] = ih̄ completes the derivation.

It is illuminating to compare the transmon to the LC resonator, whose simple lumped element
circuit is depicted in Fig. 3.3(b). This circuit topology has a single independent node flux φ
that happens to be the physical flux through the inductance, φ ≡ Φ. The momentum conjugate
to Φ is the charge on the capacitor. To find the Hamilton function H(Q,Φ), we, therefore, do
not need the complete toolbox described above but can simply add the energies stored in the
capacitor and the inductor. Those derive from the current and the voltage according to [223]

E(t) =

t∫
−∞

V (t′)I(t′)dt′ , (3.10)

which, using I = Q̇ and Faraday’s induction law V = Φ̇, yields

Ecap (Q) =

Q∫
0

V (q)dq =
Q2

2C
, (3.11)

Eind (Φ) =

Φ∫
0

I(φ′)dφ′ =
Φ2

2L
(3.12)

1The assignment Ecap ↔ T , Eind ↔ U is merely an effect of taking the φi as independent variables. Choosing
charge variables instead, i.e., the time integrals of the currents, interchanges these associations.
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for the energy Ecap and Eind stored in the two circuit elements. For the last equality, the linearity
of the circuit elements, Φ = LI and Q = CV , was used [26]. For the total energy, one now arrives
at

HLC =
Q2

2C
+

Φ2

2L
=
Q2

2C
+

1

2
Cω2

rΦ
2 , (3.13)

with the resonator frequency ωr = 1/
√
LC. The final form highlights the equivalence to a har-

monic oscillator with mass C and position Φ. Due to the harmonic potential ∝ Φ2, quantization
Q, Φ → Q̂, Φ̂ with [Φ̂, Q̂] = ih̄ yields the familiar oscillator spectrum shown in Fig. 3.3(b), whose
equidistance constitutes a fundamental obstacle for computing. To alleviate this, the linear in-
ductance is replaced by a nonlinear Josephson tunnel junction. The two Josephson relations are
[54]

I = Ic sinϕ , (3.14)
dϕ

dt
=

2π

Φ0
V , (3.15)

where Φ0 = h/2e is the flux quantum and Ic the critical current. Eq. (3.15) can be rewritten as

ϕ(t) =
2π

Φ0

∫
dt′V (t′) (mod 2π) = 2π

Φ

Φ0
(mod 2π) , (3.16)

where Φ is the same physical flux as in the discussion of the LC oscillator. In a Josephson
junction, current I and flux Φ are linked via Eqs. (3.14) and (3.16). In a linear inductor, this
connection is used to define the geometric inductance, L = Φ/I. Generalizing this relation, one
defines the Josephson inductance as

LJ (Φ) =

(
∂I

∂Φ

)−1

=
Φ0

2πIc cos 2πΦ
Φ0

. (3.17)

Now the inductive ‘pure tunneling’ part of the energy of the junction becomes

Eind = Ic

∫
dΦ sin

(
2π

Φ

Φ0

)
= −EJ cos

(
2π

Φ

Φ0

)
= −EJ cosϕ . (3.18)

For the capacitive energy, we make use of Eq. (3.11) with Q = 2en and combine the parallel
intrinsic junction capacitance CJ and the shunt capacitance CS to an effective capacitor CΣ =
CJ + CS . Using Eq. (3.8), the total circuit Hamiltonian after quantization reads

Ĥ = 4EC n̂
2 − EJ cos ϕ̂ , (3.19)

which, apart from the missing offset charge ng, reproduces Eq. (3.9). A detailed network analysis
of a transmon biased by an external voltage source also properly covering the offset charge can
be found in Refs. [223, 224].

Comparing resonator and transmon makes it evident how the Josephson junction acts as
a nonlinear inductor with inductance LJ that adds anharmonicity to the spectrum, yielding
nonequidistant energy levels. Only now, with a potential energy reshaped from quadratic to
sinusoidal, can one isolate two qubit states with a unique energy separation h̄ωq = h̄ω01 from
the encircling, larger Hilbert space, as sketched in Fig. 3.3(c).
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Figure 3.4 –
Flux-tunable transmon. Shown is the circuit of the flux-
tunable transmon variant. Replacing the single Josephson
junction with a SQUID yields a qubit whose frequency is tun-
able through the external flux Φe threading the loop. The flux
control requires additional hardware, symbolized by the induc-
tance. The downside of this design form is the susceptibility to
additional flux noise.

Φe

3.1.4 Adding control knobs: the flux tunable transmon

One of the benefits of the transmon is its simplicity: it consists of a single Josephson junction
and a capacitor. This rudimentary transmon variant, see Fig. 3.3(b), is referred to as fixed-
frequency transmon because EC and EJ , and therefore the frequency ωq, are set at fabrication.
Transmons of this design form have shown superior coherence time [234, 235]. Nevertheless,
it can be beneficial to include additional control knobs at the cost of adding noise sources—a
balancing act that is a recurring motif in designing transmon quantum computers. Fig. 3.4
illustrates a widely used modification of the transmon circuit. The single Josephson junction
is replaced by two parallel junctions that form a superconducting quantum interference device
(SQUID) [58]. The transmon Hamiltonian is then modified to

ĤT,ft = 4EC n̂
2 − EJ,1 cos ϕ̂1 − EJ,2 cos ϕ̂2 , (3.20)

with the Josephson energy EJ,i of junction i and the phase difference ϕ̂i across the junction. Due
to flux quantization, ϕ̂1 and ϕ̂2 are not independent and related via

ϕ̂1 − ϕ̂2 = 2π
Φe
Φ0

( mod 2π) , (3.21)

where Φe is the external flux threading the SQUID [225]. This allows us to rewrite Eq. (3.20) as
[58, 223]

ĤT,ft = 4EC n̂
2 − EJ (Φe) cos (ϕ̂− ϕ0) , (3.22)

where ϕ̂ = (ϕ̂1+ ϕ̂2)/2 is the average phase difference and the phase ϕ0 = d tan(πΦe/Φ0) can be
ignored for a time-independent flux [58]. In Eq. (3.22), in the otherwise unaltered Hamiltonian,
the effective Josephson energy EJ is now controllable by the external flux Φe, which is why this
circuit variant has been dubbed flux-tunable transmon. Concretely, EJ (Φe) is given by

EJ (Φe) = EJΣ cos
(
πΦe
Φ0

)√
1 + d2 tan2

(
πΦe
Φ0

)
, (3.23)

with EJΣ = EJ,1+EJ,2. The parameter d = (EJ,1−EJ,2)/EJΣ measures the junction asymmetry.
For identical junctions, EJ,1 = EJ,2 ≡ EJ , the Josephson energy EJΣ can be tuned from 0 to 2EJ .
The tunability comes at the expense of an additional dephasing channel due to flux noise, i.e.,
random fluctuations in Φe. According to Eq. (3.23), the tunable range of EJ can be decreased
by choosing a larger junction asymmetry |d|, making the transmon less sensitive to flux noise
[249]. By tuning EJ , the frequency ωq/2π can be altered by 1 GHz in about 10 ns [250, 251],
which enables the implementation of fast and high-fidelity entangling gates [6], see Sec. 3.4.1.
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3.2 Properties of the transmon

In this section, we discuss in more detail some essential characteristics of the transmon, focus-
ing on how it strikes the perfect balance between insensitivity to charge noise and sufficient
anharmonicity for faithful qubit manipulation.

3.2.1 The transmon as a rigid quantum rotor

So far, it was advantageous to consider ϕ as the wave vector and n as the position on a one-
dimensional lattice. However, as ϕ is limited to the range [−π, π], interpreting it as an angular
coordinate seems natural. From Eq. (3.6) and Eq. (3.2), it is straightforward to see that

n̂|ϕ〉 = −i ∂
∂ϕ

|ϕ〉 . (3.24)

This advocates an interpretation of h̄n̂ as the angular momentum L̂z conjugate to ϕ̂. Due to the
compactness of ϕ, n̂ naturally has integer eigenvalues as desired for an operator counting Cooper
pairs. Assuming ng = 0 for the moment, the transmon Hamiltonian ĤT then describes a rigid
quantum rotor in a gravitational field [58, 224]

Ĥrot =
L̂2
z

2ml2
−mgl cos ϕ̂ , (3.25)

where l is the length of the pendulum stiff, the charging energy EC = h̄2/8ml2 determines the
inverse moment of inertia (or mass if we set l = 1 as is common practice), and the gravitational
acceleration g is related to the Josephson energy via EJ = mgl, see Fig. 3.5. Note how EJ ,
formerly describing the ability of Cooper pairs to tunnel through the junction, i.e., kinetic energy,
determines now the depth of the potential. To extend the transmon-rotor analogy to the ng 6= 0
case, one assigns a charge q to the pendulum mass and assumes a homogeneous magnetic field of
strength B in z direction. The magnetic field enters the Hamiltonian by replacing the canonical
momentum with the mechanical momentum pz → [p − qA(r)]z. Choosing the symmetric gauge
A = B×r/2, the z component of the angular momentum operator changes as L̂z → L̂z−qBl2/2
[58]. Identifying ng = −qBl2/2h̄ finalizes the exact correspondence of the transmon with a
charged quantum rotor in a constant magnetic field.

By this analogy, one can now learn about the influence of the offset charge ng on the spectrum:
only when the rotor circles completely around, as indicated by the bright red arrow in Fig. 3.5,
it acquires an Aharonov-Bohm phase shift and the system can be cognizant of the magnetic field
and hence the offset charge. The energies are modified through the interferences between this
path and the trajectory where the rotor does not wrap around. For large masses (small EC) and
strong gravitational acceleration (large EJEC), i.e., for EJ/EC � 1, winding the phase from 0 to
2π is only possible if the rotor tunnels through a very high energy barrier. The contributions of
these tunneling processes should become exponentially small, and we expect the energies of the
transmon to become insensitive to the value of the offset charge. We discuss this line of thought
quantitatively in the next section.

The illustration of the rotor eigenfunctions in Fig. 3.2 suggested yet another analogy: after
interpreting ϕ first as a momentum, then as an angular variable, we can take it to be the coordi-
nate of a particle moving in an extended cosine potential. Full 2π rotor rotations correspond to
tunneling events between adjacent wells, see the bright red arrows in Fig. 3.2. In this perspective,
the wave vector k emerges as an additional continuous quantum number. However, this does
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Figure 3.5 –
The transmon as a rigid quantum rotor. The transmon
is equivalent to a charged rotor in a magnetic field where EC

determines the inverse mass, the gravitational acceleration is
g = 8ECEJ/h̄

2 (setting the stiff length l = 1), and the offset
charge is proportional to the product of the charge q and the
field strength B.

g ∝ ECEJ

m ∝ 1/EC

ϕ B

not imply that the Hilbert space is artificially inflated. For the analogy to apply, the first step
is to eliminate ng from the Hamiltonian by a unitary transformation with Û = exp (−ingϕ̂).
The boundary conditions of the wave functions are thereby modified, and one can show that
the allowed values of the wave vector are constrained to k = ng. For a detailed discussion, see
Ref. [224]. The approach of considering ng as a wave vector is encountered again in the discussion
of the exact eigenfunctions in Sec. 3.2.4.

By preemption, we also mention here that when considering n and ϕ as classical variables, a
strong gravitational field favors small oscillation amplitudes ϕ and the classical rotor is almost a
harmonic oscillator. Pushing a discussion of the subtleties of this approximation to Sec. 3.2.3, we
just note that after expanding the cosine potential to second order, the frequency of the resulting
harmonic oscillator is given by ωp =

√
8EJEC/h̄ and is known under the name Josephson plasma

frequency. In the subsequent sections, we investigate the properties of the transmon for different
EJ/EC ratios. In the figures accompanying the discussion, we always keep ωp, setting the overall
energy scale, constant while tuning EJ/EC .

3.2.2 Charge dispersion

As a macroscopic solid-state device, the transmon qubit is prone to charge noise that arises
from unavoidable charge fluctuations in the circuit or its environment and causes random un-
dulations in the offset charge ng that modify the energies of the Hamiltonian ĤT . As shown
in Fig. 3.6(a)–(c), the amplitude of the noise-induced energy fluctuations depends on the ratio
of Josephson and charging energy.2 For small EJ/EC , slight variations in ng strongly impact
the transition frequencies, as shown in (a), which ultimately leads to dephasing [26, 58, 252].
In setups where EC & EJ , a first step to reduce the influence of charge noise is to carefully
bias the system to the ‘sweet spot’ at |ng| = 1/2 where the slope of the dispersion is zero [227].
Nevertheless, fluctuations will drive the system away from the sweet spot, enforcing a constant
recalibration of the gate voltage and making this an unsatisfactory solution [253]. Fortunately,
the susceptibility to charge fluctuations becomes exponentially small as EJ/EC increases, as
shown for (b) EJ/EC = 10 and (c) EJ/EC = 50. The latter, a typical transmon value, yields
noise-protected flat levels. The transmon then acts as a charge-insensitive qubit design [58].

For a more quantitative analysis, one defines the charge dispersion εm as the ‘peak-to-peak’
difference between the energy eigenvalues, i.e.,

εm = Em
(
ng =

1
2

)
− Em (ng = 0) . (3.26)

2The periodicity of the Ei in ng is expected from the ‘extended cosine potential’ analogy: ng is a wave vector
living in the Brillouin zone with −1/2 < ng < 1/2. See also the discussion in Sec. 3.2.4.
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Figure 3.6 – Charge dispersion of the transmon energies. The panels (a)–(c) show the lowest levels as
a function of the gate charge ng for (a) EJ/EC = 2, (b) EJ/EC = 10, and (c) EJ/EC = 50. Levels are
shifted such that E0 (ng = 0) = 0. The dispersion flattens exponentially fast when EJ/EC increases, leading
to levels that are fully protected against fluctuations in ng. The vertical dashed lines in (a) indicate the sweet
spot (|ng| = 1/2) at which CPB designs with EJ < EC operate. (d) Comparison of numerical results and
asymptotic expressions for the charge dispersion. The dashed curves represent the asymptotic expansion, see
Eq. (3.27). We set ωp/2π = 5 GHz in all calculations and adopt EJ and EC accordingly. Inspired by Ref. [58].

Numerical results for the lowest four levels are shown in Fig. 3.6(d), indicating an exponentially
fast decay for large EJ/EC . A semiclassical (WKB) expression for the charge dispersion can
be obtained by writing the transmon energies in terms of the Mathieu characteristic values, see
Sec. 3.2.4, and using asymptotic (EJ/EC → ∞) expressions for the latter [254]. This yields [255]

εm ≈ (−1)mEC
24m+5

m!

√
2

π

(
EJ
2EC

)m
2
+ 3

4

e
−
√

8
EJ
EC , (3.27)

in line with the numerical results, as shown by the dashed gray lines.
Protecting the qubit from charge noise by working in the transmon regime EJ/EC & 20

drastically improves the dephasing time T2. One can show [58, 252] that it decreases from about
one microsecond in a Cooper pair box to one second in the transmon regime, removing charge
noise as a potential threat for quantum computing applications. For a more in-depth discussion,
see Refs. [224, 252].

3.2.3 Anharmonicity and effective Hamiltonian

Quantum computing relies on the specific addressability of the transition frequency between
two well-defined qubit states. The equidistant spectrum of a linear harmonic oscillator with
degenerate frequencies between successive levels renders quantum computing impossible because
gate operations would inevitably activate cascades of higher excitations to noncomputational
states. To quantify the difference between the nonlinear transmon pendulum and the quantum
harmonic oscillator, one considers the (absolute) anharmonicity, defined as

α = ∆E12 −∆E01 , (3.28)
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Figure 3.7 – Anharmonicity of the transmon. The panels (a)–(c) show the comparison of the levels in a
transmon cosine potential (solid) and a harmonic oscillator potential (dashed) with the same qubit frequency
ωq as defined in Eq. (3.34). In (b) and (c), where the effective model in Eq. (3.33) provides an accurate
description, the transmon spectrum approaches the harmonic oscillator levels, but the anharmonicity lowers
transitions between higher levels according to Eq. (3.35). The relative anharmonicity αr as a function of the
ratio EJ/EC is shown in (d). The dashed gray line corresponds to the asymptotic behavior in Eq. (3.37).
Parameters are chosen as in Fig. 3.6(d). To fully bridge between the small EJ/EC charge qubits that usually
operate at ng = 1/2 and the large EJ/EC transmons, data for αr at the sweet spot are also shown.

where ∆Eij = Ej − Ei. The anharmonicity thus measures the difference between the qubit
transition energy ∆E01 and the adjacent level spacing between the qubit state |1〉 and the
noncomputational state |2〉. To obtain the relative anharmonicity, one scales α by ∆E01:

αr =
α

∆E01
=

∆E12 −∆E01

∆E01
. (3.29)

That balancing anharmonicity and charge dispersion is a delicate affair can already be antici-
pated on the basis of Fig. 3.6(c), where the charge-noise insensitive flat levels are nearly equidis-
tant. Reducing the charge dispersion appears to come at the cost of a lower anharmonicity.
Figs. 3.7(a)–(c) compare the harmonic oscillator levels with the transmon spectrum for different
values of EJ/EC . As the ratio increases, the transmon spectrum approaches indeed the equidis-
tant harmonic oscillator levels, which is also manifested in the asymptotic behavior of the relative
anharmonicity αr shown in Fig. 3.7(d).

To gain a better intuition of the large EJ/EC case, we derive an effective low-energy model
that will also prove helpful in discussing the many-body problem. The offset charge ng is set to
zero, as one can safely neglect its influence in the transmon regime. From the rotor analogy, the
zero point fluctuations (ZPF) of ϕ̂ are expected to be small (at least in the low-energy states) for
large masses 1/EC and a strong gravitational acceleration 8ECEJ . Terminating an expansion
of the cosine potential after the first nonlinear (ϕ̂4) contribution is therefore expected to give
an accurate description of the low-lying states and specifically of the computational subspace if
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EJ/EC � 1. The truncated Hamiltonian then reads3

ĤT ≈ 4EC n̂
2 +

1

2
EJ ϕ̂

2 − 1

4!
EJ ϕ̂

4 . (3.30)

To proceed, one introduces creation and annihilation operators b̂, b̂† that diagonalize the first
two contributions in Eq. (3.30):

ϕ̂ =

(
2EC
EJ

) 1
4 (
b̂† + b̂

)
= ϕZPF

(
b̂† + b̂

)
, (3.31)

n̂ =
i

2

(
EJ
2EC

) 1
4 (
b̂† − b̂

)
= inZPF

(
b̂† − b̂

)
. (3.32)

The ZPF ϕZPF are indeed small for EJ/EC � 1, which is (self-)consistent within our assumption.
Making use of b̂, b̂† in Eq. (3.30), dropping constant terms and keeping only terms with an equal
number of creation and annihilation operators (rotating-wave approximation) yields

ĤT ≈ h̄ωq b̂
†b̂− EC

2
b̂†b̂†b̂b̂ , (3.33)

with

h̄ωq =
√
8ECEJ − EC . (3.34)

Terminating the Taylor series in Eq. (3.30) after the leading quadratic term would have resulted
in a harmonic oscillator with Ĥ = h̄ωpb̂

†b̂, where ωp =
√
8ECEJ/h̄ is the already introduced

Josephson plasma frequency. The next higher quartic term has two effects: For one, it lowers
the plasma frequency by EC/h̄, such that ωq is the qubit frequency for transitions within the
computational subspace. Moreover, the attractive interaction—the second term in Eq. (3.33)—is
also a remnant of the leading order nonlinearity. It shifts the frequency of each additional
excitation by −EC , disrupting the otherwise equidistant spectrum. Energy differences between
neighboring levels decrease as the quantum numbers progressively increase,

∆En,n+1 = En+1 − En ≈ h̄ωq − nEc . (3.35)

In Fig. 3.7(b), this causes the second (third) excited transmon level to be lower by EC (3EC)
than the second (third) harmonic oscillator level. From Eqs. (3.34) and (3.35), the asymptotic
expressions for absolute and relative anharmonicity are directly inferred as

α ≈ −EC , (3.36)

αr ≈ −
(
8EJ
EC

)− 1
2

. (3.37)

The asymptotic form of the relative anharmonicity αr is shown in Fig. 3.7(d) (gray dashed
line). In the limit EJ/EC � 1, it agrees with the results obtained from diagonalizing the full

3Expanding the cosine potential is a subtle task: we promote ϕ from a compact variable to one that is defined
on the whole real axis, notwithstanding the fact that this changes the boundary condition from PBC to
ψ (ϕ→ ±∞) → 0. As we want to capture the physics of low-lying states with significant support only around
ϕ = 0, this does not compromise our considerations: for such states, the different boundary conditions are
effectively equivalent. However, it should be kept in mind that the resulting Hamiltonian has no general validity
(note, e.g., that the spectrum is unbounded from below).
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Figure 3.8 – Eigenfunctions of the transmon Hamiltonian in the ϕ basis. (a) Ground state wave function
|ψ0(ϕ)|2 for varying EJ/EC . (b) Wave function of the first excited state |ψ1(ϕ)|2 for the same EJ/EC ratios. (c)
Comparison of the wave function |ψ2(ϕ)|2 (solid blue) to the corresponding harmonic oscillator eigenfunctions
(dashed gray) for EJ/EC = 10 (upper panel) and EJ/EC = 50 (lower panel).

Hamiltonian in Eq. (3.9). The (negative) anharmonicity EC typically ranges from EC/h ≈ 100
MHz – 400 MHz.

The pivotal hallmark of the transmon is that it allows a fine balance between protection from
charge noise and anharmonicity. Whereas the sensitivity to charge noise, Eq. (3.27), decreases
exponentially fast in

√
EJ/EC , the anharmonicity vanishes only slowly, following a power law

∝ 1/
√
EJ/EC . The qubits can be made immune to charge noise without sacrificing so much of

the anharmonicity that standard experimental microwave pulse techniques for coherent control
are limited in their applicability [58, 256]. It is precisely this property that has made the transmon
the most widely used superconducting qubit.

3.2.4 Eigenfunctions

Eigenfunctions in phase representation. In the phase basis, the Schrödinger equation for the
energies Em and wave functions ψm (ϕ) reads[

4EC

(
−i d
dϕ

− ng

)2

− EJ cosϕ

]
ψm (ϕ) = Emψm (ϕ) . (3.38)

Introducing the function gm(x) = exp (−2ingx)ψm (2x), Eq. (3.38) can be recast in the form

g′′m(x) + (a− 2q cos (2x)) gm(x) = 0 , (3.39)

where q = − EJ
2EC

and a = Em
EC

. This is the standard form of Mathieu’s equation [257] which
first appeared in the context of studies of the vibration of elliptical membranes [258]. The
solutions to Eq. (3.39) are formally known as Mathieu functions, see, e.g., Ref. [259] for a
detailed discussion. Even though Eq. (3.39) is independent of ng, the offset charge affects its
solution via the boundary conditions. For a given constant ν, Floquet’s theorem predicts that a
solution of Eq. (3.39) obeying the pseudoperiodic property

g (x+ π) = eiπνg (x) (3.40)
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exists [257, 260]. The parameter ν is called the characteristic exponent. Using ψm (ϕ) =
ψm (ϕ+ 2π), one obtains ν = −2 (ng − k), where k ∈ Z. Solutions fulfilling Eq. (3.40) are
called Floquet solutions and denoted as meν(x, q) [257, 261]. A simple closed-form expression
of meν(x, q) does not exist. When expanded in a Fourier series, a three-term recursion relation
for the Fourier coefficients can be derived [257, 260]. For given q and ng, Eq. (3.39) determines
an infinite set of eigenvalues ak, the Mathieu characteristic values. Each k determines one of
the eigenenergies Em. What remains to clarify is the correct assignment between the integers m
and k. One naturally wishes the energies Em to increase as m increases, i.e., the integer k—not
necessarily k = 0—belonging to the smallest λν(ng ,k)(q) is assigned to the ground state energy
m = 0. Therefore, k = k(m,ng) is a function of m and ng. The explicit (and somewhat com-
plicated) form of k(m,ng) is derived in Refs. [58, 262]. Going back to the Schrödinger equation
(3.38), one can show that the appropriately sorted energies and wave functions are now given as

Em(ng) = ECa2(ng+k(m,ng))

(
q = − EJ

2EC

)
, (3.41)

ψm (ϕ) =
exp (ingϕ)√

2
me−2(ng−k(m,ng))

(
q = − EJ

2EC
,
ϕ

2

)
. (3.42)

In Fig. 3.8(a) and Fig. 3.8(b), we show the probability density for the wave functions of the
ground and first excited state and find the conclusion drawn from the rotor analogy confirmed:
For large EJ/EC , i.e., a large mass or gravitational acceleration, the phase ϕ localizes strongly,
and the width of the wave functions decreases. In particular, already for EJ/EC = 20, that is,
at the lower bound of the transmon range, the wave functions do not have significant support at
ϕ = ±π, and only small fluctuations around ϕ = 0 appear. Consequently, the harmonic oscillator
approximation gains accuracy as EJ/EC increases. We show this in Fig. 3.8(c), where the
transmon eigenfunction |ψ2 (ϕ) |2 (solid, blue) is compared to the eigenfunction of the harmonic
oscillator with the same mass m = h̄2/8EC and frequency ωp =

√
8EJEC for EJ/EC = 10 (upper

panel) and for EJ/EC = 50. The implementation of the Mathieu functions meν(ϕ) in Ref. [263]
was used to compile Fig. 3.8.

Note how this discussion sheds more light on the previously discussed ‘extended cosine po-
tential’ analogy and the periodicity of the transmon energies in ng. For one, when comparing
Eq. (3.40) with the Block theorem, ν naturally appears as a wave vector living in the Brillouin
zone −π/a ≤ ν < π/a where a = π. Consequently, one can interpret ng as a wave vector
restricted to [−1/2, 1/2]. Besides, the above treatment shows explicitly how ng, although elimi-
nated from the ‘Hamiltonian’ in Eq. (3.39), picks out discrete energies of the continuous spectrum
characterized by ν by constraining the allowed values of the wave vector via the boundary con-
ditions (3.40).

Eigenfunctions in charge representation. Although the eigenstates and energies are (formally)
known in terms of Mathieu functions and characteristic values, the eigenbasis |m〉 of the Cooper
pair number operator n̂ is more convenient for numerical purposes. The Coulomb energy contri-
bution is then diagonal, and the cos ϕ̂ contribution of the pure tunneling element is tridiagonal
with the simple matrix elements

〈m| cos ϕ̂|n〉 = 1

2
δm±1,n . (3.43)

The—in principle infinite-dimensional—basis |m〉 must be cut off at a certain |m| = mmax,
resulting in a 2mmax+1-dimensional Hilbert space. The number of basis states should be chosen
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Figure 3.9 –
Convergence of energy eigenvalues as
a function of the Hilbert space dimension
2mmax +1 for the ground state energy E0 and
the energy of the ninth excited state E9 for
two different ratios EJ/EC . In order to obtain
a desired precision, more basis states must
be included for the higher levels and larger
EJ/EC , as expected from Eq. (3.44).
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such that all basis vectors |m〉 that contribute significantly to a transmon eigenstate |ψi〉 are
included in the truncated Hilbert space, meaning that mmax � ∆n̂, where ∆n̂ is the fluctuation
of the charge operator in the respective state |ψi〉. Using the harmonic oscillator limit of the
transmon, one obtains

mmax �
√
1 + 2NnZPF =

√
1 + 2N

2

√
EJ
2EC

(3.44)

as a rough estimate for the mmax needed to capture the lowest N states with high accuracy.
Fig. 3.9 shows the convergence of the energies towards the exact values (here taken to be the
eigenvalues for mmax = 150; using the Mathieu characteristic values instead leaves the figure un-
altered) as the dimension of the truncated Hilbert space increases. In agreement with Eq. (3.44),
to obtain a desired precision, more basis states must be included for larger EJ/EC ratios (blue vs.
yellow) and higher lying energies (triangles vs. circles). However, only a moderate mmax ∼ O(10)
is needed to obtain the standard double floating-point precision marked by the dotted line, even
for the ninth excited energy E9 and EJ/EC = 100. Throughout the remainder of this thesis,
we use mmax = 50. For the results in Fig. 3.9, the software library MPFR [264] was used for
arbitrary precision arithmetic.

In Fig. 3.10, the charge representations of the eigenfunctions 〈n|ψi〉 of the ground state (i = 0)
and the second excited state (i = 2) are shown for various EJ/EC . For increasing EJ/EC ,
the spreading of the eigenfunctions indicates the increase in the charge fluctuations ∆n̂. For
comparison, the solid line denotes the momentum space eigenfunctions ψi(p) of a harmonic
oscillator with m = h̄2/8EC and ω =

√
8ECEJ/h̄. As expected from the analysis in Sec. 3.2.3,

the eigenfunctions converge to discretized versions of the harmonic oscillator.

3.3 Interacting transmons

As discussed in Sec. 1.2, an array of transmons cannot act as a universal quantum computer
unless it is equipped with additional hardware to perform arbitrary single-qubit gates and one
entangling two-qubit gate.

The predominant approach to implement single-qubit gates is to couple the transmon to a
microwave source from which pulses can be applied [245, 265]. Arbitrary Bloch sphere rotations
can then be performed by controlling phase and amplitude of the microwave drive. State-of-the-
art single-qubit gates employ special pulse-shaping techniques [266] to routinely obtain gate errors
below 10−3 [5, 6, 267], making single-qubit gates no obstacle to implementing error-correcting
codes.
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Two-qubit gates, on the other side, are far more challenging, with error rates that are usually
an order of magnitude higher. The error-proneness of two-qubit gates is the key bottleneck
on the road to large-scale quantum computing. Implementing fast and high-fidelity gates is
a flourishing area of research. Two mechanisms can cause errors: decoherence and nonideal
interactions. The latter, also arising in other platforms [268], describes the phenomenon that a
physical gate implementation, like a capacitor connecting two transmon circuits or a microwave
drive, generates not only the ideal gate Hamiltonian but also unwanted parasitic interactions.
These two error-generating mechanisms are opposed to each other: additional control hardware
can suppress unwanted interactions, but the increased architectural complexity often reduces the
decoherence time.

A prerequisite for entangling gates between two transmon qubits is some form of physical
coupling between the circuits hosting them. Many gates rely on a capacitive interaction of the
form

Ĥ12 = T n̂1n̂2 ≈ h̄J b̂†1b̂2 + h.c. (3.45)

between two transmons. In this section, we discuss methods to engineer such a coupling. The
primary objects of interest in this work are transmon arrays with an interaction of the form
(3.45) between neighboring qubits. In general, Eq. (3.45) alone cannot describe two-qubit gates
but is to be understood as a static ‘background’ Hamiltonian that is valid during ‘gate-off’ times
and by which gate execution through different mechanisms becomes possible. This is further
elucidated in Sec. 3.4.

3.3.1 Capacitive coupling

Depending on whether the physical form of the required interaction is an electric or a magnetic
field, one distinguishes between capacitive and inductive coupling. The latter mechanism, where
the qubits are coupled via a mutual inductance, is typically used for flux qubits. A simple
and widely applied scheme to implement a capacitive coupling between two transmon qubits
is to connect the respective circuits via a capacitor with small capacitance Cg, as illustrated
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Figure 3.11 – Coupling schemes for transmon qubits. (a) Direct capacitive coupling of two transmon qubit
circuits (yellow, Q) by connecting them with a capacitor with capacitance Cg. (b) Indirect capacitive coupling,
where both transmons are connected to the same linear resonator (blue, R) via two capacitors C1R, C2R. (c)
Tunable coupling scheme as proposed in Ref. [272], where the two transmon qubits are coupled directly and
indirectly, with a flux-tunable transmon (blue, T) serving as a coupler. Tuning the frequency of the coupler
transmon allows one to tune the effective qubit-qubit interaction strength.

in Fig. 3.11(a). This adds the charging energy of the capacitor to the Lagrangian of the two
uncoupled transmons. Following the recipe outlined in Sec. 3.1.3, circuit quantization yields an
interaction term of the form

Ĥ12 = 4e2
Cg
C1C2

n̂1n̂2 ≡ T n̂1n̂2 , (3.46)

valid in the limit Cg � C1, C2, where Ci is the capacitance of transmon i [26, 269]. The
coupling energy depends on the coupling capacitance Cg and on the matrix elements of the
charge operators [26, 231]. Using Eq. (3.32) and invoking the rotating-wave approximation, one
obtains

Ĥ12 ≈
T

4
√
2

4

√
EJ,1EJ,2
EC,1EC,2

(
b̂1b̂

†
2 + b̂2b̂

†
1

)
≡ h̄J

(
b̂1b̂

†
2 + b̂2b̂

†
1

)
(3.47)

for the effective low-energy coupling Hamiltonian.
An alternative approach to this direct coupling is to mediate the qubit-qubit interaction

through a resonator that is capacitively coupled to both transmons, as depicted in Fig. 3.11(b).
Superconducting resonators can be made much larger than any transmon, and the resonator-
mediated coupling can implement an effective interaction between physically well-separated (∼1
cm) qubits [238, 270, 271]. In the dispersive regime, where both qubits are strongly detuned
from the resonator, the combined transmon-resonator system reduces—after a series of transfor-
mations, approximations, and assuming that the resonator is initialized in its vacuum state—to
the form of Eq. (3.47) [223].

3.3.2 Tunable couplers

Whether the coupling is direct or mediated, the above scheme yields an ‘always-on’ interaction
T or J between two transmons. In order to improve two-qubit gate fidelity, it is desirable to
make the coupling itself controllable, such that it can be switched on only during gate operations
between the involved qubits. This can be accomplished with tunable couplers, i.e., additional
hardware that mediates the qubit-qubit interaction and is controllable via some external parame-
ter. Different blueprints of tunable couplers have been demonstrated, see Refs. [273, 274] for two
early examples. However, all the attempts face the generic and complex challenge of increasing
hardware complexity without downgrading the device quality by introducing additional decay
channels or crosstalk [275].

A notable example is the ‘gmon’ device [276] (two modified ‘xmons’, one coupler), which
suppresses parasitic couplings to the extent that decoherence is the limiting factor for the gate
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fidelity, but at the sacrifice of a reduced coherence time compared to the bare ‘xmon’. Promising
experimental results [39] have been obtained with an approach proposed by Yan et al. [272].
The pivotal idea is to countervail a direct qubit-qubit interaction by a virtual interaction that is
mediated by a coupler and whose strength can be tuned by the coupler’s frequency. This scheme
is broadly applicable and not restricted to superconducting qubits. It is often implemented for
three mutually coupled tunable transmons, where two serve as qubits and one as the coupler.
This layout is sketched in Fig. 3.11(c). To grasp the central idea, instead of considering the full
model, it is sufficient to restrict to the generic two-level Hamiltonian

Ĥ

h̄
=
∑
j=1,2

ωj
2
σ̂zj +

ωc
2
σ̂c +

∑
j=1,2

Jj

(
σ̂+j σ̂

−
c + σ̂−j σ̂

+
c

)
+ J12

(
σ̂+1 σ̂

−
2 + σ̂−2 σ̂

+
1

)
, (3.48)

describing two qubits, σ̂zj , j = 1, 2, and a coupler σ̂zc with small direct qubit-qubit coupling J12
and qubit-coupler couplings J1, J2. The qubits are negatively detuned from the coupler, i.e.,
∆j = ωj − ωc < 0. For Jj � |∆j |, the coupler can be decoupled from the qubit-qubit system to
the desired order in Jj/∆j using a Schrieffer-Wolf transformation [252, 277]. To second order,
one obtains

Ĥ

h̄
=
∑
j=1,2

ω̃j
2
σ̂zj +

(
J1J2
∆

+ J12

)(
σ̂+1 σ̂

−
2 + σ̂−2 σ̂

+
1

)
, (3.49)

where 1/∆ = (1/∆1 + 1/∆2) /2 < 0 and ω̃j = ω+J2
j /∆j are the renormalized qubit frequencies.

In the effective qubit-qubit coupling Jeff (ωc) = J1J2/∆ + J12, the first indirect contribution is
negative and depends on the coupler frequency (directly through ∆ but possibly also implicitly
through J1 and J2). Jeff can be tuned negative (positive) by increasing (decreasing) the coupler
frequency ωc, and, as long as the tuning range of the coupler is large enough, the existence of
a critical ωoff

c with Jeff(ω
off
c ) = 0 is guaranteed. A thorough analysis of the multilevel system,

where the qubits and the coupler are tunable transmons, can be found in the original publication
[272]. The result is again a capacitive interaction of the form (3.47). As for the two-level model,
the coupling J(ωc) can be tuned to zero by adjusting the coupler’s frequency.

Fast high-fidelity gates have also been demonstrated in variations of the above coupling
schemes, e.g., with fixed-frequency qubits [278] or by implementing a tunable σ̂z1σ̂z2 interaction
[279]. Recently, Ref. [280] introduced a coupling mechanism where ramping up a control param-
eter suppresses the residual coupling strength exponentially fast, which removes the sensitive
dependence on a fine-tuned control parameter.

3.4 Entangling gates

For two qubits and in the low-energy limit, our central object of interest—a transmon quantum
computer in the absence of gates but with capacitively coupled qubits—is described by the
Hamiltonian

Ĥ2T =

2∑
i=1

(
h̄ωq,ib̂

†
i b̂i −

EC
2
b̂†i b̂

†
i b̂i b̂i

)
+ h̄J

(
b̂†1b̂2 + b̂1b̂

†
2

)
, (3.50)

see Eq. (3.33) and Eq. (3.47), where EC,1 = EC,2 ≡ EC was assumed. A two-qubit gate enters
this Hamiltonian as (i) a periodic modulation of one of the system parameters (parametric gates),
see, e.g., Ref. [281], (ii) an additional microwave drive term (all-microwave gates), or (iii) as a
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modulation in EJ and hence ωq in flux-tunable transmons. Even though we do not aim to study
the dynamics of two-qubit gates, we review different methods to extend Eq. (3.50) to a gate
Hamiltonian because this discussion and the subsequent in-depth coverage of different transmon
array design schemes naturally introduce distinct ranges of system parameters, to each of which
we devote separate numerical simulations. We focus on the predominantly used approaches (ii)
and (iii).

3.4.1 Gates in flux-tunable transmon architectures

A conceptually simple realization of a two-qubit gate with flux-tunable transmons is to switch
on an interaction for a desired time t by tuning them in resonance, ω1 = ω2 ≡ ω, as shown in
Fig. 3.12(a). In a frame4 rotating with ω, the two-level version Ĥ2Q of Eq. (3.50) takes the form

Ĥ2Q = h̄J
(
σ̂+1 σ̂

−
2 + σ̂−1 σ̂

+
2

)
. (3.51)

Time evolution under this Hamiltonian for a time π/2J (π/4J) generates the iSWAP (
√
iSWAP)

[282] gate, both of which can be used to generate entanglement. To switch off the interaction, the
qubits are detuned from each other [283]. One can show that the residual, unwanted interaction
is of the form J2/∆12σ̂

z
1σ̂

z
2 , where ∆12 = ω1 − ω2 is the detuning [223], see Fig. 3.12(b). Fast

gates with strongly suppressed interactions in the ‘gate off’ state are obtained for large ratios of
‘gate on’ J and ‘gate off’ J2/∆12. For fixed (i.e., non-tunable) J , this on-off ratio is ∆12/J and
can be made large for large detunings. Flux-tunable transmons can also exploit degeneracies
between higher energy levels, e.g., between the states |11〉 and |02〉, to implement a CPHASE
gate [284]. Regardless of which resonance one uses, the gates work irrespective of the concrete
origin of the coupling in Eq. (3.50), whether it is direct or mediated by a resonator or a tunable
coupler.

3.4.2 Gates in fixed-frequency architectures: the CR gate

A disadvantage of the gate scheme reviewed above is that it necessarily requires flux-tunable
transmons and possibly also tunable couplers. As discussed, this might introduce new noise
channels, ultimately reducing the decoherence time. A complementary approach is to dispense
with additional parameter control and instead implement two-qubit gates in fixed-frequency
architectures using only the hardware required for single-qubit gates. An example is the cross-
resonance (CR) gate, originally proposed in 2006 [285] and independently rediscovered four
years later [286], that exploits an interaction generated by driving one ‘control’ qubit (C) at
the frequency of a second ‘target’ qubit (T ), see Fig. 3.12(c). The qubits are detuned with
∆CT = ωC − ωT and capacitively coupled, either direct or resonator-mediated. Due to the
coupling, the actual qubits are nonlocal objects, spreading over both transmons. A genuinely
local microwave drive hence induces a qubit-qubit interaction that can be exploited to create
entanglement.

More concretely, we start with the two-level version of Eq. (3.50),

Ĥ2Q =
h̄ωC
2
σ̂zC +

h̄ωT
2
σ̂zT + h̄J

(
σ̂+C σ̂

−
T + σ̂−C σ̂

+
T

)
. (3.52)

4The transformation into the rotating frame has the form Ĥ → Û†ĤÛ − ih̄Û† ∂Û
∂t

, where Û(t) =

exp
(
−i h̄ω

2
t [σ̂z

1 + σ̂z
2 ]
)

and Ĥ = h̄ω
2

(σ̂z
1 + σ̂z

2) + h̄J
(
σ̂+
1 σ̂

−
2 + σ̂−

1 σ̂
+
2

)
.
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Figure 3.12 – Two-qubit gate implementations for transmons. (a) and (b): In tunable-frequency archi-
tectures (symbolized by the inductors), two-qubit gates can be implemented by employing degeneracies in
the spectrum, e.g., by tuning the two qubits into resonance, as shown in (a), which activates a qubit-qubit
interaction of the form σ̂+

1 σ̂
−
2 + h.c.. To switch off the gate, the qubits are parked at distinct frequencies

with distance ∆12, as shown in (b). The remaining parasitic interaction is of the form σ̂z
1 σ̂

z
2 . (c) A capacitive

coupling between two detuned qubits renormalizes the frequencies ωT , ωC → ω̃T , ω̃C , but the system can still
be considered as describing noninteracting but also nonlocal qubits. A microwave drive on the control qubit
σ̂C induces an interaction τ̂zC τ̂

x
T between the dressed qubits.

The diagonalized Hamiltonian can be rewritten as [287, 288]

Ĥ2Q =
h̄ω̃C
2
τ̂ zC +

h̄ω̃T
2
τ̂ zT , (3.53)

where τ̂ zC and τ̂ zT are again Pauli matrices describing two-level systems. The Hamiltonian does
not contain an interaction term of the form τ̂ zC τ̂

z
T , which implies that Eq. (3.53) still describes

a set of noninteracting qubits with renormalized frequencies given by ω̃C/T = ωC ± J2/∆CT

to second order in J/∆CT . Due to the coupling, the new underlying degrees of freedom τ̂T , τ̂C
are not perfectly localized on a specific transmon but dressed with small contributions from
the neighboring qubit. In MBL terminology, the σ̂z(τ̂ z) are the p-bits (l-bits). Now, a local
microwave drive Ĥdrive = h̄Ω(t) cos (ωdt) σ̂xC [223, 252] on the control qubit C expressed in the
eigenbasis of the coupled system reads

Ĥdrive ≈ h̄Ω(t) cos (ωdt)
(
τ̂xC +

J

∆CT
τ̂ zC τ̂

x
T

)
. (3.54)

For a suitably chosen drive frequency, ωd ≈ ω̃T , driving the control (p-)qubit generates an
interaction of the form τ̂ zC τ̂

x
T (ZX) between nonlocal l-qubits5. Time evolution under τ̂ zC τ̂xT for a

time t = πΩJ
4∆CT

produces a unitary transformation that is locally equivalent [286, 289] to a CNOT
gate, i.e., only single-qubit gates are required to complete the CNOT gate.

The simplified view above neglected the higher transmon levels. A better starting point is
Eq. (3.50), extended by a drive term. Deriving an effective Hamiltonian for the qubit subspace
of this multilevel system is a reasonably sophisticated task and was done only recently, e.g., using
time-dependent Schrieffer-Wolf perturbation theory [290], generalizations thereof [291], or semi-
analytical approaches [292], partly supported by experiments with tunable transmons allowing a
systematic investigation of the influence of ∆CT [293]. Regardless of the method, one finds that
due to the influence of the higher levels, (i) the strength of the ZX interaction is renormalized

5From here on we adapt the notation to our purposes and refer to l-qubits instead of l-bits.
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Figure 3.13 –
Examples of frequency collisions in a minimal setup
consisting of one control qubit QC , one target qubit QT ,
and one spectator qubit QS . Unintended degeneracies
between energies drawn in the same color must be avoided
because they significantly reduce the gate fidelity. More
concretely, for ωC ≈ ωT (green), QC and QT hybridize,
for ωT = ωC −EC/h̄ (gray) or 2ωT ≈ 2ωC −EC/h̄ (blue),
QC is excited into the noncomputational state |2〉, and
for ωT ≈ ωS (red) the CR pulse falsely addresses the
spectator qubit. Therefore, the CR gate imposes several
restrictions on the frequencies of NN qubits and NNN
qubits that share a control qubit. QCQT QS

ωT ωS
ωC

ωC − EC/h̄

and (ii) parasitic terms, e.g., a τ̂ zC τ̂ zT interaction6, emerge. Concretely, the amplitude of the ZX
interaction acquires a factor EC/h̄∆CT [291], which implies that a detuning large compared to
EC slows down the gate. Further constraints on ∆CT arise upon closer examination of the para-
sitic terms. They become large if degeneracies between transition frequencies of nearest-neighbor
(NN) and next-nearest-neighbor (NNN) qubits occur. One refers to these degeneracies as fre-
quency collisions. Based on the effective model in Ref. [291], the seven most serious collisions
have been identified in Ref. [294]. Some examples and their qualitative explanation are provided
in Fig. 3.13. The difficulty of populating a transmon lattice without violating these restrictions is
known as the frequency crowding problem, and it is a severe hindrance to deploying high-fidelity
gates on larger transmon arrays, especially in two dimensions. Steps toward a solution to this
issue are discussed in Sec. 3.5.1.

3.5 Transmon processor design schemes

One can assign most medium-scale transmon-based quantum computers to one of three cate-
gories: (i) fixed-frequency transmons with fixed ‘always-on’ coupling T and microwave-driven
two-qubit gates, (ii) flux-tunable transmons with likewise fixed ‘always-on’ T , but an effective
qubit-qubit interaction that is tunable via the qubit frequencies and (iii) flux-tunable transmons
where T is tunable through a coupler. As alluded to in the previous discussion and shown
schematically in Fig. 3.14, one has to choose a modus vivendi between tunability of system
parameters and sensitivity to fluctuations in control parameters, which are an inescapable by-
product of more complex circuit architectures. The three design schemes correspond to different
choices in weighing these factors. In this section, we highlight some milestones that have been
achieved with the different strategies and discuss the special system parameters inherent to the
distinct approaches, particularly the site-to-site variations of the frequencies in larger transmon
arrays. This discussion guides the choices for the various disorder and coupling parameters in
our simulations.

In this section, we adhere to the established convention of considering νq instead of ωq when
discussing parameters of real transmon devices. Furthermore, we omit the index q, as we already
did in the discussion of the two-level systems in the previous section.

6Note that we discussed this interaction in the context of the MBL τ -Hamiltonian in Chapter 2. It is detrimental
to the gate fidelity, as it makes the qubit precession frequency dependent on the state of the other qubit, such
that one cannot choose a drive frequency ωd without knowing the state of the control qubit.
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more control knobs

more noise

simple hardware

long lifetime

Figure 3.14 – Trade-off between tunability and sensitivity to noise in three major transmon design
schemes. The cartoons show a surface-7 quantum computer [295] consisting of seven transmons (yellow)
that are capacitively coupled (blue). The control lines to apply microwave pulses for single-qubit gates are
shown in red. In addition, we show the hardware that is required for two-qubit gates. In the simplest case
(fixed-frequency transmons with the CR gate), no additional hardware is needed. For flux-tunable transmons,
additional flux lines (green) allow for the control of EJ and hence the frequency. Adding tunable couplers
further complicates the hardware setup and makes the system more prone to noise but allows the coupling
strength T to be adjusted during an experiment.

3.5.1 Fixed-frequency architectures

Fixed-frequency transmons offer several advantages: they are easy to build, exhibit long coher-
ence times of a few hundred microseconds, and the CR gate minimizes the amount of control
wiring, which is especially beneficial when scaling up to larger transmon arrays. Most promi-
nently, IBM follows this approach in the processors that are publicly available via cloud access
[59]. Since the first five-qubit processor was launched in 2016, several chip generations have been
in operation. IBM’s timeline on the road to a large-scale quantum computer promises annual
launches of ever-larger quantum processors (flanked by improvements in many other areas, e.g.,
cooling systems) [296]. As of today, various chip types are in operation, e.g., devices of the ‘Fal-
con’ (released in 2019, 27 qubits), ‘Hummingbird’ (2020, 65 qubits), and ‘Eagle’ families (2021,
127 qubits). The first member of the ‘Osprey’ line (433 qubits) was presented in late fall 2022.
For 2025, the 4,158-qubit ‘Kookaburra’ processor, capable of error suppression and mitigation,
is expected according to IBM’s roadmap [297].

Since its first demonstration [288], the CR gate has improved significantly, driven by a better
theoretical understanding of the gate [290–292] that motivated experimental modifications like
the introduction of additional drive pulses to counteract parasitic terms appearing in the Hamil-
tonian [5, 36, 298]. Fidelities of 99.1% are nowadays possible, with gate times pushed down to
160 ns [5]. Small-scale fixed-frequency devices of only a few qubits have been used in a couple
of proof-of-principle experiments, for example, to demonstrate a quantum error detection code
in a four-qubit square lattice [8] or parity measurements on a five-qubit lattice [299]. Recently,
a discrete time crystal was realized in a 57-qubit chain on two ‘Hummingbird’ processors [91].

Natural disorder and frequency collisions. Despite IBM’s ambitious goals and the promising re-
sults already achieved, medium-scale fixed-frequency processors suffer from some serious teething
problems. Typical CR gate times of approximately 300 ns are longer than what can be achieved
with tunable circuit elements: to minimize adverse effects beyond the ones obtained in the ef-
fective Hamiltonian [291], neither the drive amplitude Ω nor the interaction strengths T or J
can be made large (recall that tGate ∝ ΩJ). Suggestions on how specially shaped control pulses
could provide a significant speed-up exist [300] but have never been tested experimentally. The
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Figure 3.15 – Frequency distributions of IBM devices. (a) Frequency histograms for two IBM chips that
are subject to natural disorder and one LASIQ-tuned chip (‘Brooklyn’), see main text for details. In all cases,
the distributions are compatible with Gaussian disorder of similar strength (∼ 100 MHz). (b) Distribution of
frequencies in the ‘Brooklyn’ processor, belonging to the 65-qubit ‘Hummingbird’ family. There are no clearly
recognizable spatial correlations between frequencies of adjacent lattice points.

fastest CR gate implementation used an effective qubit-qubit coupling of J/2π ≈ 3.8 MHz [5].
Also high on the list of major issues is that it becomes increasingly challenging to avoid

frequency collisions in larger transmon arrays, i.e., to meet the stringent restrictions imposed
by the CR gate on nearest-neighbor and next-nearest-neighbor frequencies. It is impossible
to accurately and reproducibly fabricate transmons with a desired Josephson energy EJ , and
random fluctuations in EJ are on the order of 5% to 10% [59, 301, 302] (the charging energy
EC on the other side is easily fixed at a desired value). This results in a natural frequency
spread of the same order of magnitude as the desired detuning. As an example, we show the
frequency distributions of two ‘older’ IBM processors, ‘Boeblingen’ (20 qubits) and ‘Cambridge’
(28 qubits) [303] in Fig. 3.15(a). The recent ‘Brooklyn’ chip is discussed below. Both distributions
are consistent with simple Gaussian disorder. We refer to the width σ ≡ δν of the Gaussians as
disorder strength. Here, we find values of 70 MHz to 150 MHz, corresponding to typical relative
frequency spreads δν/ν of 1.5% to 3% (currently, the best achievable precision at fabrication
is 1% [304]). Arrays of transmons whose frequencies are subject to this natural disorder are
almost certainly not collision-free7. Consider, e.g., the 17-qubit geometry shown in Fig. 3.16(d).
When populated with frequencies drawn from a normal distribution with conventional disorder
strength σν ≈ 130 MHz, the ‘zero-collision yield’, i.e., the probability for a collision-free lattice,
is considerably lower than 0.1% [294]. On average, more than a third of the two-qubit gates
would fail, making the frequency crowding problem a serious impediment to the progress toward
a large-scale quantum computer. Less surprisingly, IBM’s early 20-qubit processors were judged
to be orders of magnitude too weak to tackle critical problems from condensed matter physics
[305].

Avoiding frequency collisions. The strategy to solve the frequency crowding problem consists of
two steps: arranging the qubits on the best-suited lattice and implementing frequency patterns.

Since the number of constraints increases with the connectivity of the qubits, it is reasonable
7By ‘collision-free’, we mean that all nearest- and next-nearest-neighbor frequency detunings are outside the

boundaries estimated for the seven most likely types of frequency collisions in Ref. [294].
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Figure 3.16 – Solving the frequency crowding problem. (a)–(c): Examples of transmon array geometries
in IBM processors [307]. Over the years, IBM has moved from (a) a square lattice variant (‘Penguin v2’
processor, 2018) via (b) the hexagon lattice (‘Penguin v4’, 2018) to (c) the more beneficial heavy-hexagon
geometry (since 2020). (d) The surface-17 geometry with a 5-frequency pattern avoids all collisions for perfect
frequency precision. With current LASIQ precision, the zero-collision yield is 6%. (e) 23-qubit excerpt of the
heavy-hexagon lattice with a collision-free three-frequency pattern. With current precision, the zero-collision
yield is 70% [294]. (e) Experimental realization of an approximate ABAB pattern that avoids all NN frequency
collisions [308].

to place the qubits on lattice geometries with a small average number of neighbors. As shown
in Fig. 3.16(a)–(c), IBM’s chip layout has moved in this very direction over several processor
iterations by switching from (a) a square lattice variant via (b) the hexagonal lattice to (c) the
heavy-hexagon lattice [294, 306], which is adopted for all currently available and announced
cloud processors [297]. This lattice consists of qubits sitting at the vertices of a regular hexagon
lattice, with an additional qubit on each edge. However, changing the lattice topology alone
does not bring fundamental improvement: for the minimal 23-qubit layout shown in Fig. 3.16(e),
the zero-collision yield is only 0.1% when populated with frequencies with typical as-fabricated
precision. The geometry only reveals its superiority when combined with a regular frequency
pattern. Three distinct frequencies, distributed as shown in Fig. 3.16(e), suffice to eliminate
all collisions for heavy-hexagon. The qubits on the edges, serving as the control qubits, are all
assigned the same frequency νC . The target qubits on the A and B hexagon sublattices have
the frequencies νA and νB, respectively. Until recently, such a pattern was not feasible because
of the natural disorder. However, a newly introduced laser-annealing technique (LASIQ) [294]
allows one to modify the Josephson energies EJ post-fabrication, opening up the door to cloning
qubits with previously unattainable precision. LASIQ can decrease the fluctuations δν around
desired target frequencies by an order of magnitude compared to the as-fabricated spread [294].
A pattern as in Fig. 3.16(e), with frequencies drawn from normal distributions centered around
the mean values νA, νB, νC and where the current LASIQ precision determines the width of
each Gaussians, yields a collision-free chip with a probability of 70%. On the other side, the
square lattice in Fig. 3.16(d) (needing five distinct frequencies) has a zero-collision yield of only
6%. The heavy-hexagon lattice can effectively evade collisions and, together with the pattern
engineering approach, might form the basis of future collision-free processors.

However, as of today, no pattern-engineered device has occurred in the IBM cloud. Instead,
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LASIQ is used to diminish the number of NN frequency collisions (types 1–3 according to
Ref. [294]). Starting from an as-fabricated ν distribution, the frequencies are modified (un-
der constraints dictated by experimental details) to obtain an NN-collision-free chip, but not to
create regular frequency patterns. The resulting ‘disorder engineered’ distributions do not seem
to show any spatial correlations, as depicted in Fig. 3.15(b) for the LASIQ-tuned ‘Brooklyn’ de-
vice. Although each frequency was specifically tuned to a certain value with high accuracy, the
overall spread is consistent with a single Gaussian distribution, see Fig. 3.15(a). An exception
is the tuned AB ‘Falcon’ chip reported in Ref. [308] and shown in Fig. 3.16(f), which realizes an
approximate ABAB pattern on parts of the lattice.

The (anti-)correlations that nevertheless exist between NN qubits in LASIQ-tuned chips can
be resolved by looking at the distribution of ∆CT = νC−νT , where νC (νT ) is the control (NN
target) frequency. Fig. 3.17 summarizes the qualitative difference in ∆CT for (i) arrays of
untuned qubits, (ii) ‘disorder engineered’ chips (nine ‘Falcon’ and two ‘Hummingbird’ devices
from the IBM cloud [59]), (iii) the pattern-engineered AB ‘Falcon’, and (iv) the (not yet realized)
optimal three frequency pattern (ACBC) on a ‘Falcon’ chip. For (i) and (iii), data are taken
from Ref. [308]. The grayed areas mark the ∆CT ranges to be avoided [294]. Panel (a) compares
the ∆CT distribution for all four cases. Only (iii) and (iv) exhibit clear peaks, mirroring the
regular frequency pattern structure. There is no dominating ∆CT contribution for arrays of
untuned transmons, but just as little for the IBM cloud devices. In (c), we show an enlarged
view of the ∆CT distribution for (i) and (ii). In the untuned arrays, all collisions appear. On the
IBM cloud processors, the number of collisions is significantly reduced. As a specific example,
(f) displays data for the 65-qubit ‘Manhattan’ chip with clear LASIQ indications. The right
column shows the ν distributions centered around the respective mean values. For (iii) and (iv),
the regular pattern reappears in clear peaks, as demonstrated in (b). On the other side, despite
the differences in ∆CT , (i) and (ii) are both consistent with Gaussian disorder. Furthermore,
the disorder strength is very similar in the cloud devices and the untuned transmons, see also
Fig. 3.15(a).

To summarize, the bottom line of this analysis is that the frequency distributions for both
untuned chips with natural disorder and current LASIQ-tuned cloud processors are compatible
with regular Gaussian disorder with δν ≈ 100 MHz for typical frequencies of around 5 GHz.

We conclude this section with two remarks: First, one should note that reducing the connec-
tivity does not come for free [106]. In fact, the quantum volume metric, a holistic cross-platform
measure for the performance of a quantum computer [309, 310], explicitly favors higher connec-
tivities, e.g., a square lattice over the heavy-hexagon layout. Yet, when combined with LASIQ,
the benefit of an order of magnitude higher zero-collision yield outweighs the price one pays. For
example, the record value for quantum volume (for superconducting qubits) has been pushed up
several times with heavy-hexagon chips [311]. Second, the LASIQ precision currently achievable
is not sufficient as the qubit number increases. The zero-collision yield for an ‘Eagle’ processor is
only 8% and building a collision-free chip with over 1,000 qubits, which IBM aims to do in 2023,
is beyond reach without significant improvements in LASIQ precision [294]. For this reason, new
alternative transmon design schemes, precisely tailored to the requirements of the CR gate, are
also tested, e.g., weakly tunable transmons with a tuning range small enough to prevent losses
in coherence time but large enough to avoid frequency collisions [312]. Alternatively, a newly de-
veloped gate [313, 314] for fixed-frequency architectures with similar frequency collision bounds
but an additional degree of freedom on the drive frequency allows for an improved zero-collision
yield [315].
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Figure 3.17 – LASIQ engineering. The left column shows the distribution of NN frequency differences.
The right column shows the distribution of frequencies. Grayed areas mark the ranges where NN frequency
collisions occur (h∆CT /EC = 0, 1/2,±1). Their width is based on the estimates in Ref. [294]. In (a), the ∆CT

distribution of pattern-tuned processors, the AB ‘Falcon’ from Ref. [308] (yellow), and the optimal ACBC
pattern (blue) are compared to IBM cloud devices (green, average over nine ‘Falcons’ and two ‘Hummingbirds’)
and an untuned chip (red). Only the pattern-tuned configurations feature clear peaks. The enlarged view in
(c) shows that the cloud devices have significantly fewer collisions than the untuned transmons due to LASIQ
adjustments. However, in both cases, the overall frequency spread is consistent with Gaussian disorder, as
shown in (d) (IBM cloud) and (e) (untuned). This has to be contrasted with the sharp peaks found for the
pattern-tuned chips in (b). (f) and (g) present results for one specific IBM processor, the 65-qubit ‘Manhattan’
chip. Each individual frequency is achieved with high precision via LASIQ to avoid NN collisions, see (f), but
the overall ‘disorder-engineered’ distribution in (g) is well described by a single Gaussian. This holds true for
all individual cloud devices, including the newest ‘Eagle’ processor, see Appendix A.1. The bin width is 50
MHz for the right column, 1/22 for the cloud devices in (c) and (f) and 1/11 otherwise.

3.5.2 Tunable transmon architectures

The two conflicting demands of strong coupling for fast gates and low residual coupling during
‘off’ times are challenging to achieve in a fixed-frequency architecture. Tunable transmons offer
more flexibility. As discussed in Sec. 3.4.1, minimizing parasitic interactions during ‘off’ times
requires either a small ‘off’ coupling J or a large detuning ∆12. Without tunable couplers, only
the latter is possible. This approach has been widely employed, e.g., in experiments conducted
at MIT [316], TU Delft [94], ETH Zürich [95], or Google [6]. Notable examples include the
implementation of fast two-qubit gates (40 ns) with a fidelity of 99.4% [6], undershooting the
error threshold for the surface code, state stabilization [7, 317], the realization of quantum error
detection in a surface-7 geometry [94, 108] and the demonstration of quantum error correction
using a surface-17 geometry [95]. Recently, two-qubit gate fidelities of 99.7% and better [316,
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Figure 3.18 – Frequency distributions in arrays of flux-tunable transmons. (a) Surface-17 device from
Ref. [95], with an ABAB pattern and large detuning ∼ 2 GHz between NN qubits. (b) Layout of the 53-qubit
transmon array ‘Sycamore’. As the coloring of the qubits indicates, the frequency variation is uncorrelated in
space. (c) Frequency distribution for ‘Sycamore’, consistent with Gaussian disorder with δν ∼ 60 MHz.

318, 319] have been reported, which almost closes the gap to the fidelity of single-qubit gates.
Many of these experiments have in common that they enable fast gates (∼ 50 ns) through

comparatively large T values, often exceeding 10 MHz, e.g., 30 MHz in Ref. [6], which is cushioned
in ‘off’ times by a massive detuning ∆12 > 1 GHz. Some experiments arrange the qubits in regular
patterns, see Fig. 3.18(a) for an example. While the gates are much faster than the CR gate,
typical qubit lifetimes of around 10 µs to 40 µs are somewhat shorter than in fixed-frequency
designs.

3.5.3 Tunable transmons with tunable couplers

Using a fixed always-on coupling T requires tuning the qubit frequencies over an extensive range
to turn the gate on and off, which makes the system susceptible to flux noise. The complementary
approach is to use tunable couplers to switch off the gate by turning off J or T (in a perturbative
sense). This allows one to park the qubits at much smaller frequency detunings, albeit adding
additional circuitry. One example is Google’s previously mentioned ‘gmon’ device that enables
an on-off ratio of 1,000 with a coupling strength of J/2π = 100 MHz in the ‘on’ state and a
gate duration of only 5 ns [276]. For the ‘Sycamore’ processor from the illustrious quantum
advantage[39] and a series of follow-up experiments [89, 90, 92], Google has switched paradigms
and implemented the more easily scalable coupling scheme discussed in Sec. 3.3.2. In the ‘off
state’, resonant swapping experiments can be used to determine the residual coupling strength,
which is estimated to lie below 50 kHz [320]. The ‘on’ coupling for two-qubit gates is −20 MHz,
resulting in gate times of around 12 ns. As shown in Fig. 3.18(b), frequencies are usually tuned
over less than 100 MHz to be brought into resonance. In particular, similar to the LASIQ-tuned
IBM chips, there are no obvious spatial correlations between the qubit frequencies, and the
overall distribution is again well reconciled with Gaussian disorder, see Fig. 3.18(c), albeit with
a disorder strength that is smaller than the natural (and LASIQ) disorder. Note that although
the frequencies are effectively disordered, each individual frequency is the result of a multi-stage
optimization procedure that washes out any prevailing regular pattern, see Ref. [39] for details.
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Table 3.1 – Experimental parameters for different transmon variants. Row 1 shows data for a fixed-frequency
architecture (IBM’s 127-qubit ‘Washington’ device), row 2 for a tunable-frequency architecture (Surface-17
from Ref. [95]), and row 3 for additional tunable couplers (Google’s ‘Sycamore’ [39]). Note, in particular, the
last two columns: with increasing hardware complexity, the gates become faster, but the lifetime decreases.
For tunable architectures, the specified data belong to the qubit’s idle points. In row 2, two entries in a cell
describe the two values of the AB frequency pattern.

Variant Coupling ν[GHz] EC/h[MHz] δν[GHz] EJ/EC tgate[ns] T1[µs]

ν fixed always on 5.06 306 0.11 38 529 102
ν tunable always on 3.95/6.07 177 ∼2 68/155 ∼100 33
ν tunable tunable 6.66 208 0.057 136 12 16

3.6 Summary

This chapter introduced the transmon platform for quantum computing. The transmon plays
a dominant role among the numerous variants of superconducting qubits because it strikes a
perfect balance between charge-noise sensitivity, which decreases as exp(−

√
8EJ/EC), and an-

harmonicity, which decreases slowly as 1/
√
EJ/EC . The transmon operates in a regime where

EJ/EC > 20.
In multi-transmon arrays with a capacitive coupling between transmons, entangling gates can

be implemented with microwave drives or by exploiting degeneracies in the spectrum. These
distinct techniques require hardware of different complexity and define different regimes of disor-
der and coupling strength. For the transmon, disorder means site-to-site variations of the qubit
frequencies caused by fluctuations of the Josephson energy EJ . In particular, we have noted that
regardless of where one is on the path from ‘more control, more noise’ to ‘little control, little
noise’, see Fig. 3.14, disorder always occurs, either due to fluctuations in the production process
or as artificially engineered disorder, introduced to comply with certain conditions, e.g., to avoid
frequency collisions. The disorder is often well described by a single Gaussian distribution. Reg-
ular frequency patterns, described by multiple, narrower Gaussian distributions centered around
different mean values, might appear in future devices. It is important to note that the motivation
for artificial disorder and frequency patterns stems from the analysis of small, usually two- or
three-qubit systems but is not a corollary of many-body considerations. In Table 3.1, we summa-
rize important experimental characteristics of selected processors, including one representative
for each of the design schemes presented.

In conclusion, independent of the specific hardware choices, the transmon array is an inter-
acting, disordered many-body system, and as such, it is predisposed to be examined for the
signatures of MBL and quantum chaos presented in Chapter 2. The next chapter and those that
follow discuss in detail the results of such an analysis.

In this work, we will simulate both disorder types: the one that is well described by a single
normal distribution as well as frequency patterns, i.e., smaller frequency spreads around several
mean values akin to the layout in Fig. 3.16(e).
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Many-body localization
and quantum chaos

in transmon quantum computers

Chapter 4

In this chapter, we fuse the intuitively disparate fields of many-body localization and quantum
processor engineering by utilizing the diagnostic tools discussed in Chapter 2 to study arrays of
capacitively coupled transmons.

The first section introduces the Hamiltonian and its low-energy limit and provides an overview
of the simulation parameters. Sec. 4.2 familiarizes with the basic properties of the noninteracting
Hamiltonian and, in particular, with the substructures emerging in its spectrum in different dis-
order regimes. After a brief overview of the properties of the coupling Hamiltonian in Sec. 4.3, we
show in Sec. 4.4 that the system hosts a chaotic phase for little disorder or strong couplings, which
is a no-go area for quantum computing. Sec. 4.5 is devoted to the analysis of parameter regimes
of prevalent transmon processors built according to the different design paradigms introduced
in Chapter 3. In Sec. 4.6, we slightly depart from the applied transmon engineering perspective
and focus on some of the typical MBL properties, for example, the occurrence of a mobility
edge. We then move all the closer to the current state of processor design in Sec. 4.7, where
we study small yet realistic two-dimensional transmon arrangements, and in Sec. 4.8, where we
extract qubit correlations with the method of the Walsh-Hadamard transformation. Comparing
the correlation strengths with what transmon engineering research considers tolerable answers
the question of whether quantum computing is feasible in the extended gray area between the
extremes of hard quantum chaos and deep localization that we found in Sec. 4.5. In Chapter 1,
possible deteriorations of a quantum computer were introduced using the example of information
loss in quench experiments. Later on, we argued that knowledge about the static properties, i.e.,
the wave functions of the interacting Hamiltonian, is sufficient to judge the capability of the
transmon array to act as a quantum memory. In Sec. 4.9, we complete the cycle and study
quench experiments to show that information is scrambled on relevant timescales that are much
shorter than the typical qubit lifetimes.

The simulations underlying the results presented in this and subsequent chapters have been
performed on the JUWELS supercomputer at the Forschungszentrum Jülich and the CHEOPS
supercomputer at RRZK Cologne. This chapter is partly based on the publication [P1] by the
author of this thesis. The author of this thesis obtained all results presented in the following
chapters, except for the data underlying the Figs. 4.25 and 4.26, and the identification of the l-
qubits in Fig. 4.24, for each of which Evangelos Varvelis is to be credited. This chapter is further
supplemented by Appendix B where some of the more technical aspects, including details of the
implementation, are scrutinized.
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4 Many-body localization and quantum chaos in transmon quantum computers

4.1 The model

To obtain the Hamiltonian of an array of capacitively coupled transmons, we combine Eq. (3.9)
and Eq. (3.46), yielding

Ĥ = 4EC
∑
i

n̂2i −
∑
i

EJ,i cos ϕ̂i + T
∑
〈i,j〉

n̂in̂j . (4.1)

The first two contributions describe the individual transmons, and the last term is the capacitive
coupling between all pairs of nearest neighbors 〈i, j〉 or more distant transmons with long-range,
resonator-mediated coupling. As discussed in Chapter 3, the charging energy EC is easily fixed
at a desired energy and does not vary from transmon to transmon. Here, we use the typical
value EC/h = 250 MHz. The Josephson energies EJ,i, on the other side, fluctuate as a result of
natural or artificial disorder. In this chapter, they are drawn from a normal distribution whose
standard deviation σ represents the disorder strength δEJ . We expect our results to hold for
other standard forms of disorder as well (see the discussion in Appendix B.3). Common values of
EJ/h in current chips lie between 10 GHz and 25 GHz, see also Table 3.1, but even larger values
are possible. The coupling strength is the smallest energy scale, typically satisfying T/h < 50
MHz. The specific magnitude depends on the hardware choice, as discussed in Sec. 3.5. An
overview of the parameter ranges used in the simulations is provided in Fig. 4.1(b).

Even though the full model (4.1) is implemented for all subsequent simulations, its low-energy
limit proves helpful for gaining some intuition. Applying a sequence of approximations, akin to
the discussion in Sec. 3.2.3, results in

Ĥeff =
∑
i

hνq,ib̂
†
i b̂i −

EC
2

∑
i

b̂†i b̂
†
i b̂i b̂i +

∑
〈i,j〉

h̄Jij

(
b̂†i b̂j + b̂i b̂

†
j

)
. (4.2)

Eq. (4.2) is the attractive, disordered Bose-Hubbard model, where the qubit frequencies νq,i play
the role of the on-site energies, the charging energy EC translates to an attractive interaction,
and the capacitive coupling is interpreted as a nearest-neighbor hopping. The qubit frequencies
hνq,i =

√
8ECEJ,i − EC and the hopping amplitudes h̄Jij = T

4
√
2EC

4
√
EJ,iEJ,j , see Eq. (3.47),

vary due to the fluctuations in the Josephson energies. Unless otherwise noticed, all results
shown in this chapter are obtained for a coupled transmon chain of length L = 10, as sketched
in Fig. 4.1(a). From here on, we adapt to the default convention of transmon engineering and
set h = 1, meaning that all energies are provided in Hertz, e.g., EC = 250 MHz instead of
EC/h = 250 MHz. The symbol L always denotes the number of transmon sites.

4.2 Noninteracting transmon arrays

To begin with, we set T = 0 MHz and familiarize ourselves with the general structure of the
spectrum of the Hamiltonian in Eq. (4.1). All eigenstates are then product states of single
transmon wave functions. They are completely determined by the local excitation numbers. As
an example, the state |0413〉 is the eigenstate of a noninteracting four-transmon array where the
first (second, third, fourth) transmon is in the ground (fourth, first, third excited) state. We
refer to the sum of the individual excitation numbers as the total excitation number Nex (here
Nex = 8). Usually, we denote the space spanned by all product states of the local transmon
eigenbases as configuration space to emphasize that we work with the full model in Eq. (4.1).
Occasionally, when we exploit the intuition provided by the effective model Ĥeff, we interpret the
excitation levels of the individual transmons as bosonic occupation numbers and use the terms
Fock state and configuration or transmon product state interchangeably.
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Figure 4.1 – Chain geometry and parameter ranges. (a) Chain of L = 10 capacitively coupled transmons
for which most of the conclusions presented in this chapter have been reached. (b) Overview of the parameters
exploited in the simulations. All energies are measured in Hertz (h = 1). The dashed lines represent parameter
ranges that have been investigated but lie outside the experimental core region.

4.2.1 Excitation bundles and excitation structures

Essential concepts for transmon arrays subject to not-too-strong disorder are excitation bundles
and excitation structures. Consider three transmons with Nex = 2 excitations. These exci-
tations can be distributed on one or two transmons, corresponding to the sets of eigenstates
{|200〉, |020〉, |002〉} and {|011〉, |101〉, |110〉}. We call these distinctive distributions of excita-
tions to the transmon array the excitation structures. To keep the notation simple, we denote
them as {11} and {2}. Generalizing to larger arrays and higher Nex is straightforward.

From Eq. (4.2), one intuitively expects the spectrum to cluster into excitation bundles for small
disorder. These are manifolds composed of states with the same total excitation numbers Nex
that are energetically separated from the rest of the Hilbert space: Adding an excitation costs
an energy hνq minus a potential correction due to the anharmonicity that scales as EC . On the
other side, shifting excitations between transmons (e.g., |11〉 → |20〉) only leads to contributions
of O(EC). As EC � hνq in the transmon regime, states with the same Nex should be close in
energy compared to the spacing between states with different Nex. For an array of L transmons,
the excitation bundle characterized by Nex contains

Nstates =
(L− 1 +Nex)!

(L− 1)!Nex!
(4.3)

states—the combinatorial problem is to distribute Nex indistinguishable balls (the bosonic exci-
tations) to L distinguishable bins (the transmons).

In Fig. 4.2(a) (left), we show the spectrum of the disorder-free (δEJ = 0) transmon chain
with L = 10. As expected, it reveals a hierarchy according to the color-coded total excitation
number Nex. The lowest energy belongs to the unique state |0 . . . 0〉 where all transmons occupy
the ground state. The next highest level corresponds to states with Nex = 1, for which there
is a single excitation structure {1} containing the states |100 . . . 0〉, |0100 . . . 0〉, and so on. As
δEJ = 0, all these states are degenerate in energy. They are very close to the energy expected
from Eq. (4.2), indicated by the thin horizontal line in Fig. 4.2. The next higher energy bundle
belongs to Nex = 2. It is composed of states with the excitation structure {11} (45 states) and
{2} (10 states). States from these distinct manifolds are not degenerate: due to the negative
anharmonicity, it is energetically favorable to have two excitations on the same transmon and the
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Figure 4.2 – Spectrum of the uncoupled transmon array for (a) varying disorder and fixed EJ/EC = 50
and (b) varying EJ/EC and fixed δEJ = 625 MHz. In (a), one observes a clustering of the levels to bundles
of a fixed total excitation number for δEJ = 0 MHz (left) and natural disorder δEJ = 625 MHz (middle). The
finer clusters emerging in the disorder free case correspond to specific excitation structures, see the discussion
in the main text. For large disorder δEJ = 5 GHz (right), the notion of excitation bundles no longer applies,
and states of different Nex intermingle. In (b), ramping up the ratio EJ/EC from 20 (left) via 50 (middle) to
400 (right) sharpens the bundle structure because as the system approaches the harmonic oscillator limit, the
influence of the anharmonicity vanishes.

states {2} are therefore lower by approximately EC . This pattern continues for the further levels,
where more distinct energy values in the excitation bundles indicate the increasing number of
nondegenerate excitation structures. Since the anharmonicity contribution grows (quadratically)
with the occupation number of a transmon, the width of the excitation bundles increases with
Nex. States with Nex = 6 and Nex = 7 mix into lower bundles, which indicates the breakdown
of the Bose-Hubbard approximation (in fact, for the parameter choice made here, the transmon
state |7〉 is not even a bound state). The upper edge of each bundle corresponds to the excitation
structure with Nex ‘1’s. It therefore coincides almost exactly with the prediction from Eq. (4.2)
marked by the horizontal lines.

Switching on a moderate disorder, as shown in (a) (middle) for a typical natural spread δEJ =
625 MHz, lifts the degeneracies between states with the same excitation structure and broadens
the width of the bundles but preserves the notion of an excitation manifold as energetically close
lying states with the same Nex. This changes when the disorder is increased by an order of
magnitude, resulting in the regime exploited in frequency-tunable architectures without tunable
couplers. Except for the two lowest bundles, the hierarchy in Nex is lost.

Fig. 4.2(b) demonstrates the effect of a varying EJ/EC whilst keeping the disorder strength
fixed. For the spectrum in the middle, we choose EJ/EC = 50 and natural disorder δEJ = 625
MHz, as in (a). The left panel shows the spectrum for EJ/EC = 20. The transitions between
different bundles are blurred because the relative anharmonicity grows upon decreasing EJ/EC .
Hence, the energy shift arising for multiple excitations on the same transmon approaches (in the
example for Nex ≥ 4) the order of magnitude of the bundle-bundle distance set by νq. For large
EJ/EC (right), the bundle structures sharpens as the relative anharmonicity decreases and the
system becomes increasingly well described by noninteracting harmonic oscillators.

Next, we move one level lower and zoom in the excitation bundle Nex = 5 for L = 10 (shown
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4.3 Interacting transmon arrays

Figure 4.3 –
Excitation bundle withNex = 5 and L = 10
for EJ/EC = 50 and δEJ = 0 MHz (left),
natural disorder δEJ = 625 MHz (middle),
and typical disorder for flux-tunable architec-
tures δEJ = 5 GHz (right). Each degenerate
level shown left corresponds to one excitation
structure, ranging from {5} with αtot = 20
to {11111} with αtot = 0. These substruc-
tures vanish quickly as disorder is introduced,
and the states start to mix. In particular,
in real processors, the computational states
are fully intermingled with noncomputational
states. To facilitate comparison, normalized
energies ε restricted to the interval [0, 1] are
shown.
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in yellow in Fig. 4.2). The disorder free case is shown left in Fig. 4.3. Each of the distinct lines
corresponds to one excitation structure. These differ in their anharmonicity contribution. In
more quantitative terms, we calculate

∑
i ni (ni − 1) where ni are the local transmon excitation

numbers and the sum is over all transmons of the array. In the Bose-Hubbard approximation, this
corresponds to the expectation value of the anharmonicity term b̂†b̂†b̂b̂, and we therefore refer to it
as total anharmonicity αtot. The seven distinct levels correspond to the excitation structures {5},
{41}, {32}, {311}, {221}, {2111}, {11111} with αtot = 20, 12, 8, 6, 4, 2, 0 containing 10, 90, 90,
360, 360, 840, and 252 states. Note that the number of computational states with local excitation
numbers ‘0’ and ‘1’ in {11111} (252) is much smaller than the total number of states contained
in the entire excitation bundle (2,002). Once a small natural disorder is added, as shown in
the middle, the hierarchy according to the total anharmonicity is lost, and states with different
excitation structures mix. In particular, this means that already for small disorder, the few
computational states intermingle with noncomputational states, which has severe consequences
for the identification of qubit states once a finite coupling strength is added, see Sec. 4.8. Further
increasing the disorder to the flux-tunable regime where the disorder strength strongly exceeds
the anharmonicity augments this tendency. This is shown on the right in Fig. 4.3.

To summarize, there are different levels on which the total Hilbert space restructures. The
highest layer is the formation of excitation bundles defined by a fixed Nex. On the next lower
ordering level is the clustering in excitation structures corresponding to different values of the
total anharmonicity. For typical natural ‘IBM-like’ disorder, the excitation bundles remain intact,
but the excitation structures are no longer preserved. For larger disorder, neither of these ordering
frames survives. For very small disorder, the excitation structures will turn out to be essential (a
specific case of this is discussed in Chapter 5). Equipped with these insights into the properties
of the noninteracting problem, we now switch on the capacitive coupling and first discuss to
what extent different states mix through this interaction.

4.3 Interacting transmon arrays

A natural choice of basis for the implementation of the Hamiltonian is the one formed by the
configuration states, i.e., the product states of the individual transmon eigenfunctions. Each
basis state is characterized by a set of L excitation numbers. The computational (p-qubit) states
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4 Many-body localization and quantum chaos in transmon quantum computers

Figure 4.4 –
Matrix elements of the charge operator be-
tween different single transmon eigenstates as a
function of the ratio EJ/EC . In the transmon
regime, the most relevant coupling is between di-
rectly adjacent eigenstates, i.e., 〈k+1|n̂|k〉. These
elements asymptotically increase as

√
k + 1 for

fixed EJ/EC . The matrix elements of the charge
operator vanish if states differ by an even num-
ber in their excitations, e.g., 〈2|n̂|0〉 = 0, see the
discussion in the main text.
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with local excitation numbers ‘0’ and ‘1’ form a subset of this basis, making it the preferred pick
to apply the basis-dependent delocalization measures from Chapter 2 for the characterization of
potential threads for quantum computing applications. The coupling matrix element between
two product states |k1 . . . kL〉 and |l1 . . . lL〉, where {ki}, {li} are two sets of L single transmon
excitation numbers, then depends on the matrix elements of the charge operator n̂ in the single
transmon eigenbasis. Consider, e.g, the capacitive coupling contribution n̂in̂i+1 with matrix
elements given by

〈k1 . . . kiki+1 . . . kL|n̂in̂i+1|l1 . . . lili+1 . . . lL〉
= δk1,l1 . . . δki−1,li−1

〈ki|n̂i|li〉〈ki+1|n̂i+1|li+1〉δki+2,li+2
. . . δkL,lL . (4.4)

For a few values of k and l, the matrix elements of the charge operator 〈k|n̂|l〉 are shown in
Fig. 4.4. This exemplifies some important properties: Most relevant are matrix elements of the
form 〈k|n̂|k + 1〉. Entries of the form 〈k|n̂|k +m〉, with |m| > 1 and m odd, are much smaller
(e.g., 〈0|n̂|3〉) and 〈k|n̂|k +m〉 = 0 when m is even (e.g., 〈0|n̂|2〉). The last property is easily
understood from the parity of the Mathieu functions: in the ϕ representation, these matrix
elements vanish as integrals of antisymmetric functions over the interval [−π, π]. For the multi-
transmon array, this implies that the parity of Nex is conserved. States from bundles with Nex
values that differ by an odd number cannot couple because the corresponding matrix elements in
Eq. (4.4) involve one contribution 〈l|n̂|l+m〉 with m even. In particular, neighboring bundles do
not mix. One arrives at the same conclusions when arguing with the asymptotic expression of the
charge operator in Eq. (3.32) (akin to the derivation of Eq. (3.47)) instead of the symmetries of
the Mathieu functions. Additionally, from the asymptotic form, one immediately reads that for
fixed EJ/EC , the matrix elements 〈k|n̂|k + 1〉 increase as

√
k + 1, which explains the hierarchy

in the nonvanishing elements in Fig. 4.4. For further details, see the discussion in Ref. [58].

4.3.1 Configuration space hopping

It is instructive to consider Eq. (4.1) as a hopping problem on a high-dimensional configuration
space lattice, as discussed in Sec. 2.5. With each additional transmon, the lattice dimension in-
creases by one. Each lattice site (l1, . . . , lL) encodes one transmon array configurations |l1 . . . lL〉.
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l3
l4

l2

l1

Figure 4.5 – Configuration space of the L=4 chain. Each individual transmon is approximated by a five-
level system. Along each of the dimensions shown in the coordinate system at the bottom left, one of the local
occupation numbers li changes, e.g., hopping right from one cube to the next while maintaining the position
within the cube means that l4 increases by one. The lattice point marked by the yellow star correspond
encodes the state |0423〉. The arrows illustrate the connectivity of the state |1111〉. Blue arrows indicate
that the capacitive coupling links |1111〉 to states with a different Nex, whereas for the yellow arrows, Nex is
preserved. These hopping processes are later identified as the most relevant ones because their ‘many-body
on-site’ energy is similar. As a concrete example, the coupled states from the first cube are |1140〉, |1100〉 (both
with different Nex, the latter is a computational state), and |1120〉 (same Nex).

For illustration, consider a chain of four transmons, where the Hilbert space of each transmon
is truncated after the fourth excited level |4〉. The corresponding lattice with 45 = 625 lattice
points is shown in Fig. 4.5. Red lattice points represent computational states. Each vertex
translates into a basis state |l1l2l3l4〉 according to the following recipe: the position within the
individual cubes determines the quantum numbers l1, l2, l3 as indicated and the number of the
cube l4. As an example, consider the lattice point (0,4,2) in the fourth cube marked by the yellow
star. It represents the state |0423〉. Each individual lattice point is connected to many neighbors
via the hopping matrix elements stemming from the capacitive coupling. In Fig. 4.5, this is
exemplified for the state |1111〉, whose connectivity is visualized with arrows. The coupling term
T (n̂1n̂2 + n̂2n̂3 + n̂3n̂4) links it to a total of 27 lattice points (see Appendix B.1 for more details)
that divide in 19 vertices representing states with different total excitation number (blue arrows,
e.g., the state |1100〉) and six from the same excitation bundle with Nex = 4 (yellow arrows, e.g.,
|1201〉).

There are a few important insights that Fig. 4.5 conveys: First, it reiterates that the num-
ber of computational states is vanishingly small. Second, it shows that a lattice point couples
to many of its neighbors but only to a tiny fraction of the total Hilbert space because only
neighboring transmons are directly coupled and because of the ‘selection rules’ from the charge
operator elements discussed above. Therefore, the Hamilton matrix is sparse and can benefit
from appropriate numerical diagonalization routines. Lastly, most connected states belong to
excitation bundles that differ by at least two excitations. This means that most states are far
apart in energy relative to the coupling strength (remember that the bundle-bundle distance is
primarily determined by νq ≈ 5 GHz, but T < 50 MHz). It is, therefore, reasonable to assume
that the few hopping processes shown in yellow are the most crucial ones and to take this into
account for an efficient truncation of the Hilbert space, as discussed in the next section.

4.3.2 Truncating the Hilbert space

The coupled-transmon array described by Eq. (4.1) possesses an infinite-dimensional Hilbert
space. Making it numerically feasible requires some form of truncation. Naively, one could
restrict the local Hilbert spaces of the individual transmons to a few levels, as was done for
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the visualization in Fig. 4.5. However, it is much more purposeful not to constrain the Hilbert
spaces of the single transmons but directly the multi-transmon basis. Otherwise, most states
entering the construction of the Hamilton matrix are irrelevant to the actual target energy
window. Consider, for example, the five-level approximation for each transmon in the L = 4
system discussed above. The Hilbert space then contains states like |4444〉, |4443〉, etc., with
Nex � 4. These are very far away from the energy of computational states, with the maximum
Nex = 4 and ‘typical’ Nex = 2 for two ‘1’s and two ‘0’s. It is, therefore, reasonable to restrict to
basis states whose energies lie in a suitably chosen window around the target energy. In fact, our
numerical analysis strongly suggests that accurate results are already obtained when constructing
the Hamiltonian only in the sector of a fixed excitation number. This is quite expected for small
disorder due to the hierarchy in energy by Nex, but we find that this truncation procedure works
even for disorder sizes in which excitation bundles are no longer clearly delimited from each
other. This is similar to the effective model Ĥeff, which is block diagonal and conserves the
bosonic occupation number and not only the excitation parity. However, our model goes beyond
Eq. (4.2) because it does not involve any approximations apart from the truncation: it fully
captures the cosine nonlinearity and still comprises more intra-bundle couplings, e.g., between
the states | . . . 30 . . . 〉 and | . . . 03 . . . 〉 (even though these are expected to be small, see Fig. 4.4).
For a more detailed discussion of the truncation and related issues, see Appendix B.1.

Eigenstate thermalization and many-body localization are phenomena of highly excited states.
We are, therefore, interested in the properties of states with a finite energy density. In the
following, unless otherwise noted, we diagonalize the Hamiltonian provided in Eq. (4.1) for
the L = 10 chain geometry, restricted to the subspace spanned by the excitation bundle with
Nex = L/2 = 5. This manifold contains 2,002 states. States within this bundle that have only
local excitation numbers ‘0’ and ‘1’ are typical representatives in the computational subspace,
in the sense that more computational states are included in this manifold than in any other
tangle (

(
10
5

)
of 210 computational states). First, in the Secs. 4.4–4.7, we treat computational and

noncomputational states on an equal footing and examine the bundle as a whole. A particularly
sensitive measure of chaos tailored to scrutinize the computational states is later applied in
Sec. 4.8.

4.4 Chaos andMBL in coupled transmon arrays

The purpose of this section is twofold: In a series of proof-of-principle calculations, we show that
the coupled transmon array indeed hosts both regimes, one of localized states and uncorrelated
energy levels for large disorder or small couplings and one with chaotic states for small enough
disorder or large couplings. Furthermore, we explain how the diagnostics introduced in Chapter 2
can be applied to quantitatively monitor the crossover between MBL and chaotic regime.

4.4.1 Spectrum of a coupled transmon array: spaghetti plots

As a starter prior to the quantitative analysis, it is instructive to inspect the spectrum of the
Hamiltonian in Eq. (4.1) for a single randomly selected disorder realization as a function of the
coupling strength. This is done in Fig. 4.6 for two values of the ratio EJ/EC and on varying
energy scales. Focusing first on the upper row showing data for EJ/EC = 50 and δEJ = 625
MHz, i.e., a ratio from the middle of the transmon region with a typical natural Josephson energy
spread, one observes that the clustering of levels into energetically separated sectors of fixed Nex
persists throughout the whole T range (only bundles with Nex < 5 are clearly identifiable; for the
sectors with five and six excitations, the overlap to neighboring bundles is marginal such that it

70



4.4 Chaos and MBL in coupled transmon arrays

0

23.75

47.5

E
[G

H
z]

−50

0

50

E
[M

H
z]

−10

0

10

0 25 500

69.5

T [MHz]

E
[G

H
z]

0 25 50

−40

0

40

T [MHz]

E
[M

H
z]

0 25 50

−15

0

15

T [MHz]

+23.354 GHz +23.352 GHz

+68.721 GHz +68.728 GHz

(a) (b) (c)

(d) (e) (f )

Figure 4.6 – Energy spectrum of an array of ten coupled transmons arranged in a chain geometry as a
function of the coupling strength T . Illustrated is the spectrum for a realistic EJ = 12.5 GHz with typical
natural variations of δEJ = 625 MHz (upper row) and for EJ = 100 GHz and δEJ ≈ 1.77 GHz (lower row) on
varying energy scales. Panels (a) and (d) indicate that for the whole T range under consideration, levels cluster
into sectors corresponding to a total number of excitation with sharper bundles for the larger EJ/EC ratio in
the bottom row. Zooming into the Nex = 5 bundle in (b) and (e) reveals a dense tangle of levels. A qualitative
change in the level structure can already be detected in panel (e). Levels cross for small T but tend to repel as
T increases. The level repulsion becomes particularly visible upon further decreasing the energy scale in the
third column. The effect is more pronounced for the larger EJ/EC ratio in (f), but even for the realistic value
in (c), numerous avoided level crossings—unambiguous indicators for quantum chaotic behavior—can be made
out in the right, large-T half.

is still reasonable to use the concept of an excitation bundle). Decreasing the energy scale for an
enlarged view on the levels belonging to the Nex = 5 manifold in (b) and (c) reveals a qualitative
change in the behavior of the levels: whereas for small T , all levels seem to pass straight through
one another, they start to wiggle around for increasing T . The spectrum exhibits a mixture of
crossings and avoided crossings for values of the coupling above 20 MHz, as can be seen in the
magnified panel (c).

For the larger EJ/EC ratio used in the bottom row, EJ/EC = 400 and δEJ = 1.77 GHz to
be specific, the level repulsion is more prominent. At a coupling of about 25 MHz, the straight
lines crossing each other disappear and are replaced by strongly wobbling lines that show a clear
tendency to avoid mutual crossings. No more crossings are observed near the upper T edge in
panel (f). For plausible reasons, parts of the MBL community refer to the two qualitatively
different behaviors of the levels with the rather informal phrases of ‘uncooked’ and ‘cooked
spaghetti’ phases.

The conclusion we draw from Fig. 4.6 is that the spectrum of an array of coupled transmons
displays the most commonly exploited indication of quantum chaotic behavior—level repulsion—
and that the degree of chaoticity seems to augment for larger EJ/EC ratios. In the next section,
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4 Many-body localization and quantum chaos in transmon quantum computers

we consolidate this qualitative observation into quantitative measures. To start with, we fix
EJ = 44 GHz and δEJ = 1.1 GHz to study the MBL–chaos transition as a function of the
coupling strength. This specific value of the Josephson energy lies outside the experimental core
region; however, it guarantees that clear waterproof signs of both regimes can be seen in all
diagnostics that are considered in this section. We turn to the phase diagrams in the T -EJ
planes, capturing all experimentally relevant parameter ranges, in the subsequent section.

4.4.2 Level statistics

As discussed in Sec. 2.1.2, the statistics of the energy spacings is a standard and powerful tool
to probe the MBL–chaos transition: many-body spectra are expected to show Wigner-Dyson
statistics in the quantum chaotic phase and Poisson statistics in the localization regime [321].
By looking at the distribution of the ratio of successive level spacings [136],

rn =
En+1 − En
En − En−1

, (4.5)

we can omit the convoluted task of cleaning the spectrum from the local average level density.
The expected Wigner-Dyson and Poisson distributions of rn for chaotic and integrable systems,
derived in Ref. [322], are given by

PPoisson(r) =
1

(1 + r)2
, (4.6)

PWigner(r) =
1

Zβ

(
r + r2

)β
(1 + r + r2)1+3β/2

+ δPfit . (4.7)

In Eq. (4.7), the first contribution is the exact result for 3×3 matrices for the Gaussian ensembles
characterized by β, see Sec. 2.1.2. Zβ is the normalization constant and δPfit is a numerically
obtained correction for large matrices. It reads

δPfit(r) =
C

(1 + r)2

[(
r +

1

r

)−β
− cβ

(
r +

1

r

)−(β+1)
]
, (4.8)

where C is the single fitting parameter and cβ follows from the condition that
∫∞
0 δP (r)dr = 0.

The transmon array possesses time-reversal symmetry. Hence, we need to compare the numerical
results to the GOE predictions (β = 1). One then finds Zβ = 8

27 , cβ = 2π−2
4−π , and C = 0.233378

[322].

Kullback-Leibler divergence. Since its introduction, the level ratios rn have been used countless
times to track chaoticity in seminal contributions to MBL theory [136, 162, 178, 323, 324].
The comparison between numerical data and the two distributions is often monitored by using
the average ratio 〈r〉 as a measure of chaos or via qualitative observations, e.g., naked eye
comparison of histograms or by focusing only on the r → 0 limits. Recently, it was argued
that more sophisticated quantitative measures should be used to prevent premature conclusions
[325]. Therefore, we compute Kullback-Leibler (KL) divergences [326] as a more reliable tool for
quantifying the distance of the numerically obtained level spacing distributions to the predictions
in the respective regimes. For two discrete probability distributions Q and P defined over the
probability space X , the KL divergence is defined as

DKL (P ||Q) =
∑
x∈X

P (x) log
(
P (x)

Q(x)

)
. (4.9)

72



4.4 Chaos and MBL in coupled transmon arrays

Figure 4.7 –
Poisson and Wigner-Dyson (GOE)
distribution for the quantity Rn =
min (rn, 1/rn), where rn is the ratio of adja-
cent level spacings as defined in Eq. (4.5). The
predicted small-R behavior of the Wigner-
Dyson distributions, PWigner(R→ 0) → 0, re-
flects the inset of level repulsion in the chaotic
phase. To compare these continuous functions
to numerically obtained histograms, they are
discretized by splitting the R interval into 50
bins with edges x0 to x50 and integrating over
the resulting bins, as exemplified for the Pois-
son distribution and q18.
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In our use case, Eq. (4.9) condenses the full, numerically obtained spectral information (P ) over
the entire rn range into a single number that reflects the similarity of the data to one of the
expected distributions (Q). DKL (P ||Q) has several properties that make its interpretation as a
measure of disparity1 between P and Q plausible, see, e.g., Refs. [327, 328]. Most importantly,
DKL (P ||Q) ≥ 0, where equality holds if and only if P = Q.

To evaluate Eq. (4.9), we proceed as in Ref. [325] and calculate

Rn = min
(
rn,

1

rn

)
, (4.10)

which comes with the advantage that it limits our considerations to the range [0, 1]. The prob-
ability distributions P (R) are obtained from the distributions P (r) in Eqs. (4.6) and (4.7) as
P (R) = 2P (r)Θ(1 − r) [322]. They are illustrated in Fig. 4.7. The vanishing of PWigner(R) for
R→ 0 once again reflects the inset of level repulsion in chaotic systems. Next, the R interval [0, 1]
is split into 50 bins of equal width with the 51 edges xk, k = 0, . . . , 50. The distribution P (k) ≡ pk
in Eq. (4.9) is extracted from the statistics of the numerical simulations, i.e., pk corresponds to
the relative frequency with which level ratios Rn are found in the interval [xk−1, xk]. This is
equal to the height of the corresponding bin of the normalized histogram. Q(k) ≡ qk follows one
of the two principal statistics. To replace the continuous Poisson and Wigner-Dyson functions
by discrete values qk, one computes the integral over the intervals [xk−1, xk], as exemplified in
Fig. 4.7. Concretely, the KL divergences with respect to the (discretized) Poisson (Q = PPoisson)
and Wigner-Dyson (Q = PWigner) distributions are obtained as D(P ||Q) =

∑50
k=1 pk log(pk/qk).

The KL divergence is not symmetric under permutation of P and Q. For presentation purposes,
it is convenient to normalize the divergences such that D(PWigner||PPoisson) = 1 and vice versa.
As a result, if the numerics P suggest good agreement with what is expected in the localization
regime, we obtain D(P ||PPoisson) ≈ 0 and D(P ||PWigner) ≈ 1.

Disorder averages. As the considered model contains random disorder, faithful statements
about typical properties for a particular set of system parameters can only be made in the
form of disorder averages over many fictitious processor realizations. This is achieved by repeat-
edly drawing sets of Josephson energies from the same Gaussian distribution with fixed average

1The word ‘distance’ is not avoided here coincidentally, but because the KL divergence is not symmetric and
does not fulfill the triangle inequality.
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Figure 4.8 – Spectral statistics for a chain of ten coupled transmons. Shown are the KL divergences
for the distribution of the Rn ratios as a function of the coupling strength T , calculated with respect to the
Poisson (blue) and Wigner-Dyson (red) distributions. The average Josephson energy is fixed to EJ = 44 GHz,
and the disorder is δEJ = 1.17 GHz. The statistics evidence a transition from an MBL regime with Poisson
statistics (D(P ||PPoisson) = 0) at small T to a quantum chaotic region with Wigner-Dyson statistics at large T .
This is also corroborated by the similitude between the histograms shown for selected values of the coupling
strength and the predicted distributions. Each histogram is a disorder average over at least 5,000 independent
disorder realizations. All 2,002 energies of the Nex = 5 excitation bundle are considered in the calculation of
the Rn values.

EJ and disorder strength δEJ . For each disorder realization, diagonalization of the Hamilto-
nian yields an Rn histogram. The KL divergences are then obtained by comparing the averaged
histograms or Rn distributions to the analytic predictions.2

4.4.3 Results for the Kullback-Leibler divergences

The main panel of Fig. 4.8 shows the KL divergences D(P ||PPoisson) and D(P ||PWigner) as a func-
tion of the coupling strength T . The result clearly manifests that the coupled transmon array
hosts a many-body localized and a quantum chaotic regime. For small couplings, the KL diver-
gence of the numerical data vanishes when calculated with respect to the Poisson distribution,
indicating the presence of a localized phase where the energies are uncorrelated random numbers.
As T increases, D(P ||PPoisson) quickly grows while D(P ||PWigner) approaches zero, marking an
increasingly better agreement with what is expected in the ergodic phase. For selected values of
T , the disorder-averaged histograms, i.e., the pk values entering the evaluation of the KL diver-
gences, are also displayed. As expected, there is a striking match with Poisson for very small (I)
and Wigner-Dyson statistics for large couplings (IV). For values in between (T ≈ 20–50 MHz),
one observes a region of ‘hybrid’ statistics, where the histograms interpolate between the clean
cases of MBL and quantum chaos (II and III), and neither of the two KL divergences is close to

2The complementary approach of calculating one instance of the KL divergence for each fictitious processor and
then averaging all KL divergences is not meaningful. Every single KL divergence would significantly differ from
zero due to poor statistics alone. Averaging cannot cure that one never finds good agreement with one of the
two principal statistics.
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(a) (b) (c)

Figure 4.9 – Delocalization of a wave function in configuration space. The center of each circle represents
a basis vector. The radius is proportional to the amplitude of this basis vector in the wave function. (a) For
T = 5 MHz, EJ = 12.5 GHz, the wave function is nearly perfectly localized, with a single basis vector
symbolized by the large circle strongly contributing to it. Upon increasing T and EJ , the wave function tends
to delocalize, indicated by a higher number of significantly contributing states for (b) T = 15 MHz and EJ = 50
GHz. Furthermore, the states with a minimal weight in the wave function become more numerous. In (c),
parameters (T = 50 MHz, EJ = 100 GHz) are such that the wave function is nearly ergodic: many basis states
contribute with a similar magnitude to |ψ〉, see the main text for more details.

zero. Upon close inspection, one notices that for large couplings, the system is not fully chaotic.
This is most clearly seen in D(P ||PPoisson), which remains well below one, the expected value
for hard quantum chaos. In histogram IV, the bin height for small (large) T slightly exceeds
(falls below) the Wigner-Dyson distribution. The origin for this behavior are states at the edges
of the five-excitation sector that remain localized even for strong couplings but are nevertheless
included in the histograms. For details, see the discussion of the mobility edge in Sec. 4.6.1.

4.4.4 Wave function statistics

The level statistics provided us with unambiguous evidence for the existence of a quantum
chaotic region. Next on the agenda is the characterization of the delocalization and entanglement
properties of the eigenfunctions. A qualitative insight into how the nature of typical wave
functions varies for different system parameters is provided in Fig. 4.9. Here, we consider a
transmon chain with L = 12 and Nex = 6, possessing a 12,376-dimensional Hilbert space that
is represented by the dashed gray square. An equal number of random coordinates within the
squares symbolizes the different basis vectors. We randomly pick a single eigenfunction |ψ〉 from
the middle of the spectrum. The sizes of the circles drawn around the coordinates designating the
basis states |k〉 are proportional to the weights |〈k|ψ〉|2. In (a), for parameters where the system
is in the MBL phase, one can distinguish between one dominating state, one state with small,
but clearly visible contribution (a nearest neighbor in configuration space) and a few other states
that contribute very weakly to |ψ〉. This changes for larger T and larger EJ/EC , as shown in (b)
for parameters where the level statistics suggest that the system is neither fully integrable nor
chaotic: several states (O(10)) contribute significantly to the eigenstate. The number of states
with minimal but nonzero weight increases as well. Upon further increasing T and EJ/EC , there
is no dominant contribution and the wave function fully delocalizes, covering nearly all available
basis states with equal weight, as illustrated in (c) for parameters where the system is nearly
ergodic.

What has been observed here qualitatively is precisely what the inverse participation ratio
(IPR) and the participation entropy can record quantitatively. Along with some other measures
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Figure 4.10 – Localization and entanglement properties of the wave functions of an L = 10 transmon
chain. Shown are (a) IPR, (b) participation entropy, (c) eigenvector similarity, (d) bipartite number fluctu-
ations, and (e) entanglement entropy. If existing, the asymptotic value expected in the ergodic phase are
indicated by dotted horizontal lines. All measures indicate a transition from an MBL to a chaotic regime, see
the main text for a detailed discussion. All results are averaged over approximately 1,800 disorder realizations,
except for (e), where about 170 realizations were used. The disorder strength for EJ = 12.5 (44, 100) GHz is
δEJ = 0.625 (1.17, 1.77) GHz. Similar to what has been observed in Fig. 4.6, the system is more susceptible
to delocalization for larger EJ .

to charter the properties of wave functions, these two quantities are shown in Fig. 4.10 as a
function of T ranging from 1 MHz to 100 MHz and for three different values of EJ and δEJ .
As before, we depict only disorder-averaged quantities. For the wave function statistics, two
averages are performed: All results are averaged over many disorder realizations. For each
disorder realization, each quantity is calculated for and averaged over all 2,002 eigenstates (or
2,001 eigenstate pairs for the EVS).

Before discussing the metrics in Fig. 4.10 in detail, it is worth noting that all appear to reflect
a shift in the system’s properties as T is increased and that these quantitative changes are more
pronounced for larger EJ/EC , consistent with the observation from Fig. 4.6.

Specifically, Fig. 4.10 illustrates
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4.4 Chaos and MBL in coupled transmon arrays

(a) the IPR, calculated according to Eq. (2.24), where |α〉 is the configuration space basis. For
small T , all wave functions strongly resemble the eigenstates of the noninteracting system,
which is mirrored in an IPR close to one. As T is increased, the eigenstates quickly
delocalize and for T = 100 MHz (and EJ = 100 GHz) the IPR approaches the order of
magnitude of 1/dimH, the expected value for ergodic wave functions.

(b) the participation entropy SP as defined in Eq. (2.25), where again the eigenstate |i〉 is
expanded over the configuration space basis. It strictly vanishes for T = 0 MHz, increases
as T is increased and saturates for large couplings. The expected value for the GOE
ensemble is SP = ln (0.48 · dimH) + O (1/dimH) [117]. Here, dimH = 2,002 and hence,
SP ≈ 6.868 is expected in the chaotic regime. This value is indicated by the dotted
horizontal line in (b). The numerically obtained values converge towards this prediction
for large T .

(c) the correlations between nearby eigenstates, measured by the eigenvector similarity EVS,
Eq. (2.26), calculated here for pairs of energetically adjacent eigenstates. The GOE pre-
diction is EVS = 2 [164], which is approached for large T (dotted horizontal line).

(d) the bipartite number fluctuations. In the five-excitation bundle, the total number of excita-
tion in each basis state is (obviously) five and the same holds for all interacting eigenstates,
provided that the Hamiltonian is constructed in this restricted subspace (otherwise, contri-
butions from e.g., the sector Nex = 7 cause petite deviations, but as discussed, this effect is
nearly imperceptible). However, different eigenstates have a different number of excitations
in a given half of the system, e.g., the first L/2 transmons. This number is determined by
the operator [183]

N̂L/2 =

L/2∑
i=1

n̂i , (4.11)

where the sum is over the transmon sites i and the operator n̂ has the property n̂|l〉 =
l|l〉, i.e., it extracts the excitation number l of the single transmon eigenstate |l〉 with
energy El. What is shown in (c) are the fluctuations3 of N̂L/2 in a many-body eigenstate
|i〉, 〈i|N̂2

L/2|i〉 − 〈i|N̂L/2|i〉2. As discussed in Sec. 2.4, subsystem fluctuations of globally
conserved quantities are believed to capture the entanglement properties of the eigenstates
|i〉 [182].

(e) the entanglement entropy SEE, whose precise definition is given in Eq. (2.23), and that is
calculated for the subsystem comprising the first half of the transmon chain. This figure
does not provide accurate information about the existence of an MBL or chaotic regime,
as this requires simulations for various L to detect a change in the scaling behavior from
area to volume law. However, it monitors qualitatively the growth of entanglement with
increasing T and is consistent with similar results obtained for the Bose-Hubbard model
[183].

In summary, the evidence for the existence of a quantum chaotic regime that we found in the
delocalization and entanglement properties is overwhelming. Given that to a certain degree the
information contained in the above wave function measures is redundant and yields the same

3We call this the bipartite number fluctuations because the operators n̂i in Eq. (4.11) correspond to the boson
number operator b̂†i b̂i in the analogous definition of N̂L/2 for the Bose-Hubbard model.
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Figure 4.11 – Transition from chaos to MBL upon increasing the disorder strength. (a) The KL
divergences with respect to the Poisson (dashed) and Wigner-Dyson (solid) distributions indicate a transition
from the ergodic phase for low disorder to the MBL regime for strong disorder. (b) The IPR reflects the
tendency of the wave function to localize as the disorder increases. All results are obtained for T = 50 MHz.
The KL divergences are averaged over around 4,500 disorder realizations, and the IPR over 3,000. Again,
localization is favored for smaller values of the Josephson energy.

conclusions, in what follows we exploit only the IPR to characterize the delocalization of the
wave functions.

A final observation from Fig. 4.10 that will continue to guide us is that one has to distinguish
between the watertight signs of quantum chaos and initial deviations from MBL if one is inter-
ested in quantum computing applications. For example, the IPR falls below 0.5 for T . 10 MHz.
Compared to the ergodic value O(10−3), the wave function is fairly localized. The KL diver-
gences also indicate a pronounced proximity to the Poisson statistics. However, this in no way
guarantees that a ‘computational state’ that consists of only 50% of the original qubit is of any
use. We return to this observation in Sec. 4.5.1.

4.4.5 Varying the disorder strength.

Besides the coupling T , one expects the disorder strength to be an alternative tuning parameter
that can be adjusted to interpolate between the localized and the delocalized regime. This is
illustrated in Fig. 4.11, where (a) KL divergences and (b) IPRs are shown as a function of the
disorder δEJ . As expected, ramping up the disorder strength while keeping all other parameters
fixed takes one further away from the ergodic regime. Again, the system is more prone to
chaos for larger EJ/EC . Note that for δEJ → 0, additional features not covered by Poisson,
Wigner-Dyson or hybrid statistics emerge in the level spacing distributions. For example, the
spectrum resolves itself in the excitation structures discussed in Fig. 4.3 if the disorder-induced
variations in the frequencies νq are much smaller than EC . This and other features of very weakly
disordered systems are discussed in the context of engineered disorder patterns in Chapter 5. In
Fig. 4.11(a), the first indication that the case of very small disorder has additional complexity
is the nonmonotonicity of the KL divergences for EJ = 100 GHz.
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4.5 Quantum chaos in prevalent transmon architectures

Having established that arrays of coupled transmons harbor both a localized and a chaotic regime,
we now turn to a detailed discussion of the experimentally relevant ranges of the coupling strength
and the Josephson energies and investigate for which parameter values the first deviations from
localization become apparent. We do this for two different disorder regimes corresponding to
different design philosophies within the meaning of Sec. 3.5. Concretely, we consider

• scheme-a disorder, defined as δν = EC
2 .4 This choice is guided by what is desirable in

fixed-frequency architectures with all-microwave gates, like the CR gate. The above choice
of δν then guarantees sufficiently fast entangling gate operations. For typical values of
EJ = 12.5 GHz and EC = 250 MHz, this yields an EJ variation of δEJ = 625 MHz, in
excellent agreement with the natural, as-produced disorder strength and with what is found
in chips with LASIQ-adjusted (yet not pattern-engineered) disorder. Prototypical examples
are the various generations of IBM cloud devices, where both natural and designed disorder
can be found. The parameters exploited in the preceding Sec. 4.4 belong to this disorder
class (except for the parameters underlying Fig. 4.11).

• scheme-b disorder with δν = 6EC . The disorder here is about an order of magnitude
larger, such that the site-to-site variations in the frequencies exceed 1 GHz, as typically
found in chips with tunable frequencies but without tunable couplers. Examples include
the architectures used in Delft [295], ETH Zürich [95, 108], and ‘Sycamore’ ’s predecessor,
Google’s ‘Bristlecone’ generation [329].

We do not investigate the case of tunable frequencies with tunable couplers (as these have T ≈ 0),
but our above analysis allows us to identify the important dimensionless scaling variable, and
thus some conjectural statements concerning the vulnerability of this design class can be made
as well.

Keeping δν constant while tuning EJ requires an additional scaling of the disorder in the
Josephson energy with the mean value EJ as δEJ ∝

√
EJ . Specifically, the above disorder

choices yield

δEJ =

√
ECEJ

8
(scheme a) and δEJ =

√
18ECEJ (scheme b) . (4.12)

For EJ = 12.5 GHz and EC = 250 MHz, the distributions from which we draw the Josephson
energies are exemplified in Fig. 4.12. The distributions are cut off sharply at the lower edge to
ensure that EJ > 5 GHz, which is the lower bound of the EJ/EC transmon regime for the chosen
EC value.

4.5.1 Results for scheme-A disorder

For scheme-a disorder, the Kullback-Leibler divergences with respect to the Poisson and Wigner-
Dyson distributions for varying values of the transmon coupling T and the mean Josephson
energy EJ are shown in Fig. 4.13(a) and (b). One can clearly distinguish between an MBL
regime at small couplings and small EJ/EC ratios, where DKL(P ||PPoisson) vanishes, and an
ergodic regime for large T and a large EJ/EC ratio. In the latter, the level statistics follow the
Wigner-Dyson distribution, as indicated by the small value of DKL(P ||PWigner) (deep orange).
Both regimes are separated by a region of hybrid statistics where neither DKL(P ||PPoisson) nor

4For the remainder of this thesis, we write ν instead of νq.
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Figure 4.12 –
Disorder distributions. Examples for the
scheme-a (blue) and scheme-b (yellow) disorder dis-
tributions for a mean Josephson energy EJ = 12.5
GHz. To ensure a transmon-like ratio EJ/EC >
20, the Gaussians are truncated at EJ = 5 GHz,
which can significantly reduce the effective disorder
strength for scheme-b parameters and small average
Josephson energies.
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DKL(P ||PWigner) is small. Most experiments are performed for EJ/EC values below the dotted
horizontal line. However, the full EJ range is, in principle, experimentally accessible. The
solid black line in Fig. 4.13(a) marks the points at which the KL divergence with respect to
the Poisson distribution (normalized to 1 in the ergodic phase) takes the value 1/2. Roughly
speaking, this is the line of equal distance to the two limiting cases of MBL and chaos. It
should be kept in mind that the choice DKL(P ||PPoisson) = 1/2 is somewhat arbitrary: using
DKL(P ||PWigner) = 1/2 or the crossing point of the KL divergences works equally well. The main
purpose of highlighting this contour line is to provide a simple way to compare different setups.
Looking at the displacement of this line under changes in the system (e.g., additional couplings
or variations of the system size) allows one to judge a potential higher or lower proneness to
chaos under the modified circumstances. To credibly demonstrate the existence of a localized
and an ergodic regime, one needs the information about both KL divergences shown in Fig. 4.13.
In general, DKL(P ||PPoisson) = 1 does not imply that DKL(P ||PWigner) = 0. Thus, the two
panels do not contain redundant information. For the simulations presented in this chapter,
the situation is similar to Fig. 4.13: the computed Rn histograms interpolate between Poisson
and Wigner-Dyson statistics and are always similar to the exemplary ones shown in Fig. 4.8.
Therefore, DKL(P ||PPoisson) ≈ 1 can be considered as a sufficient condition for the existence
of a chaotic regime. Further on, the results for DKL(P ||PWigner) are therefore omitted. We
note, however, that when examining very weakly disordered transmon arrays in Chapter 5, one
encounters the situation where DKL(P ||PPoisson) ≈ 1 but the system’s level statistics do not
follow the Wigner-Dyson distribution.

For small values of T . 20 MHz, deviations from Poisson statistics are scarcely discernible in
Fig. 4.13, especially for the EJ values below the horizontal line that constitute the experimental
core region. One might be tempted to conclude that this parameter range is well-suited for
quantum computing applications. That this would be premature is evident from a glance at
Fig. 4.14, where the inverse participation ratio is shown for the same T and EJ ranges. The IPR
is close to one only for a small margin of small coupling strengths T . 3–5 MHz. In panel (a), the
contour lines represent exponentially decaying IPR values. The rapid decline of the IPR evinces
very conspicuously that the wave functions quickly delocalize in configuration space, falling below
1/4 in the parameter range that, according to the level statistics analysis, appeared to be free
of manifestations of chaos. Near the region of hybrid statistics, where both KL divergences are
in the proximity of 1/2, the IPR drops already below 10%. We can gather that the many-body
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Figure 4.13 – Scheme-A level statistics. (a) KL divergence calculated with respect to the Poisson distribution.
For small T and EJ/EC , D(P ||PPoisson) ≈ 0 indicates perfect agreement with what is expected for integrable
systems, hence signaling the existence of an MBL regime. The solid black curve is the contour line where
D(P ||PPoisson) = 1/2. (b) KL divergence calculated with respect to the Wigner-Dyson distribution. Heralded
by the vanishing of D(P ||PWigner), a quantum chaotic regime appears for larger T and EJ/EC . Between the
two limiting cases of ‘deep blue’ MBL and ‘dark orange’ chaos, an extended gray area spreads out, where
the Rn ratios show hybrid statistics akin to the histogram III in Fig. 4.8. Most state-of-the-art transmon
architectires operator with EJ values below the dotted white line. All results are averaged over at least 2,000
disorder realizations. The disorder strength extends from δEJ ≈ 0.4 GHz for EJ = 5 GHz to δEJ ≈ 1.7 GHz
for EJ = 100 GHz, see Eq. (4.12).

level statistics are less responsive to early markers of delocalization than the wave functions. In
particular, it is now far from evident that for the core EJ/EC region and moderate couplings,
the applicability as a quantum computer should not be affected by the strong dressing effect of
the wave functions.

Fig. 4.13(b) presents the same data set with a log-scale color coding of the IPR. This highlights
that the wave functions are not completely delocalized in the chaotic corner of the displayed
parameter regime. The minimal IPR of about 0.004 found for T = 50 MHz and EJ = 100 GHz
is still larger than 1/dimH (here 1/2,002), the expected value for perfect delocalization. The IPR
continues to decrease upon further increasing T and EJ/EC . Due to the presence of localized
states at the edges of the spectrum, a saturation of the IPR is difficult to achieve. This holds
even in the limit T,EJ → ∞, since this corresponds to the regime of Anderson localization, see
Sec. 4.6.4.

What constitutes a small IPR? The ‘smallness’ of a specific value of the IPR can be assessed from
two different perspectives, which come to different conclusions. One can take the pure many-body
perspective and compare the IPR to the inverse Hilbert space dimension or keep the intended use
of the system as a quantum computer in mind. In the first ‘MBL vs. fully delocalized’ approach,
one might argue with some justification that the wave function statistics behave similarly to
the level ratios. Only when the IPR has dropped by two orders of magnitude—indicating that
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Figure 4.14 – Scheme-A wave function statistics. Both panels show the color-coded inverse participation
ration (IPR) for the same parameters and disorder realizations as in Fig. 4.13. In (a), the solid lines indicate
contour lines of constant IPR. Already in the experimental particularly relevant smaller EJ/EC region and
for moderate coupling strength, the IPR drops heavily, foreshadowing that wave functions delocalize strongly
for parameters where the KL divergences were nearly asymptomatic. Panel (b) shows the same data with a
logarithmic color scale for the IPR for easier visualization of the behavior at large T and EJ : wave functions
are not yet fully delocalized in the upper right corner, but the IPR is still in the process of decreasing.

many-body wave functions spread over a relevant fraction of the configuration space—do we find
good agreement between the numerical results and the Wigner-Dyson statistics. On the other
side, it is highly questionable whether a wave function with an IPR of, say, 0.2—although fairly
localized in the MBL sense—can serve as a reliable computational state. It is this ‘viable vs.
poor’ quantum computer perspective that we take when we judge the IPR to be more sensitive
than the KL divergences.

With this in mind, our results draw the following picture of the parameter space: There
is a small region with Poisson statistics and an IPR close to one and a chaotic region with
Wigner-Dyson statistics and an IPR< 0.01. In between, there is an extended ‘twilight zone’
with Poisson and hybrid statistics characterized by significantly dressed yet not fully delocalized
or even fairly localized wave functions. This region penetrates deeply into the experimentally
relevant parameter regimes. Although we expect the strongly dressed wave functions with an
IPR smaller than 0.5 to be compromised for quantum computing, it requires another approach
that is to be discussed in Sec. 4.8 to quantify how much the computational states are endangered
by these early symptoms of delocalization. As will be demonstrated, an IPR well above 0.5 is
still small in the quantum-computing sense.

4.5.2 Results for scheme-B disorder

To complement the analysis for the ‘IBM-like’ design scheme a, we study the case of disorder
that is larger by about an order of magnitude, exemplified in recent flux-tunable chips from
TU Delft [94] and ETH Zürich [95]. The results for these simulations with scheme-b disorder,
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Figure 4.15 – Level and wave function statistics for scheme-B parameters. (a) The KL divergence with
respect to the Poisson distribution exhibits no significant departures from MBL statistics. The small inset
presents the same data set on an adapted scaling of the color coding to show that minor deflections start to
set in for large T and EJ . (b) The IPR data show that wave functions hybridize to a much lesser extent than
for scheme a, such that significant aberrations from the p-qubit states occur mainly outside the experimental
core region. All results are averaged over at least 2,000 disorder realizations. The disorder strength extends
from δEJ ≈ 4.7 GHz for EJ = 5 GHz to δEJ ≈ 21 GHz for EJ = 100 GHz whilst EJ is kept above 5 GHz, see
Eq. (4.12) and Fig. 4.12.

as defined in Eq. (4.12), are shown in Fig. 4.15. As expected, increasing the disorder strength
retracts the appearance of signatures of quantum chaos to much larger T and EJ/EC values.
The KL divergence with respect to the Poisson distribution, illustrated in Fig. 4.15(a), shows
no significant deviation from what is expected in the localized phase throughout the entire
considered parameter range. The small inset shows the KL divergence on a color scale that is
customized to show the very marginal deviations that become visible in the upper right corner.
The IPR in Fig. 4.15(b) drops below 1/2 only for parameters that lie well outside the region of
particular relevance for experiments, indicating that the wave function spreading, despite still
being significant, is much weaker than for scheme-a disorder. Upon very close inspection of panel
(b), one observes a slight increase of the IPR for the lowest EJ/EC values, in contrast to what is
observed otherwise. This is a side effect of restricting the EJ distribution to values larger than
5 GHz. What, in the case of large average Josephson energies, only sorts out rare, particularly
small realizations of EJ translates to a significant restriction of the disorder distribution for small
mean EJ . Therefore, at the lower horizontal edge, the smaller effective disorder strengthens the
tendency towards chaos, i.e., the dressing effect of the wave functions becomes stronger.

The general conclusion we draw from the level statistics and the IPR is that transmon-based
quantum computers built according to scheme b and with typical EJ/EC ratios, are considerably
distant from the chaotic regime. However, as shall be discussed later, even in this seemingly
advantageous scenario, many-body effects can impair the robustness of the computational states,
the actual transition to the chaotic region being still very far away.
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4 Many-body localization and quantum chaos in transmon quantum computers

4.5.3 Data collapse

The realm of quantum chaos is entered not only for increasing the coupling T but also the
Josephson energy EJ . The shape of the contour lines in Figs. 4.13 and 4.14 suggests a depen-
dency of the form EJ ∝ 1/Tα for curves connecting ‘equally chaotic’ parameter points. This
can be confirmed by combining the effective model in Eq. (4.2) with the configuration space
hopping picture visualized in Fig. 4.5. Thinking of the wave functions as states living on a high-
dimensional lattice with dimension L and coordinates determined by the individual occupation
numbers i = (i1, i2, . . . , iL), wave functions hybridize over a pair of lattice sites i and j if the
hopping amplitude ti,j exceeds the level spacing, i.e., |ti,j | & |δEi,j |, see the discussion after
Eq. (2.27). Here, δEi,j = Ei −Ej is the difference in the many-body on-site energies on the two
lattice sites i and j in the limit ti,j → 0. According to Eq. (4.2), δEi,j has two contributions,
one from the disorder in the qubit frequencies and one from the anharmonicity. For illustra-
tion, consider the lattice sites i = (. . . , in, in+1, . . . ) and j = (. . . , in − 1, in+1 + 1, . . . ), i.e., two
nearest neighbors in configuration space that are connected via a single excitation hopping from
transmon n to n + 1. Neglecting a potential change in the total anharmonicity, this modifies
the energy due to the disorder in the transmon frequencies as νn+1 − νn. This contribution
to δEi,j is proportional to the disorder strength δν and, therefore, kept constant in the T -EJ
plots where δEJ scales as

√
EJ to guarantee that the frequency disorder δν is fixed to EC/2.5

For the anharmonicity contribution, compare the hopping processes (1, 0, . . . ) → (0, 1, . . . ) and
(1, 1, . . . ) → (0, 2, . . . ). The total anharmonicity does not change in the first process but is mod-
ified for the second. In general, δEi,j has a contribution kEC , where k is an integer that depends
on the local excitation numbers affected by the hopping process. Again, this contribution is con-
stant in the T -EJ plots for any pair of states. Therefore, the many-body level spacing between
any two high-dimensional lattice sites is independent of EJ . On the other side, the hopping
amplitude ti,j is given by h̄Jn,n+1, where, according to Eq. (3.47), J ∝ T

√
EJ . In summary, one

finds ∣∣∣∣ ti,jδEi,j

∣∣∣∣ ∝ T
√
EJ , (4.13)

which—for our peculiar disorder choice—should be the relevant scaling variable for the chaos–
MBL transition concerning the parameters EJ and T . As anticipated from the numerical results,
increasing EJ or T both reduces the distance to the territory of delocalization.

To verify the reasoning behind Eq. (4.13), we show that the individual horizontal traces of
the KL divergences and the IPR underlying the phase diagrams in Fig. 4.13 and Fig. 4.14 can
be collapsed onto each other when plotted as a function of the rescaled coupling parameter,
T → TEµJ , where the exponent µ is the single free parameter. Fig. 4.16(a) and (c) show the data
for the KL divergence and the IPR as a function of the coupling T , where each distinct color
corresponds to one value of EJ . When the T axis for each individual line is rescaled according to
its EJ value, one obtains a data collapse for µ ≈ 0.54, in good agreement with what is expected
from Eq. (4.13). This is shown in the panels (b) and (d) of Fig. 4.16. Such a data collapse is
typically considered strong evidence for the existence of a phase transition [330, 331].

Having confirmed that |ti,j/δEi,j | is an important scaling variable, the connection between the
scheme-a and scheme-b phase diagrams is revealed in a new light: Fig. 4.15 appears to be just

5As a technical remark, we note that it is the expectation value of the absolute distance between two independent
draws from the ν distribution that determines δEi,j . For normal distributed EJs, the distribution of ν is not
perfectly Gaussian but has a tail at smaller ν, arising from the dependence ν ∝

√
EJ . We checked numerically

that this ν distribution not only has the expected standard deviation of EC/2, but also yields an EJ independent
〈|νi − νj |〉, if δEJ and EJ are related via Eq. (4.12).
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Figure 4.16 – Data collapse for KL divergence and IPR. The individual horizontal lines, forming the
two-dimensional representations in the T -EJ plane from Fig. 4.13 and Fig. 4.14, are shown in the left column.
They are collapsed onto each other by rescaling the coupling parameter with respect to the Josephson energy
as T → TEµ

J with an exponent µ ≈ 0.54, as is shown left.

the small |ti,j/δEi,j | part of the phase diagrams presented in Sec. 4.5.1. The data collapse works
equally well for the IPR data of design scheme b with a similar exponent µ.

4.6 Further properties of the MBL-chaos transition

4.6.1 Many-body mobility edge

In all results presented so far, the level ratio and wave function statistics take all states of
the excitation bundle with Nex = L/2 into account. In systems where the total number of
excitations (or the total magnetization in spin systems) is at least approximately conserved,
many-body localization literature often follows a different path. It considers only a few states
from the mid-energy range of the spectrum of an excitation bundle [183] or studies the transition
between MBL and quantum chaotic regimes as a function of the normalized energy [164]

ε =
E − Emin

Emax − Emin
. (4.14)

The energies Emin and Emax are the extremal eigenenergies. To complement our previous results,
we also pursue this direction and compute Kullback-Leibler divergences as a function of the
coupling T and the normalized energy (or energy density) ε.
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Figure 4.17 – Many-body mobility edge. (a) Number of states (blue) and number of computational states
(yellow) as a function of the normalized energy ε for Nex = 6, L = 12, T = 0 and averaged over 10,000
disorder realizations. The ε-resolved KL divergence, shown in (b) for EJ = 44 GHz and scheme-a disorder,
demonstrates the emergence of a mobility edge, i.e., a dependence of the transition between chaos and MBL
regime on the normalized energy with states close to the maximal DOS being particularly vulnerable. Results
in (b) are averaged over at least 800 disorder realizations. More details are provided in the main text.

Fig. 4.17(a) shows the number of states (on the x axis) at a specific energy density ε for
scheme-a disorder and T = 0. The distribution is averaged over 10,000 disorder realizations. In
contrast to, e.g., the Heisenberg spin chain [181], the states are not symmetrically distributed
around ε = 0.5. The anharmonicity shifts the (few) states with a large total anharmonicity αtot
(see the definition in Sec. 4.2.1) downwards in energy, resulting in a long tail for small ε. For
comparison, the number of computational states (for which αtot = 0) is also shown. As expected,
they tend to sit in the upper part of the spectrum but, for the chosen disorder strength, intertwine
with many more noncomputational states, similar to the situation visualized in the middle panel
of Fig. 4.3.

The ε-resolved Kullback-Leibler divergence with respect to the Poisson distribution is shown
in Fig. 4.17(b). The many-body mobility edge, i.e., the dependence of the transition between
MBL and quantum chaotic regime on the energy density ε, is clearly apparent: For ε . 0.4, all
states remain localized even if the interaction strength increases to 80 MHz. As ε and along with
it the density of states increases, so does the susceptibility to chaos. Near the maximal density
of states, i.e., around ε ≈ 0.85, the level statistics closely follow Wigner-Dyson statistics already
for T . 30 MHz. Finally, levels at the very top edge of the spectrum, where the number of states
tails off, show fewer signatures of chaos, as can be read from the decrease in the KL divergence
for the highest ε values shown. For all T & 25 MHz, localized and chaotic states coexist. The
main statement that Fig. 4.17 conveys is that the earlier stability estimate was conservative. All
states were taken into account, but the relevant computational states are primarily located at
energy densities that are especially prone to chaotic fluctuations.

The data underlying Fig. 4.17 are obtained for a chain of twelve transmons and the excitation
bundle Nex = 6, containing a total of 12,376 states The discussion equally holds for the standard
example of L = 10. For each disorder realization, the spectrum is divided into ε intervals of
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Figure 4.18 –
KL divergence and IPR for
levels and states near the
maximal density of states.
Panel (a) is compiled for the same
parameters and disorder realiza-
tions underlying Fig. 4.13(a) but
only states within an interval of
length ∆ε = 0.05 around the max-
imal DOS are considered. The
solid (dashed) line indicates where
the KL divergence has increased
to 0.5 when only energies from
the interval (all states) are consid-
ered for the level ratio histograms.
In (b) and (c), the data under-
lying Figs. 4.8 and 4.10(a) are
reevaluated and restricted to the
levels and states near the max-
imal DOS. For comparison, the
thin gray lines indicate the results
from the earlier figures. A re-
curring motif in all three panels
is a steepening of the curves, in-
dicating a cleaner transition be-
tween MBL and quantum chaos.
In (c), the Josephson energy is
EJ = 100 GHz.
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length 0.05 for ε < 0.7 or 0.025 for ε > 0.7. The Rn histograms are then calculated for all
energies within the intervals. The number of levels contained in an interval varies between
different disorder realizations. For each ε interval, the remaining steps of the evaluation of the
KL divergences follow as described in Sec. 4.4.2.

The fragments of localization at the high and low ε edges of the spectrum explain the slow
saturation of some of the exploited delocalization metrics towards the values one expects in the
ergodic phase. For example, the large-T histogram in Fig. 4.8 deviates slightly from the perfect
Wigner-Dyson distribution, which can be seen most clearly in the KL divergence with respect to
the Poisson distribution, which is still well below one and grows only slowly upon further increase
of T . Furthermore, in Fig. 4.10(a), the IPR has not yet settled toward its minimum value and
continues to decrease as T increases. When focusing on a small density interval (∆ε = 0.05)
around the maximal density of states, these attributes disappear, as shown in Fig. 4.18. Panel
(a) displays the KL divergence for the same disorder realizations as in Fig. 4.13. The levels
entering the Rn histograms are now restricted to the interval specified above. The contour
line where D(P ||PPoisson) = 0.5 drifts towards smaller T and EJ , and the data in the chaotic
regime now show a better agreement (‘deeper red’) with the Wigner-Dyson distribution. This is
corroborated by the data presented in the panels (b) and (c), which are based on the renewed
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Figure 4.19 – KL divergence for various filling fractions. Shown are the KL divergences with respect
to the Wigner-Dyson (square markers) and Poisson (circle markers) distribution. In (a), the KL divergence
is averaged over the full bundles, whereas in (b), only the levels in an interval of width ∆ε = 0.05(0.1) for
Nex = 5, 6, 7(2, 3, 4) around the maximal DOS are considered. Both calculations show the same tendency
of steeper increasing (decreasing) KL divergences for higher total excitation numbers, evidence of increasing
susceptibility to chaos. The number of disorder realizations varies from 6 · 105 for Nex = 2 to 500 for Nex = 7
such that at least 2.5 · 106Rn values enter the averaged histograms in (a). The simulations use EJ = 44 GHz
and scheme-a disorder.

evaluation of the disorder realizations underlying the representations of the KL divergences in
Fig. 4.8 and the IPR in Fig. 4.10(a). When restricted to states near the maximal DOS, the
KL divergence exhibits a steeper crossover from the Poisson to the Wigner-Dyson distribution.
The level statistics indicate a fully chaotic behavior. This implies that the considerable extent
of the zone of hybrid statistics is, to some degree, due to the fact that all states, including the
integrable edges of the spectrum, entered the Rn histograms. It is considerably diminished in the
above restriction scheme. The saturating of the IPR for T ≥ 40 MHz in Fig. 4.18(c) indicates
that the wave functions are now delocalized over all available states. A similar sharpening is
observed for all wave function metrics considered in Fig. 4.10, as is detailed in Appendix B.4,
together with a brief discussion of the data collapse near the maximal DOS.

4.6.2 Influence of the filling fraction

So far, our analysis spotlighted only properties of the ‘half-filled’ Nex = L/2 excitation bundles.
That was motivated by the observation that states with L/2 ‘1’s are the most numerous among
the computational states. However, all computational states from |000 . . . 〉 to |111 . . . 〉 are
important for computing. Therefore, we monitor the KL divergences for L = 10 and various
filling fractions Nex/L with Nex ranging from 2 to 7 in Fig. 4.19. These bundles contain 55,
220, 715, 2,002, 5,005, and 11,440 states. In panel (a), the Rn histograms underlying the KL
divergences contain all level ratios of a respective bundle, whereas they are restricted to levels
around the maximal DOS in (b). The figure suggests a stronger predisposition to chaos in
higher excited states. With increasing filling fraction, a steepening of the KL divergences signals
departures from the realm of deep localization at an ever faster rate. For large coupling strength,
higher-lying bundles quickly approach the regime of hard chaos that is free of remnants of
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Figure 4.20 – Influence of the chain length L. (a) KL divergences for fixed Nex = 5. The KL divergences
appear to intersect at the same T values for all L, but there is a slight and barely discernible shift towards
larger couplings. The number of disorder realizations varies from 60,000 (L = 5) to 1,200 L = 15, such that
roughly 8 · 106 Rn values enter each averaged histogram. (b) KL divergences for fixed Nex/L = 1/2. The
crossing point between the curves for L and L+2 moves towards lower T for larger L. The number of disorder
realizations is adjusted such that about 107 Rn values enter the histograms, except for L = 6 (2.5 · 106 Rn

values). In both panels, only full bundles are considered. The number of states per bundle is (a) 126 (L = 5),
252 (6), 462 (7), 792 (8), 1,287 (9), 2,002 (10), 3,003 (11), 4,368 (12), 6,188 (13), 8,568 (14), 11,628 (15), and
(b) 56 (6), 330 (8), 2,002 (10), 12,376 (12). The main feature displayed in both figures is the steepening of the
transition with increasing system size.

localization, as displayed by the quick saturation of D(P ||PPoisson) at 1. The KL divergences
of the manifolds with fewer excitations converge much slower or, e.g., for Nex = 2, never fully
match the Wigner-Dyson prediction. This effect is more noticeable in panel (b). These findings
reiterate the supposition that our previous estimation of the danger posed by quantum chaos is
a conservative one. To maintain the usage of the transmon array as a quantum computer, all
computational states must be sustained, including the one with Nex = L.

4.6.3 Influence of the system size

For completeness, Fig. 4.20 provides an overview of the change of the system properties when
the number of transmons is modified. For a fixed Nex = 5 and varying chain length, the KL
divergences are shown in Fig. 4.20(a). The most striking feature is the continuous steepening of
the curves as the chain length L increases. Longer chains exhibit a sharper crossover with a less
extended intermediate region of hybrid statistics. The KL divergences all appear to intersect at
nearly the same value of the coupling (there is a slight shift towards larger T values for L = 14
and L = 15 that is not discernible in the figure). This behavior is not necessarily expected
because this setup does not keep the filling fraction constant. Instead, it changes from 1 for
L = 5 to 1/3 for L = 15 and would vanish in the thermodynamic limit.

Panel (b) shows the KL divergences for varying L at the same filling fraction Nex/L = 1/2.
Ideally, the crossing points of the KL divergences for the chains of length L and length L+2 would
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coincide for all L = 6, 8, 10. Instead, one observes a shift towards smaller T as L increases, where
the distance between successive crossings decreases rapidly. One could expect a convergence to
a finite T value, but valid statements cannot be made with the few points at one’s disposal.

One should note that the system sizes under consideration are smaller than what is usually
exploited for a finite-size scaling analysis [164]. Furthermore, this drift is not a pathology in MBL
theory. A comparable behavior (a shift towards larger disorder strengths for a fixed coupling)
has been observed in other systems, including in the level statistics of a similar Bose-Hubbard-
like model [183]. Other measures also display this shift [162, 179, 332]. It is generally seen
as an indication of the severity of finite-size effects at the MBL transition [201]. The latest
developments in MBL theory [204, 205] teach us that even in systems where a finite-size scaling
analysis seems to give unambiguous results at small system sizes, the actual transition takes
place much deeper in the MBL regime than previously anticipated [333, 334]. In fact, the
current discussion about the stability of the MBL phase started with an analogous observation
[174]. Skeptics and MBL advocates agree that an accurate analysis of the MBL transition
must inevitably incorporate numerical results beyond exact diagonalization and insights from
perturbative expansions [201]. Therefore, we do not speculate on the finite-size scaling further
and content ourselves with noting that the smeared step between the values expected for the
extremes of deep MBL and hard quantum chaos steepens with increasing system size.

4.6.4 Anderson localization

For the moment, we depart from the experimentally relevant parameter ranges and consider the
system’s behavior as the charging energy EC is varied while holding all other quantities constant.
This is not possible in reality, where EC is determined by the capacitance of the transmon’s metal
body and fixed at fabrication. Fig. 4.21 depicts the Kullback-Leibler divergences for scheme-a
parameters for EJ = 44 GHz, T = 30 MHz, and EC varying over several orders of magnitude.
The dashed vertical line marks the charging energy of 250 MHz used in the previously discussed
simulations. The parameter configuration at this point is identical to the one near the crossing
point of the KL divergences in Fig. 4.8. Around this EC value, the behavior of the KL divergences
is easily deciphered: From the effective model in Eq. (4.2), the hopping amplitude for the bosonic
excitations depends on EC as 1/

√
EC . Hence, decreasing EC enlarges the matrix elements ti,j

that couple the many-body wave functions, similar to the discussion in Sec. 4.5.3. Accordingly,
the system becomes more chaotic, as heralded by the drop in D(P ||PWigner) and the increase in
D(P ||PPoisson). By the same reasoning, the system penetrates deeper into the localized regime
upon increasing the charging energy.

What is more striking in Fig. 4.21 is the reoccurrence of integrability for very small (and
experimentally unrealistic) charging energies EC . 20 MHz, reflected in a further swap of the
two KL divergences. This behavior can also be inferred from the effective Hamiltonian Ĥeff. The
on-site interactions between bosons arise not from the transmon-transmon coupling but from the
anharmonicity. Along these lines, the asymptotic case EC → 0 is the noninteracting Anderson
insulator limit and is thus expected to be integrable. In Eq. (4.2), EC → 0 also implies J → ∞
and νi → 0. To prevent this from inducing additional effects that are not to be attributed
to the noninteracting limit, we performed further simulations where T and EJ are scaled such
that ν, δν , and J remain constant as EC changes. Compared to Fig. 4.21, this does not cause
any qualitative changes, indicating that the limiting case of Anderson localization is correctly
portrayed as EC → 0. It should be emphasized again that this behavior is interesting from an
academic perspective but irrelevant for real superconducting circuits where, for example, EC > T
always holds.
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Figure 4.21 –
Reentrance of Poisson statistics for
small anharmonicities. When reducing
the anharmonicity EC to values way below
what is acceptable for quantum comput-
ing applications, the system becomes inte-
grable again. This is to be expected (at
least in dimensions < 3) because EC →
0 corresponds to the noninteracting An-
derson localization limit in the effective
Hamiltonian Ĥeff. Results are averaged
over at least 4,500 disorder realizations.
The simulations use T = 30 MHz and
EJ = 44 GHz.
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4.7 Towards two dimensions

So far, all conclusions have been reached for transmons arranged in a one-dimensional chain
geometry, which is beneficial from an MBL perspective, as discussed in Chapter 2: exceptionally
large disorder amplitudes can block transport between subsystems and thereby prevent thermal-
ization. From the quantum computing perspective, however, this is deleterious because enacting
controlled interactions between distant qubits involves a series of intermediate operations be-
tween nearby qubits, each of which is error-prone such that implementing circuits is substantially
harder. Therefore, most real transmon quantum computers operate with a two-dimensional qubit
arrangement. The most common geometries for processors are different cutouts of the square
lattice in use, e.g., in chips by Google [39, 329], Delft [295], and ETH Zürich [95].

As minimal examples for two-dimensional architectures, we here discuss simulations of the
surface-7 layout and a 3×3 array sketched in Fig. 4.22(a) and (b). Both geometries are employed
in state-of-the-art experiments [108, 335]. The surface-7 geometry consists of a pair of square
plaquettes. It emanates from the seven-transmon chain by adding two additional couplings
between the transmon in the middle with the transmons at both ends, as visualized in Fig. 4.22(c).
To extract the effect of the additional, higher-dimensional couplings, the simulations of the two-
dimensional geometries are compared to the results for the chain geometries with the same
number of qubits, i.e., L = 7 and L = 9. In the following, we discuss results obtained for
scheme-a parameters. A summary of the scheme-b results is postponed to Appendix B.5.

Our findings for the spectral statistics (D(P ||PPoisson)) and wave function statistics (IPR)
for the surface-7 geometry are shown in Fig. 4.23(a) and (b). The dashed lines in the two
panels summarize the results for the seven-transmon chain (c7). They indicate where (a) the KL
divergence with respect to the Poisson distribution and (b) the IPR take the value 0.5. Adding
two couplings to arrive at the surface-7 (s7) geometry dramatically changes the scenery: the
comfort zone for quantum computing is considerably curtailed, and the contour lines are shifted
significantly towards lower T and EJ values. This tendency is even more manifest in the findings
for the geometries comprising nine transmons, shown in Fig. 4.23(c) and (d). For example, the
distribution of the level ratios now shows good agreement with the Wigner-Dyson distribution
in a large portion of the parameter range studied, whereas, for all one-dimensional geometries,
such a good agreement was only found with a sufficient safety distance from the experimental
core region.
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4 Many-body localization and quantum chaos in transmon quantum computers

Figure 4.22 –
Two-dimensional transmon
geometries. (a) Surface-7
geometry comprising a pair of
square plaquettes and exploited,
e.g., in Refs. [108, 295]. (b) 3 × 3
geometry used, e.g., in Ref. [335].
(c) Compared to an L = 7 chain,
surface-7 has only two additional
interactions created by connecting
the ends of the chain to its center.
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As the color coding in panel (c) further shows, the KL divergence not only increases faster
but also quickly saturates at a value much closer to 1 than what has been observed before. This
suggests that the effect of states at the edge of the spectrum that remain localized even at large
T , as discussed, e.g., in Fig. 4.18, is considerably weaker in the 3× 3 geometry. For the surface-7
geometry on the other side, after an initial sharp increase, the KL divergence climbs only slowly
upon further increasing T or EJ , an effect we attribute to the smallness of the system.

In summary, the essential result here is that the vestiges of many-body localization are much
less notable in two-dimensional geometries. Given that the existence of an MBL phase in two
dimensions even tends to be denied, one should expect that these remnants of localization disap-
pear quickly as the system size increases, and that chaos penetrates deeper into the experimental
core region.

For all simulations, the level and wave function statistics are obtained for and averaged over
all states of the Nex = 5 bundle containing 1287 (3 × 3 and L = 9 chain) or 462 (surface=7,
L = 7 chain) states. All results are averaged over at least 1,500 (seven transmons) and 2,500
(nine transmons) independent disorder realizations.

4.8 Qubit correlations

The preceding discussion taught us that transmon arrays of moderate size do not harbor solely
a deeply chaotic and a fully localized region. Instead, it established the existence of an extended
‘twilight zone’ between the chaotic sea and the MBL regime. Therein, precursors of quantum
chaos announce in the more sensitive wave function statistics, indicating a significant dressing
of wave functions, whereas the level statistics give the illusion of complete safety or show merely
weak indicators of hybrid statistics. A massive part of the experimentally relevant parameter
range is covered by this intermediate regime. Here, we try to answer whether these parameter
ranges are suitable for quantum computing or not. The approach guiding us here also cures
the previous consideration of the weakness that it tends to underestimate the aftermath of
delocalization by focusing on a single bundle and all states contained therein.

The dressing of wave functions is an effect the transmon community is well aware of and
even knows how to turn to its advantage. An example is the implementation of the CR gate
that exploits the nonlocality of qubits to produce entanglement with local microwave drives. A
certain amount of dressing is thus not only inevitable but a necessary ingredient. On the other
side, it is natural to assume that a small IPR renders computing impossible because qubit states
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Figure 4.23 – Level and wave function statistics for two-dimensional geometries and scheme-a disorder.
The upper row shows data for the surface-7 and the lower row for the 3 × 3 geometry. The KL divergence
D(P ||PPoisson) is shown left, and the right column presents the IPR. The solid lines depict where the KL diver-
gence (IPR) has decreased (increased) to 0.5. The equivalent contour lines obtained for the chain geometries
with an equal number of transmons are drawn dashed. Compared to the chain geometries, chaos conquers a
much larger part of the parameter space once coupling in a second dimension is added.

cannot be unambiguously identified. The question is whether this vague idea can be cast in a
genuine measure. Can we somehow quantify how much the dressed l-qubits at our disposal can
differ from the p-qubits before the obstacles become insurmountable? If yes, is an IPR of 10%
sufficient, or are values closer to 90% required? Tackling these inquiries is crucial for assessing
the danger posed by quantum chaos in current experiments settled in the twilight zone.

Fortunately, experimental transmon research can at least partly answer this question. What
these efforts are concerned with, however, is not the IPR or a related delocalization metric but
the strength of the correlations between the dressed l-qubits. The starting point is the general
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form of a diagonal multi-qubit Hamiltonian,

ĤMBL = E0 +
∑
i

hiτ̂
z
i +

∑
i>j

Jij τ̂
z
i τ̂

z
j +

∑
i>j>k

Jijk τ̂
z
i τ̂

z
j τ̂

z
k + . . . (4.15a)

=
∑

b
cbẐ

b1
1 Ẑ

b2
2 . . . ẐbLL . (4.15b)

The second line introduces the quantum-information terminology for the familiar τ -Hamiltonian
of MBL theory [165, 166], which is restated in Eq. (4.15a). The operators τ̂ zi are replaced by
the Pauli-Z operators Ẑi. The bi in Eq. (4.15b) are to be understood as exponents, not indices,
i.e., Ẑ0

i = 1 and Ẑ1
i = τ̂ zi . The sum is over the 2L bitstrings b = b1b2 . . . bL of length L where

each bi is either ‘0’ or ‘1’. As a concrete example, consider the bitstrings b = 0010 and b = 1011
in a chain of four transmons. The corresponding contributions are c0010Ẑ0

1 Ẑ
0
2 Ẑ

1
3 Ẑ

0
4 ≡ h3τ̂

z
3 and

c1011Ẑ
1
1 Ẑ

0
2 Ẑ

1
3 Ẑ

1
4 ≡ J134τ̂

z
1 τ̂

z
3 τ̂

z
4 . Contributions comprising two (three, …) Ẑ operators are called

ZZ (ZZZ, …) interactions. If all higher-order terms, ZZ, ZZZ, etc., vanish, the system is a
perfect quantum memory, which is easily seen by moving to the interaction frame via the usual
transformation Û = exp (it

∑
i hiτ̂

z
i ), where all quantum states remain stationary. However,

the rapid drop in the IPR observed in the simulations suggests that the l-qubits described
by τ̂ - or Ẑ-operators will differ significantly from the p-qubits formed by the ground and the
first excited state of the individual transmons. As discussed in Sec. 2.3.2, this induces long-
range ZZ, ZZZ, … correlations between the l-qubits. Nonetheless, Eq. (4.15b) can describe
a good quantum memory, provided that the weights of these terms are small. As of today,
transmon research has focused solely on the two-body (ZZ/Jij) terms [291, 336, 337] that cause
dephasing of general qubit states and are the leading parasitic interactions that impede further
improvement of two-qubit gates.6 Hence, great efforts have been made to mitigate this ‘crosstalk’
between neighboring qubits [336, 338]. In general, however, this involves a substantial amount of
additional overhead, e.g., in the form of new coupling architectures [339], additional off-resonant
driving [313], by combining transmon qubits with qubits that have opposite anharmonicity [337,
340], or by adding tunable couplers [341, 342]. A rough estimate for the level above which
quantum computing becomes infeasible is Jij ∼ 50–100 kHz [337]. This ‘danger threshold’ is
not to be understood as a fixed, broadly accepted upper limit but rather as a moving target
that tends to shift toward lower values: earlier setups with flux-tunable transmons dealt with
a residual ZZ interaction as large as 300 kHz [6], whereas in very recent work on a similar
architecture, couplings lower than 8 kHz are still viewed with concern [95].

Here, we calculate the strength of all correlations cb in Eq. (4.15b) for a chain of five transmons.
Besides the fact that our results allow for a direct quantitative comparison to the above threshold,
this analysis has the further advantage that it removes the basis dependence of the IPR: an l-
qubit is a universal object that does not depend on a chosen representation, and the same applies
to the strength of the correlations |cb|. Calculating the correlations is a two-step process. Before
one can extract them from Eq. (4.15b), one has to begin with the nontrivial step of identifying
the few qubit needles in a haystack of noncomputational states, as detailed in the next section.

4.8.1 Identifying qubit states

Embodied in the generic form of the Hamiltonian ĤMBL in Eq. (4.15b) is the idea of local two-
state degrees of freedom. The actual bosonic Hilbert space of the full model (4.1), for which

6We already encountered one of its troublesome consequences in the context of the CR gate in 3.4. There, it was
argued that due to the ZZ interaction, the driving frequency acquires a dependency of the target qubit state.
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Figure 4.24 – Identifying qubit states. (a) Every quantum computing architecture operates under the as-
sumption that L qubits and, thus, 2L computational states are at hand. The two-level systems can be truly
local p-qubits or l-qubits with contributions from neighboring sites if T > 0. However, this picture is a flagrant
simplification: in real transmon systems, the qubit states are fully intermingled with (much more) states com-
prising local excitation numbers other than ‘0’ and ‘1’. This is demonstrated in (b) (the data are identical to
Fig. 4.6). The first point to work through in any transmon quantum computing program is the transition from
(b) to (a), i.e., the identification of a handful of computational states in a much larger surrounding Hilbert
space. This can be accomplished by identifying computational states at T = 0 and tracking them through all
the anticrossings visible in (b), a task that becomes increasingly difficult when the size of the anticrossing gaps
increases for larger T . This is exemplified in (c), where a computational state is tracked through a series of
anticrossings.

all preceding conclusions have been reached, is much larger because a transmon is a multi-level
system. The compulsory first step towards quantum computing is to ignore all but the 2L

states identified as the computational states. This reduction is quite radical: For L = 10, the
highest computational state |111 . . . 〉 has Nex = 10. Constructing the basis from all product
states obeying Nex ≤ 10, the 210 = 1024 computational states face 183,732 noncomputational
‘junk states’ living at similar energies7, i.e., only about 0.55% of the (already truncated) Hilbert
space is relevant. The comparison of Fig. 4.24(a) and (b) illustrates this point: Panel (a)
shows the situation one supposes for a quantum computer. Three multi-qubit energy levels
of the Hamiltonian (4.15b) are shown as a function of T . However, the actual scenario in a
real transmon processor is the one visualized in (b), where these computational states are fully
intermingled with a much larger number of noncomputational states. Considering the extent
of the simplification when moving from (b) to (a), the step may seem unnatural, but it is
fundamental to any quantum computer.

Filtering out multi-qubit states is trivial for T = 0 because one can immediately map the 2L

bitstring labels to the p-qubits states with local excitations ‘0’ and ‘1’. To correctly assign the
labels for T > 0, the idea is to follow the trace of the qubit levels, as shown in Fig. 4.24. As
one might guess from Fig. 4.24(b), this is a delicate operation: one has to navigate through a
dense bundle and decide at each (anti)crossing which path to follow further. Here, we find that
at small T , anticrossings with small gaps arise, and the bitstring label follows the level running
diabatically straight through the anticrossing. On the technical side, the fidelity change [343,
344] is exploited to detect and characterize the anticrossings in the spectrum. This procedure
for the qubit label assignment works fine deep in the MBL phase, where the l-qubits retain large
parts of the p-qubit identity, but becomes more ambiguous when the anticrossing gaps become

7This assumes that the excitation bundles are well-defined even for Nex = 10, which is not necessarily the case.
The situation is then even worse, with myriads of unbound states kicking in at relevant energies.
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Figure 4.25 – Walsh coefficients8cb for two different values of the coupling strength T for (a) scheme-a and
(b) scheme-b disorder. The x axis shows the 31 different bitstrings with at least one ‘1’. The bitstrings are
represented as columns of five colored boxes where = 0 and = 1. For both disorder cases, one finds a
hierarchy in the correlations according to their locality for small T . In the large-T data, the systematic is lost.
This effect is stronger for lower disorder, as expected. In (a), nearly all correlations lie within the dangerous
region estimated as cb & 100 kHz, marked by the dashed line. Again, this effect is less pronounced for scheme-b
disorder, but some ZZ couplings exceed the threshold here as well. The large difference in the ZZ correlations
for T = 10 MHz in (b) is a peculiarity of the specific disorder realization and not a generic feature.

gradually larger, as illustrated in Fig. 4.24(c). Finally, it is the defining property of the ETH
phase that states cannot be distinguished from each other (by local operators). Consistently
marking 2L states as distinct qubits is, therefore, hopeless.

4.8.2 Extracting l-qubit correlations: Walsh transformation

Having performed the multi-qubit states identification, one is left with a subset of 2L energies,
each labeled with a bitstring tag b. Restricted to the qubit subspace, the truncated diagonal
Hamiltonian has the generic form

Hqubits = E00000|00000〉〈00000|+ E10000|10000〉〈10000|+ · · ·+ E11111|11111〉〈11111| . (4.16)

From this, the correlation coefficients cb of the τ -Hamiltonian (4.15b) are directly inferred by a
Walsh-Hadamard transformation [345]:

cb =
1

2L

∑
b′

(−1)b1b
′
1 (−1)b2b

′
2 . . . (−1)bLb

′
L Eb′1b′2...b′L =

1

2L

∑
b′

(−1)b·b′
Eb′ . (4.17)

The form of Eq. (4.17) suggests a certain similarity between the Walsh transform and the Fourier
transform. In fact, for a bit length of 1 (b = 0, 1), the connection between the ‘coefficients’ c0, c1
and E0, E1 reduces to a discrete Fourier transform where the length of the input sequence is two.
For L > 1, Eq. (4.17) essentially describes an L-dimensional discrete Fourier transform of size 2
in every dimension [346]. It is a very instructive example to trace the transition from Eq. (3.52)
to Eq. (3.53) in Sec. 3.4.2, explicitly using the tool of the Walsh transformation.

Fig. 4.25 introduces results for the coefficients cb for EJ = 12.5 GHz and two fixed values of
the coupling T . For the sake of clarity, we use a graphical depiction where each Walsh coefficient
cb is portrayed as five colored boxes representing the bitstring b, e.g., the coefficient c11001 is
visualized as . Fig. 4.25(a) displays the coefficients for scheme-a and (b) for scheme-b

8The data underlying Fig. 4.25 have been calculated by Evangelos Varvelis.
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disorder. Shown are the 31 Walsh coefficients of a single disorder realization for a five-transmon
chain9 with at least one nonzero bit in b (c00000 is an irrelevant energy shift). In both panels,
the |cb| are sorted from largest to smallest for the small-T data (2 MHz for scheme a and 10
MHz for scheme b). For both disorder variants, we find the MBL expectation of a clear hierarchy
in the coefficients according to their locality (i.e., the maximal distance between two ‘1’s in b)
confirmed if T is small: nearest-neighbor ZZ couplings are the largest, followed by bordering
ZZZ and next-nearest-neigbour ZZ couplings, as predicted by Eq. (2.22). This can be seen
particularly clearly in Fig. 4.25(a) for the T = 2 MHz data, where jumps in |cb| by several orders
of magnitude indicate that the maximal distance of two ‘1’s has increased by one. For stronger
couplings (T = 50 MHz) and scheme-a disorder, the |cb| no longer decrease continuously when
following the bitstring axis from left to right, heralding the loss of the order by locality. For
example, we find | | > | |. Of even greater importance is that all (but one) of the
cb have exceeded the danger threshold of 100 kHz indicated by the dotted line, in some cases by
several orders of magnitude. For scheme-b disorder, these effects are less pronounced, as can be
inferred from the large-T data in Fig. 4.25(b). A residual order by locality is recognizable, even if
some cb (those with a maximal distance of four or five) intermingle. Most correlations lie below
the danger threshold; however, there are still two ZZ couplings that, according to consensus, are
already large enough to jeopardize the functioning of the transmon array as a quantum computer.
It is noteworthy that this result holds for parameters we would have prescribed—even with the
sensitive IPR analysis—as deep in the MBL phase. The scheme-a results, where danger looms
from all correlations, are obtained for parameters taken from the gray area between deep MBL
and full delocalization, where at least the level statistics suggest equal proximity to integrability
and hard chaos.

To further elaborate on this point, we show the evolution of the Walsh coefficients with in-
creasing coupling strength T in Fig. 4.26 for (a) scheme-a and (b) scheme-b disorder. For clarity
of visualization, this figure does not display all 31 correlations but only mean values, averaged
as illustrated in Fig. 4.27. As we have verified, a conclusive picture is obtained by averaging not
only the Walsh coefficients with the same pattern of ‘1’s (as in the second row of Fig. 4.27) but
all coefficients with the same locality, i.e., the same maximum spacing between two ‘1’s, see the
last row of Fig. 4.27. For scheme-a disorder, the averaged ZZ couplings approach the 100 kHz
barrier already at a very low value of about 3 MHz. The contiguous ZZZ and next-nearest-
neighbor ZZ terms follow shortly after at approximately 10 MHz, indicating that the integrity
of the qubits is already compromised at coupling strengths associated with an IPR of around
0.8. For scheme-b disorder, the situation is somewhat more mellow, but strong ZZ couplings
kicking in at around 10 MHz (again, a coupling strength that appears to be deeply MBL accord-
ing to our previous diagnostics) show that even in flux-tunable transmons, the situation is far
from being hazard-free. In particular, when comparing the critical T values extracted here to
the coupling strength currently favored experimentally in the two different design strategies, one
finds that they are comparable in size for both disorder classes. Hence, our results do not imply
that recent scheme-b setups are less affected or even not affected at all. Furthermore, the fact
that higher-order terms such as ZZZ, which have not yet been studied, let alone attempted to
be ameliorated, are treading the ZZ coupling’s heels suggests that some of the aforementioned
ingenious workarounds aiming to break the linkage between large T and strong ZZ couplings
are ultimately insufficient.

9Note that in contrast to the preceding sections, the focus is not on a specific excitation bundle, but on all
computational states. The Hamiltonian needs to be constructed with all basis states, ranging from Nex = 0 to
(at least) Nex = L.
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Figure 4.26 –
Averaged Walsh coefficients as a func-
tion of the coupling strength10 for a sin-
gle disorder realization and (a) scheme-a dis-
order and (b) scheme-b disorder. Shown are
the absolute values, averaged over all coeffi-
cients with the same maximal distance of two
‘1’s, as detailed in Fig. 4.27. The dashed line
and the gray-shaded area mark the danger zone
where |cb| & 100 kHz. For scheme-a disorder,
ZZ correlations enter this region for couplings
as small as 3 MHz, closely followed by next-
nearest-neighbor ZZ and contiguous ZZZ cou-
plings. For scheme-b disorder, the critical T
value is about three times larger. Panel (a)
also shows the specific coefficient c01101. Jumps
occurring here for T & 20 MHz are a result of
switching the labeling at avoided crossings with
increasingly large gaps.
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Figure 4.27 – Averaging correlations. The figure shows different ways to average the correlations, or Walsh
coefficient, cb to make the visualization in Fig. 4.26 more accessible. The first average is over equivalent
correlations, i.e., bitstrings where the positions of the ‘1’s differ only by a translation or mirror symmetry. Our
analysis reveals (in accordance with the MBL expectations) that no crucial information is lost when averaging
over all bitstrings with the same maximal distance of two ‘1’s, as is done in the third row, leaving us with only
four different classes of correlations that behave qualitatively different.

Briefly summarized, the Walsh-Hadamard transformation reveals that the twilight zone, iden-
tified as the region of hybrid or nearly Poisson statistics and with dressed wave functions, is
compromised to a great extent. Even with an IPR of 0.8, i.e., almost perfectly localized wave
functions, the l-qubit correlations become dangerously large. The comfort zone for quantum
computing is considerably diminished to the small margin of T , where the IPR is close to one.

4.9 Dynamics

The information on whether locally encoded information is preserved at infinite times or quickly
scrambled during thermalization is contained in the static wave functions of the Hamiltonian in
Eq. (4.1) alone. Hence, we can conclude the suitability of a specific processor realization as a
10The data underlying Fig. 4.26 have been calculated by Evangelos Varvelis.
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Figure 4.28 – Time evolution of local densities for a single disorder realization in a ten-transmon chain
with EJ = 12.5 GHz and T = 20 MHz. Contrasted are the time-evolved densities 〈n̂i〉 for the transmon
sites i =4–7 for two different initial conditions, one with an alternating 0–1 pattern (blue) and one that has
〈n5〉 = 1 and 〈n6〉 = 0 but is otherwise identical (yellow). These initial states are visualized with the color
coding of the transmon qubits sketched left (white = 0, deep yellow/blue = 1). For both initial conditions, all
〈n̂i〉 quickly approach 1/2. The distinct patterns are lost, and both initial configurations converge toward an
approximately uniform density. This can be seen on the right, where the background opacity of the sketched
transmons encodes the local densities averaged over 400 ns.

quantum memory without any dynamical considerations. For quantum computing applications,
it is nevertheless interesting to relate the timescales on which the effects of chaos occur to typical
qubit lifetimes. Thus, we close the circle and simulate quench experiments, the initial means to
illustrate the danger inherent to chaotic fluctuations. We consider an L = 10 chain geometry
subject to scheme-a disorder and set EJ = 12.5 GHz. An initial product state with nonuniform
excitation density, like |0101 . . . 〉, is time evolved under the full Hamiltonian in Eq. (4.1). To
monitor the loss of information, we examine, e.g., the weight |〈ψ0|ψ(t)〉|2 of the initial state
|ψ(0)〉 in the time-evolved wave function |ψ(t)〉, or the IPR of |ψ(t)〉. For states like |0101 . . . 〉,
the time evolution of the staggered density,

nstagg =
1

L

L∑
i=1

(−1)i
(
〈n̂i〉 −

1

2

)
, (4.18)

is also a useful indicator for the remanent information content [347]. This quantity has been used
as a yardstick for many-body localization in ultracold atom experiments [208, 348]. As before,
n̂i in Eq. (4.18) returns the level number l when acting on the single transmon eigenfunction
belonging to the lth level and is equal to the occupation number in the Bose-Hubbard limit.
The term 1/2 guarantees that |0101 . . . 〉 has nstagg = 1/2, making Eq. (4.18) similar to the
definition of the staggered magnetization in spin systems [188]. It should be noted that nstagg is
not bounded by 1/2 in the bosonic transmon system.

To begin with, we consider the two initial computational states |ψA0 〉 = |0101010101〉 and
|ψB0 〉 = |0101100101〉. |ψA0 〉 has a strictly alternating 0–1 pattern. For |ψB0 〉, the excitation
numbers at transmon sites 5 and 6 are swapped. This is illustrated in the two transmon chain
excerpts shown left in Fig. 4.28, where the opacity of the background color encodes the local
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Figure 4.29 – Information loss and relaxation. (a) Overlap of the time-evolved wave function |ψ(t)〉 with
the initial state |ψ(0)〉 = |0101 . . . 〉. (b) Difference in the staggered excitation density for the two maximally
dissimilar initial states |ψA(0)〉 = |0101 . . . 〉 and |ψB(0)〉 = |1010 . . . 〉. Both panels demonstrate that relaxation
happens on timescales shorter than transmon qubit lifetimes. The long-term averages shown in blue on the
right in both panels indicate that information is preserved in the MBL regime (small T ) but quickly decreases
upon increasing T . The simulations are performed for scheme-a disorder and EJ = 12.5 GHz. All results are
averaged over at least 800 disorder realizations.

excitation number 〈n̂i〉. The four panels in the center of Fig. 4.28 show the time-evolved 〈n̂i (t)〉
for a single, randomly chosen disorder realization. The evolution of 〈n̂4〉 and 〈n̂7〉 is similar for
|ψA0 〉 and |ψB0 〉. The expectation values do not stick close to their initial values but fluctuate,
frequently crossing the line where 〈n̂i〉 = 1/2, which makes inferences about the initial value
unfeasible. In addition, 〈n̂5〉 and 〈n̂6〉, the two values in which |ψA0 〉 and |ψB0 〉 initially differ,
approach each other and fluctuate with decreasing amplitude around the value 1/2. Hence, the
difference between the initial states is quickly blurred out. The data presented span a time
range of 150 ns, the lower end of gate times in fixed-frequency architectures and much shorter
than transmon qubit lifetimes. The colored backgrounds in the transmon cartoons shown right
encode the time-averaged local densities, where the average is over 400 ns, showing that the initial
density wave turns into an approximately uniform, and thus information-free, distribution11.

Next, we consider disorder averages and vary the strength of the capacitive coupling. Fig. 4.29(a)
shows |〈ψ0|ψ(t)〉|2 for 0 ≤ t ≤ 150 ns and values of T between 0 MHz and 50 MHz. One observes
a similar behavior for all couplings: an initially rapid drop is followed by a spell of small fluc-
tuations around a saturation value that is smaller for larger T . The IPR of |ψ(t)〉 (not shown)
exhibits the same behavior, indicating that initial information is quickly erased. The blue curve,
drawn right in Fig. 4.29(a), is an estimate for the long-term remanent information. Shown is
the time-averaged weight |〈ψ0|ψ(t)〉|2 where the average is over 150 µs, i.e., typical decoherence
times of fixed-frequency transmons and three orders of magnitude larger than the time range
shown. For small couplings, the remanent information is close to one, as expected for parameters
taken from deep in the MBL region. It quickly decreases as the MBL regime is left behind upon
increasing T . For all coupling strengths, the long-term average is approached within the first
150 ns, for larger couplings T > 20 MHz even much earlier, see the purplish lines. Once the
proximity of the long-term average is reached, |〈ψ0|ψ(t)〉|2 always stays close to it.

11We verified that all 〈n̂i〉 fluctuate only weakly around the long-term averages.
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Fig. 4.29(b) visualizes the difference in the time-dependent staggered density, ∆nstagg =
nAstagg − nBstagg, where |ψA(0)〉 = |0101 . . . 〉 as above and |ψB(0)〉 = |1010 . . . 〉. These two states
have the maximal possible Hamming distance [349] and differ in every single qubit value. As
before, the time-averaged ∆nstagg is shown in blue on the right side. ∆nstagg behaves similarly
to |〈ψ0|ψ(t)〉|2. The fraction surviving for long times is close to one for small couplings, indi-
cating that |ψA〉 and |ψB〉 are distinguishable over an entire qubit lifetime. Upon raising the
coupling strengths, the remaining staggered density difference quickly decreases, and the infor-
mation about the respective excitation pattern is lost. One again observes that equilibration
happens on timescales of only a few nanoseconds.

We repeated the above analysis for EJ = 44 GHz and EJ = 100 GHz. The result is not sur-
prising: thermalization happens in even shorter times, and the long-term averages of |〈ψ0|ψ(t)〉|2,
the IPR, and ∆nstagg are smaller than for EJ = 12.5 GHz.

What are the conclusions from this section? In a nutshell, it reinforces, but does not exacerbate,
our findings from Sec. 4.5. If the static properties of the Hamiltonian indicate potential threats
for quantum computing, then this danger sets in on relevant timescales. The long-term averages
shown in Fig. 4.29 can be compared to the IPR. One then finds that a small IPR is associated
with a significant and almost immediate information loss. For large IPRs, the information loss
is only small.

4.10 Summary

All transmon-based quantum technology must find a way to navigate the narrow path between
the Scylla of inefficiency (slow gates due to small T or large detunings) and the Charybdis of
quantum chaos (large T , small disorder). Within this field of tension, there are different ways
to lead the construction of localization-protected processor architectures to success. Two main
strategies are to employ weak coupling at weak detuning, called scheme a here, or to intention-
ally introduce strong disorder (scheme b). What are entirely different engineering philosophies
with different hardware setups reduces—from the MBL perspective—to different ways of block-
ing the tendency of quantum states to spread due to inter-transmon coupling by a sufficient
amount of frequency detuning. The subject of this chapter has been the utilization of numerical
simulations to study the robustness of these distinct design blueprints against the destabiliz-
ing impacts of quantum chaos. Using methodology of many-body localization theory—level
ratio statistics, many-body wave function statistics, and quantification of l-qubit correlations
via a Walsh-Hadamard transformation—we could map out the proximity of realistic present-day
small-scale transmon processors to the ubiquitous sector of chaotic fluctuations.

As a first important result, our studies show that transmon arrays are suitable models to
observe the transition from an MBL regime to a phase of chaotic fluctuations. The latter arises
for strong capacitive coupling or small disorder in the Josephson energies, or, in MBL terminology,
when the hopping amplitude between many-body wave functions is comparable to the on-site
energy difference in the high-dimensional configuration space lattice.

A second major lesson is that the chaotic phase casts shadows that are much longer than one
might have hoped: For scheme-a parameters, broad areas of experimentally relevant parameter
ranges are affected by early indicators of quantum chaos, which limits the allowed range of
coupling strengths to a few MHz, ultimately preventing faster gates in these architectures. In
particular, computational states react very sensitively to the slightest deviations from the limit
of extreme localization and become partially compromised, with the boundary to hard chaos still
being far off. This entails the existence of a gray area in the parameter landscape: for couplings
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4 Many-body localization and quantum chaos in transmon quantum computers

where the system is still integrable according to the level ratio statistics, quantum information
processing is nevertheless challenged by—not to say impossible because of—the strong dressing
of wave functions and significant l-qubit correlations. One may be tempted to argue here that
the existence of such a twilight zone is merely an artifact of the smallness of the systems studied,
comprising only O(10) transmons. However, as current and medium-term future NISQ devices
operate only with O(10) to O(100) qubits, finite-size effects are expected to play an essential
role on technologically relevant scales. Furthermore, recent developments in localization theory
emphasize that the actual MBL phase arising in the thermodynamic limit occupies far less
parameter space than previously thought. To push it to the extreme: if the pessimists, who
classify the localization phenomenon as a whole as a finite-size effect, are right, then the finite-
size MBL regime is the best one can hope for. This applies all the more in higher-dimensional
geometries, for which the prevailing view in the MBL community is that localization cannot be
maintained in the thermodynamic limit.

For scheme-b parameters, representing the class of flux-tunable transmon architectures, the
chaotic regime, just like the early indicators of compromised computational states, is pushed
back to much larger coupling strengths. This buys the possibility of larger couplings and faster
gates. However, the danger is not completely averted, as our Walsh transformation analysis has
revealed.

Concerning the hierarchy in the sensitivity with which our diagnostic tools respond to the
initial effects of chaotic fluctuations, we discussed the need to carefully balance the pristine
MBL perspective and the more applied quantum computing perspective. Ultimately, it is this
difference that establishes the existence of the gray area. From the applied perspective, the
level statistics is a coarse tool that suggests safety in regions where the IPR already indicates a
tendency of strong wave function spreading, although only over a small fraction of the available
states. As alluded to, it is far from obvious that quantum computing should not be affected by
initial signatures of delocalization (that are known to occur even in the MBL phase [191]) and
only becomes impossible when states are completely delocalized. The Walsh analysis, focusing
exclusively on the computational states and applied in the MBL context for the first time in
our studies, confirms that the pessimism is justified. It confirms the threat to information
processing applications indicated by the IPR drop in a basis-independent manner. By providing
absolute bounds underpinned by experiments, we can connect it to the IPR and derive a danger
threshold below which quantum computing becomes tarnished. This is beneficial because the
IPR is considerably simpler to calculate. Our analysis suggests that ZZ correlations dangerously
compromise the computational states when the IPR is still at around 0.8—hence, at the beginning
of the gray area, which the MBL perspective would have declared as almost chaos-free. Even
higher correlations are already waiting in the wings.

In summary, our study shows that traces of chaos are more prominent in the scheme-a design
format. We expect that attempts to expand these architectures to larger or higher-dimensional
geometries, which already is a tantalizing challenge for the reasons discussed in Sec. 1.5, gain
additional complexity due to the MBL-related obstacles. But even flux-tunable transmon archi-
tectures are vulnerable. For a reliable cross-design scheme comparison of real devices, one should
consider the coupling strength values to which the respective communities have converged in their
experimental efforts over the years and consider the dimensionless parameter δEi,j/ti,j . In this
respect, IBM devices and typical flux-tunable architectures do not differ much12, and representa-
tive example processors are in the MBL phase. However, the scheme-a architectures are bound

12As discussed in Sec. 4.5.3, δEi,j contains contributions from the frequency disorder and the anharmonicity.
Neglecting the latter, typical values of the ratio δν/ti,j are around 30 for both processor variants.
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to the very small values of T ; otherwise, the early symptoms of delocalization become apparent.
Since increasing the disorder is also not possible due to the specific needs of the CR gate, there is
no room to shorten the gate time.13 Flux-tunable architectures can operate at much larger cou-
plings while remaining in the MBL regime. This enables much shorter gate times, both absolute
and compared to the respective qubit lifetimes.

Adapting to a more philosophical definition of the design approaches not by specific values of δν
but rather by their general handling of randomness, the tunable-coupler architectures bear some
similarity to the scheme-b design: Both embrace disorder as a resource to protect information.
However, the dimensionless parameter δν/t is orders of magnitude larger when tunable couplers
are exploited because the denominator can be tuned to zero (in a perturbative sense). Tunable
couplers might thus offer a fundamental improvement from the MBL perspective, but they are
not a panacea due to their huge hardware overhead.

With the drawbacks of fixed-frequency designs in mind, we devote the next chapter to the
question of whether implementing frequency patterns can contribute to improving these proces-
sors.

13For completeness, we mention again that meticulously designed control pulses could reduce the gate time [300].
This has not been implemented experimentally.
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Quantum chaos and
frequency engineering

Chapter 5
In its pursuit of better gate fidelities, IBM has proposed to implement frequency patterns where
neighboring qubits are detuned by an amount that ideally circumvents the most urgent frequency
collisions in the operation of the CR gate [306]. At the same time, in an engineering tour de
force, they provided the LASIQ technique as a tool that might accomplish the realization of high-
precision patterns in the future [294]. As of today, the annealing technique has been exploited to
tweak the as-fabricated frequencies to eliminate some of the most pressing nearest-neighbor (NN)
collisions, but no regular frequency ‘unit cell’ was implemented in any of the cloud devices. In
this chapter, we risk looking into the (eventual) future and study systems with regular frequency
arrangements to investigate these precision-engineering maneuvers—intended to increase two-
qubit gate fidelities—from the many-qubits perspective.

This chapter is partly based on the publication [P1] by the author of this thesis.

5.1 Frequency pattern

IBM’s heavy-hexagon lattice favors an ACBC arrangement with three different mean frequencies,
as shown in Fig. 3.16. Most conclusions in this chapter rely on simulations conducted for the
simpler ABAB sublattice structure superimposed on a 3 × 3 transmon geometry as sketched
in Fig. 5.1(a). The two sublattices are populated with Josephson energies drawn from normal
distributions centered around EJ,A and EJ,B, see Fig. 5.1(b) for a visualization. The width of the
distributions, to which we refer as the residual disorder strength, is determined by the LASIQ
precision. We expect the principal many-body properties to be the same in this layout and
IBM’s more ambitious approach. Sec. 5.4 gives a brief MBL-inspired glance at the ideal of an
IBM processor. The choice of parameters used in this chapter is closely guided by the recent
reports on LASIQ-tuned transmon processors [294, 308]. To be specific, we take EJ,A = 12.57
GHz and EJ,B = 13.79 GHz [294] and set the anharmonicity to EC = 330 MHz, the prototypical
value of IBM’s cloud devices [59]. The current precision with which a desired target Josephson
energy can be achieved is about 60 MHz [294], which is an order of magnitude better than what
is found in pre-LASIQ transmons. The distributions for EJ before and after LASIQ-tuning are
contrasted in Fig. 5.1(b).

Here, we aim to examine how further progress in the LASIQ precision affects the localization
properties of the transmon array by simulating disorder strengths down to the asymptotic case of
the clean δEJ = 0 device. This is a topical and relevant issue because significant improvements
in tuning precision are needed to scale beyond 100 to 200 qubits [294], a frontier that has already
been exceeded as of today (and even with a fixed-frequency transmon architecture).
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Figure 5.1 – Frequency alternation pattern. (a) ABAB frequency pattern on a 3× 3 geometry. The A and
B sublattice positions are populated with Josephson energies drawn from two different normal distributions
as sketched in (b). Despite the precision tuning, the EJs are subject to some residual random variations
with frequency spread δEJ that, thanks to the LASIQ technique, is about an order of magnitude smaller
than the natural disorder. For comparison, the gray Gaussian represents the scheme-a distribution with mean
(EA

J + EB
J )/2, which was exploited in earlier chapters as an estimate for the as-fabricated disorder.

5.2 Overview: Bloch states, global MBL and permutation multiplets

A first impression of the system’s behavior under the influence of a disorder strength that varies
over several orders of magnitude can be gained from Fig. 5.2. The upper panel shows the IPR
and a newly introduced quantity, wpm, that is discussed below. Panel (b) shows the evolution of
the levels of the Nex = 5 manifold for a single disorder realization1 as a function of the LASIQ
precision δEJ . Combining the information contained in the IPR and the energy spectrum, we
conclude that four qualitatively different disorder regimes should be distinguished:

(I) For strong disorder, δEJ > 0.1 GHz, the IPR is close to one, and the spectrum consists of
a dense tangle of levels without any further substructures.

(II) For δEJ between 0.1 GHz and 0.01 GHz, the IPR stays near one, but the spectrum now
resolves a finer substructuring of the levels in permutation multiplets, see the discussion
below.

With the energy resolution in Fig. 5.2(b), no further evolution can be extracted from the spectrum
that appears utterly flat as the disorder is further reduced. The IPR, however, reveals the
existence of two other parameter ranges:

(III) For δEJ between 10−4 GHz and 10−2 GHz, the IPR strongly decreases, and, finally,

(IV) the IPR saturates at a low value for δEJ < 10−4 GHz.

We start the journey through the four regions by discussing the asymptotic cases of very high
(I) and very low (IV) disorder.

1Depicting the spectrum of a single disorder realization as a function of the disorder δEJ may sound contradictory
at first. What is meant by this is the following: We draw nine i.i.d variables xi from the normal distribution
with σ = 1. The Josephson energy of transmon i is then obtained as EJ,i = EJ,A + xiδEJ if i is on the A
sublattice and similar for the B transmons.
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Figure 5.2 –
Restructuring of the Hilbert
space and evolution of the IPR as
δEJ decreases. (a) IPR and multiplet
weight wpm, averaged over all 1,287
states of the Nex = 5 bundle of a 3× 3
transmon array. (b) Spectrum of a sin-
gle disorder realization as a function of
δEJ . According to the IPR and the
spectrum, one can divide the disorder
range δEJ into four sectors: an MBL
phase, indicated by an IPR that is
very close to one for disorder strengths
δEJ > 100 MHz (I), the δEJ range be-
tween 10 MHz and 100 MHz with an
IPR likewise close to one, but where, as
shown in (b), the Hilbert space resolves
itself in smaller bundles (II), a region
where the IPR strongly decreases (III)
and the domain δEJ . 10−4 GHz,
where the IPR saturates at a low value
(IV). With the energy resolution in (b),
the two latter cannot be distinguished
in the spectrum. All calculations are
performed for T = 3 MHz. The results
in (a) are averaged over at least 8,000
disorder realizations.
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5.2.1 The two limiting cases: strongly disordered and clean devices

The limiting case of very low disorder is readily understood: an ever further reduction of random-
ness culminates in a clean device with a perfect AB frequency arrangement. This evades all NN
resonances and is desirable for optimizing the CR gate but has the unwelcome collateral effect of
resonances between next-nearest neighbors (NNN). Weak effective coupling between degenerate
NNN leads to hybridization of the wave function over the A or B sublattice. More formally, the
case δEJ → 0 restores the symmetries of the transmon array, e.g., translational symmetry for
periodic boundary conditions or the symmetries of the 3× 3 ‘crystal’ in our specific case study.
The low value of the IPR in region IV indicates that wave functions respecting these symme-
tries, e.g., Bloch band eigenstates, are generically not localized on a specific lattice site. This
embodiment of delocalization is not due to quantum chaos. Nevertheless, the wave functions are
unsuitable for quantum computing applications.

In the second extreme case of massive disorder (I), the system is found in the regular (for
later distinction called global) MBL phase. Here, the Josephson energy spread around the mean
values EJ,A and EJ,B is much larger than the spacing between them, such that the underlying
AB pattern is not resolved. For the small coupling of T = 3 MHz considered in Fig. 5.2, the
system is therefore localized. The dense tangle of states seen at the right edge of Fig. 5.2(b) is
the usual Nex = 5 bundle familiar from the discussion in Chapter 4. If the disorder strength
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is slightly reduced to ≈ 1 GHz but still large enough to conserve the single-bundle structure
in the spectrum, the wave functions weakly hybridize, and the IPR shows a minor decrease, as
expected.

5.2.2 Permutation multiplets

When starting in the global MBL phase and pushing the fluctuations in EJ to smaller values,
the effect of the AB frequency ‘unit cell’ to the many-body energies starts to exceed the disorder
contribution: Shifting an excitation from an A to a B site changes the energy by an amount that
is larger than the typical energy variation due to the randomness in EJ . The same holds for the
anharmonicity shift occurring when multiple excitations occupy the same transmon. Thus, as
shown in Fig. 5.2(b), for δEJ . 0.1 GHz (region II) and the small T values that are relevant in
fixed-frequency architectures, a further splintering of the Hilbert space in excitation structures
or permutation multiplets occurs. Such a multiplet is defined by all permutations of a specific
distribution of excitations to the transmons. This next smaller hierarchy level has already been
discussed in Sec. 4.2.1. Compared to Fig. 4.3, where all excitation structures were characterized
solely by their total anharmonicity, the situation is more involved here. The higher number of
multiplets reflects the complexity of the AB pattern. Adapting the notation introduced earlier,
we denote, for example, the permutation multiplet formed by the states with one A transmon
in |2〉, one in |1〉, two B transmons in |1〉, and the remaining transmons in the ground state as
{A21B11}. For the 3 × 3 model at hand, the 1,287 states of the Nex = 5 bundle are split into
35 permutation multiplets containing between one and 120 states. The lowest multiplet is {A5}
(five states), followed by {A41} (20 states) and so on, up to the highest multiplet {A1B1111}
(five states). For a detailed overview, see Appendix C.4.

States from the same permutation multiplet cannot be nearest neighbors in configuration
space: due to the bipartiteness of the lattice, a single hopping process necessarily changes the
number of excitations on the A and B sublattices and thereby modifies the excitation structure.
An important implication is that hybridization gets efficiently suppressed when the multiplets
initially take shape because energetically close states are far away in configuration space. In
consequence, the IPR increases again to almost 1 at the upper edge of region II. We refer to this
phenomenon as localization within multiplets or intra-multiplet localization. As marked by the
dashed red line in Fig. 5.2(a), IBM’s current LASIQ precision lies precisely in this regime, near
the maximum of the IPR. This spot manages the difficult balancing act between too little disorder
(unfavorable from the MBL perspective because the IPR decreases, see the later discussion) and
too strong disorder (unfavorable for the gate fidelity because frequency collisions are not avoided)
quite well.

Strictly speaking, the partitioning of wave functions in permutation multiplets is only exactly
defined for T = 0, but not for the many-body eigenstates of the interacting system. However,
as T is small compared to a typical inter-multiplet distance of ∼100 MHz, it is to be expected
that the mixing of multiplets is negligible. Indeed, assigning many-body wave functions to a
specific multiplet is possible throughout the entire disorder regime. For large and intermediate
disorder, the IPR close to one indicates that a single basis state dominates in the many-body
wave function. Therefore, we can tag the many-body wave function with the multiplet label
associated with this state. For low disorder, it is easily verified that many-body wave functions
taken from a particular, energetically well-resolved multiplet have only support from the basis
vectors that define this multiplet in the T → 0 limit. This observation is quantified with the total
spectral weight of the many-body wave function |ψi〉 that is carried by its dominant multiplet
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c(|ψi〉), defined as
wpm (|ψi〉) =

∑
|φ〉∈c(|ψi〉)

|〈φ|ψi〉|2 . (5.1)

As the green curve in Fig. 5.2(a) illustrates, the averaged permutation multiplet weight wpm stays
close to one over the entire disorder range. Particularly illuminating is the comparison of wpm and
the IPR. While no changes occur in wpm for δEJ → 0, the IPR shows the sequence of transitions
through the regions II to IV. The combination wpm ≈ 1 and IPR � 1 indicates that all many-
body wave functions are distributed over many configuration states, but all contributing states
belong to the same multiplet. By analogy with the above, we term this effect intra-multiplet
delocalization or delocalization within multiplets.

In summary, we interpret the four disorder regions as global MBL (I), localization within multi-
plets (II), delocalization within multiplets (III), and formation of a symmetry-dominated regime
(IV) where the wave functions approximately obey the symmetries of the transmon geometry.
In the next sections, we examine in more detail the system’s viability as a quantum computer,
with a particular focus on region III. Specifically, we aim to apply the level statistic analysis to
investigate whether one really encounters a quantum chaotic region with level ratios that follow
the Wigner-Dyson distribution. However, this requires some prior issues to be clarified first.

5.3 Quantum chaos in engineered frequency patterns

Several pitfalls must be circumvented to make reliable statements about the presence of quan-
tum chaos in region III. A first important insight is that the quantitative study of weakly disor-
dered (transmon) systems—and, in particular, evaluating them for their suitability as quantum
computers—must begin with the identification of the relevant subspaces. Whenever the Hilbert
space disintegrates into smaller substructures (here the permutation multiplets), each of them
should be taken as a separate entity and analyzed individually. Otherwise the extent of chaos
in the computationally relevant states is underestimated. The level ratio analysis requires par-
ticular attention. For an illustration of these points, it is sufficient to restrict to the simpler
example of the L = 5 chain, discussed in the next section, where the bundle Nex = 3 consists of
a manageable number of 35 states. Further details can be found in Appendix C.

5.3.1 A simple example: the L = 5 chain

Provided that δEJ is chosen small enough, the 35-dimensional Hilbert space of the L = 5 chain
with ABABA frequency arrangement splits into nine different permutation multiplets, three of
which, {A111},{A21}, and {A11B1}, are considered in more detail here (for an overview of the
remaining multiplets, see Appendix C.1). As shown in Fig. 5.3(a), the disorder-averaged IPR
shows a distinct δEJ -dependence for all three cases: For {A111}, the IPR stays close to one
throughout the entire disorder range. This multiplet consists of the single state |10101〉, which is
energetically isolated for small disorders and therefore does not hybridize. In particular, |10101〉
is an exact δEJ = 0 eigenstate that adheres to the symmetries of the clean transmon chain. The
structure {A11B1}, comprising six computational states, shows a single sharp drop in the IPR.
For {A21}, a first decrease in the IPR at a similar disorder strength is followed by a plateau and
a second drop appearing at a δEJ that is about three orders of magnitude smaller. This behavior
can be understood by recourse to the effective model in (4.2). All states of the multiplet {A111}
are interconnected to second order in the hopping matrix element J , whereas {A21} further
separates into two subsets that are cross-connected only to fourth order in J . This distinction
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Figure 5.3 – Mulitplet resolved IPR for the L=5 chain and visualization of the connectivity of the states
forming the multiplets {A21} and {A11B1}. (a) The IPRs for the three multiplets {A21}, {A111}, and
{A11B1} behave qualitatively differently. The difference in {A11B1} (single drop in the IPR) and {A21}
(additional second drop at much smaller δEJ) can be understood with an eye to the connectivity graph, shown
in (b), that visualizes to which order in J the states of each bundle are mutually coupled. {A21} separates
into two subsets that couple only to fourth order in J . In (a), the coupling is fixed to T = 3 MHz, and the
IPR is averaged over 10,000 disorder realizations.

is illustrated by the connectivity graphs in Fig. 5.3(b). Decreasing the disorder strength creates
resonances between second-nearest-neighbor transmons. Thinking of the transmon array as a
hopping problem on a highly connected configuration space lattice, these translate to resonances
between lattice sites whose distance is determined by the order in J to which the corresponding
configuration states are coupled. With the expectation that delocalization occurs when the
effective coupling exceeds the many-body level spacing, formulated in Eq. (2.27), it is reasonable
to assume that the first drop in the IPR relates to the hybridization of wave functions over second-
nearest neighbors in configuration space. The second decline, occurring only for {A21}, then
indicates a strong mixing of the two subsets with a minimal distance of four. A closer investigation
of the many-body wave functions supports this interpretation. Wave functions taken from the
{A11B1} bundle at disorders δEJ < 10−5 GHz are linear combinations of the six states contained
in the bundle. They are close to the exact δEJ → 0 eigenstates and approximately respect the
symmetries of the transmon chain. For the same δEJ , wave functions from {A21} dominantly
belong to one of the distinct subsets. Only after the second drop in the IPR one regains the
chain symmetry in the eigenfunctions. For an explicit example, see Appendix C.3.

Fig. 5.4 shows the two-dimensional representation of the IPR for varying values of the coupling
strength T and the residual randomness δEJ . Most strikingly, there are two clearly identifiable
regions where the IPR declines. The δEJ values where the delocalization sets in depend on T
as T 2 and T 4, as indicated in Fig. 5.4. Akin to the discussion in Sec. 4.5.3, the quantity driving
the inset of delocalization is |ti,j |/δEi,j , where ti,j is the effective hopping and δEi,j the energy
difference between two configuration space lattice sites i, j. For second-nearest neighbors, using
Eq. (4.2), the effective hopping ti,j has the form J2/∆E where the denominator is the energy
difference to some virtually occupied intermediate lattice site, i.e., the energy difference between
two multiplets. Most importantly, ∆E is approximately constant in the relevant part of the
T -δEJ plane because the contributions from the anharmonicity and the AB staggering dominate

110



5.3 Quantum chaos in engineered frequency patterns

Figure 5.4 –
Wave function statistics in the T -δEJ

plane. Shown is the color-coded IPR, aver-
aged over the 35 states from the Nex = 3 bun-
dle of the L = 5 transmon chain with an AB
frequency pattern. As expected, the tendency
of wave functions to delocalize grows if T in-
creases or δEJ decreases. Two features are
particularly striking: The value of δEJ show-
ing the first inset of hybridization depends on
T as T 2. A second descent of the IPR occurs
along the line where δEJ ∝ T 4. As discussed
in the main text, these two successive transi-
tions can be understood as hybridization over
second-nearest and fourth-nearest neighbors in
configuration space. All results are averaged
over at least 5,000 disorder realizations.

δEJ ∝ T 4

δEJ ∝ T 2

10−10 10−8 10−6 10−4 10−2
10−13

10−10

10−7

10−4

10−1

T [GHz]

δE
J
[G

H
z]

0.30.40.50.60.70.80.91

IPR

over the disorder. On the other side, for fixed EJ,A and EJ,B and lattice sites i and j from the
same multiplet, the only contribution to δEi,j is due to the frequency disorder δν ∝ δEJ . In
total, this yields

ti,j
δEi,j

∝ J2

δEJ
∝ T 2

δEJ
, (5.2)

for the relevant scaling variable, in accordance with the observations in Fig. 5.4. A similar
argument holds for the forth-nearest neighbors in configuration space. We show in Appendix C.1
that an appropriate rescaling of the T axis yields a good data collapse in the respective parameter
ranges.

The main takeaway from the example of the L = 5 chain is that different multiplets should be
explored separately. When all the states of an entire excitation bundle are analyzed simultane-
ously, different effects, each of which appears only in a small subset of multiplets, superpose, as in
Fig. 5.4. Besides, in more complicated geometries, additional effects like hybridization between
|300 . . . 〉 and |003 . . . 〉 (a second-order process but with a small hopping amplitude that is not
captured by the effective Hamiltonian Ĥeff) kick in and blur the second transition δEJ ∝ T 4.

Regarding level statistics, there are two more subtleties to consider: First, when calculating
level ratios for all states of an excitation bundle, whenever Ei and Ei+1 belong to different mul-
tiplets, the corresponding Rn ratio contributes to the histogram bin at Rn = 0. As detailed in
Appendix C.3, this significantly distorts the KL divergences for the small system sizes under con-
sideration. Second, considering again {A21} for disorders around the first decline of the IPR, we
can think of the two subsets visualized in Fig. 5.3(b) as two independent, weakly cross-correlated
submanifolds that are chaotically correlated among themselves and overlap in energy. Accord-
ingly, the level structure will show avoided crossings within states from the same manifold and
crossings (more precisely, anticrossings that are orders of magnitude smaller) between states from
different manifolds. This shifts the overall level statistics for the entire permutation multiplet
towards a Poisson distribution even though, strictly speaking, one deals with two independent
chaotic substructures. Appendix C.3 gives a visualization of this situation.
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5.3.2 Unveiling quantum chaos: chaotic multiplets

With the insight gained in the previous section, it is now a straightforward task to scan the
multiplets of the more complex 3 × 3 geometry for signatures of quantum chaos. We focus on
a one-dimensional cut through the T -δEJ plane and fix T = 3 MHz as in Fig. 5.2. A two-
dimensional representation for the IPR akin to Fig. 5.4 for the 3× 3 array (and larger chains) is
provided in Appendix C.2.

Our main findings, which we exemplify with the multiplets {A111B11} and {A21B11}, are
summarized in Fig. 5.5. {A111B11} is the largest computational multiplet containing 60 of the
126 computational states. With a total of 120 states contained, {A21B11} is the largest multiplet
overall. We focus on a disorder range centered around regime III, which is shaded in gray. To start
the discussion, we inspect the two spectra in the bottom row. Shown is an enlarged view of the
levels belonging to the multiplets (d) {A111B11} and (e) {A21B11} for the exact same disorder
realization exploited in the compilation of Fig. 5.2. On the blown-up energy scale, one notices
that the levels that previously appeared flat are still strongly dispersing for δEJ > 10−4 GHz.
In particular, region III is characterized by strong level repulsion in both multiplets, indicating
that a region of fully evolved quantum chaos is entered if the residual disorder falls below 10−2

GHz. The KL divergences calculated only for the levels from the respective bundles, shown in
(b) and (c), quantitatively confirm this observation. In both cases, in the foothills of the regime
of intra-multiplet localization (II), one finds D(P ||PPoisson) ≈ 0 and D(P ||PWigner) ≈ 1. Upon
lowering the disorder, the situation reverses: along with the IPR, whose calculation is likewise
restricted to the respective bundles, D(P ||PWigner) decreases and approaches the proximity of
zero, evidencing that region III is a no-go area for quantum computing. For selected values of
δEJ , the disorder-averaged Rn histograms underlying the calculation of the KL divergences are
shown in (a). As expected, for values of randomness taken from regions II and III, the histograms
show a good (yet not perfect) match with what is predicted for integrable systems and GOE
matrices, respectively.

Regarding the computational multiplet, the wave function spreading implied by the decreasing
IPR is potentially even more harmful than in the situation discussed in Chapter 4. There is some
hope that a transmon array with dressed l-qubit wave functions can serve as a viable quantum
computer, provided that one can unambiguously assign bitstring tags to a set of energies and
that the qubit-qubit correlations, divulged via the Walsh-Hadamard transformation, fall below a
certain threshold. For simple Gaussian disorder, where all excitation structures are thoroughly
intermingled, wave functions can simultaneously have a small IPR and a single dominating
computational state, such that at least the qubit state identification is feasible. Here, in contrast,
this first preparatory step of the Walsh analysis already fails: all states delocalize within the
computational multiplet. A small IPR implies that wave functions are superpositions of many
computational states, so reliable labeling with bitstrings is impracticable.

Further reduction of the disorder drives the system closer to region IV. Near the transition
between III and IV, the IPR saturates, but the level ratio distribution moves closer to the Poisson
prediction, as can be inferred from the decay of the corresponding KL divergence. However,
waterproof signs of a regime of uncorrelated levels never fully develop because the symmetry-
induced correlations gain importance. In region IV, both KL divergences exhibit a sharp increase
to high values, and neither the Poisson nor the Wigner distribution resembles the numerically
obtained probabilities. This behavior is a symptom of the level clustering into finer bundles for
δEJ < 10−4 GHz. These structures are the ‘molecular multiplets’ of the 3× 3 array. The point
group symmetry determines the remaining degeneracies. Accordingly, the Rn histogram, shown
on the very left in (a), does not reflect universal fluctuation properties but the specific, unique
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Figure 5.5 – Quantum chaos in precision-engineered transmon arrays. Shown are the wave function
statistics (IPR), level statistics (KL divergences), and the spectrum as a function of the residual disorder δEJ

for the multiplets {A111B11} (left) and {A21B11} (right). The spectra presented in the lower row show
enlarged views of the levels displayed in Fig. 5.2(b). In region II, the levels are still strongly dispersing. The
disorder region III, distinguished by the fast-decreasing IPR in Fig. 5.2(a), exhibits strong level repulsion and
many avoided crossings. Finally, for disorder strength δEJ . 10−4, the permutation multiplets disintegrate into
even smaller bundles that are the molecular multiplets of the 3× 3 geometry. These findings are substantiated
by the KL divergences (calculated for the Rn ratios from the respective permutation multiplets) and by the Rn

histograms shown for three selected values of δEJ for {A21B11}. For δEJ > 10−2 GHz, D(P ||PPoisson) ≈ 0,
and wave functions are localized. For δEJ < 10−2 GHz, D(P ||PWigner) decreases and reaches a small value
indicating proximity (yet not a perfect agreement, see the histogram) to the predictions of Wigner-Dyson
statistics—an unmistakable sign that quantum chaos is lurking if the LASIQ precision becomes too good.
If the residual disorder is pushed below 10−4 GHz, the Rn histogram exhibits neither good agreement with
Poisson nor with Wigner-Dyson statistics. It has no system-independent, universal form but characterizes
the energy levels of the clean system. Those depend on the point group symmetries of the array geometry.
Accordingly, the KL divergences are of no use here. All results in (b) and (c) are averaged over at least 8,000
disorder realizations. The markers in (d) designate the energies whose wave functions are discussed in the main
text.
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Figure 5.6 –
Delocalization of computational
states. Shown is the IPR for the five
computational multiplets of the Nex = 5
bundle, containing a total of 126 computa-
tional states. For three of the multiplets,
the IPR decreases below 0.2. These
three multiplets already contain 120
states. Only for {A11111}—a multiplet
containing only a single state—the IPR
stays close to one. Results are averaged
over at least 8,000 disorder realizations.
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level structure of the clean device. For the 3×3 geometry, the point group is C4v (or D4, as these
two are equivalent for a planar arrangement). The irreducible representations of this group are
one- and two-dimensional. Hence, some levels are two-fold degenerate (as can already be guessed
from the spectra shown in (d) and (e)), resulting in the clear peak at very small Rn values (see
also the discussion in Appendix C.3).

5.3.3 Wave functions

For completeness, we provide explicit examples for wave functions taken from the computational
multiplet {A111B11} in regimes II and IV. To visualize the contributing basis states, we use the
same representation of ‘0’s and ‘1’s as in Sec. 4.8, adapted to the 3×3 geometry. For example, the
basis state where the transmons 1,2,7 are in the first excited state and the remaining transmons
in the ground state is depicted as . Now, the wave function belonging to the level marked by
the yellow star in Fig. 5.5(d) is approximately given by |ψ 〉 ≈ , i.e., as expected from the
IPR, wave functions are dominated by a single basis vector. As δEJ decreases, one penetrates
into the chaotic sea, and the eigenstate rapidly and constantly changes its composition. Finally,
in region IV, the symmetries come to light. For example, the wave function belonging to the
level marked by the red diamond on the left in Fig. 5.5(d) is approximately given by

|ψ 〉 ≈ a
(

+ + +
)
+ b

(
+ + +

)
+ c

(
+ + +

)
+ . . . ,

(5.3)

with some coefficients a, b, c. It is easy to see that this particular linear combination is indeed
invariant under the point group symmetries of the 3× 3 array.

5.3.4 Delocalization of computational states

Fig. 5.6 displays the IPR for all computational multiplets of the 3 × 3 geometries. Specifically,
besides the already discussed manifold {A111B11}, these are {A11111} (one state), {A1111B1}
(20), {A11B111} (40), and {A1B1111} (5). Except for {A11111}, which does not hybridize
because it consists of a single, energetically isolated state, all multiplets show a single sharp
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Figure 5.7 –
Comparison of IPR before and after
LASIQ tuning as a function of T . The blue
line shows the IPR for the natural disorder re-
ported in Ref. [294] for various values of the cou-
pling. The yellow line shows the IPR for the post-
LASIQ parameters, likewise given in Ref. [294].
LASIQ not only reduces the number of frequency
collisions but also enhances the localization, espe-
cially for small T . The inset shows the difference
in the IPR after and before the laser annealing.
All results are averaged over at least 1,100 disor-
der realizations.
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decrease in the IPR, guiding us to conclude that the entire computational subspace (except for
) gets compromised if the LASIQ precision significantly improves. In particular, comparison

with the full bundle in Fig. 5.2 reveals that most of the computational states delocalize above
average.

5.4 Effect of LASIQ on IBM's recent chips

Having established the general delocalization mechanism in precision-tuned transmon arrays,
we finish this chapter with two remarks on (i) the effect of LASIQ tuning with state-of-the-art
precision and (ii) the emergence of quantum chaos in IBM’s more elaborated heavy-hexagon
geometry.

5.4.1 IPR before and after annealing

To gauge whether the currently realizable patterns have positive or detrimental effects on the
many-body properties, we calculate the T -dependent IPR for the parameters of the as-fabricated
Josephson junctions and the LASIQ-tuned bimodal frequency distribution that are both reported
in Ref. [294]. The latter is very similar to the previous parameter choice, with the only difference
being a minor deviation in the two frequency spreads (δEJ,A = 61 MHz and δEJ,B = 64 MHz).
The parameters for the untuned processor are EJ = 13.78 GHz and δEJ = 611 MHz. The
results for the IPR before and after annealing are contrasted in Fig. 5.7. For all values of T , the
‘LASIQ-tuned IPR’ lies indeed above the one for the array built with as-fabricated transmons.
As displayed in the small inset, showing ∆IPR = IPRafter − IPRbefore, the amelioration of the
IPR is particularly noticeable in the small T range favored in fixed-frequency architectures. The
evolution of the LASIQ-tuned IPR starts with an eye-catching plateau-like stagnation. Wave
function hybridization is initially suppressed and only sets in when T acquires a value high
enough to circumvent the inter-multiplet energy barrier between nearest neighbors or to enable
hopping between nearly degenerate NNN. Hence, LASIQ tuning with contemporary precision
not only diminishes the number of frequency collisions but also decreases the tendency of wave
functions to spread out, particularly for the experimentally relevant small-coupling range.
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Figure 5.8 – Quantum chaos in cross-resonance architectures on the heavy-hexagon lattice. Panel
(a) shows the ‘Hummingbird’ chip with an ACBC frequency pattern. The colored backgrounds highlight the
different parts we investigate in more detail in (b). Using the IPR as a quality indicator, one observes that
the utopia of a collision-free chip, arising for δEJ → 0, is unattainable. The more complex design shows
the same sequence of transitions that the AB arrangement exhibited, including a quantum chaotic region for
too low disorder. Parameters are taken from Ref. [294], that—based on Monte Carlo simulations—proposes
the frequency mean values ν1 = 5 GHz (yellow), ν2 = 5.07 GHz (red), and ν3 = 5.14 GHz (purple) for the
(negative) anharmonicity EC = 330 MHz. For comparison, we show results for the L = 9 chain with the
simpler AB pattern. The number of disorder realizations varies from 400 for geometry IV to more than 22,000
for geometry III. We choose T = 3 MHz for the coupling strength.

5.4.2 Chaos on the heavy-hexagon lattice

The AB sublattice pattern considered so far is a helpful simplification for highlighting some
generic properties that emerge in transmon arrays with ‘too good’ frequency precision. IBM
designed the more complex heavy-hexagon geometry and proposed to implement an ACBC
frequency pattern on it to avoid the seven most likely types of frequency collisions during the CR
gate operation [294, 306]. This particular pattern is again shown in Fig. 5.8(a). Here, we argue
that the insights gained for the simpler model—in particular, the existence of a quantum chaotic
region for too low disorder—retain their validity for more elaborate frequency arrangements and
geometries.

To accomplish this, we calculate the IPR as a function of the residual disorder strength δEJ
for the different sections of the heavy-hexagon lattice that are highlighted by the colored back-
ground in Fig. 5.8(a). As depicted in Fig. 5.8(b), all four lattice excerpts show very similar
behavior, which exhibits no qualitative difference from the simpler AB unit cell. One observes
the same sequence of disorder regimes, starting with delocalized states in the clean device at very
low disorder, proceeding to intra-multiplet delocalization, intra-multiplet localization, and inter-
multiplet hybridization before reaching the global MBL phase at large disorder. The similarity,
despite the more complicated pattern, is hardly surprising. As for the AB pattern, there are de-
generate NNN qubits—the control qubits in CR gate language—or, in other words, degeneracies
between second-nearest-neighbor lattice sites in configuration space. Hence, the hybridization
mechanisms discussed in the previous sections remain valid. The magnitude of the decrease in
the IPR at low disorder depends on the number of degenerate NNN transmons contained in
the specific geometries. The dashed gray line shows the IPR for the L = 9 chain with an AB
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pattern to facilitate comparison with the previous results. The data shown in Fig. 5.8(b) are
averaged over all permutation multiplets belonging to a fixed excitation manifold. We choose
Nex = 5 for all geometries except for geometry IV, where Nex = 6. We checked that the IPR
decreases stronger if the averaging is restricted to the computational multiplets alone, confirm-
ing the previous observation that computational states are (on average) particularly vulnerable.
On very close examination, one can see that the minimum at large δEJ , signaling the inset of
trans-multiplet coupling, occurs at slightly smaller disorder strengths for the ACBC pattern.
This is due to the lower average inter-multiplet separation arising from the particular parameter
choices and the more complex multiplet structure. To be specific, for the ACBC pattern, we use
νA = 5 GHz, νB = 5.07 GHz for the target qubits, and νC = 5.14 GHz for the control qubits,
which is predicted to optimize CR gate performance [294]. In contrast, the L = 9 chain result
uses the experimental laser-tuning parameters νA = 5.43 GHz and νB = 5.70 GHz [294] with a
larger energy separation.

In conclusion, the chaotic phase resists both the progression to a lower connectivity lattice and
the implementation of a more complex frequency pattern, and even emerges at similar values of
the residual disorder.

5.5 Summary

In this chapter, we discussed the role of localization physics in transmon processors with high-
precision-tuned frequency patterns. Our principal finding is that quantum chaos survives the
engineering maneuvers, and disorder remains an essential resource for qubit protection. More
precisely, we find that one can distinguish between four different disorder regions, each of which
is characterized by the relation between the amount of randomness and the system’s other en-
ergy scales: If the disorder outscores all other relevant energies, we find the global many-body
localized phase, where the staggering of frequencies is insignificant. When the pattern and the
anharmonicity contribution to the energy dominate over the disorder, the global MBL phase
is succeeded by a regime where new substructures, the permutation multiplets, emerge. The
residual disorder then determines whether states are efficiently localized in these substructures
(when the disorder exceeds the effective coupling teff), whether one enters the realm of chaos
and states delocalize within the multiplets (when teff and disorder are comparable), or whether
molecular multiplets emerge and the symmetries of the transmon array gain importance (when
teff dominates over the disorder). To build a functioning computing device, one must carefully
target the ideal spot between the extremes of delocalized chaotic or symmetric wave functions for
too little disorder at one end and systematically failing gates due to frequency collisions for too
large disorder at the other end. From an MBL perspective, we can identify the maximum of the
IPR as the optimal δEJ , where the multiplets have formed, and nearest neighbors are detuned
by an amount that enhances the CR gate fidelity but where the residual disorder prevents the
inset of intra-multiplet delocalization.

How do our results relate to contemporary experiments? The currently achievable LASIQ
precision of δν ≈ 14 MHz is sufficient to see the formation of multiplets, yet too high to create
the dangerous NNN resonances. The recent engineering attempts have, therefore, successfully
hit the optimum of intra-multiplet localization, see the vertical lines in Figs. 5.2 and 5.8. The
current precision is yet not sufficient to reliably produce collision-free chips when scaling up to
more than ∼100 qubits. For example, the ‘Eagle’ generation (127 qubits) has a probability of
only 8% of being collision-free when populated with an ACBC pattern subject to a residual
disorder that is given by the current LASIQ accuracy. Scaling up to 1,000 qubits requires an
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estimated precision improvement by a factor of two [294]. With the IPR already being near
its maximum with the current fidelity, further reduction of δEJ quickly increases the tendency
towards delocalization (although the IPR can still be acceptable with half as much disorder).
In particular, as the promised land of never-failing gates and collision-free devices is found at
δEJ = 0, quantum chaos is an inevitable obstacle for building ever larger pattern-engineered
chips.

Stepping aside from the comparison with experimental values, which are subject to rapid
and constant change, our investigations also bring to light two more universal findings: First,
our results are a clear-cut demonstration that conclusions drawn from considerations of small-
sized clusters of two to a few qubits have limited significance for the many-body problem that
a quantum computer poses. The identification of the frequency collisions and the proposal of
the ACBC frequency pattern to avoid them emanate from an effective model of the CR gate
[291, 306] consisting of a minimal setup of a control, a target, and a spectator qubit. As shown,
when transferred to larger geometries, the suggested local redesign of the transmon processor has
consequences on long-range scales beyond the reach of the minimal model. Thus, incorporating
many-body physics into the design of transmon quantum computers is much needed, as it reveals
aspects for which the established few-qubit picture is blind.

Second, we found that reliable predictions on the localization properties of the weakly disor-
dered transmon array can only be made if the application of the diagnostic tools is preceded by
the extra step of identifying the relevant subspaces. In its most general form, our observation is
that whenever the Hilbert space splinters into ‘sectors’ that are at most weakly cross-correlated,
one has to consider all of them separately to fully uncover the amount of chaoticity. The ex-
act form of the sector depends on the specific scenario. We encountered several instances of
this mechanism. One example is that the level statistics restricted to the computational bundle
{A111B11} is much closer to the Wigner distribution than the statistics for the complete bundle
(see the discussion in Appendix C.3). Particular care must be taken when the sectors overlap
in energy. The absence of inter-subspace correlations fools one into seeing Poisson statistics,
where in fact, when the subspaces are correctly decomposed, each of them exhibits strong level
repulsion. An example along this line is the {A21} bundle of the L = 5 chain, where the mul-
tiplet itself is separated into two subsets. It is easy to imagine that with more complicated
patterns, one can generate a spectrum where different weakly cross-correlated multiplets with
chaotic intra-multiplet correlations can show Poisson statistics because they overlap in energy.
This mechanism is quite generic and comes in different manifestations—not only in transmon
physics. For example, our observation was echoed in Ref. [350], where the spectrum of the one-
dimensional ionic Hubbard model was shown to separate into overlapping symmetry sectors, each
of which is well described by GOE matrices. However, neglecting the separation in independent
blocks yields a nearly perfect agreement with Poissonian level statistics.

To finish, we note that a curious side effect of our results is that the computational states
whose multiplet consists of a single state (e.g., the multiplet {A11111} of the 3 × 3 array) are
resistant to delocalization down to δEJ = 0. This opens the perspective to experimentally test
the predictions of this chapter (once the LASIQ precision has matured or by mimicking patterns
with flux-tunable transmons). Bitstring information should be preserved much longer in these
states than in strongly hybridizing multiplets.
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Classical transmon dynamics
Chapter 6

The simulations of transmon-based quantum computers on classical computers are limited to
small system sizes because the Hilbert space dimension quickly surpasses the limit of what is
numerically feasible. Even with sophisticated methods like shift-invert exact diagonalization
[351], one is restricted to less than 20 coupled transmons. On the other hand, classical equations
of motion (EOM) are easily solved for much larger systems sizes. Considering the Cooper pair
number operator n̂ and the superconducting phase ϕ̂ as a pair of classical conjugate variables
(and ignoring that they have no exact classical equivalent) opens the door to handling many
more qubits. Studying large classical systems is pointless if it is done only as an end in itself.
However, the BGS conjecture [141], discussed in Chapter 2, gives us hope that analyzing the
classical dynamics can provide us with information about the quantum properties. In this chap-
ter, we aim to test the validity of the BGS hypothesis for our model for small system sizes. We
investigate whether signatures of classical chaos appear in parameter regions that showed strong
level repulsion and wave function delocalization in the quantum case. Ideally, an unequivocal
connection between the quantum system and its h̄ → 0-version would allow one to draw con-
clusions about the viability of numerically inaccessible transmon arrays as quantum computers
from the behavior of their classical counterparts alone.

The study of classical chaos in arrays of superconducting qubits was initialized by Börner
[352] and later extended to frequency-engineered transmon arrays by Bönninghaus [353]. Here,
we extend the work presented in these references, which partly exploits parameters outside the
experimental core region and focuses on single disorder realizations. Furthermore, we consider a
few examples demonstrating that one can consider system sizes where the quantum case is (and
will remain) unreachable in numerical simulations on classical computers. The results presented
in this chapter are reported in Ref. [P2].

6.1 Equations of motion

To obtain the classical equations of motion describing arrays of capacitively coupled transmons,
we revert the circuit quantization discussed in Sec. 3.1.3 and demote the operators ϕ̂i, n̂i to
classical variables ϕi, ni. From the (symbolic) commutation relation [ϕ̂i, n̂j ] = iδi,j , see Eq. (3.7),
it follows that ϕi and nj satisfy the Poisson bracket

{h̄ϕi, nj} = δi,j . (6.1)
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6 Classical transmon dynamics

Figure 6.1 –
Lyapunov exponents determine the rate with which two tra-
jectories π(t) and π(t) + δπ(t), initially separated by a dis-
tance ||δπ(0)||, diverge in phase space. The distance grows as
||δπ(t)|| ∼ exp(λt), where λ is the maximal Lyapunov expo-
nent. ||δπ (0) ||

||δπ (t) || ∼ eλt
π(t) + δπ(t)

π(t)

Hamilton’s canonical equations of motion then read

h̄ϕ̇i = {h̄ϕi,H} =
∂H

∂ni
= 8ECni + T

∑
j=NN(i)

nj , (6.2)

ṅi = {ni,H} = − ∂H

∂h̄ϕi
= −

EJ,i
h̄

sinϕi , (6.3)

where H is the classical Hamilton function obtained by replacing ϕ̂ and n̂ with their classical
counterparts in the Hamiltonian Ĥ in Eq. (4.1). The sum in Eq. (6.2) is over the nearest-neighbor
transmons j coupled to the transmon at site i. As pointed to in Sec. 3.2.1, the transmon can
be interpreted as a rigid quantum rotor in a gravitational field, where L̂z = h̄n̂. In this view,
the classical Hamilton function describes a system of mathematical pendulums whose moment
of inertia is I = ml2 = h̄2/8EC and—setting the length of the pendulum stiff l = 1—with
gravitational acceleration g = 8ECEJ/h̄

2. The coupling leads to a somewhat peculiar interaction
between the angular momenta of neighboring pendulums.

For the implementation, we divide Eq. (6.2) by h · 109 and Eq. (6.3) by 2π · 109, which yields
the familiar GHz

h units on the right-hand side. All factors appearing on the left-hand side are
absorbed by rescaling the time t as t → t′ = t

2π · 10−9 such that a time step ∆t′ = 1 in the
simulation corresponds to an actual time of about ∆t = 0.159 ns.

6.1.1 Mimicking qubit states

As before, we are primarily interested in energies relevant to quantum computing applications,
i.e., the energies of computational states with local occupation numbers ‘0’ and ‘1’. To mimic
the qubit states |0〉 and |1〉 of a single transmon classically, we adopt the following convention:
The kinetic energy of the rotor is set to zero, i.e., n = 0. We calculate the lowest energies of the
quantum model Ei, i = 0, 1 and deflect the pendulum by an angle ϕi such that the potential
energy −EJ cosϕi is equal to the energy Ei of the quantum system, i.e.,

ϕi = arccos
(
− Ei
EJ

)
. (6.4)

A classical transmon pendulum with energy E0 (E1) initialized in this way is said to be in the
state |0〉 (|1〉). For multi-transmon arrays, the Josephson energy EJ in Eq. (6.4) varies from site
to site. It is then straightforward to initialize the pendulum system in any classical computational
state (and the generalization to higher occupation numbers is also evident).

6.2 Lyapunov exponents andmethods

In Chapter 2, we emphasized that the exponentially fast divergence of initially nearby trajectories
is a characteristic, even defining property of classical chaos. To capture the rate of separation
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6.3 Results

quantitatively, one considers the difference vector δπ = π− π′ of two trajectories π = (q,p) and
π′ = (q′,p′) in the 2S-dimensional phase space and linearizes the equations of motion for small
δπ, yielding

δπ̇ = Mδπ . (6.5)

The matrix M contains the second derivatives of the Hamilton function with respect to q and
p. With the ansatz δπ(t) = π0 exp (λt), one arrives at the eigenvalue equation for the matrix M,

Mπ0 = λπ0 . (6.6)

The eigenvalues λ are referred to as Lyapunov exponents. If λ > 0, the solutions for the sepa-
ration vectors diverge, i.e., trajectories that are initially close repel. The existence of a positive
Lyapunov exponent is usually taken as an indicator of classical chaos (this also implies that the
linearized EOMs are not a reasonable basis for reliable predictions about the evolution of δπ).
The number of Lyapunov exponents is equal to the phase space dimension 2S. The different λ
describe the distinct separation velocities for different orientations of the initial separation vector
δπ in phase space. Of particular importance is the largest Lyapunov exponent λmax. In general,
an arbitrary initial separation will have a component in the direction of the phase space vector
associated with λmax. The exponentially growing contribution of λmax to ||δπ(t)|| will expunge
the effect of the remaining λ, such that λmax alone can monitor the degree of chaoticity. For a
visualization, see Fig. 6.1. For more details on Lyapunov exponents, see, e.g., Refs. [116, 123].

In the following, we calculate λmax to quantify the degree of chaos in the dynamical system
defined by the 2S differential equations (6.2) and (6.3). Two different methods are employed to
calculate the largest Lyapunov exponent: The results presented below rely on a method proposed
by Benettin [354], where two nearby trajectories evolve in time, with their distance vector being
repeatedly rescaled while preserving its direction. The Lyapunov exponent is extracted from the
averaged time, after which a certain phase space distance threshold ||δπ|| is exceeded, see the
original paper [354] or Ref. [355] for details. To cross-check the results, the complete Lyapunov
spectrum is also calculated using the ‘H2’ method proposed in Refs. [356, 357]. For both methods,
we use the implementation provided by the software library DynamicalSystems.jl [355] that, in
turn, is based on DifferentialEquations.jl [358]. The equations of motion are solved using the
implementation of Tsitouras 5/4 Runge-Kutta method [359]. We verified that the results for
λmax are invariant if higher-order methods (Verner’s “Most Efficient” 7/6 Runge-Kutta method
[360]), lower error thresholds, and longer evolution times (the exact λmax is obtained as a t→ ∞
limit) are used. The units of the Lyapunov exponent are inverse to the time unit. In our case,
this implies that λmax/2π is measured in GHz. In what follows, we suppress the factor GHz/2π
and directly visualize the numerically obtained values.

6.3 Results

6.3.1 Two coupled transmons

A striking results of Ref. [352] was the observation that chaos already emerges in the classical two-
transmon Hamiltonian, provided that the system is excited to sufficiently high energies. For such
low-dimensional phase spaces, a handy tool for analyzing the dynamics are Poincaré sections.
The idea is to capture a stroboscopic impression of the motion in phase space by marking the
system every time it crosses a directional hyperplane. To be specific, we record all pairs (ϕ1, n1)
with ϕ2 = 0 and n2 > 0, i.e., the Poincaré section is the projection of the intersection of the phase
space trajectory with the ϕ2 = 0 plane to the ϕ1-n1 plane, where the requirement n2 > 0 fixes a
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6 Classical transmon dynamics

Figure 6.2 –
Poincaré sections for two cou-
pled transmons. The four pan-
els show Poincaré sections in the
ϕ1-n1 plane with ϕ2 = 0 and
n2 > 0. The initial conditions are
ϕinit

1 = ninit
2 = 0, ninit

1 = 0.01,
and ϕinit

2 = π − x. Specifically, we
choose (a) x = 0.1 (b) x = 0.05,
(c) x = 0.02 (d) x = 0.0005. The
projected trajectory changes from
a curve to an area as ϕinit

2 ap-
proaches π, indicating the onset of
classical chaos. We set EJ,1 = 98.8
GHz, EJ,2 = 101.2 GHz, T = 40
MHz, and EC = 250 MHz. In-
spired by Ref. [352].
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crossing direction. For integrable systems, the existence of two conserved quantities restricts the
phase space trajectories to two-dimensional tori such that the intersection with the plane ϕ2 = 0
results in a curve in the (ϕ1, n1, n2) space. The projection to the ϕ1-n1 plane is also a curve. On
the other side, if only the Hamilton function is conserved, the phase space trajectory lies on a
three-dimensional submanifold, and the intersection with the plane ϕ2 = 0 is a two-dimensional
object in the (ϕ1, n1, n2) space. Projecting to the ϕ1-n1 plane yields an area covering a finite
fraction of the plane that becomes densely filled as t → ∞. Studying Poincaré sections thus
allows one to distinguish between chaotic and integrable dynamics.

To monitor the inset of irregular dynamics, we vary the initial angle ϕinit
2 while keeping ϕinit

1 =
ninit
2 = 0 and ninit

1 = 0.01 fixed. Fig. 6.2 shows four different Poincaré sections for initial angles
ϕinit
2 , which—from (a) to (d)—get progressively closer to π. While the closed curves for (a) and

(b) indicate that the motion is (quasi)periodic and thus integrable, one observes a qualitative
change upon further increasing ϕinit

2 . The Poincaré section then extends over a finite fraction of
the ϕ1-n1 plane, as is expected for chaotic systems where only energy is conserved.1

In Fig. 6.3, we show the chaotic trace of Fig. 6.2(c) together with additional Poincaré sections
belonging to trajectories with different initial conditions but identical energy. What stands out is
the coexistence of irregular orbits and simple, regular trajectories, forming integrable islands in
the surrounding chaos. This is a typical trait of weakly nonintegrable systems [116] and is usually
discussed in the context of the Kolmogorov-Arnold-Moser (KAM) theorem [361] that considers
the stability of tori of an integrable system when adding small perturbations. Here, however,
we do not add an integrability-breaking term to the Hamiltonian but control the strength of the

1The largest Lyapunov exponent further corroborates these findings. We observe that λmax remains close to zero
for ϕinit

2 . π − 0.03 but acquires a nonzero value if the initial angle further increases. However, the Lyapunov
analysis for the specific initial conditions with ϕinit

2 ≈ π has the inconvenience that the precise number depends
strongly on the parameters of the algorithms. In particular, it never truly converges in the evolution times
considered. This pathology is only observed for this specific initial condition and is why we refrain from
providing specific numbers. Note, however, that one always finds a nonzero Lyapunov exponent for the same
initial condition, regardless of the convergence issues in the λmax 6= 0 regime.
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Figure 6.3 – Coexistence of chaotic and regular orbits in a system of two coupled transmons. The chaotic
orbit, shown in gray, has the same initial conditions as in Fig. 6.2(c). All trajectories belong to the same
energy. Upon magnification of the excerpts, one notices a recurring pattern of regular orbits surrounded by
smaller integrable islands. This self-similarity is a textbook example of the Poincaré-Birkhoff theorem.

nonintegrability via the energy (the famous Hénon-Heiles model [362] is similar in that regard).
Nevertheless, one observes other KAM characteristics as well, for example, the emergence of self-
similarity on all scales as a consequence of the splitting of all rational tori into chains of elliptic
and hyperbolic fixpoints (Poincaré-Birkhoff theorem, see, e.g., Ref. [132]). This is illustrated by
the enlarged views in Fig. 6.3, where the magnification reveals a recurring pattern of regular
islands.

These considerations establish that systems of only two transmons can show chaotic dynamics,
but it should be noted that chaos is generated very artificially:

• The chosen Josephson energies EJ lie above the experimental core region.

• The coupling T is near the upper limit of current experiments.

• The excitation energies surpass the relevant range for information processing.

For initial conditions mimicking the computational states |00〉, |10〉, |11〉, the signatures of chaos
disappear. Furthermore, the traits of chaos are a peculiarity of how the energy is initially
divided between the two transmons. For example, the Lyapunov exponents strictly vanish for
initial conditions where an energy similar to the one in Fig. 6.2(d) is distributed equally to
both transmons. As is to be discussed next, chaos loses its synthetic form once the number
of transmons increases. It then affects the dynamics of systems with energies and parameters
relevant to quantum computing applications.

6.3.2 Ten coupled transmons

We now turn to our paradigmatic example of the L = 10 chain and focus on energies pertinent to
quantum information processing. More precisely, the system is prepared in the |1010 . . . 〉 state,
i.e., the angles ϕi on the even (odd) sites are chosen such that the initial single transmon energies
correspond to the quantum mechanical energies E0 (E1). Fig. 6.4(a) shows the results for the
disorder-averaged maximal Lyapunov exponent for scheme-a disorder and the same values of the
Josephson energy EJ and the coupling T used for the quantum model in Sec. 4.5. Notably, λmax
is nonzero almost everywhere in the T -EJ plane, indicating that the ten-transmon chain shows
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Figure 6.4 – Classical chaos in a chain of ten coupled transmons. (a) Disorder averaged maximal Lyapunov
exponent for scheme-a disorder and the same T and EJ values as in Fig. 4.13. The transmon is initialized
in the |1010 . . . 〉 state. For each parameter point, λmax is averaged over at least 8,000 disorder realizations.
Panels (b)–(e) show the time-dependent single transmon Hamilton functions for the sites 5 (upper row) and
6 (lower row) for two disorder realizations. The left (right) column corresponds to a disorder realization with
parameters marked by the green (blue) star in (a). In all panels, the quantum mechanical energies E0 and E1

are indicated by the solid and dashed vertical lines. Whereas the transmon energies remain near their initial
values in (b) and (d), they fluctuate heavily on timescales much shorter than typical decoherence times in (c)
and (e). Only in the first case can one draw credible conclusions about the initial bitstring ‘1010 . . . ’ from the
energies at t > 0. This consideration shows that the magnitude of λmax, which is small for (b) and (d), but
large for (c) and (e), can serve as a quality indicator of the classical transmon ‘storage device’.

traits of classical chaos in a significant part of the relevant parameter ranges and for energies at
which quantum computers operate. A λmax near zero is only found in a narrow region around
T = 0. On closer inspection, one recognizes that the Lyapunov exponent is not monotonically
increasing. Following one of the horizontal lines with a fixed EJ , it becomes apparent that a
maximum and a minor drop follow the initial sharp increase. Finally, λmax settles at a value
slightly below its maximum amplitude as T increases further.

Using the timescale on which the local excitation numbers 〈n̂i〉 fluctuate as a barometer, we
discussed in Sec. 4.9 that the compromising effects of quantum chaos occur fast compared to
typical decoherence or gate times, which renders information storage impossible. Classically,
one may attempt to encode local information in the energies of the individual transmons. As
an example, consider the Hamilton function for the transmon at lattice site 5, i.e., H5(t) =
4ECn5(t) − EJ,5 cosϕ5(t). If H5(t) takes the value of the ground state energy E0, this encodes
the bit value ‘0’, and similar for E1 and ‘1’. For proper information storage, once initialized in,
say, ‘1’, transmon 5 should stay close to E1, or at least not cross E0 in an uncontrolled way. We
analyzed the temporal fluctuations in the ‘on-site’ energies for transmon arrays initialized in the
|1010 . . . 〉 state and the parameter points marked by the stars in Fig. 6.4(a). The results are
shown in Fig. 6.4(b)–(e). For clarity, the visualization focuses on the lattice sites 5 (upper row)
and 6 (lower row). The left column ((b) and (d)) show H5(t) and H6(t) for the parameters marked
by the green star in panel (a). This point has a nonzero yet very small Lyapunov exponent. The
local transmon energies fluctuate around their initial values (E1 (E0) for transmon 5 (6)) but
remain close such that H5(t) ≈ E1 and H6(t) ≈ E0 for all t. The information is therefore
maintained over the considered timescale. The situation is quite different for the blue star in (a).
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Figure 6.5 –
Data collapse for the maximal Lyapunov
exponent. As for the KL divergences and
the IPR, the individual horizontal lines of fixed
EJ forming the 2D representation of λmax in
Fig. 6.4(a) (and also shown in the inset) can be
collapsed onto each other by rescaling the cou-
pling with the respective value of the Joseph-
son energy as T → T

√
EJ . Especially for small

T
√
EJ , i.e., in the region where λmax rapidly in-

creases, all data collapses almost perfectly on a
single line, indicating that T

√
EJ is the crucial

quantity controlling the onset of classical chaos.
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With the Lyapunov exponent close to its maximal value, the local transmon energies fluctuate
rapidly with an amplitude that exceeds the energy spacing between E0 and E1. For example, as
shown in (c), the local energy of transmon 5 drops from E1 to E0 after only a few nanoseconds
and never fully recovers. Information about the initial ‘1010 . . . ’ bitstring is rapidly washed out.
The two disorder realizations for which the results in Fig. 6.4(b)–(d) were obtained are ‘typical
representatives’ of their parameter points in the sense that the individual Lyapunov exponent
are close to the disorder-averaged values. This analysis thus suggests a valid correspondence
between the suitability of the system as a classical memory and the magnitude of the Lyapunov
exponent.

Another striking feature in Fig. 6.4(a) is that the lines of constant λmax are similar to the
contour lines of the IPR and the KL divergences in the quantum model. In fact, rescaling
the T axis as T → T

√
EJ reconciles the individual traces of the Lyapunov exponent underlying

Fig. 6.4(a). As shown in Fig. 6.5, all λmax(T ) obtained for different Josephson energies (shown in
the inset) are collapsed onto each other. The data collapse works particularly well in the small-T
region. Thus, the classical systems show an intriguingly close relationship to the quantum system,
for which we identified the parameter T

√
EJ as the transition-driving quantity. In Sec. 4.5.3, a

good data collapse was obtained by rescaling T as TE0.54
J .

6.3.3 Towards larger system sizes

The above discussion shows that the predictions of the BGS conjecture are accurately met for
arrays of capacitively coupled transmons, paving the way to apply classical simulations to larger
systems for predicting the danger posed by quantum chaos. Fig. 6.6(a) depicts the disorder-
averaged maximal Lyapunov exponent for chain geometries containing between two and 40
transmons. Chains with L > 20 elude quantum mechanical simulation. As before, the ar-
rays are initialized in the classical analog of the |1010 . . . 〉 state. We set EJ = 10 GHz and
exploit scheme-a disorder. Besides demonstrating that classical simulations can easily handle
larger systems, Fig. 6.6(a) also shows a slight tendency toward more chaos as the system size
increases. In particular, already the four-transmon chain becomes chaotic when initialized in a
typical computational state.

Fig. 6.6(b) depicts results for the 65-qubit ‘Hummingbird’ processor, scheme-a disorder, and
three different values of the Josephson energy EJ . For the heavy-hexagon geometry, one has
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Figure 6.6 – Classical chaos in large systems, beyond the limit of what can be simulated quantum mechan-
ically. (a) Maximal Lyapunov exponent for transmon chains of varying length L, initialized in the |1010 . . . 〉
state. All results are averaged over at least 18,000 disorder realizations. Quantum mechanical simulations are
restricted to L < 20. (b) Results for the ‘Hummingbird’ layout. In the inset, green (black) lattice sites denote
control (target) qubits. The solid (dotted) lines correspond to an initial states where all target (control) qubits
are initialized in the state |1〉 and the remaining transmons in the ground state. Results are averaged over at
least 5,000 disorder realizations.

to distinguish between two initial conditions with an alternating 1–0 pattern: The dotted lines
show the results when all target qubits (shown in black in the small inset) are initialized in
|0〉 and the control qubits (green) in |1〉. For the solid lines, the situation is reversed. As the
number of control qubits exceeds the target qubits, the energy density is higher if the control
qubits are initialized in |1〉. For this configuration, the Lyapunov exponent is found to be larger,
signaling a stronger propensity to chaos. The nonmonotonicity in λmax is more pronounced in
this two-dimensional geometry, a trend that continues on the square lattice with even higher
connectivity (results are not shown).

For a single disorder realization, it takes O(10) seconds2 to calculate the Lyapunov exponents
for the 130-dimensional phase space of a ‘Hummingbird’ processor on a single core of an ordinary
desktop computer. For the same system, when initializing, e.g., all control (target) qubits in the
state |1〉 (|0〉), the corresponding excitation bundle (that, strictly speaking, is no longer well-
defined at such high energies) alone contains more than 1027 states.

6.3.4 Classical chaos in frequency-engineered transmon arrays

Finally, we show that the classical analysis is also sensitive to the more subtle forms of delocal-
ization we encountered in the precision-engineered transmon arrays in Chapter 5. We exemplify
this with the familiar 3× 3 geometry with a superimposed AB frequency pattern. This problem
was first addressed in Ref. [353]. We discuss two different initial conditions: First, three of the
five A transmons and two of the B transmons are initialized in the |1〉 state. The remaining

2This estimate holds for the default settings of the software library [355], with which the results of Fig. 6.6 were
obtained. For example, neighboring trajectories evolve for a total of 10,000 time units. See Ref. [355] for more
details.
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Figure 6.7 –
Classical chaos in precision-
engineered transmon arrays. Shown
is the disorder-averaged λmax calculated
for initial conditions mimicking states
from the two multiplets {A111B11}
and {A11111}. For comparison with
the quantum model, the IPR of the
respective bundles is depicted as well
(dashed lines). The classical results
reflect several properties of the quantum
system, e.g., the inset of early chaos
indicators at similar disorder strengths
or the more pronounced susceptibility of
the {A111B11} bundle. All results are
averaged over at least 30,000 disorder
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transmons start in |0〉. Second, all excitations are put on the A sublattice. In the parlance of
Chapter 5, this corresponds to initial configurations from the permutation multiplets {A111B11}
and {A11111}. All systems parameters are chosen as in Fig. 5.5. Fig. 6.7 shows the results for
the disorder-averaged, maximal Lyapunov exponent as a function of the residual disorder, i.e.,
the frequency spread δEJ around the two mean values EJ,A and EJ,B. Recourse to the quantum
mechanical model (partially) explains the observed behavior. Thus, to facilitate the discussion,
the bundle-specific IPR is also displayed in Fig. 6.7.

When the pattern structure is negligible for large disorder, the Lyapunov exponent is close
to zero for both multiplets. Quantum mechanically, this regime corresponds to the global MBL
phase with an IPR close to one. For the multiplet {A111B11}, both the classical and the quantum
model exhibit signatures of chaos as the disorder lessens. The IPR displays the characteristic
succession of disorder regimes discussed in Chapter 5: a slight decrease before the multiplets
form, followed first by a plateau where states are localized within multiplets, then by the quantum
chaotic phase for even smaller δEJ and, finally, the symmetry-dominated regime. Not all these
successive transitions are resolved in the Lyapunov exponent. λmax increases for the same disorder
strength where the first drop in the IPR occurs but quickly saturates at a disorder strength of
about δEJ = 300 MHz without resolving the regime of intra-multiplet localization. Further
reducing the frequency spread does not increase the chaoticity.

The multiplet {A11111} contains only a single state. Therefore, the IPR remains close to one
for all values of δEJ , except for the small disorder range (δEJ ∼ 1 GHz) between global MBL
and multiplet formation. This behavior is fairly accurately reflected by λmax, which exhibits
a maximum at a similar disorder strength. However, after further lowering the disorder, λmax
saturates at a small nonzero value, about four times smaller than for {A111B11}.

In summary, the Lyapunov exponent shares many, though not all, characteristics of the feature-
rich IPR. For example, classical chaos and delocalization of quantum mechanical wave functions
set in at similar disorder strength. The two multiplets show different behavior in both, their
low-δEJ Lyapunov exponents and IPRs, suggesting that the classical analysis can resolve the
difference in the susceptibility of multiplets to quantum chaos. On the other side, the classical
system tends to be somewhat more prone to the onset of chaos, an observation that has also
been made in other systems [363]. For example, there is no further minimum of λmax mirroring
the regime of intra-multiplet delocalization.
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Figure 6.8 – Comparison of classical and quantum chaos for various disorder regimes ranging from scheme
a (left) to scheme b (right). There is a striking similarity, especially for small T

√
EJ , between the evolution of

the maximum Lyapunov exponent (top row) and the IPR (bottom row). In both the classical and the quantum
model, the important parameter interpolating between regular and chaotic behavior is T

√
EJ (for a disorder

that scales as δEJ ∝
√
EJ). Increasing the disorder pushes the chaotic region to the upper right corner in the

T -EJ phase diagrams. To be specific, the disorder is defined as δν = c · EC or equivalently δEJ = c
4

√
2EJ ,

where, from left to right, c = 1/2 (scheme a), c = 1, c = 2, c = 4, c = 6 (scheme b).

6.4 Summary

In this chapter, we considered the transmon quantum computer as a classical system of coupled
nonlinear pendulums and used the Lyapunov exponent to quantify the degree of classical chaos.
Signatures of irregular dynamics already emerge in systems of only two transmons, albeit at very
high energies. For the ten-transmon chain, chaos emerges at energies, system parameters, and
timescales relevant to quantum computing applications.

In particular, this analysis demonstrates an intimate connection between the properties of the
classical and quantum model. This is summarized in Fig. 6.8, which shows λmax (upper row)
and the IPR (lower row) for various regimes between scheme-a and scheme-b disorder. In many
facets, their behavior is similar: increasing the disorder pushes the realm of chaos to the upper
right corner of the T -EJ phase diagram and enlarges the chaos-free comfort zone. We note,
however, that despite the intriguing similarity, some features of the classical model are unique.
For example, the ‘twilight zone’ of hybrid level statistics has a slightly larger Lyapunov exponent
than the region of hard quantum chaos.

In proof-of-principle calculations, we demonstrated that the classical simulation can tackle
much larger systems. Statements about the scaling of the complexity of solving the transmon
EOMs with increasing system size are difficult to make. The calculation time varies enormously
when changing the integration methods or the desired accuracy. What can be said, however, is
that the complexity increases slower than for quantum mechanical calculations. For example,
using an explicit ODE solver, the effort for a single time step grows as O((m + 1)L), where L
is the number of transmons and m is the coordination number. This gives hope that classical
simulations can keep up with the processor sizes expected in the upcoming years (e.g., IBM’s
4,158-qubit ‘Kookaburra’ processor announced for 2025).3

3In passing, we note that some tentative results for a 1,121-qubit system (inspired by IBM’s largest monolithic
‘Condor’ processor) fit neatly into the presented results.
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6.4 Summary

What is the predictive power of classical simulations? Our analysis shows an unequivocal,
qualitative connection between the classical and the quantum mechanical system at the level of
disorder averages. The missing pieces to make the classical analysis a potent tool for identifying
optimal system parameters are

• to establish a quantitative relationship, e.g., a mapping between specific values of the
Lyapunov exponent and the IPR.

• a demonstration that the correspondence between λmax and the IPR also holds on the level
of individual disorder realizations.

Let us elaborate on the second point: For fixed EJ and T , the values for both IPR and λmax
scatter around a mean value, which so far has been the focus of our considerations. What
is to be shown is that individual disorder realizations, which show unusually little signatures
of classical chaos (lower λmax than the mean), also have an exceptionally high IPR. For small
systems, like the L = 10 chain, this is straightforward (yet left for further research) to check.
If the assumption is confirmed, classical simulations could identify the configurations in the
Josephson energy landscape that are most appropriate for quantum computing, even for systems
sizes beyond the reach of a quantum mechanical simulation.

Of course, we have opened the richly filled toolbox of classical chaos theory only for a crack.
It would also be interesting to apply other methods which have recently gained popularity for
the quantification of classical chaos, like the generalized alignment index method [364] or the
0-1 test [365], to our system to investigate whether these can contribute in formulating sharper
quantitative connection between the classical and the quantum system.
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Concluding remarks
Chapter 7

All quantum computing efforts operate in a tension field between efficient qubit operation and
qubit protection. The paradigmatic example for this protecting-operating dilemma is the irrecon-
cilability of perfect shielding from the environment to prevent rapid decoherence with the need
to couple qubits to the environment for enabling manipulation and readout. The work conducted
within the framework of this thesis introduced a novel incarnation of the protecting-operating
dilemma. By bringing the concepts of many-body localization to the transmon architectures
for quantum computing, we showed that qubits must not only be protected from decoherence
but also from the intrinsic, destabilizing effects of quantum chaos and eigenstate thermalization.
Chaotic fluctuations emerge regardless of the properties of the individual qubits, i.e., even for
hypothetical qubits with infinite decoherence times. A central role is played by disorder that
arises either due to imperfections in the fabrication process or as artificially introduced site-to-site
variations in the Josephson energies. Disorder has a Janus-faced character: Too much disorder
prevents the onset of chaotic fluctuations but sacrifices operational efficiency because entangling
gate operations are slowed down. For too little disorder, any locally encoded information is
quickly lost during the unitary time evolution of the thermalizing system. The most important
finding established in this thesis is that this hazard is not a hypothetical one. We demonstrated
that the abysses of chaos reach close to the parameter regions in which some of the contemporary
transmon platforms operate. Quantum chaos affects the processing of information on timescales
much shorter than typical decoherence times.

Transmon engineering research is characterized by a certain ephemerality: it constantly breeds
new proposals for qubit variants [312], coupling schemes [366], or gate techniques [367], see the
references for proposals that appeared in 2022. Predicting whether an idea will prevail is difficult.
What starts promisingly often has to be abandoned, modified, or further extended because the
initial approach is not scalable. An example is the LASIQ technology: Since it was first unveiled
in the fall of 2020, it has served as an indispensable tool to lift IBM’s quantum computers to
the current level of maturity, signaled by a constant increase in the quantum volume [311]. At
the same time, however, it has become abundantly clear that LASIQ alone is insufficient to
keep pace with the company’s own roadmap [297]. The development of modular quantum com-
puter designs, which is being driven forward in parallel with the construction of the monolithic
processors (that ends with the ‘Condor’ chip in 2023), will, for example, be accompanied by
a major turnaround in the coupling hardware and exploit a tunable coupler architecture [368].
For these reasons, the ultimate aspiration of an MBL perspective to the transmon quantum
computer should not exclusively be to capture the current state of the technology or to follow
the innovations of transmon engineers1 at every turn. Equally important are the timeless find-

1As an example of the transitory nature of the ‘state of the art’, we note that days before this work was completed,
IBM made its ‘Prague’ processor [369] publicly available. It realizes a strongly detuned AB frequency pattern
(νA − νB is around three times larger than expected for fixed-frequency architectures). This processor exploits
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Figure 7.1 – Fate of the MBL phase under a periodic drive. (a) The cartoonish sketch of a CR drive
tone shows that the envelope contains many oscillations, such that one can consider the transmon array as a
Floquet system. (b)–(c) An MBL phase that exists above a critical disorder strength hc can survive a periodic
drive with frequency νd, provided that the driving frequency is high enough. Figure inspired by Ref. [218].

ings that remain valid independent of new ingenious workarounds to mellow, e.g., the frequency
crowding problem. From this bird’s eye perspective, the most important insight of this study is
that the MBL perspective offers a fresh perspective on transmon-based quantum computers. It
reveals new insights that are overlooked in the ‘traditional’ two- or few-qubit picture. The MBL
toolbox should therefore complement the existing quality indicators. As an example, reconsider
the results of the Walsh analysis in Chapter 4. So far, the superconducting qubit community
has only tried to free qubits from the nearest-neighbor ZZ couplings, which are indeed the most
dangerous ones. However, our analysis indicates that more remote couplings crucially affect
the identity of the l-qubits. Pondering the influence of more distant correlations—exponentially
smaller but also exponentially more numerous—on the structure of many-body eigenstates has
always been an integral part of MBL theory. Along similar lines, this also applies to the re-
sults presented in Chapter 5. The idea of implementing a ‘frequency unit cell’, i.e., a pattern
that continues disorder-free in the processor geometry, is motivated by the examination of NN
frequency collisions in minimal setups of two to three qubits. However, regular patterns are
a fundamental obstacle in realizing a functioning computing device. Wave functions delocalize
due to principles that lie outside the well-studied ZZ paradigm. Therefore, insights from MBL
physics are relevant for transmon processors, including from an engineering perspective.

Looking forward, there are many possible extensions of our work. Most trivially, the model
considered here can be used to work through the unique dynamical properties that characterize
the MBL phase, like the logarithmically slow entanglement spreading or the recently discussed
memory hierarchy for many-body localization [370]. Just as the static diagnostic monitors a
varying extent of delocalization in the MBL regime, it is interesting to investigate the behavior
of the different dynamical quantities for experimentally relevant parameters in small transmon
arrays. Conceptually, no radically new insights are to be expected there because, for example,
the entanglement growth is a symptom of the nonlocal nature of the wave functions condensed
in the Walsh coefficients and the IPR. A more progressive step is to revert the approximations
made in Chapter 1 that yielded the minimal ‘quantum memory’ model and to study whether
dynamical instabilities during gate operations might be a further stumbling block in realizing a

a new hardware approach [369], even though no further details are known yet.
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high-quality transmon quantum computer. A pilot project [P3] investigated a minimal system
consisting of two transmons coupled to a common oscillator that is driven with a fine-tuned
control pulse to implement an entangling BGATE [371]. It was shown that signatures of irreg-
ular dynamics emerge in the eigenphase distribution of the time evolution operator, which is
described by the circular unitary ensemble [372] if the dynamics are chaotic. Such small sys-
tems, e.g., the L = 3 transmons chain, showed little evidence of delocalization in the static case,
indicating that the implementation of gates meets new, chaos-related challenges. Beyond this
rather meticulously designed and artificial gate approach, all-microwave gates in fixed-frequency
architectures, in general, deserve special attention from an MBL perspective. These gates are
activated by periodically driving a transmon or, as above, a common oscillator. As schematically
shown in Fig. 7.1(a) for the CR gate, the gate duration is long compared to the drive frequency.
One can therefore consider the transmons as a periodically driven Floquet system. Pioneering
work by Abanin et al. [219] and Lazarides et al. [218] demonstrated that a periodic drive bears
the capability of fundamentally altering the MBL-ETH phase diagram shown in Fig. 7.1(b). The
localized phase that exists for a disorder exceeding some critical value hc gets diminished once
a periodic drive sets in, provided that the driving frequency is slow enough, as can be seen in
Fig. 7.1(c). Quantitatively, one can capture the reshaping of the phase boundary by estimating
the probabilities of adiabatic Landau-Zener transitions occurring in the time-evolved spectrum
[219]. In general, a local drive is expected not to alter the stability of the MBL phase. The above
picture holds for a global drive on all system constituents. For the transmon array, this raises
the question of whether it is possible to run multiple gates simultaneously or whether the already
small margin for a good balance between disorder and coupling strength is further diminished.
A first attempt to bring the ‘curvature measures’ for capturing the Landau-Zener probabilities
introduced in Ref. [373] to small instances of cross-resonance architectures has been made in
Ref. [374].

Concerning an experimental validation of our predictions, one should note that in a real quan-
tum computer, many harmful influences play in concert to prevent the device from working
error-free, such that it might be a nontrivial task to isolate the effect of delocalization. However,
recent developments allow one to directly probe the many-body spectrum and scan it for signa-
tures of level repulsion [211]. Flux-tunable architectures deserve special attention: Even though
they typically operate with a larger frequency spread, they can mimic the smaller scheme-a
disorder of fixed-frequency architectures. They could also be exploited to implement frequency
patterns, a task for which it remains doubtful whether it can be carried out with the current
state of the LASIQ technology. Similarly, tunable couplers allow one to probe the entire coupling
range T considered here [39].

While this thesis investigated the implications of many-body physics for the construction of
transmon quantum computers, one can also turn the table and exploit transmon arrays as sim-
ulators of interacting many-body systems. This opposite perspective has gained considerable
attention in the last few years, from theory [183] and experiments [211, 335, 375]. Supercon-
ducting qubits have established themselves as one of the leading platforms for investigating the
intricacies of localization physics. In particular, the hope is that transmon experiments could
be used to shed more light on the renewed discussion on finite size effects in MBL systems [204,
376]. Recently, signatures of the MBL phase were probed in a processor of 19 transmons [377],
a system size at the very top edge of what classical computers can simulate.

As a final closing remark, it should be said that—despite the observation made here that some
transmon platforms are close to the edge of chaos with all its devastating consequences—we take
this work to be a constructive contribution: Ideally, it is a first step towards establishing the
many-body perspective as an integral part of future processor design efforts. The sharp tools
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presented here can help to identify optimized device configurations that precisely hit the difficult
compromise in the ‘low vs. high disorder’ or ‘slow gates vs. quantum chaos’ manifestation of the
protecting-operating dilemma. This holds in particular for the Walsh analysis that reacts very
sensitively to early indicators of delocalization. Initial efforts in this direction have been made
in Ref. [378], that employs the Walsh diagnostic to design a quasi-periodic frequency patterning
that effectively localizes the system. Moreover, we established a close analogy between the
occurrence of chaos in classical systems of coupled mathematical pendulums and the appearance
of quantum chaos. This suggests that classical chaos theory can serve as a useful benchmarking
tool for system sizes beyond the reach of a quantum mechanical simulation and specifically for
the processor geometries that are expected to be launched in the upcoming years. First follow-
up work [376, 379] shows that the symbiosis of the very theoretical branches of many-body
localization theory and classical chaos theory with the more applied field of superconducting
qubit engineering is considered very fruitful and beneficial.
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Appendix for Chapter 3
Appendix A

A.1 Examples of LASIQ tuned chips

In Sec. 3.5.1, we claimed that the frequency distribution in fixed-frequency processor architectures
is usually well described by a single Gaussian. For the IBM cloud devices, the width of this normal
distribution is around 100 MHz. This holds even for chips where the frequencies are modulated
post-fabrication to reduce the number of NN frequency collisions. Here, we substantiate this
statement with further examples of processors from the IBM cloud [59]. We consider one chip
of each of the three generations in use in mid-2022, the ‘Falcon’, ‘Hummingbird’, and ‘Eagle’
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(a) (b)

(c) (d)

Figure A.1 – Processor geometries and spatial distribution of frequencies for (a) an untuned ‘Falcon’ chip
and (b)–(d) LASIQ-tuned IBM cloud devices. Panel (b) shows the ‘Montreal’ (‘Falcon’), (c) the ‘Manhattan’
(‘Hummingbird’), and(d) the ‘Washington’ (‘Eagle’) processor. For all four presented chips, whether LASIQ
tuned or not, there are no apparent spatial correlations between nearby frequencies.
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Figure A.2 – Frequency probabilities and distribution of NN frequency differences akin to Fig. 3.17
for the ‘Montreal’, ‘Manhattan’, and ‘Washington’ chip. Panel (a) shows that all distributions are consistent
with a single Gaussian, even though the distributions of the NN frequency differences shown in (b) reveal clear
LASIQ-induced anti-correlations between neighboring frequencies. This should be contrasted with Fig. 3.17(c),
which shows that the frequency collisions occur much more frequently in untuned devices.

processors (the most recent ‘Osprey’ is yet to be available online). Fig. A.1 shows the processor
layouts and the color-coded qubit frequencies. Panels (b), (c), and (d) illustrate the ‘Montreal’
(‘Falcon’), ‘Manhattan’ (‘Hummingbird’), and ‘Washington’ (‘Eagle’) chips. As expected, there
is no regular frequency structure. For comparison, Fig. A.1(a) shows the untuned ‘Falcon’
processor discussed in Ref. [308], whose frequency distribution is qualitatively similar.

Fig. A.2 illustrates the distribution of the frequencies ν and the NN frequency differences
νC−νT for the three example processors, akin to Fig. 3.17 in Chapter 3. As shown in Fig. A.2(a),
for all chips, we find our expectation of an approximately Gaussian distribution of the frequencies
confirmed. At the same time, the distribution of the detunings between control and target qubits,
visualized in Fig. A.2(b), reveals clear signs of the LASIQ procedure. The forbidden regions
where NN frequency collisions occur are shaded in gray. These regions are (at least partially)
successfully avoided.

Fig. A.3 further shows that not only is the form of the disorder similar for the currently
available LASIQ tuned chips and the scheme-a ‘natural’ disorder but that the disorder strength
is also comparable in both cases. Shown is the average Josephson energy 〈EJ〉 obtained for all
chips from the publicly documented data1 for ν and EC [59] and the disorder strength, defined as

1All calibration data was downloaded on 11/23/2021, except for the data for ‘Washington’ (12/15/2021), ‘Man-
hattan’ (11/16/2021), and ‘Dublin’ (11/08/2021).
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Figure A.3 – Experimental parameters of IBM cloud devices. Variance δEJ and mean value 〈EJ〉 of the
Josephson energies for nine realizations of the 27-qubit ‘Falcon’ design and two realizations of the 65-qubit
‘Hummingbird’ design. The cross-shaped markers denote the scheme-a disorder calculated for each processor’s
averaged value of EJ and EC . In all chips, the Josephson energy spread is close to (although slightly smaller
than) the definition of scheme-a disorder. For comparison, the dashed lines indicate the much higher variance
used in flux-tunable architectures and the residual disorder after LASIQ tuning. The latter is understood as
the LASIQ precision, i.e., the width of the hypothetical Gaussian obtained if LASIQ were used to align all
frequencies.

the standard deviation of the normal distributions fitted to the EJ histograms with a maximum
likelihood estimation. In our simulations, scheme-a disorder is defined as δν = EC/2, which
translates to δEJ =

√
ECEJ/8. To compare the disorder found in the IBM devices to the

scheme-a definition, we can calculate the scheme-a disorder equivalent for each cloud processor
by evaluating the expression for δEJ with the mean values for EC and EJ that characterize
each IBM chip. The result is shown as a dashed line with cross-shaped markers in Fig. A.3.
The actual disorder is slightly smaller than the scheme-a estimate, but both are in reasonable
proximity.

The essence is that our analysis in Chapter 4 with Gaussian scheme-a disorder applies to
current IBM devices, including the recent Eagle generation, despite the LASIQ progress in fab-
rication precision. In configuration space, the controlled detuning of neighboring transmons
translates to the detuning between a lattice point and one of its neighbors. Thus, in the high-
coordination lattice, only a tiny fraction of the hopping processes becomes off-resonant such that
the overall localization picture is expected to be affected at most slightly.
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Appendix for Chapter 4
Appendix B

This appendix supplements Chapter 4 with a more in-depth discussion of the technical details
of the implementation (B.1–B.3) and with further results not included in the main body.

B.1 Truncation of the Hilbert space

This section builds on Sec. 4.3.2 and further comments on the several ways to truncate the
Hilbert space, which is necessary to facilitate numerical diagonalization. Consider the basis
formed by the states |l1 . . . lL〉, where {li} is a set of local transmon excitation numbers. The
first possibility is to restrict the Hilbert space of each transmon to the lowest k levels, i.e., li < k,
yielding dimH = kL. This approach suffers from several major drawbacks. For concreteness,
let us assume that we are interested in the properties of typical computational states with five
‘1’s in an L = 10 chain. For an accurate description, all the energetically close states from the
Nex = 5 bundle should be considered. Following the above truncation scheme, one approximates
each transmon by a six-level system (ground state and five excited states). The dimension of the
truncated Hilbert space is dimH = 610, shifting the problem over the edge of what MBL studies
with Krylov subspace methods usually encounter [351, 380]. At the same time, we expect states
from the fifth excitation bundle or bundles in the vicinity to have the most significant impact. In
our example, states up to Nex = 50 are included in the Hamiltonian. In fact, the vast majority
of states are energetically so far away from the target window that their impact is expected to
be negligible. On the other hand, all bundles with Nex > 5 are incomplete, e.g., states with the
excitation structure {7}, {61} are missing in the manifold with Nex = 7. A priori, one cannot
exclude that these states influence the target bundle with Nex = 5.

The better alternative when constructing a set of basis vectors is to pick out those Fock states
|l1 . . . lL〉 whose energies are close to a specified target energy for T = 0. Thus, if we want to study
the energy range occupied by the states with Nex = 5, one chooses an energy window around
this bundle and constructs the Hamiltonian matrix restricted to states within that window. The
remaining question to be answered is how large this range must be selected to obtain meaningful
results. To exemplify the influence of the Hilbert space dimension on the levels of the interacting
system, we consider Fig. B.1, where the spectrum of the Nex = 3 bundle of a chain of length
L = 6 are shown as a function of the coupling strength T . Shown in blue are the energies
calculated by diagonalizing the Hamiltonian restricted to that bundle, i.e., a 56×56 matrix. For
the spectrum in red, all states with Nex ≤ 6 are used to construct the Hamiltonian, increasing
the Hilbert space dimension to dimH = 924. The difference in the energies is hardly noticeable
on the scale set by the width of the bundle, see (a). Zooming in reveals that the major effect
of the enlarged Hilbert space is that all levels are slightly pushed down. Most importantly, this
shift is nearly identical for all states and does not lead to qualitatively different features. For
example, one still observes the same avoided crossings.
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Figure B.1 – Influence of the Hilbert space dimension on the energy levels. (a) Shown are the 56 levels
from the Nex = 3 bundle for an L = 6 chain, calculated for a 56- (blue) and 924-dimensional (red) Hilbert
space. As revealed in (b), the primary influence of the additional states is a slight shift downwards in energy
for all levels, which does not influence the quantitative analysis of the chaotic traits of the bundle.

In particular, the effect of the inflated the Hilbert space on the default diagnostics, IPR
and Kullback-Leibler divergence, is minuscule. This is illustrated for L = 10 and Nex = 5 in
Fig. B.2. The KL divergence, calculated with respect to the Poisson distribution, is independent
of whether the underlying energies are obtained by diagonalization of a 2,002 × 2,002 matrix,
i.e., a Hilbert space restricted to states of the specific Nex = 5 excitation sector, as in (b),
or whether these energies are just a small fraction of a much larger spectrum belonging to a
Hilbert space whose basis includes states of different Nex. Specifically, for (a), the Hamilton
matrix has a dimension of around 25,000 × 25,000, i.e., the 25,000 Fock states lowest in energy
were chosen as the basis. This includes states with occupation numbers up to Nex = 8. For
isolated points in the two-dimensional phase diagram and very few disorder realization, using
the software library ARPACK [381], we convinced ourselves that further increasing the number
of basis states up to around 150,000 does not alter the results for the KL divergence of the
Nex = 5 bundle. This guides us to conclude that restricting the Hilbert space to a sector of
fixed Nex yields reliable results for the respective energy window. Specifically for L = 10 and
Nex = 5, 2,002 basis states suffice for accurate results. In a way, this is not entirely surprising:
A moderate disorder conserves the energetically separated manifolds of fixed Nex for T > 0. In
addition, the interaction does not couple multiplets to adjacent bundles Nex ± k where k is odd.
Our truncation scheme reflects some of the approximations behind the effective model (4.2), see
the discussion in the next section.

In summary, these considerations show that a restriction of the Hilbert space to a fixed Nex
manifold whose dimension for arbitrary L and Nex is given by Eq. (4.3) vastly reduces the
computational effort compared to dimH = (1 + Nex)

L for the naive truncation scheme while
giving an accurate description of the system properties as long as the notion of an excitation
bundle is well-defined.

For larger disorder, the concept of clearly resolved bundles of fixed Nex is lost, and the above
truncation scheme is not a priori justified. Therefore, we repeatedly conducted our analysis and
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Figure B.2 – Influence of the Hilbert space dimension on the Kullback-Leibler divergence, calculated
with respect to the Poisson distribution for the Nex = 5 sector of a chain with L = 10. For (a), the Hilbert
space includes approximately 25,000 basis states comprising contributions from the manifolds Nex = 0, . . . 8.
For (b), the Hamiltonian is constructed within the sector of Nex = 5 and dimH = 2,002. Apart from the coarser
T -EJ grid in (a), the results are identical. Note that the data shown in (b) are not identical to Fig. 4.13. Here,
δEJ is fixed to 625 MHz and does not scale as

√
EJ .

followed one of the following recipes for constructing the Hamiltonian and applying the diagnostic
tools (described here for a ten-transmon chain):

(i) The basis is constructed from the T = 0 product states, starting with the ground state and
including all states up to an energy threshold. Choose the eigenstates |i〉 and energies Ei
with i = 1,002, . . . , 3,003 to calculate the KL divergences and the IPR. These become the
2,002 states that span the Nex = 5 sector for smaller disorders.

(ii) Use the same basis and choose roughly 2,002 states centered around the mean energy of
the Nex = 5 basis states at T = 0 for applying the diagnostic tools.

In both cases, the selection of eigenstates for the diagnostics is dominated by—but does not
consist exclusively of—states with Nex = 5. States from higher and (fewer) states from lower
bundles are also included.

(iii) Restrict the Hamiltonian to the Nex = 5 subspace, even if this neglects states from other
bundles which are thoroughly intermingled with Nex = 5 states.

All three approaches give nearly identical results in the T -EJ parameter regions under consid-
eration. In particular, the Kullback-Leibler divergence does not change when switching between
recipes (i) to (iii). It always indicates nearly perfect agreement with Poissonian level statistics.
The IPR shows a minor tendency towards delocalization for (iii) compared to (i) and (ii). For
example, the contour line where IPR=1/2 moves downwards to the left, barely recognizable in
Fig. 4.15. Note that for the scheme-b disorder regime, the system is in the MBL phase for all T
and EJ values under consideration. Thus, in the context of our analysis, it cannot be excluded
that the approaches (i) to (iii) diverge when the system approaches the quantum chaotic region.
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Table B.1 – Overview of coupling matrix elements contained in the full, truncated, and effective model.
The table lists all configuration states coupled to the state |ψ〉 = |0130〉 in a chain geometry consisting of
four transmons. The colored rows indicate couplings to states with the same Nex as |ψ〉. Only the couplings
highlighted in blue survive the RWA and enter the effective model. The coupling matrix elements in the last
row are obtained for a single disorder realization with EJ = 12.5 GHz and EC = 250 MHz.

l1 l2 l3 l4 ∆Nex
|〈ψ|Ĥint|l1l2l3l4〉|

T

0 1 3 0 0 —
0 0 0 0 −4 0.04
0 0 2 0 −2 1.88
0 0 4 0 0 2.06
0 0 6 0 2 0.32
0 0 8 0 4 0.09
0 1 0 1 −2 0.04
0 1 0 3 0 0.002
0 1 0 5 2 0.0001
0 1 0 7 4 0.00002
0 1 2 1 0 1.89
0 1 2 3 2 0.07
0 1 2 5 4 0.006
0 1 4 1 2 2.07
0 1 4 3 4 0.08
0 1 6 1 4 0.32

l1 l2 l3 l4 ∆Nex
|〈ψ|Ĥint|l1l2l3l4〉|

T

0 2 0 0 −2 0.06
0 2 2 0 0 2.57
0 2 4 0 2 2.82
0 2 6 0 4 0.44
0 4 0 0 0 0.003
0 4 2 0 2 0.15
0 4 4 0 4 0.17
0 6 0 0 2 0.0005
0 6 2 0 4 0.02
0 8 0 0 4 0.0001
1 0 3 0 0 1.17
1 2 3 0 2 1.6
1 4 3 0 4 0.1
3 0 3 0 2 0.04
3 2 3 0 4 0.06
5 0 3 0 4 0.004

B.1.1 Comparison of the full, the truncated, and the effective model

In this section, we extend the discussion from Sec. 4.3.1 and examine the difference in the effective
model (4.2) and the full model (4.1) for different truncation schemes in more detail1, explicitly
considering one ‘row’ of the Hamiltonian matrix.

Concretely, we consider the configuration state |ψ〉 = |0130〉 of an L = 4 transmon chain, and
investigate to which states it is coupled through the capacitive coupling T (n̂1n̂2 + n̂2n̂3 + n̂3n̂4).
We restrict the discussion to states that obey Nex ≤ 8. The result is summarized in Table B.1.
|ψ〉 is marked in red. In total, there is a nonzero interaction matrix element between |ψ〉 and 31
other states, specified by the local occupation numbers |l1l2l3l4〉 that are provided in columns
1–4. The fifth column shows the difference in the total excitation number Nex between the
respective states and |ψ〉. The approximate absolute value of the coupling matrix element is
given in the last column. Among the 31 states, only six, color-coded by the blue and yellow
background, have the same total excitation number. When the Hilbert space is restricted to
contain only states with the same Nex as |ψ〉, these are the states that enter the construction of
the Hamiltonian. There is a further difference between the states highlighted in blue and yellow.
The matrix elements for the latter ones are orders of magnitude smaller because they contain
the small off-diagonal charge operator contributions 〈0|n̂|3〉 and 〈1|n̂|4〉. The matrix elements
for these processes are small and not included in the effective model (4.2) that couples |ψ〉 only

1We are focusing solely on the difference in the interacting part of the Hamiltonian. Note, however, that this
is not the only difference between the two models, as we take, for example, the cosine nonlinearity fully into
account.
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to the four states highlighted in blue (in Bose-Hubbard parlance, these are hopping processes
where the three bosons inserted at site 3 simultaneously change their position to site 2 or 4).
Numerically, we do not incorporate the hierarchy in the coupling entries: the only approximation
is the truncation. We consider all states from the same bundle and, depending on the chosen
energy window around the target energy, more states, starting with those where ∆Nex = ±2.
The last column accurately reflects the properties of the charge operator discussed in Sec. 4.3.
Matrix elements are large if all involved off-diagonal entries of the charge operator 〈k|n̂|k +m〉
have |m| = 1 and decrease if |m| increases. Furthermore, the off-diagonals of n̂ increase as k
increases (asymptotically as

√
k + 1), reproducing the hierarchy within the blue rows. Finally,

there is no coupling between bundles differing by an odd number of excitations (all entries in
column 4 are even).

Summarizing the information contained in Table B.1, the truncated model neglects couplings
between highly detuned states that can be both strongly (e.g., row 3, where two excitations on
neighboring transmon sites are added), or—the majority—weakly coupled. The effective model
further discards the coupling to states that are close in energy but only weakly coupled (yellow
rows).

B.2 Details on the implementation

In this section, we substantiate the aspects of the implementation that were mentioned in the
context of the Hilbert space truncation and the discussion in Sec. 3.2.4 with more technical
details.

B.2.1 The single transmon Hamiltonian in the charge basis

For numerical diagonalization, the Hamiltonian of a single transmon is most conveniently for-
mulated in the basis of the eigenstates of the charge operator n̂. As discussed in Sec. 3.2.4, the
Hilbert space spanned by the eigenvectors |m〉 must be truncated at some largest |m| = mmax.
The restricted charge operator in its eigenbasis can then be written as a diagonal matrix with
entries ranging from −mmax to mmax. The cos φ̂ contribution is tridiagonal as discussed in
Eq. (3.43). The matrix representation HT of the transmon Hamiltonian in Eq. (3.9) in the
charge eigenbasis takes the form

HT = 4EC



(−mmax)
2 0 . . . . . . 0

0 (−mmax + 1)2
. . . ...

... . . . . . . . . . ...

... . . . (mmax − 1)2 0
0 . . . . . . 0 m2

max



− EJ
2



0 1 0 . . . 0

1
. . . . . . . . . ...

0
. . . . . . . . . 0

... . . . . . . . . . 1
0 . . . 0 1 0


. (B.1)

Eq. (B.1) is the starting point used to calculate all single transmon properties, like the energies
or the off-diagonal entries of the charge operator, 〈i|n̂|j〉, between the energy eigenstates |i〉 and
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|j〉. In all calculations, mmax is fixed to 50, which ensures that all eigenvalues and eigenvectors
of interest are obtained with standard double machine precision, see Fig. 3.9.

B.2.2 Matrix representation of the interacting Hamiltonian

Conceptually the matrix implementation consists of two distinct steps: First, collect all basis
vectors that should be included in the calculation. For example, the list of basis vectors may
incorporate all Fock states with a fixed total excitation number Nex, as is often the case in our
simulations. Alternatively, one can define a target energy and an energy window and select all
T = 0 eigenstates whose energies lie within this window to construct the Hamiltonian. When the
first step is completed, calculate the matrix elements between all basis vectors. The noninteract-
ing part of the Hamiltonian is trivially diagonal in the chosen basis, and each entry is a specific
sum of single transmon energies. For example, the basis vector |102〉 of an array consisting of
three transmons is associated with the diagonal entry

〈102|Ĥ|102〉 = E1,1 + E2,0 + E3,2 , (B.2)

where Ei,α corresponds to the level α of transmon i.
The capacitive coupling determines the off-diagonal entries of the Hamiltonian matrix. Their

explicit form is provided in Eq. (4.4).

B.2.3 Verifying the implementation

There are several options to check that the implementation of the Hamiltonian was carried out
flawlessly. Most importantly, one can compare the spectra of the Hamilton or the matrices
themselves, calculated using independent implementations in the various possible bases.

Comparisonwithϕbasis. Although not very convenient for larger systems or to perform disorder
averages, the entries of the Hamilton matrix can be calculated using the ϕ representation of the
transmon eigenstates. For example, the matrix entry of n̂1n̂2 between the two distinct states
|ijkl〉 and |i′j′k′l′〉 of an L = 4 transmon chain reads

〈ijkl|n̂1n̂2|i′j′k′l′〉 =
π∫

−π

dϕ1· · ·
π∫

−π

dϕ4ψ
∗
i (ϕ1) . . . ψ

∗
l (ϕ4)

[
i
∂

∂ϕ1
i
∂

∂ϕ2

]
ψi′(ϕ1) . . . ψl′(ϕ4)

=M ii′
1 M jj′

2 δkk′δll′ , (B.3)

where M ii′
α —the off-diagonal element of n̂ in the ϕ representation— was defined as

M ii′
α = i

π∫
−π

dϕαψ
∗
i (ϕα)

∂

∂ϕα
ψi′(ϕα) . (B.4)

Here, ψi(ϕ) is the eigenfunction of the Hamiltonian ĤT in the ϕ representation as provided in
Eq. (3.42). The implementation of the Mathieu functions in the software library Mathematica
[263] and Eqs. (B.3) and (B.4) were exploited as an alternative and independent way to calculate
the Hamiltonian for small system sizes.
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B.2 Details on the implementation

Comparison with charge basis. Implementing the interacting Hamiltonian in the charge basis
is straightforward. For an example system consisting of three coupled transmons, the matrix is
given by

H = HT,1 ⊗ 1⊗ 1+ 1⊗HT,2 ⊗ 1+ 1⊗ 1⊗HT,3 + T (n1 ⊗ n2 ⊗ 1+ 1⊗ n2 ⊗ n3) , (B.5)

where 1 is the 2mmax +1-dimensional identity matrix, HT,i is given by Eq. (B.1) (the additional
index i accounts for the site dependence of the Josephson energy), and ni is diagonal with entries
ranging from −mmax to mmax. As an additional reassurance that the actual implementation is
error-free, the Hamiltonian is constructed in the charge representation for a small L and a mod-
erate mmax. This reduces each transmon to a (2mmax + 1)-level system (but one should keep
in mind that only the lowest eigenvalues accurately describe true transmon eigenenergies due
to the truncation of the Hilbert space). The eigenvalues are then compared to those from the
actual implementation of the Hamiltonian, where the list of basis vectors is obtained by trun-
cating the local Hilbert space of each transmon to the lowest (2mmax + 1) levels and forming
all (2mmax + 1)L possible product states. The two variants are identical up to a unitary trans-
formation if the same mmax is used to obtain the single transmon energies and the off-diagonal
elements of n̂.

Alternatively, one can consider different matrix dimensions in the two representations. As
an example, take the charge representation of the matrix describing the L = 4 transmon chain
with mmax = 8. The dimension of the Hilbert space truncated in this way is dimH = (2 · 8 +
1)4 = 83,521. The lowest eigenvalues are efficiently calculated using Krylov subspace methods.
They can be compared to the eigenvalues of a much smaller, say ≈ 1,500 × 1,500-dimensional
Hamiltonian constructed with the 1,500 product states that are lowest in energy but where the
single transmon properties are calculated with a higher mmax. One can confirm that the lowest
eigenenergies are indeed identical. Higher states agree up to an order of magnitude that is set
by the choice of mmax in the charge representation.

The facilities for comparison described here have been exploited for small systems, both chain
and two-dimensional geometries, to convince ourselves of the correctness of the implementation.

Comparison with Bose-Hubbardmodel. Finally, an additional possibility to verify the flawless-
ness of the implementation is the comparison of the matrix elements describing the full model
in Eq. (4.1) to the asymptotic expressions in the effective model (4.2). There are three cases
to distinguish here: the ‘on-site’ energies (in configuration space), the off-diagonals contained in
Eq. (4.2), and the additional coupling terms that arise in the full model but are neglected in the
rotating-wave approximation. For large EJ/EC , one finds the correct asymptotic behavior, with
the difference in the on-site energies vanishing fastest.

B.2.4 Calculation of the reduced density matrix

The wave function metrics in Fig. 4.10 are straightforward to calculate because they directly
process the coefficients ci of the eigenstates in the product basis as obtained in the diagonaliza-
tion. The entanglement entropy SEE is an exception. It requires the calculation of the reduced
density matrix in the first step. A minor subtlety is that the Hamiltonian is generally restricted
to the subspace of a fixed Nex, but the basis of the subsystem contains all states with excitations
from 0 to Nex. For concreteness, we consider L = 10 and Nex = 5 and divide the ten-transmon
chain into two subsystems, A and B, comprising the first (sites 1–5) and second (sites 6–10) half
of the chain. We are interested in the reduced density matrix ρ̂A of subsystem A if the entire
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system is in one of its eigenstates |i〉. We write |i〉 in the form ρ̂ = |i〉〈i| =
∑

m,n ρm,n|m〉〈n|,
where |m〉 and |n〉 are the Fock states characterized by ten (L) excitation numbers. To proceed,
we introduce the notation |m〉 = |a, α〉, where a and α are the five (L/2) quantum numbers
referring to the transmons in subsystem A (Arabic letters) and B (Greek letters), respectively.
The total excitation number in A ranges from 0 to 5, such that there are 252 different states |a〉,
and similar for |b〉. For the density matrix, we obtain

ρ̂ =
∑
a,b,α,β
a+α=5
b+β=5

ρaα,bβ|a, α〉〈b, β| . (B.6)

The restriction, symbolically written as a + α = 5, ensures that for |a〉 fixed, the sum contains
only those degrees of freedoms |α〉 of B such that |a, α〉 has the correct Nex = 5, and similar for
b and β. From the 2522 possibilities |a, α〉, this picks out the 2,002 correct combinations. With
ρ̂ written in the form (B.6), it is straightforward to trace out the degrees of freedom of B (we
suppress the restriction, but it still holds):

ρ̂A =
∑
γ

〈γ|

 ∑
a,b,α,β

ρaα,bβ|a〉|α〉〈b|〈β|

 |γ〉 =
∑
a,b

ρAa,b|a〉〈b| , (B.7)

where the matrix elements of the reduced density matrix are given by

ρAa,b =
∑
α,β,γ

ρaα,bβ〈γ|α〉〈β|γ〉 =
∑
α

ρaα,bα . (B.8)

In summary, when numerically calculating ρ̂A, one has to take the restriction for the degrees of
freedom α of B in the sum in Eq. (B.8) into account.

B.3 Influence of the disorder distribution

For the analysis presented in Chapter 4, we assumed Gaussian disorder for the distribution of
the Josephson energies EJ,i, in accordance with the disorder found in recent transmon chips.
MBL studies commonly assume a box disorder distribution that is uniform in the restricted
interval [−h, h], where h denotes the disorder strength. Here, we show that switching the specific
disorder manifestation does not lead to a qualitative change in the results, provided that one
carefully translates between the definitions of disorder for the respective distributions. The
subtlety is that for a Gaussian distribution, the disorder is interpreted in a standard deviation
sense, i.e., δEJ ≡ σGauss. Results for a specific Gaussian disorder δEJ can be compared to
the box distribution of equal standard deviation, that is

[
−
√
3δEJ ,

√
3δEJ

]
. In other words,

for comparison with Gaussian disorder, one should interpret h/
√
3 as the disorder strength

associated with the box distribution [−h, h].2 This is illustrated in Fig. B.3. The results for the
Kullback-Leibler divergences as a function of T line up almost perfectly. For reference, results

2Requiring the standard deviations to be equal is not the unique way to construct the box distribution equivalent
to a Gaussian with a given σ. One can also adjust the width of the box distribution such that the expected
distance between two independent draws from the two distributions is identical. For a Gaussian with σ, this
is 2σ√

π
, and for the box distribution x

3
, where x is the box length. Hence, an alternative definition of the box

disorder is
√
π
3
h. Ultimately, the two definitions are nearly identical (‘

√
π
3

≈ 1√
3
’), such that—based on the

numerical results—one cannot judge whether one of them is more appropriate.
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Figure B.3 – Kullback-Leibler divergences for uniform and Gaussian disorder for the ‘standard para-
meters’ from Sec. 4.4, i.e., EC = 250 MHz, EJ = 44 GHz. The blue lines show results for Gaussian dis-
order with δEJ ≡ σGauss ≈ 1.17 GHz. The red line/star markers show results for the box distribution[
−
√
3σGauss,

√
3σGauss

]
. The green line/point markers show results for the box distribution [−σGauss, σGauss].

The colored distributions in the lower right corner visualize the disorder choices underlying the equally colored
lines.

for the box distribution [−σGauss, σGauss] are also displayed. As expected, the system is more
prone to chaos because the box distribution is narrower and describes a less disordered system.
Given these findings, we expect no qualitative and only small quantitative changes for different
forms of reasonable disorder distributions for the results discussed in Chapter 4.

B.4 Quantifying chaos near the maximal density of states

In this section, we revisit in more detail the changes in the quantitative measures of chaos when
the underlying wave functions and levels are restricted to the small energy interval near the max-
imal density of states, as described in Sec. 4.6.1. To start, Fig. B.4(a) shows the individual traces
underlying the two-dimensional representation of the KL divergence with respect to the Poisson
distribution shown in Fig. 4.18, supplemented by the corresponding data for D(P ||PWigner). The
data collapse shown in Fig. B.4(b) is obtained by rescaling the T axis as T → TEµJ with the same
exponent µ found for the complete Nex = 5 excitation bundle in Sec. 4.5.3. For comparison, the
dotted line shows the trace of the collapsed data obtained for the full bundle. As discussed, the
transition from MBL to chaos is much clearer, and D(P ||PWigner) gets closer to zero (which is
easier to see in D(P ||PPoisson) approaching 1) when neglecting the integrable edges of the spec-
trum. This also affects the wave function metrics discussed in Fig. 4.10, three of which are shown
in Fig. B.5, now only for states from the vicinity of the maximal density of states. Specifically,
we show (a) the participation entropy SP , (b) the IPR, and (c) the eigenvector similarity (EVS)
for EJ = 12.5 GHz and EJ = 100 GHz. The gray lines show the respective results for the full
bundle. All quantities exhibit a sharper transition to the chaotic regime. Additionally, except
for the IPR for EJ = 12.5 GHz, the metrics now tend to converge towards the values expected
in the ergodic phase.
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Figure B.4 – Data collapse for the KL divergences, calculated with level ratios taken from a small ε interval
(∆ε = 0.05) around the maximum DOS for scheme-a disorder. Panel (a) shows the original data and (b) the
almost perfect collapse obtained by rescaling T as T → TE0.54
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Figure B.5 – Delocalizing of wave functions near the maximal DOS. (a) Participation entropy SP , (b)
IPR, and (c) EVS for states taken from an interval around the maximal DOS for two values of EJ . The dashed
(solid) gray lines show the results for the entire bundle for EJ = 100 GHz (12.5 GHz). All results are averaged
over at least 1,800 disorder realizations.

B.5 Results for scheme-B parameters and two-dimensional geometries

Fig. B.6 shows the results for the level and wave function statistics for the two-dimensional 3×3
geometry subject to scheme-b disorder. Despite the higher connectivity, we observe no deviations
from Poisson statistics in the parameter region under investigation. The dressing effect, mirrored
in the decreasing IPR, is much weaker than for scheme-a processors, compare Fig. 4.23. The
dressing is significant outside the experimental core region, as for the L = 10 chain geometry in
Fig. 4.15, but now the IPR drops to values of approximately 0.7 for EJ/EC = 50 and T ≈ 30 MHz,
a rather large coupling that is, however, feasible with tunable architectures. The curves shown
in Fig. B.6(b) are the contour lines where the IPR is 0.5 for the 3× 3 geometry (solid) and the
surface-7 layout with scheme-b disorder (dash-dotted). For comparison, the contour lines for the
one-dimensional arrangements consisting of the same number of transmons are also shown (L = 7
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Figure B.6 – Level and wave function statistics for scheme-B parameters and two-dimensional trans-
mon geometries. (a) KL divergence with respect to the Poisson distribution. (b) IPR. The black lines are
the contour lines where IPR = 1/2 for the 3× 3 array (solid), the surface-7 chip (dash-dotted), and the L = 9
(dotted) and L = 7 chains (dashed). All results are averaged over at least 2,400 disorder realizations and all
states of the Nex = 5 manifold.

dashed, L = 9 dotted). The succession of the four lines emphasizes our previous observation
that the transition to higher dimensions increases the proneness to chaos and delocalization. The
decrease of the IPR appearing for EJ ≈ 5 GHz is again the effect of an artificial narrowing of
the disorder distribution that arises when fixing EJ = 5 GHz as the smallest allowed Josephson
energy. The results shown are obtained for the Nex = 5 excitation bundles. The calculations were
repeated for the Nex = 4 manifold. The results show no qualitative and a minor quantitative
change, with a tendency towards a smaller dressing effect.
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Appendix for Chapter 5
Appendix C

This appendix enriches the discussion in Chapter 5 with further details. The first section provides
additional information on the IPR results for the five-transmon chain, including a separate
analysis of all permutation multiplets of the Nex = 3 bundle. Thereafter, we discuss the two-
dimensional representation of the IPR in the T -δEJ plane for larger geometries. The last two
sections are rather technical: They start with a detailed discussion on the pitfalls lurking in
applying level statistics to quantify quantum chaos when the Hilbert space under consideration
splinters into sectors that all deserve a separate analysis. Finally, we close this appendix with
an overview of the entire multiplet structure of the Nex = 5 bundle of the 3× 3 geometry.

C.1 Additional details on theL=5 chain

C.1.1 Data collapse for the T -δEJ phase diagrams

In this section, we further substantiate our findings of Sec. 5.3.1, where the quantities T 2/δEJ and
T 4/δEJ were identified as the driving force controlling the delocalization of the wave functions
over second- and forth-nearest neighbors in configuration space. The horizontal lines underlying
the T -EJ IPR diagram shown in Fig. 5.4 are shown in Fig. C.1(a). Panels (b) and (c) show
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Figure C.1 – Data collapse in the T -δEJ phase diagram for the IPR calculated for all multiplets of the
Nex = 3 manifold of a five-transmon chain. Panel (a) shows the same data as in Fig. 5.4, with each curve
corresponding to one of the horizontal lines of fixed disorder. Panels (b) and (c) show the same data with
a rescaled T axis, such that the parameter ranges where the IPR decreases are collapsed onto each other,
validating that the quantities T 2/δEJ and T 4/δEJ play a decisive role in controlling the inset of delocalization.
The data in (c) are restricted to a disorder range δEJ < 10−6 GHz.
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Figure C.2 – Connectivity graphs for the permutation multiplets of a five-transmon chain with AB frequency
pattern. The color coding and line style of the links show to which order in J the states couple in Eq. (4.2).
Three qualitatively different behaviors are distinguished, depending on how many of the states of each multiplet
are connected via second-order hopping processes, see the main text for details.

the same data, but with the T axis rescaled as T → T 2/δEJ and T → T 4/δEJ . The individual
traces, each belonging to a different, fixed δEJ value, collapse almost perfectly onto each other
in (b) the region of the first decrease in the IPR and (c) the range where the second drop occurs.
Panel (b) contains all data belonging to δEJ values between 5.5 · 10−12 GHz (bright yellow) and
0.03 GHz (dark purple). In (c), we set an upper disorder threshold of δEJ = 10−6 GHz. Only
the data with a smaller disorder are included, the reason being that otherwise, the coupling
T reaches a magnitude where other effects, e.g., inter-multiplet hybridization, darken the clean
scaling behavior.

C.1.2 Detailed analysis of all multiplets of theNex = 3 bundle

The 35 states of the Nex = 3 bundle separate into nine permutation multiplets. Sorted energeti-
cally from bottom to top, these are {A3},{A21},{B3},{A2B1},{A111},{A1B2},{A11B1},{B21}
and {A1B11}. Here, we complement the analysis of the three multiplets {A11B1}, {A21} and
{A111} presented in the main text. The different manifolds show a very multifaceted behavior,
which can be deduced from the connectivity graphs in Fig. C.2. As before, this figure visualizes
the effective model in Eq. (4.2). The six remaining multiplets belong to three different categories:
For {B21} and {A1B11}, all states are connected via two hopping processes, i.e., to second order
in J , akin to the excitation structure {A11B1}. {A2B1} and {A1B2} behave similarly to {A21}
and further split into subsets of states that are mutually coupled to second order, but where
the cross-connection involves more hopping processes. Finally, connecting states from {A3} or
{B3} involves at least six single excitation hops. The behavior of the IPR accurately reflects
these qualitative differences, as is shown in Fig. C.3. For {A1B11} and {B21}, the IPR drops
for δEJ ≈ 10−3 GHz and then remains constant over the entire low-disorder range. Inspection
of the eigenfunctions shows that they possess the expected symmetry properties for δEJ . 10−3

GHz. The excitation structures {A3} and {B3} are immune to delocalization over almost the
entire surveyed disorder range. The hybridization between |03000〉 and |00030〉 occurs due to the
second-order hopping process, where all three excitations move simultaneously. This process is
neglected in the effective model but included in the simulations. Finally, {A2B1} and {A1B2}
show a more feature-rich behavior with several parameter ranges where the IPR drops, interpen-
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Figure C.3 –
Multiplet-resolved IPR for the L=5
chain. As expected from the findings in
Fig. C.2, three different behaviors can be
distinguished: a single drop in the IPR for
{A1B11} and {B21}, no hybridization (or
only at very low disorder) for {A3} and
{B3}, and a more complicated trajectory
involving several plateaus of constant and
regions of decreasing IPR for {A2B1} and
{A1B2}, see the main text for details. All
results are averaged over at least 10,000
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etrated by plateaus of constant IPR, being evidence of the further substructures emerging in the
corresponding connectivity graphs.

C.2 Two-dimensional representation of the IPR

Fig. C.4 shows the inverse participation ratios as a function of the residual disorder δEJ and the
coupling T for (a) the L = 10 transmon chain and (b) the 3× 3 geometry. The IPR is averaged
over all states from the Nex = 5 excitation bundle in both cases. The inset of delocalization
is driven by the parameter T 2/δEJ , as indicated by the IPR = 1/2 contour lines. These are
shown for the 3× 3 geometry (dashed), the L = 10 chain (dotted), and the L = 9 chain (solid).
In accordance with the findings for the simpler Gaussian disorder discussed in Chapter 4, the
two-dimensional geometry is found to be more prone to the inset of chaos than the chains: for
a fixed coupling T , the IPR declines below 1/2 for larger disorder. For δEJ between 100 MHz
and 1 GHz, hybridization between different multiplets causes a minor drop in the IPR shortly
before the global MBL phase is reached upon further increasing the disorder. A second decrease
in the IPR that scales as T 4/δEJ is not discernible because the disorder range does not extend
to sufficiently small values.

C.3 Quantifying chaos with level statistics in a restructuring Hilbert space

As mentioned in Chapter 5 and detailed below, the level ratio analysis is particularly prone to
mislead one to conclusions about the degree of chaos prevailing in a system. There are three
spots where caution is advised.

First, when calculating ri = (Ei+1 − Ei)/(Ei − Ei−1), the level ratio will either be very large
or very small when the involved energies belong to two different multiplets because the inter-
multiplet spacing is, in general, much larger than the spacing within multiplets, see Fig. 5.2. In
consequence, the specific ri value contributes to the lowest Rn bin, whose weight is, therefore,
artificially increased. This effect is significant because the number of multiplets—determining
how often ratios with one huge spacing occur—is not negligibly small compared to the total
number of level ratios entering the histograms. For the example of L = 6 and Nex = 3, 56
energies and thus 54 rn values per disorder realization enter the histograms, 20 of which contain
energies from different multiplets and thus contribute to the lowest bin. For illustration, consider
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Figure C.4 – IPR for the L=10 chain and the 3 × 3 geometry in the T -δEJ plane. (a) Data for the
ten-transmon chain. (b) Data for the 3× 3 geometry. The black curves, where δEJ ∝ T 2, mark the line where
the IPR falls below 1/2 for the 3× 3 geometry and chains of L = 9 and L = 10. All results are averaged over
all states of the Nex = 5 excitation bundle and at least 3,500 (3× 3) and 2,500 (L = 10) disorder realizations.

Fig. C.5(a). The histogram displays the level ratio distribution for L = 6, Nex = 3, T = 0 GHz,
and δEJ = 10−6 GHz. It exhibits a strong peak at Rn = 0 (and a second, much smaller
peak at Rn ≈ 0.6 originating from a multiplet that contains a single state). Removing these
spurious contributions from the histogram yields an almost perfect agreement with the Poisson
distribution. However, calculating the KL divergence from the histogram as shown would signal a
substantial discrepancy from integrability, even though the system consists of several independent
integrable subsystems—the permutation multiplets. This effect persists for stronger disorders up
to values where the multiplets initially start to form. The softening of the multiplet structures
then ensures that other bins also benefit from the falsely included small Rn values, as is shown
in Fig. C.5(b) for δEJ = 100 MHz. The impact of the fallacious Rn ratios becomes less pressing
for larger system sizes. For example, if L = 12 and Nex = 6, there are 130 ‘wrong’ Rn compared
to a total of 12,374 level ratios per disorder realization. For the 3 × 3 and L = 10 geometries
that we mainly consider, however, the consequences are still measurable.

Second, distinct multiplets show different levels of sensitivity to the emergence of level repul-
sion. In particular, not all multiplets show footprints of delocalization or Wigner-Dyson statistics
within the disorder ranges that our simulations focus on.

Fig. C.5(c) illustrates the combined effect of these two points for the example of the Nex = 5
bundle of the 3 × 3 geometry. The KL divergences calculated for all levels are shown in blue.
They display no clear tendency towards the formation of a Wigner-Dyson distribution. On the
contrary: around δEJ = 10−2 GHz, D(P ||PWigner) even increases, an effect of the development
of the peak at small Rn. When excluding these fraudulent values from the statistics, the effect
disappears, and D(P ||PWigner) clearly declines in the quantum chaotic region, but without ever
reaching proximity to zero. D(P ||PPoisson) increases only mildly in this region, indicating that
the level statistic now obeys a mixture of the Wigner-Dyson and Poisson predictions, as expected
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Figure C.5 – Fallacies of level statistics in predicting quantum chaos. (a) Histogram for the Rn ratios of
the Nex = 3 bundle of an L = 6 chain, calculated for δEJ = 10−6 GHz and T = 0 GHz. The dominant peak
at Rn = 0 arises from level ratios, whose calculation involves energies from different multiplets. (b) Histogram
for larger δEJ = 0.1 GHz, i.e., the disorder strength where the Hilbert space starts to restructure into the
multiplets. Calculating KL divergences for the displayed histograms predicts no agreement with either of the
two main statistics, although all individual multiplets show good agreement with the Poisson distribution.
Panel (c) shows how this impedes an accurate estimation of the chaoticity. D(P ||PWigner) only approaches
zero if the ‘wrong’ Rn values are excluded from the statistics. Even then, the degree of chaos in the relevant
states is strongly underestimated because the existence of integrable bundles, e.g., the {A3B2} whose KL
divergences are shown in green, shifts the histograms towards the Poisson distribution. Results in (a) and (b)
are averaged over 20,000 disorder realizations, in (c) over at least 8,000 disorder realizations.

for statistics where both integrable and chaotic multiplets enter. As an example, we show the
KL divergences for the multiplet {A3B2}, which obeys good agreement with Poisson statistics
throughout the relevant disorder region. Only when the statistics are restricted to, e.g., the
computational bundle {A111B11} as in Fig. 5.5, does the KL divergence reveal the full extent
of chaos and the lack of suitability of the system as a quantum computer.

The first two points have shown that meaningful predictions are only possible if the relevant
subspaces to which the MBL toolbox is applied are carefully identified. To finish, we sharpen this
observation for the case when sectors of the Hilbert space that should be treated independently
overlap in energy. As one instance of the phenomenon, we consider the L = 5 chain and focus on
the multiplet {A1B2}. For one randomly chosen disorder realization, the six levels of this sector
are shown in Fig. C.6(a). At δEJ = 0.01 GHz, all eigenstates are dominated by a single Fock
states, namely—from lowest to highest in energy—|00021〉, |00120〉, |10020〉, |02001〉, |02100〉,
|12000〉. The multiplet can be separated into two sets, each consisting of the three states that
are connected via second-order hopping processes, see Fig. C.2. In the disorder range surveyed
in Fig. C.6(a), states from different subsets do not hybridize. Each eigenstate can, therefore,
safely be assigned to one of the subsets, as symbolized by the two different colors. Levels be-
longing to the same subset repel each other but straightly cross1 through levels of a different
color. For a disorder strength δEJ < 10−4 GHz, levels of different subsets form pairs. The
two eigenfunctions that are lowest in energy are given by |ψ1〉 = 0.98|10020〉+ 0.1|00120〉+ . . .

1In fact, very tiny avoided crossings appear between differently colored levels. These are only resolved upon
blowing up the energy scale by several orders of magnitude.
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Figure C.6 – Comparison of the spectra for the multiplets {A1B2} and {A11B1} as a function of δEJ

for a single disorder realization. (a) The six levels can be divided into two sets containing three levels each
and shown in different colors, where states from the same subset repel and states from different subsets cross.
In contrast, no further splitting into finer hierarchy levels occurs for {A11B1} and (for this particular disorder
realization) all repel each other.

and |ψ2 = 0.98|02001〉 + 0.1|02100〉 + . . . , i.e., they are related by the mirror symmetry of
the chain. Only for a much smaller disorder, they further hybridize to form (anti-)symmetric
combinations of |ψ1〉 and |ψ2〉. The same holds for the other two pairs. In summary, for the
disorder regime monitored in Fig. C.6, the multiplet {A2B1} consists of two very weakly cor-
related subsets of strongly correlated states. An overall level statistics analysis cannot resolve
this further splintering and tends to show an agreement with Poisson statistics. For comparison,
the spectrum restricted to the {A11B1} multiplet is shown in Fig. C.6(b). For this particu-
lar disorder realization, all levels repel each other. The wave functions for δEJ = 10−6 GHz
nearly possess the symmetries. For example, the lowest wave function is approximately given by
0.5 (|10011〉+ |11001〉) + 0.49 (|10110〉+ |01101〉) + . . . .

The above exemplifies how a permutation multiplet can further splinter into smaller subsets.
One can also envision a situation where, for example, due to a more complicated frequency
unit cell, different multiplets that are far apart in configuration space overlap in energy and—
despite being individually well described by GOE matrices—falsely mimic the level statistics of an
integrable system. Stepping aside from the transmon array Hamiltonian, we already mentioned
in Chapter 5 that Ref. [350] recently discussed this phenomenon in a different context, where
the overlapping sectors correspond to different symmetry blocks.
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C.4 Permutation multiplets for the 3× 3 geometry withAB frequency
pattern

For completeness, we provide an overview of all permutation multiplets that arise for small δEJ
in the 3 × 3 geometry with an AB frequency pattern superimposed on it, as shown in Fig. 5.2.
The 1,287 states of the Nex = 5 bundle split into 35 multiplets, five of which are computational
multiplets with excitation numbers 0 and 1. All multiplets are listed in Table C.1, sorted from
lowest to highest in energy as obtained for our choices of the mean Josephson energies. The blue
cells mark computational multiplets.

Table C.1 – Permutation multiplets for the Nex=5 bundle of a 3 × 3 geometry with an AB frequency
arrangement. The A column gives the local excitation structure on the A sublattice, i.e., an entry 32 means
that one of each of the five A transmons is in |2〉 and |3〉, respectively. The other three A transmons are in
the ground state |0〉. The same holds for column B. The column labeled Nstates gives the number of states in
the multiplet. In total, there are 35 multiplets with 1,287 states. Five of them are computational multiplets,
highlighted in blue, containing a total of 126 computational states.

A B Nstates

1. 5 − 5
2. 41 − 20
3. − 5 4
4. 4 1 20
5. 1 4 20
6. 32 − 20
7. − 41 12
8. 311 − 30
9. 3 2 20

10. 31 1 80
11. 221 − 30
12. 2 3 20

A B Nstates

13. 3 11 30
14. 22 1 40
15. 2111 − 20
16. 11 3 40
17. 21 2 80
18. − 32 12
19. 211 1 120
20. 1 31 60
21. 11111 − 1
22. 2 21 60
23. 21 11 120
24. 111 2 40

A B Nstates

25. − 311 12
26. 1111 1 20
27. 1 22 30
28. 2 111 20
29. 11 21 120
30. 111 11 60
31. − 221 12
32. 1 211 60
33. 11 111 40
34. − 2111 4
35. 1 1111 5
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Field-driven effects
in Kitaev spin liquids

Appendix D
While all chapters contained in this thesis address the many-body perspective on the transmon
quantum computer, a second, orthogonal line of research was devoted to the investigation of the
fate of the Kitaev model [382]—the drosophila of spin liquid theory [383, 384]—when exposed
to magnetic fields. The results have been incorporated into the publications [P4–P6]. These are
characterized by a considerable devotion to technical details and do not require a supplementing
in-depth explanation. Hence, we restrict here to a brief overview and contextualization and refer
to the respective publications for further details.

Quantum spin liquids (QSL) are states of matter with an anomalously high degree of long-range
entanglement [383]. Among their salient features are the lack of symmetry-breaking magnetic
order at the lowest temperatures, despite the strong interactions between the constituent spins,
and the emergence of nonlocal excitations with nontrivial exchange statistics. The Kitaev model
[382], consisting of spin-1/2 degrees of freedom at the vertices of a honeycomb lattice that
interact via bond-directional nearest-neighbor Ising exchange, is a paradigmatic example for a
model hosting a QSL. Its unique combination of conceptual simplicity, exact solvability, and
experimental relevance [385, 386] has led to an explosion of interest that has continued unabated
since its introduction in 2006 [387]. The crucial ingredient is the directional dependence of
the Ising easy-axis: labeling the three inequivalent bond directions in the honeycomb lattice
as shown in Fig. D.1(a), only the Ŝx components interact along the x bonds and similar for
the y and z links. Because of this peculiar interaction, a spin can minimize its energy with
only one of its neighbors; a phenomenon called exchange frustration. A powerful framework to
describe QSL is to decompose the constituent spins into partons, either bosons or fermions, and
emergent gauge fields in a deconfined phase [384, 388]. Recasting the spins in this new form
is usually only a better starting point for (often uncontrolled) approximations. However, the
Kitaev model, expressed in terms of Majorana fermions and a static Z2 gauge field, reduces to a
simple quadratic Hamiltonian for every gauge field configuration, describing itinerant fermions
on the honeycomb lattice. Remarkably, the ground state of the gauge field is exactly known
[382, 389]. Excitations in the gauge sector are massive. Around the point of isotropic couplings,
the Majorana fermions form a gapless band structure with a Dirac cone.

Exposing the Kitaev model to a magnetic field disrupts the exact solvability. A field in the
perturbative regime that couples to all spin components gaps out the band structure. The
Kitaev model transitions into an exotic phase with non-Abelian topological order [382]. Despite
its intriguing characteristics, few efforts have been made in the years following its introduction
to gain insights into the physics of the in-field Kitaev model beyond the perturbative regime.
Since 2015, however, field-induced effects have been brought into focus by experimental results
on the material α-RuCl3, which is believed to realize Kitaev-type interactions between spin-orbit
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Figure D.1 – The Kitaev model. (a) Visualization of the Kitaev model and its bond-dependent interactions.
(b) Generic in-field phase diagram for antiferromagnetic and ferromagnetic exchange interactions. While for
FM interactions one observes a single phase transition at small fields (more than an order of magnitude smaller
than the coupling strength J), the AFM model shows a richer behavior. The KSL phase is much more stable
and, in addition, the polarized phase is preceded by an intermediate phase.

entangled, effective j = 1/2 moments located on ruthenium honeycomb layers [390]. α-RuCl3
orders magnetically for temperatures below 7 Kelvin [391], indicating the presence of order-
stabilizing residual couplings beyond the pure Kitaev terms. However, a magnetic field destroys
the ordering tendency [392, 393]. Whether the system undergoes a transition to a field-induced
spin liquid phase or enters the trivially polarized phase is intensely debated [385]; in any case,
these findings have rekindled the efforts to understand the Kitaev model for larger field strengths.
The problem was thereupon tackled with the whole methodological richness of condensed matter
physics [394–398]. All studies are consistent regarding the general phase diagram shown in
Fig. D.1(b). Notably, the Kitaev models with ferromagnetic (FM) and antiferromagnetic (AFM)
exchange interactions behave remarkably differently. The FM model exhibits a single phase
transition from the non-Abelian QSL to a partially polarized phase. For AFM couplings, on
the other side, the Kitaev spin liquid (KSL) phase sustains field strengths that are an order
of magnitude larger. It experiences an intermediate phase before it transitions to the partially
polarized phase. The precise nature of the intermediate phase has not yet been conclusively
clarified. Initialized in Ref. [394], a series of studies provided strong evidence for the emergence
of a U(1) spin liquid1 [395, 400].

Our studies add to the efforts of obtaining a more consistent picture of spin liquid physics in
the presence of magnetic fields. Generalizations of the Kitaev model to other lattice geometries2

or higher spins serve as the central ingredients for our investigations. Specifically, we conducted

• a systematic analysis of the Kitaev model on the lattices shown in Fig. D.2 in the presence
of a field pointing in [001] direction [P4]. To address this problem, we employed a Majo-
rana mean-field theory [406] based on the exact solution of the Kitaev model in terms of
Jordan-Wigner fermions [407–409]. Without a magnetic field, the lattices at hand show a

1In this context, it is worth mentioning that besides Kitaev’s original Majorana decomposition, there are other
insightful fractionalization schemes. The U(1) spin liquid is most easily understood when expressing the Hamil-
tonian in terms of complex fermions [399]. The non-Abelian small-field phase then appears as a topological
parton superconductor. The magnetic field destroys the superconducting order, accompanied by a Higgs tran-
sition in the gauge sector, which changes the gauge field from Z2 to U(1). The intermediate phase is a parton
metal with a Fermi surface. The excitations in the gauge sector are likewise gapless.

2The Kitaev model is exactly solvable on any tricoordinated lattice, independent of the dimension. However, one
often has to rely on numerics to obtain the gauge field configuration with minimal energy.
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Figure D.2 – Tricoordinated lattices in two and three dimensions. Specifically, the figure shows the (a)
honeycomb, (b) square-octagon [401] and (c) decorated honeycomb lattice [402] and the three-dimensional
counterparts, the (d) (10,3)b or hyperhoneycomb [403], (e) (10,3)a or hyperoctagon [404] and (f) (10,3)c [405]
lattice.

cornucopia of different spin liquid ground states: the KSL can be gapped with Dirac cones,
Weyl points, nodal lines, or Fermi surfaces [405], gapped with Abelian topological order
[401] or gapless and chiral [402]. Across all lattices, we find the generic phase diagrams
shown in Fig. D.1(b), regardless of the precise nature of the zero-field KSL. For AFM cou-
plings, the transition from the KSL to the intermediate phase at hc is accompanied by a
change in the topology of the Majorana band structure. In particular, we find an intimate
link between the transition into and nature of the intermediate phase and the zero-field
Kitaev model with fixed AFM Jx, Jy, and variable Jz. For example, the two cases Jz = 0
and h = hc yield the same Majorana zero modes. Our study highlights the richness of AFM
Kitaev models from the perspective of the itinerant Majorana fermions. It comes with the
limitation that transitions in the gauge sector, like the Z2 ↔ U(1) transition predicted to
occur in a [111] field [394], are not covered therein. For further details, Ref. [P4] should be
consulted.

• a symmetry analysis of the Kitaev models on the geometries in Fig. D.2 to establish the
symmetry-allowed canting patterns for magnetic fields pointing along high-symmetry direc-
tions [P5]. This is motivated by the conjecture, based on exact diagonalization and DMRG
studies of the square-octagon and the decorated honeycomb lattices [P5], that AFM Kitaev
models generically exhibit a field-induced intermediate regime, characterized by significant
spin canting and separated from the polarized regime by a crossover. The symmetry analy-
sis does correctly predict the observed canting patterns. Furthermore, it explains why the
Kitaev model on the decorated (Fig. D.2(c)) and the original honeycomb model, despite
the intriguing similarities at low fields (same symmetries and same non-Abelian topological
order), behave remarkably differently at intermediate fields. For the honeycomb lattice, a
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symmetry obstruction forbids the spins to cant away from the [111] field without prompting
a transition to a symmetry-broken phase. Instead, it harbors a U(1) QSL phase. In addi-
tion, the symmetry analysis can identify high-symmetry field directions on other lattices,
which obstruct spin canting, and are, therefore, promising candidates for further testing.
Such field directions exist, for example, for the three-dimensional hyperhoneycomb lattice
shown in Fig. D.2(d). More details are provided in Ref. [P5].

• a complex fermion mean-field analysis [399, 410] for the spin-1 [P6] and the spin-1/2 Ki-
taev model on the honeycomb lattice. For the latter, the theory correctly predicts some
properties in the perturbative regime (magnetization grows faster for FM than for AFM
couplings, expected scaling of the band structure gap with the field strength). However,
it struggles to detect reasonable results for intermediate field strengths because the calcu-
lations tend to converge toward the (unphysical) fully-polarized solution. This technical
severity was already observed in the Heisenberg-Kitaev model [410].
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Over the past decade, the frontiers of quantum computing have broadened from
exploring few-qubit devices to developing viable multi-qubit processors. One of
the protagonists of the present era is the superconducting transmon qubit. As
the field progresses with unbridled panache, the question of whether we have a
comprehensive picture of the potential dangers acquires increasing urgency. In
particular, it needs to be thoroughly clarified whether new and hitherto uncon-
sidered obstacles associated with the multi-qubit nature can emerge.

This thesis introduces a novel perspective on multi-qubit processors. We fuse the
field of quantum engineering andmany-body physics by applying concepts from
the theories of localization and quantum chaos to multi-transmon arrays. From
a many-body perspective, transmon architectures are synthetic systems of inter-
acting and disordered nonlinear quantum oscillators. While a certain amount of
coupling between the transmons is indispensable for performing gate operations,
a delicate balancing with disorder − site-to-site variations in the qubit frequen-
cies − is required to prevent locally injected information from dispersing in ex-
tendedmany-body states. We analyze small instances of transmonquantum com-
puters in exact diagonalization studies, using contemporary quantum processors
as blueprints. Scrutinizing the spectrum, many-body wave functions, and qubit-
qubit correlations for experimentally relevant parameters reveals that some of the
prevalent transmon design schemes operate close to a region of uncontrollable
chaotic fluctuations. Our concepts complement the few-qubit picture that is com-
monly exploited to optimize device configurations on small scales. Destabilizing
mechanisms beyond this local scale can be detected from our fresh perspective.
This suggests that techniques developed in the field of many-body localization
should become an integral part of future transmon processor engineering.
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