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Abstract
The description of electronic behavior within solids is a major part of modern Condensed
Matter Physics. It is well known that depending on the precise conditions, very diverse
phenomena arise from the interacting electrons in the material. To make predictions, it
is therefore crucial to understand the electronic structure in a material and to compute
its electronic spectrum. This thesis discusses three different aspects of electronic spectra
including their numerical solution, each highlighting a distinct approach.

In a first part, this thesis presents a numerical solution of many-electron spectra on small
clusters of IrO6 octahedra. Such clusters are relevant in the field of strongly coupled mat-
ter as they give rise to the elementary building blocks of many topological spin systems,
localized j = 1/2 moments. Exact diagonalization of the full many-electron interaction
Hamiltonian is utilized to compute multi-particle spectra with respective eigenstates. Sub-
sequently, these eigenstates are further used for numerical calculations of resonant inelastic
X-ray scattering (RIXS) amplitudes. The numerical approach is versatile enough to be ap-
plied to different examples in this thesis, covering single-site RIXS spectra as in Ba2CeIrO6,
materials with local clusters like Ba3InIr2O9 and Ba3Ti3−xIrxO9 and Kitaev materials such
as Na2IrO3 and α-RuCl3. In particular, interference effects in the RIXS amplitudes are
shown to play a crucial role of determining the nature of delocalized eigenstates in these
materials.

In a second part, supersymmetry is used to link the spectra of electronic lattice models
with bosonic counterparts. To this endeavor, an exact lattice construction is introduced,
underlying the supersymmetric identification and providing a visual representation of the
supersymmetric matching. As a first instance of the supersymmetric map, it will be shown
that models of complex fermions and models of complex bosons are supersymmetrically
related if they reside on the two sublattices of a bipartite lattice. Another similar identi-
fication is introduced for Majorana fermions on a bipartite lattice which can be related to
real boson models on one of the sublattices, allowing for the explicit construction of related
mechanical models. As examples of this classical construction, the Kitaev model and a sec-
ond order topological insulator with floppy corner modes are discussed. In both examples,
the supersymmetrically related mechanical model is shown to exhibit the same spectral
properties as its quantum mechanical analogue and even inherit topologically protected
localized corner modes.

In a third part, the electronic spectra of general Moiré materials are investigated at the
example of twisted bilayer graphene. This part demonstrates that statistical principles
are best suited to describe the vast number of bands originating from the large Moiré
unit cells. The statistical description reveals a localization mechanism in momentum space
which is investigated and described. The mechanism does not only apply to all parts of
the spectrum in twisted bilayer graphene but is also believed to apply to generic Moiré
materials. Moreover, exceptions from this general mechanism in twisted bilayer graphene
are discussed in detail which turn out to be described by harmonic oscillator states.





Kurzzusammenfassung
Die Beschreibung elektronischen Verhaltens in Materialien ist ein Kernpunkt moderner
Festkörperphysik. Es ist bekannt, dass sich abhängig von den genauen Materialparame-
tern sehr unterschiedliche qualitative Eigenschaften aus den wechselwirkenden Elektronen
ergeben können. Daher ist es grundsätzlich unumgänglich, für jede Art von Vorhersage
das elektronische Verhalten des Materials zu kennen und dessen sogenanntes elektroni-
sches Spektrum berechnen zu können. Das Ziel dieser Arbeit ist es, in drei verschiedenen
Teilen jeweils verschiedene Aspekte der Berechnung elektronischer Spektren hervorzuheben
und zu diskutieren.

Im ersten Teil der Arbeit wird die numerische Lösung des gesamten Viel-Elektronen-
Problems auf kleinen isolierten Clustern aus IrO6 Oktaedern untersucht. Diese Arten
von Clustern finden Anwendung im Bereich von stark korrelierten Materialien, wo sie un-
ter anderem dafür bekannt sind, dass sie lokale j = 1/2 Momente hervorbringen, die sich
zu effektiven Spin-Modellen kombinieren lassen. Im Rahmen dieser Arbeit wird sowohl
die numerische Lösung des Wechselwirkungs-Hamiltonians mittels exakter Diagonalisie-
rung vorgestellt, als auch die weitere Benutzung der Eigenzustände zur Berechnung von
Intensitäten resonanter, inelastischer Röntgen-Streuung (RIXS). Mit diesem numerischen
Werkzeug werden dann Materialien mit einzelnen IrO6 Oktaedern, wie Ba2CeIrO6, Dimer-
Materialien in denen die lokalen Cluster aus zwei IrO6 Oktaedern bestehen, wie Ba3InIr2O9
und Ba3Ti3−xIrxO9, sowie sogenannte Kitaev Materialien wie Na2IrO3 und α-RuCl3 unter-
sucht. In diesen Material-Bespielen wird insbesondere demonstriert, dass die Interferenz-
effekte in RIXS Intensitäten Aufschluss über die Lokalisation der Eigenzustände geben
können.

Im zweiten Teil der Arbeit wird Supersymmetrie angewandt um die Spektren elektronischer
Gittermodelle mit denen bosonischer Gegenstücke zu verbinden. Zu diesem Zweck wird
eine Gitterkonstruktion eingeführt, die der supersymmetrischen Verbindung zu Grunde
liegt und eine visuelle Repräsentation ebendieser darstellt. Als erstes Beispiel dieser Ver-
bindung wird gezeigt, dass Modelle komplexer Fermionen und Bosonen supersymmetrisch
miteinander verbunden sind, wenn sie auf den zwei Subgittern eines bipartiten Gitters defi-
niert sind. Ein weiteres Beispiel für eine supersymmetrische Verbindung im Rahmen dieser
Arbeit ist die Identifikation von topologischen mechanischen Systemen, die auf einem der
Subgitter eines verbundenen Majorana-Fermionen Systems definiert sind. Als Beispiele der
mechanischen Systeme werden klassische Modelle für das bekannte Kitaev Modell sowie für
einen topologischen Isolator zweiter Ordnung hergeleitet. In beiden Beispielen zeigt das su-
persymmetrisch verbundene mechanische Modell sowohl die spektralen Eigenschaften des
Majorana Systems als auch seine topologischen Anregungen.

Im dritten und letzten Teil der Arbeit werden die elektronischen Spektren von sogenannten
Moiré Materialien am Beispiel von Twisted Bilayer Graphen untersucht. Dabei handelt
es sich um ein zweidimensionales Material, in dem das gegeneinander Verdrehen zweier
Graphenlagen zu einer Vergrößerung der Einheitszelle und der Bildung flacher Bänder an



einem besonderen Drehwinkel führt. Dieser Teil der Arbeit befasst sich insbesondere mit
der Frage, inwiefern statistische Untersuchungen der Spektren mehr Einblick über physi-
kalische Effekte der großen Bandstrukturen geben können. Insbesondere wird gezeigt, dass
die statische Beschreibung einen Lokalisationsmechanismus im Impulsraum beschreiben
kann, der in allen Bereichen des Spektrums Anwendung findet. Mittels dieses Mechanis-
mus kann beschrieben werden, wie flache Bänder allgemein in Moiré Materialien entstehen
können. Zusätzlich werden auch Ausnahmen von diesem Mechanismus diskutiert, die sich
schlussendlich als Zustände eines harmonischen Oszillators beschreiben lassen.



Contents

1. Introduction and outline 1

I. Numerical RIXS 5

2. Introduction 7

3. Theoretical modeling 9
3.1. Single particle physics on a single site . . . . . . . . . . . . . . . . . . . . . 9
3.2. Single particle physics on many sites . . . . . . . . . . . . . . . . . . . . . 16
3.3. Multi particle physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4. Resonant inelastic X-ray scattering (RIXS) . . . . . . . . . . . . . . . . . . 24
3.5. Numerical implementation and RIXSCalculator.jl . . . . . . . . . . . . . . 31

4. Material examples 37
4.1. Single particle RIXS in Ba2CeIrO6 . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Dimer materials and RIXS variants of Young’s double slit . . . . . . . . . . 41

4.2.1. Disorder effects in Ba3Ti3−xIrxO9 . . . . . . . . . . . . . . . . . . . 41
4.2.2. Dimers with three holes in Ba3InIr2O9 . . . . . . . . . . . . . . . . 45

4.3. Kitaev materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1. RIXS interference patterns in Na2IrO3 . . . . . . . . . . . . . . . . 50
4.3.2. Double spin-orbit exciton in α-RuCl3 . . . . . . . . . . . . . . . . . 57

4.4. Beyond RIXS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5. Summary and discussion 63

II. Supersymmetry and Topology 65

6. Introduction 67

7. Lattice models 69
7.1. Lattices and unitcells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2. Bandstructures of quadratic lattice models . . . . . . . . . . . . . . . . . . 71
7.3. Numerics of lattice models and LatticePhysics.jl . . . . . . . . . . . . . . . 73

vii



8. Graph theory and supersymmetry 81
8.1. Block matrices and supersymmetry . . . . . . . . . . . . . . . . . . . . . . 81
8.2. Topological invariants under supersymmetry . . . . . . . . . . . . . . . . . 83
8.3. Block matrices and graph theory . . . . . . . . . . . . . . . . . . . . . . . 84
8.4. Supersymmetry as a graph correspondence . . . . . . . . . . . . . . . . . . 87

9. Complex fermions and complex bosons 89
9.1. Supersymmetric charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.Majorana fermions and topological mechanics 103
10.1. Supersymmetric charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.2. Real bosons and classical balls and springs . . . . . . . . . . . . . . . . . . 104
10.3. Example I: Mechanical Kitaev model . . . . . . . . . . . . . . . . . . . . . 107

10.3.1. The Kitaev model and its analytical solution . . . . . . . . . . . . . 107
10.3.2. Classical balls and springs model . . . . . . . . . . . . . . . . . . . 108
10.3.3. Measuring spectra in the mechanical model . . . . . . . . . . . . . . 110
10.3.4. Spectral correspondences . . . . . . . . . . . . . . . . . . . . . . . . 113

10.4. Example II: Mechanical second order topological insulator . . . . . . . . . 114
10.4.1. Second order topological insulator from Majorana fermions . . . . . 115
10.4.2. Classical balls and springs model . . . . . . . . . . . . . . . . . . . 115
10.4.3. Spectral correspondences . . . . . . . . . . . . . . . . . . . . . . . . 117
10.4.4. Localized corner modes . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.4.5. Topological invariant . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.5. Additional aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.5.1. Negative spring constants . . . . . . . . . . . . . . . . . . . . . . . 122
10.5.2. Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.Beyond supersymmetry: Fermions and spin spirals 129
11.1. Classical spin-spiral ground states . . . . . . . . . . . . . . . . . . . . . . . 129
11.2. Lattice construction to free fermion models . . . . . . . . . . . . . . . . . . 132
11.3. Lattice construction vs. supersymmetry . . . . . . . . . . . . . . . . . . . . 133
11.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12.Summary and discussion 139

III. Universal Features of Moiré Bandstructures 143

13.Introduction 145

14.Modeling twisted bilayer graphene 151
14.1. Real space geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
14.2. Real space hopping model . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

viii



14.3. Momentum space continuum model . . . . . . . . . . . . . . . . . . . . . . 158

15.Delocalized states in twisted bilayer graphene 161
15.1. Measures of localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
15.2. Velocity statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
15.3. Energy level statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
15.4. Wavefunction statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
15.5. Spectral dependence of observables . . . . . . . . . . . . . . . . . . . . . . 172
15.6. The three regimes of localization . . . . . . . . . . . . . . . . . . . . . . . 178
15.7. Anomalously flat bands: Magic angle flat bands . . . . . . . . . . . . . . . 179
15.8. Anomalously flat bands: Harmonic oscillator states . . . . . . . . . . . . . 182

16.Summary and discussion 187

17.General concluding remarks 189

Bibliography 193

ix





1. Introduction and outline

A substantial part of modern Condensed Matter Physics is devoted to describing the be-
havior of fast electrons in the context of a nearly static lattice of atomic nuclei. From a
quantum mechanical perspective such behavior manifests itself in the formation of eigen-
states with respective energies which form so-called electronic spectra. Although electrons
are known from the standard model as elementary particles, their behavior in solids is
much richer compared to free or isolated electrons, mostly due to two key ingredients.
First, electrons in solids have to be considered subject to a periodic background modula-
tion which in many forms differs from the vacuum. Second, and most importantly, in a
macroscopic material there are exponentially many (interacting) electrons whose interplay
allows for the emergence of fascinating complexity.

There have been many tantalizing observations of diverse electronic behavior in the past
100 years. Electronic models are found to underlie the majority of today’s phenomena,
starting with seemingly free particles which transport charge and heat, to ordered phases
in which electronic degrees of freedom appear to be pinned to certain states even at finite
temperatures. Effects of electronic correlations in a material, in particular with strong
spin-orbit coupling [1, 2], can range from the formation of superconducting phases or
quantum critical points, to emergent spin models exhibiting exotic phases such as spin
liquids [3, 4]. Especially in recent years, the notion of topological order and fractional
excitations have been in the focus of research, promising advances not only on the level
of theoretical understanding but with real-world applications such as engineering a first
quantum computer.

From a theoretical perspective, electronic models have especially been enriched by one par-
ticular concept, namely the notion of quasi-particles or effective degrees of freedom. This
advance ultimately lead to a shift in perspective, opening the possibility of engineering
certain particles with desired properties within a solid instead of searching for them in
the form of more exotic elementary particles in vacuum. In this process, quasi-particle
descriptions not only allowed describing previously incomprehensible effects but also sim-
plified the development of tailored materials exhibiting meticulously designed properties
in their effective quasi-particle models.

Nowadays, electronic models are at the heart of many discussions in modern Condensed
Matter Physics and determining their electronic spectra is a recurring essential task in
describing the overall behavior of a material. This thesis is devoted to providing three
different numerical perspectives on the field of electronic spectra. The three examples
considered are representative for an entire family of problems, each highlighting a unique
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1. Introduction and outline

aspect, thus elevating their solutions to be applicable in a broader context.

In Part I of this thesis, numerical exact diagonalization will be employed to obtain elec-
tronic spectra of the full electronic many-body problem. This discussion will be held in
the context of resonant inelastic X-ray scattering (RIXS) measurements on materials ex-
hibiting strong spin-orbit coupling and partially filled d-shells. Such materials are natural
ingredients for the formation of local j = 1/2 moments and have therefore great relevance
in the fabrication of tailored spin-models. Chapter 2 provides a brief introduction to these
materials which is followed by their theoretical description in Chapter 3 together with
the concept of numerical exact diagonalization and numerical RIXS. In Chapter 4, de-
localized states in different materials are then investigated by calculating numerical RIXS
amplitudes which are compared to experimentally obtained data. In general, such analyses
fundamentally lay the basis for topological aspects of electronic models and the formation
of respective quasi-particles. Part I is then closed with a brief summary and outlook in
Chapter 5.

In Part II, the focus shifts from a full many-body description of localized states to the
discussion of periodic so-called Bloch states of a single particle in a periodic lattice. In
particular, this part focuses on the analysis of bandstructures with regard to supersym-
metry (SUSY) formulated on the basis of the underlying lattice structure. Following a
brief introduction in Chapter 6 about the role of supersymmetry, Chapter 7 gives an
overview over the concept of non-interacting lattice models. This concept will be brought
into correspondence with supersymmetry in Chapter 8, followed by several examples.
The first example in Chapter 9 concerns the connection between complex fermions and
bosons which can be connected by supersymmetry if they reside on matching sublattices
of a bipartite lattice. The second example in Chapter 10 discusses the supersymmetric
connection between Majorana fermions on a bipartite lattice and real bosons on one of
its sublattices. In particular, connections to topological mechanics are discussed and it
is shown that topological invariants can be defined for the mechanical system, which in-
herit the topology of the Majorana fermion system. Finally, a brief discussion of previous
work regarding a correspondence of spin-spiral ground states and the Fermi surfaces of free
fermion systems is presented in Chapter 11, before being followed by a small discussion
and outlook in Chapter 12.

In Part III of this thesis, another shift of focus is performed by increasing the effective size
of elementary building blocks. Here, the family of Moiré materials is highlighted which is
characterized by extraordinary large unitcells stemming from the interplay of two periodic
structures with slightly different periodicities. Due to the resulting electronic spectra
with huge number of bands, statistical principles are much better suited to describe the
behavior in these Moiré materials. After a brief introduction in Chapter 13 to the family
of Moiré materials, band structure calculations for twisted bilayer graphene are introduced
in Chapter 14 as a prime example for a Moiré material. Chapter 15 then discusses
the impact of the Moiré structure on the electronic spectrum, resulting in the statistical
investigation of localization effects in momentum space leading to the natural formation

2



of flat bands. The mechanism takes place in three distinct regimes of localization which
are discussed and then applied to twisted bilayer graphene. Then, a brief summary of
other types of flat bands in twisted bilayer graphene is performed, followed by a general
summary in Chapter 16, summarizing the entirety of Part III.

With these three topical parts being discussed, the thesis closes with some final concluding
remarks and a brief discussion in Chapter 17.
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Numerical RIXS
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2. Introduction

Among different properties induced by electronic behavior, materials exhibiting magnetism
have always been a source of intriguing effects. Starting with the discovery of magnetism
and the electromagnetic force, fascination pursued all the way to modern condensed matter
physics. With the formulation of statistical physics, many microscopic models have been
proposed to explain and predict thermal ordering of intrinsic magnetic moments. Whereas
in the early days of statistical physics, the Ising model enabled studying ferromagnetism,
nowadays more complex magnetic phases are of interest. These phases can in particular
arise in frustrated systems which prevent long-range magnetic order by a particular ex-
change geometry so that interactions cannot be simultaneously satisfied. One particular
example of such models is the Kitaev model [3] which describes spins interacting on a
honeycomb lattice with bond-directional couplings. It has been shown [3] that its ground
state is a long sought-after quantum spin liquid.

With the growing complexity of theoretical models, also the complexity of experimental
materials grew in time. In recent years particular interest has been paid to transition metal
oxides with partially filled 4d and 5d orbitals. Strong spin-orbit coupling in these materials
in combination with surrounding crystal field effects gives rise to spin-orbit coupled j = 1/2
moments, as demonstrated in Fig. 2.1. These moments can subsequently be driven to Mott
insulating phases by electronic correlations, giving rise to many exotic phases of matter [1,
2]. First experimental investigations of such materials have been performed on the example
of Sr2IrO4 [5, 6], however work in this thesis focuses more on so-called Iridate materials, in
which Iridium atoms are surrounded by oxygen octahedra. Typically, Ir exhibits an Ir4+

(5d5) valence, which in combination with effects of the oxygen crystal field make these IrO6
building blocks ideal for realizing j = 1/2 moments.

It was realized that the intrinsic IrO6 building blocks can be aligned in various geometries,
giving rise to different effective interactions between j = 1/2 moments [4, 7, 8]. Corner-
sharing geometries are typically associated with Heisenberg exchange whereas edge-sharing
octahedra have been found to realize bond-directional couplings [4] which are necessary for
material realizations of the Kitaev model. As a natural consequence, the family of iridate
materials received much attention.

One tool to probe the electronic states within these materials is resonant inelastic X-ray
scattering (RIXS). In a RIXS measurement, the inelastic contribution to scattering am-
plitudes of resonant X-rays is observed. Since Ir is strongly absorbing neutrons, RIXS
outperforms the otherwise widely used tool of neutron scattering in the Iridates. In par-
ticular combining RIXS with interferometric approaches proved a fruitful combination [9].

7
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Figure 2.1.: Formation of j = 1/2 moments in materials with partially filled d-
shells and strong spin-orbit coupling - Schematic depiction of a IrO6 octahedron (panel
a)) with intrinsic formation of j = 1/2 moments (panel b)) from a partially filled d-shell.
Strong crystal field effects of the surrounding oxygen atoms, forming an octahedral crystal
cage, split the d-orbitals into two multiplets, called eg and t2g. While the eg states are
empty, the t2g states are partially filled and can be split further by additional interactions.
In particular, strong spin-orbit coupling splits the t2g multiplet into j = 1/2 and j = 3/2
states. For the common configuration of 5 electrons within the d-orbitals, the j = 3/2
states are completely filled and there is only a single electron, occupying the j = 1/2
states, forming an effective spin-1/2 degree of freedom that can subsequently interact with
neighboring moments.

It could be shown that interference effects in RIXS intensities, similar to the famous double-
slit experiment by Young, could resolve quasi-molecular orbitals in Ba3CeIr2O9, providing
a way for other material investigations [9].

The work in this Part I aims at providing a numerical perspective on the method of RIXS
interferometry. In particular, this part covers a numerical implementation to investigate
the family of iridate materials and aid in experimental interpretation of RIXS data. The
entirety of code is contained in the packages RIXSCalculator.jl and RIXSPlotter.jl for
the programming language Julia. The implementation is modular and allows the investiga-
tion of various cluster geometries with varying particle numbers. To illustrate the flexible
implementation, this part covers many different example systems, which are partially still
considered to be work-in-progress.

The part is organized as follows. First in Chapter 3, the conceptual methods of multi-
particle exact diagonalization and RIXS are introduced. Then, in Chapter 4, these methods
are applied to a number of example systems, ranging from a single-site system to edge-,
face- and corner-sharing dimers in various iridate materials. Finally, a brief summary and
conclusion of this part is drawn in Chapter 5.

8



3. Theoretical modeling

Let us begin by discussing the theoretical formalism to describe electronic states in systems
where partially filled d shells are subject to a mix of strong spin-orbit coupling, crystal field
effects as well as electronic correlations. To this endeavor, this chapter starts with a single-
particle description of isolated IrO6 octahedra in Sec. 3.1, containing a brief introduction
to single-particle quantum mechanics and the necessary basis and operator definitions
commonly used for such materials. From there, a generalization to many sites is carried
out in Sec. 3.2, followed by another extension to multiple particles in Sec. 3.3 introducing
Fock space language. After the many-particle Hamiltonian is discussed, the chapter ends
by introducing the RIXS process in Sec. 3.4, followed by the implementation into the
respective julia modules in Sec. 3.5.

3.1. Single particle physics on a single site
In this first section, let us focus on describing eigenstates of a single particle on a single
Iridium site. After some initial notes on general quantum mechanics, first, a description of
the basis is given, then a formulation of the Hamiltonian in terms of this basis. Note that
on the level of a single particle, there will not be a formal distinction in terms of holes and
electrons yet, however when including more than a single particle in the next sections, this
distinction will reappear.

General notes on single-particle Quantum Mechanics
Before addressing Iridates directly, let us first review some basic formalism. In principle,
quantum mechanics describes the behavior of complex wavefunctions |ψ⟩ by solving a
fundamental differential equation known as the Schrödinger equation

Ĥ |ψ⟩ = −i ∂
∂t

|ψ⟩ . (3.1)

For static problems, this equation can be further simplified. Wavefunctions decompose
into an oscillating part in time, |χ(t)⟩ as well as an additional time-independent part |ϕ⟩
which describes a static behavior in space. This time-independent wave functions follows
a simplified version of the Schrödinger equation which can be formulated as an eigenvalue
equation

Ĥ |ϕ⟩ = εϕ |ϕ⟩ . (3.2)

9



3. Theoretical modeling

Here, εϕ describes the energy of state |ϕ⟩. In principle, the physics of these static systems
is therefore governed by the eigensystem of the corresponding Hamilton operators, i.e.
eigenstates and corresponding eigenvalues of its matrix description.

From a technical perspective, the general formalism to describe the physics of a quantum
particle is the following. One has to start by choosing a basis representation of Hilbert
space, i.e. a set of states {|an⟩} for the (usually closed) system. Any given state can then
be written as

|ψ⟩ =
∑

n

αn |an⟩ (3.3)

with complex prefactors αn ∈ C. These prefactors can e.g. be represented as some vector
a⃗ = (. . . , αn, . . . )T if one is interested in a matrix representation of the state. Subsequently,
one has to formulate the action of operators O on the basis states, e.g. spin operators. This
can be done by formulating the overlaps ⟨an|O|am⟩ = Om,n for the operator O which also
allows to write a given operator as a matrix. Since the Hamiltonian is built up from
these operators, it is straight forward to also obtain the matrix description of the Hamil-
tonian. Finally diagonalizing the Hamiltonian matrix leads to eigenvalues and eigenstates.
Whereas the eigenstates can be identified with the wavefunctions of a single particle, the
eigenvalues give the corresponding energies of these states. In total, this procedure would
be characterized as a "solution" of the quantum problem.

Whereas many problems can be solved analytically in this regard, oftentimes a numerical
solution is the only option. Numerically one has to diagonalize the Hamiltonian matrix
explicitly in order to obtain eigenenergies and eigenstates. Although in principle these
matrix-vector operations are implemented quite efficiently in nearly any programming lan-
guage, the most challenging part is the size of the matrix. The matrix dimension is directly
related to the size of the Hilbert space. For a Hilbert space with N basis states, the Hamil-
tonian matrix is of size N × N . This is especially important as a system with n particles
which can occupy one out of two states, N = 2n, i.e. the Hilbert space scales exponentially.
Then, diagonalizing the corresponding 2n × 2n Hamiltonian matrix might even exceed the
available numerical resources.

Coming to the systems at hand, it becomes apparent that there are some key questions
which have to be answered in order to phrase the following discussion in the language
of single-particle quantum mechanics. First of all, the Space of states has to be chosen.
Second, respective operators acting on these states are defined which then can build up
the Hamiltonian.

Choosing the right basis
Most materials have complex atomic configurations with many electrons on a vast variety
of orbitals. However all materials in the following discussion share a common theme – their
physics can be described in terms of electrons within the partially filled d-shell. The d-shell
is a ℓ = 2 multiplet consisting of five states that are distinguished by mℓ = −2,−1, 0, 1, 2.

10



3.1. Single particle physics on a single site

Due to an octahedral crystal field around the atoms at hand, the d orbitals are split into
two subgroups, two eg and three t2g orbitals, as seen in Fig. 2.1. The splitting is on the
order of several eV which in combination with the low filling of the d-shell means that we
can concentrate on the t2g subgroup from here on. Within the t2g subgroup, an effective
ℓ = 1 structure emerges [10].

Since from here on, all calculations take place within the t2g manifold, the explicit label
of L̂eff will be dropped. Therefore, all subsequent references to either L̂ or the quantum
number ℓ are referring to the effective orbital quantum number unless stated differently.

To parameterize the t2g states one can therefore choose a basis with quantum numbers ℓ
and s. Basis states have the form |ℓ,mℓ, s,ms⟩LS = |ℓ,mℓ⟩⊗|s,ms⟩ with orthonormal bases
{|ℓ,mℓ⟩} and {|s,ms⟩}. Note that we are focusing on the case of t2g electrons, i.e. ℓ = 1
and s = 1

2 . This yields six different basis states with quantum numbers ml = −1, 0, 1 and
ms = ±1/2 which can be represented in the form |ml,ms⟩ as

|−1, ↑⟩ |0, ↑⟩ |+1, ↑⟩
|−1, ↓⟩ |0, ↓⟩ |+1, ↓⟩

(3.4)

An alternate parametrization of the ℓ-part of the basis uses real-space coordinates of the
surrounding crystal field. Orbitals along axes α and β can be written as |αβ⟩ or similarly
abbreviated by the direction γ that they do not spread along, i.e. |αβ⟩ =̂ |γ⟩. In total, the
XYZ-basis definition reads

|x⟩ =̂ |yz⟩ = (|1⟩ − |−1⟩)/
√

2
|y⟩ =̂ |zx⟩ = i(|1⟩ + |−1⟩)/

√
2

|z⟩ =̂ |xy⟩ = |0⟩
(3.5)

In principle, many different bases can be proposed. These can be transformed by employing
projectors which are defined from the overlap ⟨a|b⟩ where |a⟩ and |b⟩ are basis states of
different bases. In the remainder of this Part I special bases will be used to accommodate
various forms of hopping between sites.

Operators for single particles
In order to formulate a Hamiltonian for a single particle, let us look at the elementary
operators that can act on the LS basis states. Action on other bases, like the XYZ basis,
can be expressed in terms of projectors. In principle, only two elementary operators with
three components each are possible: L̂µ,Ŝν . Combining these operators allows for the
construction of many different Hamiltonians.

Let us start with the spin operators Ŝν that can act on the spin part of the LS basis
states. A widely used technique is to represent spin-operators by Pauli matrices σν , i.e.
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3. Theoretical modeling

Ŝν = 1
2σν . This is however not the preferred method here as the use of Pauli matrices

implies a particular choice of basis which is deliberately left open for now. Applying the
operator Ŝz to a given state yields

Ŝz |s,ms⟩ = ms |s,ms⟩ (3.6)

which reflects our choice of spin basis, i.e. the z-axis of the spin quantization frame.

Action of the other two components Ŝx and Ŝy can better be understood in terms of raising
and lowering operators S+ and S− which are defined as

S+ = Ŝx + iŜy

S− = Ŝx − iŜy
(3.7)

They act on the basis states as raising or lowering their respective spin projection quantum
number ms as

S± |s,ms⟩ =
√
s(s+ 1) −ms(ms ± 1) |s,ms ± 1⟩ (3.8)

and in return spin operator components can now be rephrased in terms of raising and
lowering operators

Ŝx = 1
2(S+ + S−)

Ŝy = 1
2i(S

+ − S−)
(3.9)

The orbital momentum operator L̂ can be represented very similarly to the spin operator.
The z-component acts as on the ℓ part of the basis as

L̂z |ℓ,mℓ⟩ = mℓ |ℓ,mℓ⟩ (3.10)

and the x and y components can be rewritten again in terms of raising and lowering
operators

L̂x = 1
2(L+ + L−)

L̂y = 1
2i(L

+ − L−)
(3.11)

which act on the basis states as

L± |l,ml⟩ =
√
l(l + 1) −ml(ml ± 1) |l,ml ± 1⟩ (3.12)

Note that in contrast to the spin quantization frame, the orbital quantization frame is tied
to the surrounding crystal field axes which enables the ℓ = 1 description in the first place.
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3.1. Single particle physics on a single site

Building blocks for single-particle Hamiltonians
Now that operators L̂µ and Ŝν have been introduced, let us turn our attention to various
terms that contribute to the effective Hamiltonian of electrons within the t2g orbitals. In
the remainder of the RIXS chapter, especially three terms will be used, those are magnetic
field, spin-orbit coupling as well as crystal field distortion.

The magnetic field term can be written as

HB = B⃗ · Ŝ (3.13)

and describes the coupling of the spin moment to a local magnetic field with strength B⃗.
It can be written in the spin basis {|↑⟩ , |↓⟩} as a matrix

HB = 1
2

(
Bz Bx − iBy

Bx + iBy −Bz

)
(3.14)

where the individual elements have been obtained by computation of overlaps, e.g.

HB,↑↑ = ⟨↑|HB|↑⟩
=
〈
↑
∣∣∣BxŜ

x
∣∣∣↑〉+

〈
↑
∣∣∣ByŜ

y
∣∣∣↑〉+

〈
↑
∣∣∣BzŜ

z
∣∣∣↑〉

= Bx

〈
↑
∣∣∣Ŝx

∣∣∣↑〉+By

〈
↑
∣∣∣Ŝy

∣∣∣↑〉+Bz

〈
↑
∣∣∣Ŝz

∣∣∣↑〉
(3.15)

where elements
〈
α
∣∣∣Ŝν

∣∣∣β〉 can be resolved using the equations above. The Hamiltonian
matrix in Eq. (3.14) has eigenvalues

E1,2 = ±1
2
√
B2

x +B2
y +B2

z = ±1
2 |B⃗| (3.16)

which indicates that a field B⃗ splits levels by magnitude |B⃗| independent of its direction
w.r.t. the spin quantization axis.

The spin orbit coupling term couples spin and orbital momentum as

HSO = λL̂ · Ŝ (3.17)

with coupling of the scale λ. In general, it will also split levels into a j = 1/2 singlet and
a j = 3/2 doublet. The Hamiltonian matrix can again be obtained by evaluating elements
⟨α|HSO|β⟩ which leads to overlaps of the form

〈
α
∣∣∣L̂µŜµ

∣∣∣β〉. In numerics, special attention
has to be paid to those matrix elements as L̂µŜµ acts on both subspaces of the LS basis
simultaneously.

The last term which is frequently used in the context of t2g orbitals is the crystal field
distortion term. This term originates from geometric distortions of the octahedral field
away from its cubic limit. Sources of the distortion often lie within the crystal structure
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3. Theoretical modeling

but also may originate from external sources like applied pressure. The correction to the
Hamiltonian can be formulated in terms of the effective orbital momentum operators L̂µ

as
HCF = ∆

(
n⃗ · L̂

)2
(3.18)

where ∆ gives the strength and n⃗ the direction of the distortion. In practice, there are
in particular two directions of distortion which are relevant, namely trigonal distortion,
denoting n⃗ = [1, 1, 1], and tetragonal distortion labeling n⃗ = [0, 0, 1].

Numerically, the computation of these terms is more involved then e.g. the B⃗ · Ŝ term since
it contains L̂µL̂ν terms which act twice on the same state. One can either write down an
elaborate analytical solution by explicitly expressing all possible combinations, or one can
resort to rewriting the term with an identity as〈

α
∣∣∣L̂µL̂ν

∣∣∣β〉 =
∑

γ

〈
α
∣∣∣L̂µ

∣∣∣γ〉 〈γ∣∣∣L̂ν

∣∣∣β〉 (3.19)

in which the computation of elements is then similar to the B⃗ · Ŝ term.

Typical Hamiltonians for a single particle

Having established various terms that can contribute to the Hamiltonian of a single particle
in the t2g orbitals, let us now turn to discussing the eigenstates of the single-particle
Hamiltonian

H = −λL̂ · Ŝ − ∆(L̂z)2 (3.20)
which contains both spin-orbit coupling as well as a tetragonal crystal field distortion.
The analytical solution of this Hamiltonian was given by Ament et.al. in Ref. [11]. In
the following, both a discussion of the relevant physics as well as a comparison of the
numerics to the analytical solution is given. It is noteworthy that numerics in this context
inherently builds the Hamiltonian matrix dynamically by computing elements ⟨α|H|β⟩ for
a given orthonormal single particle basis |α⟩.

The exact solution [11] for the above Hamiltonian consists of three Kramers doublets, f ,
g and h with energies

Ef = λ√
2 tan(θ)

, Eg = −∆ − λ

2 , Eh = −λ tan(θ)√
2

(3.21)
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Figure 3.1.: Comparison of single-particle ED - Exact diagonalization (ED) results
(blue dots) of a single hole with Hamiltonian H = −λL̂·Ŝ−∆L2

z in comparison to the exact
solution by Ament et al. [11] (cyan line). Panel a) shows variation of the spin-orbit coupling
strength λ whereas panel b) shows variation in crystal-field distortion, parameterized by
∆. Vertical lines denote the strength of λ and ∆ in the respective other plot.

whose states can be represented in the LS basis as

|f, ↑⟩ = sin(θ) |0, ↑⟩ − cos(θ) |1, ↓⟩
|f, ↓⟩ = cos(θ) |−1, ↑⟩ − sin(θ) |0, ↓⟩

|g, ↑⟩ = |1, ↑⟩
|g, ↓⟩ = |−1, ↓⟩

|h, ↑⟩ = cos(θ) |0, ↑⟩ + sin(θ) |1, ↓⟩
|h, ↓⟩ = cos(θ) |0, ↓⟩ + sin(θ) |−1, ↑⟩

with θ defined by spin orbit coupling and crystal field distortion as

tan(2θ) = 2
√

2λ
λ− 2∆ (3.22)

Dependence of the eigenenergies on couplings as well as a comparison to exact diagonliza-
tion (ED) results can be seen in Fig. 3.1. For positive spin-orbit coupling, the electronic
structure indicates that the hole occupies the separated (mostly j = 1/2) Kramers doublet
|f⟩ which is separated from rest of bands.

In summary, this section provided an overview over the single-particle physics of a single
hole on a single Iridium site. Starting from the definition of basis states to describe the
t2g states, the section went on by discussing the relevant single-particle operators which
are present in the following sections, Spin-Orbit coupling, Crystal field distortion effects
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Figure 3.2.: ED of a simple hopping Hamiltonian - Exact diagonalization results of
a single hole which is hopping on two sites according to the Hamiltonian given in Eq. (3.28)
while still being subject to spin-orbit coupling and crystal-field distortion. The splitting
between the j = 1/2 and j = 3/2 groups can be observed at zero hopping, indicated by
labels in the plot. Upon increasing hopping strength t to finite values, a splitting of the
single-particle levels into bonding- and antibonding pairs is observed, following the form of
Eq. (3.29). The respective sign of the superposition is indicated as a label at each branch.

as well as magnetic field terms.

Upon introducing the various terms, comparisons to the analytic solution of Ament et
al. [11] have been performed. These comparisons showed the correctness of numerical
implementations on the one side and illustrated the physics of a single hole in the t2g

states on the other side. In the following sections, the single-particle description will be
the basis for an extension to multiple sites and to multiple particles.

3.2. Single particle physics on many sites
In many materials, electrons within the t2g orbitals are not tightly bound to their respective
atomic core, but can delocalize among several sites within a given cluster. This process
makes it necessary to extend the single-particle formalism developed before to more than
one site. To do so, two things have to be done. First of all, the basis has to be extended to
more than one site. Second, a new type of operator, the hopping operator, is introduced
to enable hopping between sites of the same cluster.

Extending the already known LS and XYZ bases to more than one site is achieved by
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3.2. Single particle physics on many sites

adding a new quantum number which indicates the site. States are transforming as

|α⟩ 7→ |α⟩ ⊗ |i⟩ =̂ |α, i⟩ (3.23)

where |α⟩ describes an LS or XYZ basis state and i is a site label. Due to this additional
structure, operators are local, i.e. diagonal in the new quantum number, since

⟨α, i|β, j⟩ = ⟨α|β⟩ δij (3.24)

which means that eigenenergies are only replicated for each site.

In contrast to the on-site single-particle operators, the hopping operator connects states
on different sites. Usually it is written in Fock-space language in the form

H ∼
∑
i,j

∑
α,β

tαβ
ij c

α†
i c

β
j (3.25)

which takes a particle from orbital β on site j and moves it to orbital α on site i. In a
single-particle description, this would result in matrix elements of the form

⟨α, i|Hhop.|β, j⟩ = tαβ
ij (3.26)

or alternatively writing the hopping operator as

Hhop. =
∑
i,j

∑
α,β

tαβ
ij |α, i⟩ ⟨β, j| (3.27)

Generically, hopping leads to splitting the degeneracy of levels on multiple sites into so-
called bonding and antibonding states. To elaborate on this, let us consider an example
system with local spin-orbit coupling and crystal field distortion on two sites, i.e. local
Hamiltonians in the form of Eq. (3.20), as well as hopping that preserves the eigenstate

⟨α, 1|Hhop.|β, 2⟩ = tδαβ (3.28)

Exact diagonalization results of this example system are shown in Fig. 3.2. For finite
hopping strength t, every level is split into a bonding and a antibonding combination of
different energy. The corresponding wavefunctions have the form

|ψα,1⟩ ∼ |α, 1⟩ + |α, 2⟩ Eα,1 = Eα + t

|ψα,2⟩ ∼ |α, 1⟩ − |α, 2⟩ Eα,1 = Eα − t
(3.29)

For the examples discussed in the context of this thesis, effective hopping between the Ir
d-orbitals takes either place as direct Ir-Ir overlap or as indirect hopping on the Ir-O-Ir
hopping paths via shared oxygen atoms in the IrO6 crystal cages. Depending on the local
IrO6 geometry, several distinct hoppings are thus plausible [12].
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3. Theoretical modeling

3.3. Multi particle physics
In most situations, the physics of a single particle does not correctly describe all effects
emerging from the local cluster of atoms, which is due to effects untreated on the single-
particle level such as interactions. In the following, the language of second quantization
and Fock space will be used to describe both single-particle and multi-particle operators
in the context of this chapter.

Conventional many-particle wavefunctions
Describing more than one particle with conventional quantum mechanics can be facilitated
by expanding the Hilbert space utilizing the Kronecker product.

Hn = H1 ⊗ H1 ⊗ · · · ⊗ H1 (n copies) (3.30)

On the level of wavefunctions this is equivalent to giving all of the many (distinguishable)
particles the ability to delocalize in the single particle Hilbert space independently from
any other particle. In short, wavefunctions are equipped with more coordinates to account
for the growth in particle number

|ψ⟩ =
∑

αj1j2...jn |aj1⟩ |aj2⟩ . . . |ajn⟩ (3.31)

The increase in Hilbert space dimension is exponential in particle number which can be seen
as similar to how the possible number of states in a classical thermodynamic description is
growing exponentially in particle number. However, within these many states, some might
be forbidden by particle exchange statistics.

In principle, the exchange of indistinguishable particles has to leave the probability density
as it is. Wavefunctions can therefore only change up to a sign

Pijψ = ψeiφ (3.32)

This sign change in particle exchange defines the two particle classes of bosons and fermions.
Bosons have a relative sign of eiφ = +1 under particle exchange, the wavefunction remains
the same if one exchanges two bosons ψ(r1, r2) = +ψ(r2, r1). Fermions on the other hand
have a negative exchange sign of eiφ = −1, i.e. the wavefunction changes sign under particle
exchange ψ(r1, r2) = −ψ(r2, r1). Therefore, fermions cannot occupy the same state with
more than one particle, a property also known as the Pauli principle.

Second quantization and Fock space
In most applications, the use of explicit wavefunctions is not feasible and one instead
utilizes an effective approach known as second quantization. In this formalism, one takes
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3.3. Multi particle physics

the single-particle basis |α⟩ of a system as a starting point and occupies each state α by
many particles nα. The relevant information of a given state is then not encoded in a
Schrödinger-like wavefunction consisting of many single-particle terms but given by how
many particles occupy which single-particle state. Multi-particle states can therefore be
written as

|ψ⟩ =
∑

n1n2...

cn1n2... |n1, n2, . . . ⟩ (3.33)

with basis states in this new number basis

|n1, n2, n3, . . . ⟩ ∈ F (3.34)

which is a basis of the so called Fock space F

F = F0 ⊕ F1 ⊕ F2 ⊕ . . . (3.35)

Here, FN = H
A/S
N describes the Hilbert spaces for a fixed number of bosons and fermions

respectively. On top of these states, an additional vacuum state |vac⟩ is included as a state
without particles |vac⟩ ≡ |0, . . . , 0⟩. This state is not part of standard Schrödinger-like
quantum mechanics but necessary for the construction of Fock space. In the present case,
the particles are electrons and therefore fermions, such that the single-particle occupation
numbers are restricted to nα = 0, 1, i.e. the well known Pauli principle holds. Last but
not least, it is noteworthy that basis states in Fock space are orthonormal, i.e.

⟨. . . n′
α . . .|. . . nα . . .⟩ =

∏
α

δ(n′
α, nα) (3.36)

On top of the description of individual states, raising and lowering operators are used to
connect states with different occupations. i.e. for inserting or removing particles. Their
actions on general Fock states are

for bosons: c†
i |n1, n2, . . . , ni, . . . ⟩ =

√
ni + 1 |n1, n2, . . . , ni + 1, . . . ⟩ (3.37)

for fermions: c†
i |n1, n2, . . . , 0, . . . ⟩ = (−1)

∑
j<i

nj |n1, n2, . . . , 1, . . . ⟩ (3.38)
c†

i |n1, n2, . . . , 1, . . . ⟩ = 0 (3.39)

for bosons: ci |n1, n2, . . . , ni, . . . ⟩ = √
ni |n1, n2, . . . , ni − 1, . . . ⟩ (3.40)

for fermions: ci |n1, n2, . . . , 1, . . . ⟩ = (−1)
∑

j<i
nj |n1, n2, . . . , 0, . . . ⟩ (3.41)

ci |n1, n2, . . . , 0, . . . ⟩ = 0 (3.42)

By utilizing this notation, a generic Fock state can thus be written as creation of particles
from the vacuum

|n1, n2, . . . ⟩ =
∏

i

1√
ni!

(c†
i )ni |vac⟩ (3.43)
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In our context, we will discuss the creation and annihilation of electrons and holes which
will be represented by the following notation: d†

α creates an electron and a†
α creates hole

in state α. Annihilation is similar as dα removes an electron and aα removes a hole from
state α. Since electron creation is the same as hole annihilation, those operators can be
brought into correspondence as

d†
α = aα, dα = a†

α (3.44)

Similarly, electron occupation nα = d†
αdα in state α is related to the corresponding hole

occupation hα = a†
αaα in the same state as

nα = 1 − hα (3.45)

In the remainder of this chapter, calculations will be mostly carried out in the hole picture
as the total number of particles will then be lower.

Single-particle operators
Having established the description of Fock space basis states, let us turn our attention to
the Fock space representation of single-particle operators. In particular, it is necessary to
formulate the aforementioned operators describing spin-orbit coupling, magnetic field and
crystal field distortion.

As mentioned in the theory part, any single-particle operators A(1) has a Fock space rep-
resentation A which can be written as

A =
∑
α,β

〈
α
∣∣∣A(1)

∣∣∣β〉 a†
αaβ. (3.46)

Here, matrix elements
〈
µ
∣∣∣A(1)

∣∣∣ν〉 are assumed to be known, they can e.g. be computed as
discussed in the single particle section.

When performing numerical exact diagonalization, it is necessary to obtain a matrix rep-
resentation of these operators in Fock space. In principle, one can use the same strategy
as for single-particle operators by calculating matrix elements for Fock space states µ and
ν explicitly in terms of the overlap

Aµν = ⟨µ|A|ν⟩ =
〈
. . . nµ

γ . . .
∣∣∣A∣∣∣. . . nν

γ . . .
〉

=
∑
α,β

〈
α
∣∣∣A(1)

∣∣∣β〉 〈. . . nµ
γ . . .

∣∣∣a†
αaβ

∣∣∣. . . nν
γ . . .

〉 (3.47)

To evaluate this expression, one has to be able to calculate elements of the form
〈
µ
∣∣∣a†

αaβ

∣∣∣ν〉
for Fock space basis states |µ⟩ and |ν⟩ which is in principle possible.
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Multi-particle operators and interaction Hamiltonian
So far, particles in Fock space occupy single-particle orbitals but are non-interacting apart
from the fermionic hard-core repulsion due to the Pauli principle. Interactions in many
different forms naturally appear as quartic terms in the Hamiltonian. In the context of this
chapter, let us focus on a specific formulation of Coulomb repulsion, suitable for discussing
the t2g orbitals in most of the relevant atoms.

Coulomb interaction in general is a repulsive (attractive) force between particles of the same
(different) electrical charge which decays as 1/r2 in distance. Inherently, modeling Coulomb
repulsion on the level of wavefunctions becomes a real challenge and is disregarded in this
context. Instead one formulates an effective interaction Hamiltonian in second quantization
which takes into account repulsion between electrons on the same site [13]. This special
form of the interaction Hamiltonian is formulated in the electron picture as

Hint = U1
∑
i,α

niα↑niα↓

+ 1
2(U2 − JH)

∑
i,α ̸=α′,σ

niασniα′σ + U2
∑

i,α ̸=α′
niα↑niα′↓

+ JH

∑
i,α ̸=α′

d†
iα↑d

†
iα↓diα′↓diα′↑ − JH

∑
i,α ̸=α′

d†
iα↑diα↓d

†
iα′↓diα′↑

(3.48)

explicitly distinguishing between orbitals α = x, y, z =̂ yz, xz, xy on sites i with spin
σ =↑, ↓. The interaction Hamiltonian is parameterized in terms of Hubbard interactions U1
and U2, Hund’s coupling JH . It is common to make another assumption on this interaction
Hamiltonian in terms of the symmetries of the surrounding crystal field. For a cubic crystal
field, one has the relation

U1 = U2 + 2JH . (3.49)
This makes it possible to rename U1 to U and calculate U2 from U = U1 and JH which
reduces the number of interaction parameters to two.

Concerning numerical implementations of the above Hamiltonian, one again needs to com-
pute explicit matrix elements. In principle, the same strategy as from previous sections is
employed, i.e. calculating the matrix elements explicitly as the overlap

Hint,µν = ⟨µ|Hint|ν⟩ =
〈
. . . nµ

γ . . .
∣∣∣Hint

∣∣∣. . . nν
γ . . .

〉
for Fock space states µ and ν. This leads to expressions of the form〈

. . . nµ
γ . . .

∣∣∣a†
αaβa

†
φaθ

∣∣∣. . . nν
γ . . .

〉
or

〈
. . . nµ

γ . . .
∣∣∣a†

αa
†
βaφaθ

∣∣∣. . . nν
γ . . .

〉
which one has to evaluate numerically for the respective basis representation.

To compare the numerical and analytical data, let us discuss some results found upon
investigation of the interaction Hamiltonian [13]. The following energies for four to six
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Figure 3.3.: Comparison of multi-particle ED - Exact diagonalization results of the
interaction Hamiltonian given in Eq. (3.48) for varying Hubbard interaction U1 as well as
Hund’s coupling JH . ED results (blue dots) are compared to the exact solution by Perkins
et al. [13] (cyan line). Vertical lines denote the strength of U1 and JH in the respective other
plot. All calculations are carried out in the cubic limit, i.e. with parameters satisfying the
relation U1 = U2 + 2JH . Panels a) and b) show results for the full t2g subspace, i.e. for
zero holes, panels c) and d) for a single hole and panels e) and f) for two holes.

22



3.3. Multi particle physics

electrons (two to zero holes) have been found:

E0h = 15U2

E1h = 10U2

E
(1)
2h = 6U2 − JH

E
(0)
2h = 6U2 + JH

E
(00)
2h = 6U2 + 4JH

(3.50)

These energies are depicted with their parametric dependencies in Fig. 3.3 where they are
also compared with exact diagonalization results of the same Hamiltonian.

Concerning explicit eigenstates, for zero and one hole, the situation is simple. In case of
zero holes, the Hilbert space only has one dimension and there is only a single state with 6
electrons occupying the 6 possible t2g states whose energy is E0h = 15U2 due to interaction
of electrons. In the case of a single hole, one finds 6 states with 5 electrons occupying
any but one of the 6 possible t2g states (or alternatively 1 hole occupying any of the 6
t2g states). The single energy of E1h = 10U2 is again originating from electron-electron
interaction in the remaining orbitals. All states must however have the same energy, since
viewed from the hole perspective there is only a single particle and no preferred orbitals.

For two holes within the t2g states, the situation is more complex and it is worth discussing
the findings of different eigenstates. In principle, there are (6 · 5)/2 = 15 possibilities to
occupy six states with two holes, i.e. 15 two-hole states in total. These states fall into the
following categories:

• One symmetric state with energy E(00)
2h described by singlet pairs in the same orbitals

|2h, 1⟩ = 1√
3
(
a†

x↓a
†
x↑ + a†

y↓a
†
y↑ + a†

z↓a
†
z↑

)
|vac⟩

• Two anti-symmetric states with energy E
(0)
2h also described by singlet pairs in the

same orbitals

|2h, 2⟩ = 1√
2
(
a†

x↓a
†
x↑ − a†

y↓a
†
y↑

)
|vac⟩

|2h, 3⟩ = 1√
6
(
a†

x↓a
†
x↑ + a†

y↓a
†
y↑ − 2a†

z↓a
†
z↑

)
|vac⟩
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3. Theoretical modeling

• Three states with energy E(0)
2h described by singlet pairs in different orbitals

|2h, 4⟩ = 1√
2
(
a†

x↓a
†
y↑ − a†

x↑a
†
y↓

)
|vac⟩

|2h, 5⟩ = 1√
2
(
a†

y↓a
†
z↑ − a†

y↑a
†
z↓

)
|vac⟩

|2h, 6⟩ = 1√
2
(
a†

z↓a
†
x↑ − a†

z↑a
†
x↓

)
|vac⟩

• Nine states with energy E(1)
2h described by triplet pairs in different orbitals

|2h, 7⟩ = 1√
2
(
a†

x↓a
†
y↑ + a†

x↑a
†
y↓

)
|vac⟩

|2h, 8⟩ = a†
x↑a

†
y↑ |vac⟩

|2h, 9⟩ = a†
x↓a

†
y↓ |vac⟩

|2h, 10⟩ = 1√
2
(
a†

y↓a
†
z↑ + a†

y↑a
†
z↓

)
|vac⟩

|2h, 11⟩ = a†
y↑a

†
z↑ |vac⟩

|2h, 12⟩ = a†
y↓a

†
z↓ |vac⟩

|2h, 13⟩ = 1√
2
(
a†

z↓a
†
x↑ + a†

z↑a
†
x↓

)
|vac⟩

|2h, 14⟩ = a†
z↑a

†
x↑ |vac⟩

|2h, 15⟩ = a†
z↓a

†
x↓ |vac⟩

All of these states, with energies shown in Fig. 3.3, can again be found in results of
the numerical calculations, making the comparison to Ref. [13] an ideal test case for any
numerical implementation.

3.4. Resonant inelastic X-ray scattering (RIXS)
In the following, let us discuss how to use the energies and states obtained from exact
diagonalization to emulate the RIXS process and obtain RIXS spectra that can be com-
pared to experimental data. After a brief introduction, we will first look at photon-assisted
transitions in general and then concentrate more on the specific case of the RIXS process.
Focus will be on the involved dipole operators and their specific form for RIXS between
the Iridium 2p core and 5d t2g levels. Finally, we will discuss the necessary geometry and
perform a complete example calculation of how a spectrum can be computed numerically.
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Figure 3.4.: RIXS process - Sketch illustrating the RIXS process. In the ground state,
core-levels are filled and there are partially empty states within the d-levels. Exciting a core
electron is achieved by resonant absorption of incoming X-rays of frequency ωin, leading to
an intermediate state with a vacancy in the core-levels. This core hole is then subsequently
filled by de-exciting another electron from the d-levels, in the process emitting X-rays with
frequency ωout. In total, the process yields a transition within the d-levels which can be
resolved by comparing incoming and outgoing X-ray frequencies as ∆E = ωout − ωin.

The RIXS technique
Resonant inelastic X-ray scattering (RIXS) is a spectroscopy technique utilizing X-rays
which are absorbed and re-emitted by the material. Filtering incoming or outgoing X-
ray photons depending on their polarization, energy and momentum allows to determine
the excitation structure of a material to great detail. In the study of strongly correlated
materials, RIXS is a highly used technique, enriching the toolkit of available spectroscopy
flavors. In the context of this thesis, the recent extension of RIXS interferometry [9] is
discussed and employed to identify quasi-molecular excitations.

The entire RIXS process, depicted in Fig. 3.4, can be formulated as follows. First, a core
electron is resonantly excited to a vacancy in an excited state by absorbing an incident
X-ray photon. Following this transition, another electron falls down to the core vacancy
by emitting another X-ray photon. The discrepancy in incoming and outgoing energies of
these photons will then correspond to the difference in energies of these respective states.
From a broad perspective, the RIXS process can therefore also be understood in making an

25



3. Theoretical modeling

internal excitation between states which does not involve the core states. In the examples
here, the excited states are the t2g states whereas the core-levels are typically Ir 2p states.

Photon-assisted transition amplitudes

Let us start the discussion of RIXS transitions from the broader perspective of a generic
quantum system described by some Hamiltonian H. Under perturbation of another op-
erator H ′, transitions between states α will occur. The rates of these transitions can be
described by Fermi’s golden rule as

Γ(i → f) =
〈
f
∣∣∣Ĥ ′

∣∣∣i〉 (3.51)

where Γ(i → f) describes the rate to go from |i⟩ to |f⟩.

In the special case of RIXS, the first part of a transition occurs by exciting a 2p core
electron to the 5d t2g levels by absorbing a resonant X-ray photon. The amplitude that
this process occurs under absorption of an X-ray photon of frequency ω therefore is

A(i → f, ω) =
〈
f
∣∣∣D̂∣∣∣i〉 δ(ω,Ef − Ei) (3.52)

where the perturbation to the Hamiltonian is now given in terms of the dipole operator D̂.

For a given photon of momentum q⃗ and polarization ε⃗, the dipole operator D̂ can be given
explicitly as

D̂ = ε⃗ · r̂ eiq⃗·R⃗ (3.53)

where r̂ is the position operator and R⃗ is the position at which the transition occurs. For
the RIXS process discussed in the context of this thesis, further simplifications can be
made [11]. If an electron is excited from the core p shell to the d shell t2g orbitals, the
dipole operator can be defined as

r̂ · ε⃗ =
∑

α,β,σ

⟨5dα|r̂|2pβ⟩ · ε⃗ d†
α,σpβ,σ (3.54)

since both core and t2g states are described by the same angular momentum. In this
expression, the only non-zero elements are

⟨x|ŷ|z⟩ = ⟨z|ŷ|x⟩ = 1
⟨y|ẑ|x⟩ = ⟨x|ẑ|y⟩ = 1
⟨z|x̂|y⟩ = ⟨y|x̂|z⟩ = 1

(3.55)

which allow for the calculation of an explicit matrix representation of r̂ · ε⃗ and D̂.
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3.4. Resonant inelastic X-ray scattering (RIXS)

RIXS transition amplitudes for a single hole on a single site
The entire RIXS transition can be formulated by combining two of the core-t2g transitions
described before to bring an electron from the core to the t2g states and another one back
to the core. The net transition in this case is then only within the t2g states and can
be detected by a mismatch in absorbed and emitted X-ray frequency, i.e. the weight of
inelastic scattering processes.

Let us focus first on materials in a d5 configuration which allow for a much easier descrip-
tion. In these materials, the t2g levels are partially filled with electrons leaving only a single
vacancy. Thus they can alternatively be written as occupied by a single hole, allowing a
single-particle description. During the RIXS process, this hole is excited into the core levels
and falls back to any of the t2g levels.

For a single hole within the t2g states, the transition amplitude of this entire process
therefore can be written as

A(i → f) =
∑

p

〈
f
∣∣∣D̂out

∣∣∣p〉 〈p∣∣∣D̂in

∣∣∣i〉 (3.56)

where |i⟩ and |f⟩ now describe t2g states and p enumerates all available core p levels.

It is important to distinguish between all core levels and the available core levels in this
case since strong spin-orbit coupling within the core splits the p levels into j = 1/2 and
j = 3/2 multiplets which are so far apart in energy that they can be addressed individually
by the incoming X-ray beams. The projection of the hole on the core multiplet is called
core-hole projection and the two RIXS processes, one utilizing the j = 1/2 and the other
utilizing the j = 3/2 multiplet, are called L2-edge and L3-edge RIXS.

RIXS transition amplitudes for many particles on larger clusters
In principle, most materials have clusters with more than a single hole on a single site
which is involved in the RIXS process. Let us therefore discuss the influence of either
more sites or more holes during the process, starting with more holes, i.e. more particles.
Since exciting a hole to the core levels is non-adiabatically changing the quantum state,
relaxation effects for this non-equilibrium state have to be generally accounted for if more
than a single hole is occupying the t2g states, i.e. for 4 electrons or less. These relaxation
effects will take place once the excitation takes place and will alter the state to which the
single hole drops back from the core.

For simplicity and because many of the investigated systems have only a single particle per
site, the effects of the intermediate state are neglected in this case. One can argue that this
corresponds to a fast excitation approximation in which the lifetime of the intermediate
state is assumed to be smaller than the relaxation time of the system.

Within the fast excitation approximation, it is straight forward to generalize the dipole
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transition operator to the framework of many particles. First, both of the excitation and
following de-excitation as well as the core-hole projection are grouped into a single single-
particle operator, called simply D̂L for the edge L (either L2 or L3), written as

D̂L =
∑
p∈L

D̂out |p⟩⟨p| D̂in (3.57)

Then, a suitable many-particle dipole operator in second quantization can be defined as

D̂L =
∑
α,β

D̂L
αβ a

†
βaα (3.58)

which can be implemented numerically like other operators discussed before.

In case the cluster has more than a single site, additional dipole operators have to be
constructed on each site since a transition can in principle occur on any of these sites. The
final dipole operator can then be written as the sum of individual dipole operators on all
sites j of the cluster

D̂L =
∑

j

D̂L
j (3.59)

where positions R⃗j within the transition amplitudes have to represent the position of sites
j in the cluster.

Transition intensities and calculation of experimental spectra
Replicating an experimental measurement means not to compare transition amplitudes but
rather intensities I(∆E). They take the form

I(∆E) =
∑
i,f

pi |A(i → f)|2 δ(∆E − (Ef − Ei)) (3.60)

and thereby sum over different transition amplitudes between various t2g states |i⟩ and |f⟩
at energies Ei and Ef . The intensity is dependent on the difference in incoming and out-
going X-ray energy ∆E = ℏ(ωout −ωin) which has to match the difference in eigenenergies.

In the expression for the transition intensities, another variable pi appears which describes
the probability that the system is in state |i⟩. Usually one would consider thermal occu-
pation for the pi, however in the following examples the temperatures will be very low so
that one can consider the system to be in its ground state, i.e. pi = 0 for all states higher
in energy.

Also, despite assuming a sharp δ-like response in deposited energy, the true transition
sensitivity has a finite line width and shape. There are two possible reasons for a finite
width in general. First, the intrinsic lifetime of the excitation corresponds to a finite width
in energy. Second, the detector only has a finite resolution in energy. Since in current RIXS
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Figure 3.5.: Single hole numerical RIXS spectra - Calculated RIXS spectra from
dipole transition amplitudes at both the L2 and the L3 edge for one hole with spin orbit
coupling and crystal field distortion. Panels a) and b) show the bare spectra, whereas
panels c) and d) show relative intensities of the two peaks. All plots compare numerical
results (blue dots) to the analytical solution by Ament et al. [11] (solid cyan line).

experiments, the precision is still much larger than the intrinsic width effect, the detector
is actually the main source of line shape. Thus in the following, let us use a Gaussian line
shape with around 25 meV of broadening corresponding to the experimental resolution.

Altogether, this allows to numerically compute RIXS spectra. These spectra are graphs
which display intensity as function of deposited X-ray energy ∆E, sometimes written as a
loss-frequency ω.

Example calculations
To illustrate the process of RIXS spectrum calculations, let us consider an example system
of a single hole. In the following, the RIXS spectrum of this system is calculated and
compared to the analytical solution by Ament et al. [11]. Note that here we focus purely
on the transitions as the exact eigenstates and energies for a single hole in the t2g states
have already been discussed in a previous section.

Performing the steps outlined before yields spectra shown in Fig. 3.5. The calculated in-

29



3. Theoretical modeling

tensity is shown for both the L2 as well as L3 edges. Apart from the agreement between
numerical solution and analytical formulas, one can make some qualitative observations.
Both spectra show two transition peaks which are clearly resolved. They describe transi-
tions from j = 1/2 into the two j = 3/2 states, which are split by crystal field distortion.
Such transitions are also called spin-orbit excitons and play an important role later on in
the chapter.

Comparing the L2 to the L3 edge, one can observe that the L2 edge carries only a fraction
of the total weight compared to the L3 edge. This stems from the ground state largely
being a j = 1/2 state which suppresses transitions to the core-j = 1/2.

For the sake of comparison one can even go a step further and compare relative peak
heights of the two spin-orbit excitations. Fig. 3.5 also shows such relative peak heights in
dependence of the Hamiltonian parameters spin-orbit coupling λ and crystal field distortion
∆.

Concerning the process of how the spectra are calculated, there are clear distinctions
between the numerical and analytical approach. From an analytical perspective, the tran-
sition amplitudes can be written down exactly, simplified by the fact that both core and
t2g levels can be written as L = 1 states. In their paper [11], Ament et al. give transition
amplitudes within t2g states as Bαiαf

σiσf with αi = f, g, h describing the orbital and σi =↑, ↓
describing the remaining Kramers degeneracy. Then for both the L2 and L3 edge, Ament
et al. give exact relations of how amplitudes B depend on both Hamiltonian parameters λ
and ∆ as well as the polarization characteristics of incoming and outgoing X-rays.

In the numerical solution, elements are more modular. Whereas the analytical solution
required individual derivations for the transitions, in the numerics all of them are treated
on an equal footing. Most of the formulas are explicitly executed within the code and
therefore do not rely on upfront derivations.

Dependency of spectra on geometry
As already hinted before, the experimental spectra are very sensitive to the experimental
geometry and the alignment of X-ray beams. In principle, the geometry enters the dipole
operators in form of the polarization which is always perpendicular to the beam momentum.
Furthermore, for systems with two or more sites, the transferred momentum direction also
plays a role as it can lead to interference effects discussed at length in this chapter.

Some basic effects of different sample orientations relative to the beam can be found in
Fig. 3.6 for both the L2 and L3 edges. There, the numerically calculated spectra are
compared for tilting the sample along various principle axes in the lab frame. It can be
seen that rotations of the sample not only change relative heights of the transition peaks
but can also lead to a complete suppression of the transition as well.

It is important to keep in mind the effects depicted in Fig. 3.6, since in the following
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Figure 3.6.: Geometric influence on numerical RIXS spectra - Calculated RIXS
spectra from dipole transition amplitudes at the L2 edge, shown in panels a) and b), and
the L3 edge, shown in panels c) and d), for a single hole with spin orbit coupling and crystal
field distortion. Plots show the dependence of spectra on geometry of sample and beam.
In panels a) and c), the sample is rotated around the x axis of the lab frame, whereas
panels b) and d) show a rotation around the y axis respectively.

chapters these effects will be convoluted with additional interference effects coming from
delocalized states across multiple sites. The example of transitions on a single octahedra
are therefore a relevant starting point to discuss the impact of geometric factors on the
spectra.

3.5. Numerical implementation and RIXSCalculator.jl
Finally, let us switch gears in the following section and discuss the numerical implemen-
tation of RIXS and exact diagonalization. Both have been unified in a code framework
that has been uploaded to github under the name of RIXSCalculator.jl [S1] with a plot-
ting part outsourced to a package called RIXSPlotter.jl [S2]. In combination, these two
packages allow performing exact diagonalization of the entire cluster Hamiltonian as well
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as computing RIXS spectra of these states. The code is developed in close proximity to the
experiments and features many design-elements inspired by the experimental counterparts.

The following section is structured as follows. We will start by reviewing how to represent
the Fock basis numerically, followed by the basic geometry needed for the RIXS process.
Then the packages RIXSCalculator.jl and RIXSPlotter.jl are reviewed briefly. Finally,
some more technical discussion is performed on how to deal with degenerate levels within
the ED calculations.

Representation of Fock space basis
Among the different set of bases used in any code that performs exact diagonalization,
the Fock space basis deserves some additional comments on its specific implementation.
Generally speaking, a basis of Fock space can be represented in many different ways. As
notation so far suggested, Fock space basis states can be represented by a list of occupation
numbers which is as long as there are single-particle states. States can also be written as a
string of creation operators on the vacuum. Yet another representation takes the string of
these creation operators and only stores their orbitals in a list as long as there are particles
in the state.

|0 . . . 01α0 . . . 01β0 . . . 0⟩ ∼ a†
αa

†
β |vac⟩ ∼ |’αβ’⟩

In the context of cluster calculations of this thesis, the last representation yields a much
shorter list of numbers which might be preferable in a numerical context.

One downside of a short basis representation however is the absence of normal ordering.
While it is convention to normal order creation operators, the application of an operator
to one of these states might yield a non-normal ordered state. This case has to be treated
in general as for α ̸= β

a†
αa

†
β |vac⟩ = −a†

βa
†
α |vac⟩ (3.61)

and therefore overlaps in short hand notation change sign as well

⟨’βα’|’αβ’⟩ = − ⟨’αβ’|’αβ’⟩ . (3.62)

This means that normal ordering is very important when computing overlaps in the ab-
breviated form, in contrast to the full Fock space representation which has the ordering
directly built in.

Geometry
In principle, the equations so far cover the entire calculation of transition intensities and
RIXS spectra alike. In practice however, there is a lot more to consider when calculating
transition amplitudes, since a lot of parameters have to be represented during the calcu-
lation. Although merely an engineering challenge in the numerical implementation, let us
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Figure 3.7.: Overview of RIXS geometry - Different levels of geometry involved in
the RIXS process and its calculation. On a global (or laboratory) level depicted in panel
a), the sample orientation is set relative to the incoming and X-ray beam as well as to
the outgoing direction into the detector. Photon polarizations are set perpendicular to
these directions. Within the sample, depicted in panel b), individual clusters of Ir atoms
and their surrounding oxygen cages are arranged relative to each other. The example in
this figure shows a face-sharing geometry. Within each oxygen octahedron, depicted in
panels c) and d), local orbital quantization axis are spanning an internal coordinate frame
in which the crystal field distortion direction n⃗ is given.

discuss for completeness the different levels of coordinate frames one has to consider when
representing a system numerically.

As seen in Fig. 3.7, geometrical information on the system can be displayed in a hierarchical
form. Information is collected on various levels, ranging from the lab system frame via the
sample all the way down to individual sites. Every of these levels considers a certain subset
of parameters and differs by a coordinate transformation from the ones above and below.
It is important to hand information up and down through the different levels as certain
parameters are easier to specify in some frame than in another. Although the following
discussion seems rather conceptual, the individual levels are all represented as individual
objects with corresponding dependencies in the numerical implementation later on.

Let us start with the global lab frame. This frame means to represent the laboratory in
which the RIXS experiment is performed. Pictorially, this frame contains the sample, as
well as incoming and outgoing X-ray beams and their polarization. Note that for exper-
imental reasons, the experiments mentioned later in Chapter 4 do not measure outgoing
polarization. Therefore to reproduce such data, one has to take both horizontal and vertical
components into account.

The sample containing the Ir clusters is contained within the lab frame with some relative
rotation. It contains one cluster of Ir sites, arranged in their respective geometrical ori-
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entation. On the level of the sample it is easiest to specify the exact directions of crystal
field distortion as well as specify the hopping Hamiltonian.

The individual sites form the lowest level. They contain all local information, e.g. spin-orbit
coupling, Hubbard interaction and dipole operators. Although most of these parameters
can be specified internally by only considering sites themselves, some information is better
passed down the levels. In particular, the orientation of X-ray beams can easily be specified
in the lab frame, being then transformed to the coordinate frames of individual sites where
the dipole operators are built.

RIXSCalculator.jl and RIXSPlotter.jl
Having introduced basis representation and geometry, let us now discuss the code imple-
mentation covered in RIXSCalculator.jl [S1] and RIXSPlotter.jl [S2]. This part should
not be understood as an extensive manual or documentation, but rather as outlining some
of the design principles behind the implementation. More information can be found in the
respective github projects.

The implementation of RIXSCalculator.jl and RIXSPlotter.jl has been designed both
for user friendliness as well as for performance. Scripts from these packages should be able
to run fast in a live session or jupyter notebook while still executing large-scale diagonal-
izations.

To improve performance as well as readability, a hierarchical type structure has been im-
plemented which utilizes the powerful tools of just-in-time compilation (JIT) and multiple
dispatch that the programming language Julia has to offer. Further improvements to per-
formance are the utilization of buffers to not recalculate all parts of matrices when only
certain parameters change.

To improve user accessibility, the type structure is supplemented by many convenience
functions that allow for a very readable code. Furthermore, many objects have a custom
output that show their internal stages in a meaningful way. For more complex data struc-
tures, plotting is implemented so that e.g. geometrical relations can simply be plotted for
adjustment and debugging.

On the matter of types, let us discuss the basic type structure in the code. The first
object created in any project is the basis of the Hilbert space. Each basis is represented
as an object of corresponding type Basis, containing objects of type BasisState which
describe the individual basis states. In fact, the type tree surrounding basis and states
is much more complex with a hierarchy between single and multi particle basis as well
as individual implementations for every t2g basis state. This plethora of objects allows to
define projection matrices and overlaps of basis states.

Operators are represented as their own type Operator. Again, operators form a rich type
tree with many dependencies and their types already includes the type of the respective
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Basis Hamiltonian LabSystem

basis op1 + op2 + ... lab_system

RIXS spectra

energies

RIXS momentum dep.

eigenstates

energy parameter dep.
mul�-par�cle basis

mul�-site basis

single-par�cle basis

(t2g representa�on)

spin-orbit coupling

crystal field distor�on

magne�c field

hopping

Coulomb interac�on + JH

local geometry

sample placement

X-ray geometry

Figure 3.8.: Workflow in RIXSCalculator.jl - Workflow in the package RIXSCalcula-
tor.jl [S1] is structured similar for every example. First, a basis representation is obtained
by generalizing a certain representation of the t2g states to more sites and particles. In
a second step, this basis serves as the foundation of newly added operators, which can
be of many different types. Summing these operators with the basis "+" operation yields
another operators which can serve as the Hamiltonian. The third step is to construct a
so-called LabSystem object, which encapsulates the local cluster and scattering geometry.
With these objects, a series of functions is implemented to provide exact diagonalization of
the Hamiltonian, plots for the dependency of energies on parameters, as well as functions
for the calculation of RIXS amplitudes and spectra.

basis on which the operator is defined. This way, an operator is tight to a certain basis
and various tools regarding the operator can be tailored to its representation. One no-
ticeable feature is that operators come with an interface, which implements setting and
getting of internal parameters, as well as meta-operators that implement mathematical
operations. Together, this allows for readable code in the form of e.g. ham = op1 + op2
when constructing a Hamiltonian.

On top of the operators, the geometry discussed before is implemented into its own type
called LabSystem. Objects of this type contain the plethora of basis transformations needed
to transform lab coordinates into the local coordinates of the respective sites. A LabSystem
is always based on an operator describing the Hamiltonian, thus giving a meaningful rep-
resentation of the entire RIXS setup. Within the LabSystem, also dipole operators are
defined. They enable the computation of spectra which can be directly obtained from the
LabSystem.

All together, the code forms a self-contained framework of functions, revolving around
bases, operators and the lab system. When used, one has to create these objects con-
secutively, starting with the basis and operator and ending with the scattering geometry
contained in the lab system. During calculations, the lab system can be used as an interface
to adjust parameters of the Hamiltonian as well as the scattering geometry. Meaningful
outputs and plotting capabilities complement the user interface of the LabSystem and al-
low for direct visual representation of internal geometry with output as in Fig. 3.7 which
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was directly produced with the code. An overall representation of the typical build-up and
workflow can be seen in Fig. 3.8.

Numerical analysis of degenerate eigenstates
In this next part, let us deviate from the precise code implementation but instead discuss
a frequent generic problem in numerical exact diagonalization, which is how to deal with
degenerate levels. In case that there is a degenerate subspace within the eigenstates of the
Hamiltonian, a numeric solver will necessarily pick just any basis. This basis is however in
most cases not easy to read and one would like to find a rotated basis in which eigenstates
take a much more readable form. More formally, in this case the Hamiltonian operator Ĥ
commutes with a symmetry Ĝ as [Ĥ, Ĝ] = 0, i.e. it is possible to find a basis which is both
eigenbasis to Ĥ as well as eigenbasis to Ĝ. This is equivalent to demanding eigenstates of
Ĥ to be written in the eigenbasis of Ĝ. In principle, there are two strategies to do so. The
naive method tries lifting the degeneracy in a controlled manner, whereas another more
elaborate way uses additional analysis to separate the levels in a post-processing step.

The first naive possibility of obtaining a nicer state representation is adding a term to the
Hamiltonian of the form

Ĥ → Ĥ + αĜ (3.63)
where α is a small, random number. The eigenvalues of this new operator are only of O(α)
different to the ones of the old Hamiltonian. However, this small split is already enough to
lift the degeneracy. In practice, this is often applied with a magnetic field to lift e.g. the
spin degeneracy within the eigenstates.

A second possibility to obtain a more readable eigenbasis is to construct an overlap matrix
of the symmetry operation

Mij =
〈
i
∣∣∣Ĝ∣∣∣j〉 (3.64)

within the degenerate subspace of the eigenbasis {|j⟩} of H. The eigenvectors of M will
form a new basis which is simultaneous eigenbasis of Ĥ and Ĝ. The states are eigenbasis of
Ĝ as they originate from diagonalizing M and they are eigenstates of Ĥ because they are
built as a linear superposition of states that come from the eigenbasis of Ĥ initially. The
advantage of this two step procedure is that one also gains new quantum numbers which
distinguish between the new basis states in terms of symmetry.

Note that both methods however require additional knowledge in terms of the symmetry
operator Ĝ which enables the degeneracy in the first place.
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Having discussed the theoretical and numerical framework at length, let us turn our at-
tention to material examples in this chapter. To start with, Sec. 4.1 aims at providing
an example for a system where RIXS can give insight into the physics of a single Ir site,
namely within the double-perovskite material of Ba2CeIrO6. This section is mostly based
on work in Ref. [P1].

Following the examples of a single site, Sec. 4.2 enhances the discussion of the RIXS
amplitudes by the aspect of interferometry. Starting with this section, interference effects
originating from quasi-molecular orbitals are the dominant feature which can be compared
to experimental data. The first example in this section concerns Ba3Ti3−xIrxO9 in which
disorder effects can be shown to produce dimers and single sites in a disordered mix. The
RIXS calculations in this section aim at complementing experimental data in a current
work-in-progress project [14]. The second example of Sec. 4.2 discusses Ba3InIr2O9, a
dimer material with three holes on the dimer. Most of this work is still in a preliminary
state and contributes to yet another work-in-progress project [P2].

In the third section of this chapter, Sec. 4.3, the concepts of RIXS interferometry are
applied to two examples of the so-called Kitaev materials. The first example concerns
RIXS interference patterns in Na2IrO3, which can be shown to illustrate the underlying
bond-directional character of couplings typically associated with the Kitaev model. Over-
all, calculations show a remarkable similarity to experimental data from Ref. [15]. In a
second subsection, the local structure of α-RuCl3 is discussed. In particular, this includes
calculations underlying Ref. [P3], illustrating the observation of a double spin-orbit exciton
in the optical spectra of this material.

The chapter finally closes with a few remarks on the applicability of the numerical toolbox
beyond RIXS, illustrating in particular the possibility of calculating optical conductivities
in Sec. 4.4.

4.1. Single particle RIXS in Ba2CeIrO6

In the light of recent interest into strongly coupled spin-orbit entangled Mott insulators [2]
with partially filled 4d and 5d orbitals, much attention is paid to materials with intrinsic j =
1/2 moments [1]. Particular iridate systems in which Iridium atoms are situated in oxygen
octahedra fit this category perfectly as strong spin-orbit coupling naturally enhances a spin-
obit coupled character of eigenstates. Additionally, the possibilities of realizing different
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Figure 4.1.: Crystal structure and experimental RIXS data for Ba2CeIrO6 -
Panel a) shows an overview over the crystal structure of Ba2CeIrO6 which is a double-
perovskite material with interlacing fcc lattices, each occupied by oxygen octahedra filled
with either a Ir or a Ce atom. Panel b) shows the experimental RIXS data for both
T = 10K and T = 300K, exhibiting a clearly visible double-peak structure indicating a
crystal-field split spin-orbit exciton. Figures adapted from Fig. 1 and Fig. 3 of Ref. [P1].

effective interactions by various alignment geometries between IrO6 octahedra [4, 7, 8]
make these materials a perfect playground for the realization of exotic magnetic materials.

In the search for a perfect local j = 1/2 moment, Ba2CeIrO6 is reported to be particularly
close to an ideal j = 1/2 ground state [P1]. Structurally, this material realizes a cubic
double perovskite structure of two interlacing fcc lattices, visualized in panel a) of Fig. 4.1.
On the vertices of these fcc lattices, corner-sharing oxygen octahedra are situated, hosting
both Ir as well as Ce atoms respectively. X-ray structure analysis confirms that the crystal
structure is indeed cubic [P1]. However, RIXS data of the same compound reveals a double-
peak structure for the spin-orbit excitation, shown in panel b) of Fig. 4.1. This feature
is indicative of crystal field distortions which can split the j = 1/2 → j = 3/2 excitation
contradicting the findings of structure analysis at first sight.

From an even broader perspective, it is a regularly posed question in these types of materials
if there is a pure j = 1/2 ground state or if distortions to the surrounding oxygen octahedra
mix too much j = 3/2 contributions to the ground state. In this section, numerical
calculations in the framework of the present thesis are used to supplement experimental
RIXS data in order to determine the nature of the ground state.

Numerical ED and RIXS

Employing numerical exact diagonalization for the system at hand is straight forward in
the scheme developed so far. The Ir atoms on one of the fcc lattices in Ba2CeIrO6 are in
a 5d5 configuration, yielding exactly one hole occupying the t2g states.
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Figure 4.2.: ED and RIXS calculations for Ba2CeIrO6 - Experimental RIXS intensity
peak data from Ba2CeIrO6 is consistent with two different sets of parameters, λ = 430meV,
∆ = 170meV shown in panel a) as well as λ = 430meV, ∆ = −150meV shown in panel b).
Panels themselves show the calculated RIXS spectra in numerics. Additionally, each panel
shows the evolution of ED energies upon increasing parameters from 0 to their respective
values. It can be traced how the splitting evolves.

The code framework of RIXSCalculator.jl allows for the modeling of an effective single-
particle problem on an isolated Iridium site. This yields a local Hamiltonian for a single
hole of the form

H = λL̂ · Ŝ + ∆L2
z (4.1)

i.e. containing both the effect of spin-orbit coupling as well as crystal field distortions. For
a given set of parameters, one is able to numerically diagonalize the resulting Hamiltonian
matrix and obtain energies as well as wavefunctions of the eigenstates. The differences
between energies can then be compared to experimental excitation energies in RIXS.

As already seen earlier in Fig. 3.1, applying both spin-orbit coupling and crystal field
distortion splits the t2g levels into three distinct states. The differences between the lowest
lying states and the two higher ones can be compared to the experimental double-peak
structure, more precisely to respective excitation energies therein. One can find agreement
for two different sets of parameters

λ = 430 meV and ∆ = 170 meV
or λ = 430 meV and ∆ = −150 meV

(4.2)

which correspond to elongation or compression of the oxygen cage surrounding the Iridium.
A graphical representation of both numerical RIXS spectra as well as the energies obtained
by ED can be seen in Fig. 4.2 for both sets of parameters.
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Further investigation of the eigenstates shows that the ground state wavefunction is

|0⟩ = 0.991
∣∣∣∣12 , 1

2

〉
− 0.133

∣∣∣∣32 , 1
2

〉
(elongation)

and |0⟩ = 0.995
∣∣∣∣12 , 1

2

〉
− 0.1

∣∣∣∣32 , 1
2

〉
(compression),

(4.3)

which looks largely like a j = 1/2 ground state. In fact, the j = 1/2 contribution in the
ground state amounts for 99% of the total weight, only 1% of the weight can be attributed
to an admixture of j = 3/2. This holds for both elongation and compression and is a clear
evidence for a j = 1/2 ground state.

The j = 1/2 nature of the ground state has to be put also into the context of large crystal
field distortion. Despite a significant value of ∆ ∼ 1

3λ, the ground state showed little to
no j = 3/2 contributions. From yet another perspective, such a large value of ∆ is even
more surprising. Structure analysis utilizing X-rays found the crystalline structure to be
nearly perfectly cubic [P1]. This is however not reflected in the large value of ∆ which is in
good agreement with RIXS. A possible explanation might be the presence of local disorder
which is not seen by the global structure analysis or other effects.

Final notes / Outlook

As seen by numerical calculations, the local j = 1/2 picture is still realized to a high degree,
despite the presence of structural distortions in the form of a finite crystal field splitting.
The origin of this crystal field splitting might be disorder in the octahedra as the cubic
structure was only confirmed to be realized on average, whereas RIXS is an intrinsically
local probe.

Having established the local j = 1/2 character of the electronic states, Ref. [P1] uses the
local moments to construct an effective spin model. This model turns out to include both
nearest and next-nearest neighbor Heisenberg coupling between j = 1/2 moments, as well
as anisotropic, bond-directional Kitaev exchange. Both Luttinger-Tisza calculations of
the classical limit as well as FRG calculations of the quantum model reveal a rich phase
diagram, including ordered phases as well as a quantum spin liquid phase. This spin liquid
appears to be destabilized by finite Kitaev couplings [P1], contradictory to the common
knowledge of Kitaev couplings inducing frustration and therefore stabilizing spin liquid
phases. Using the experimentally relevant parameters, Ba2CeIrO6 can indeed be found to
sit tantalizingly close to the boundary of the spin-liquid phase.

All in all, the example of Ba2CeIrO6 shows the importance of numerical calculations for
confirming local spin-orbit moments in comparison to RIXS data.
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4.2. Dimer materials and RIXS variants of Young’s double
slit

In the journey across more j = 1/2 spin-orbit entangled materials, the following sec-
tion concerns materials with IrO6 octahedra arranged in dimers. In principle, there are
numerous examples of such systems, here however we are in particular concerned with
Ba3Ti3−xIrxO9 and Ba3InIr2O9, both of which are from the family of Ba3MIr2O9 with M
being a metal. Since claims of spin-liquid behavior in the family of Ba3MIr2O9, the entire
family got much attention especially since the role of M could be occupied by materials
with different valence [16, 17].

Structurally, IrO6 octahedra form dimers with a shared face between two octahedra in
these materials. Dimers are then arranged in triangular layers, with each dimer having
12 neighbors. Since the metal M in these materials can change in valence, the effective
particle number on the dimer can be adjusted. In this spirit, Ba3CeIr2O9 (M = Ce),
a system with two holes per dimer, showed traces of quasi-molecular orbitals built from
local j = 1/2 states [9], Ba3InIr2O9 (M = In), a system with three holes per dimer,
showed persistent spin dynamics down to 20mK and no sign of magnetic ordering [18]
and Ba3ZnIr2O9 (M = Zn), a system with four holes per dimer, was reported to show
spin-orbital liquid behavior [19, 20].

From the perspective of RIXS, dimer systems offer a previously unexplored possibility,
namely the presence of RIXS interference. On the example of Ba3CeIr2O9, it was shown
that interference effects in the RIXS intensity can be used to trace down quasi-molecular
orbitals [9]. This can in principle be understood from the following: If the RIXS process
applies to a delocalized state on the entire dimer, the two localized transitions from the
individual atoms can interfere destructively depending on the transferred momentum along
the dimer axis. This is generally similar to Young’s double slit experiment for light.

The present section of this thesis aims at providing theoretical groundwork for support-
ing RIXS experiments [14] on the material family Ba3MIr2O9. At first, the material
Ba3Ti3−xIrxO9 is introduced in which an increase in the concentration of Ir was found to
suppress magnetism. The second part of this section highlights some calculations for the
material Ba3InIr2O9 which is an example for a dimer system with three holes.

4.2.1. Disorder effects in Ba3Ti3−xIrxO9

One missing piece of the puzzle in the family of Ba3MIr2O9 has been the role of disorder.
In particular, the structural disorder of Ir and M atoms exchanging locations in the crystal
structure has not been sufficiently explored. Especially for Ti as an atom with radius similar
to the Iridium atomic radius [17], disorder effects are expected to occur in Ba3Ti3−xIrxO9
for different concentrations x of Iridium.

To investigate disorder effects in this material, RIXS interferometry can be employed.
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Since structurally, misplaced Ti hinder the formation of electronic dimers, the amount of
site disorder directly relates to the RIXS response. Similarly, for small concentrations of
Ir, only single IrO6 octahedra are expected to be observed whereas for large concentrations
x, dimer formation and therefore a suppression of magnetism is expected. Similar to the
identification of quasi-molecular orbitals in Ba3CeIr2O9 by interference patterns in RIXS
intensities, electronically delocalized dimer states can be expected to show a respective
momentum signature in their RIXS intensities.

In the following, this part of the thesis therefore aims at providing a theoretical and
numerical description of the relevant Ir clusters in Ba3Ti3−xIrxO9 as well as their RIXS
spectra. By comparing to experimental RIXS data, this can in principle be used to assign
cluster formation to observed RIXS features. Although this project is still considered
work-in-progress, some preliminary results are already discussed.

Model Hamiltonian for Ba3Ti3−xIrxO9

Ba3Ti3−xIrxO9 generally has a layered structure with alternating layers of vertical face-
sharing oxygen octahedra and single octahedra, connected corner-sharing. The octahedra
can either host a Ir or a Ti atom. Since only the Ir exhibits magnetism and the Ti is non-
magnetic, the following calculation focuses only on Ir sites. Disorder between Ti and Ir
can in principle lead to three different Ir clusters. Apart from an isolated IrO6 octahedron,
one can either encounter a dimer within one layer, characterized by face-sharing geometry,
or a dimer between the two different layers which then forms in a corner-sharing geometry.
Since in principle a statistical mixture gives rise to the behavior, clusters with more than
two Ir are expected to be unlikely for moderate concentrations of Ir.

To model the electronic structure in Ba3Ti3−xIrxO9, one therefore needs a total of three
separate calculations, one for each type of cluster. Each of those calculations consists of
exactly diagonalizing the electronic Hamiltonian for the respective cluster as well as calcu-
lating the Iridium L3 edge RIXS spectrum for its excitations. In detail, these calculations
differ both in number of sites and particles as well as in the exact geometry. One cluster is
simply a single Ir site within an oxygen octahedron whereas the other two clusters are both
dimers, although with different hopping geometries. In the end, a statistical mixture of
the three clusters should give rise to the experimentally observed spectrum, i.e. it should
contain measurable traces of all three clusters.

Let us start the discussion of the cluster Hamiltonian with a focus on the core ingredient,
i.e. the local Hamiltonian on the Iridium sites. On every such site, the local Hamiltonian
takes the form

H = λL̂ · Ŝ + ∆(n⃗ · L̂)2 +Hint. (4.4)
which consists of spin-orbit coupling and distortions to the oxygen crystal field as well
as interactions between electrons modeled by the interaction Hamiltonian Hint. shown in
Eq. (3.48).
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4.2. Dimer materials and RIXS variants of Young’s double slit

In practice, interactions between electrons only come into play when the d5 Iridium ions are
part of a dimer, otherwise only a single hole can be present on one site. The combination
of spin-orbit coupling and crystal field distortion has been discussed before. The only new
nuance here is the introduction of a distortion direction n⃗ on every Ir site, which is parallel
to the lattice vector c⃗ in Ba3Ti3−xIrxO9. In the numerical representation, c⃗ is used as the
sample z axis, corresponding to the local [111] direction in every octahedron.

Whereas the cluster of just a single site is isolated and does not host any hopping between
its constituents, the two dimer clusters do have hopping contributions to their total Hamil-
tonians. The cluster consisting of the corner-sharing dimer uses a hopping formulation
within the xyz basis which can be be written as

Hhop. =
∑

ν

tc†
1,νc2,ν + h.c. (4.5)

where ν runs over all states |x, ↑⟩, etc on the two Ir ions. As a simplification for reduced
parameter complexity, every hopping element has the same amplitude t.

The hopping on the second cluster consisting of a face-sharing dimer uses a description
within the a1g basis which is the proper eigenbasis for trigonal crystal field distortion. The
hopping is again diagonal in these orbitals with amplitude t for every hopping element, so
the Hamiltonian can be written as

Hhop. =
∑

α

tc†
1,αc2,α + h.c. (4.6)

where α runs over all states
∣∣∣a+

1g, ↑
〉
, etc. Note that in this case, one has to take care of

tilted spin quantization axes. A hopping process |α, σ⟩ → |α, σ⟩ will implicitly tilt the spin
σ when transitioning from one site to the other since the spin-up direction on both sites
is tied to the orbital z-direction which is tilted between sites. To resolve this tilt between
spin-quantization axes, one can either reformulate the hopping or tilt the spin-quantization
axes on both Ir sites relative to the orbital quantization axes so that they align globally.

ED and RIXS for Ba3Ti3−xIrxO9

With the Hamiltonian defined, exact diagonalization and calculation of RIXS spectra for
the Ir L3-edge can be performed for all clusters separately. The results of these calculations
can be found in Fig. 4.3. Parameters for the individual clusters are set to

λ = 400 meV
∆ = 250 meV
U = 2300 meV
JH = 250 meV
t = 200 meV

(4.7)
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Figure 4.3.: ED and RIXS calculations for elementary Iridium clusters in
Ba3Ti3−xIrxO9 - Rows show elementary clusters in the disordered material Ba3Ti3−xIrxO9
which contribute separately to the overall RIXS intensities. Clusters are single sites, dis-
played in panels a)-c), face-sharing dimers, displayed in panels d)-f) as well as corner-
sharing dimers, displayed in panels g)-i). Panels a),d) and g) show illustrations of the
clusters, directly obtained from RIXSCalculator.jl. Panels b),e) and h) show a typical
numerical RIXS spectrum. Peaks from this spectrum are analyzed regarding their mo-
mentum space interference patterns with results depicted in panels c),f) and i). Colors of
the lines in these panels match the color of vertical lines in panels b),e) and h) denoting
the peak positions. Note that the single site only shows an overall geometric effect due to
tilting of incoming and outgoing X-ray beams. Both dimer configurations however show
signs of interference effects as the peaks are modulated periodically. The frequency of this
modulation is proportional to the site distance along the deposited momentum direction
that is different for both dimers.
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4.2. Dimer materials and RIXS variants of Young’s double slit

and the dimer length in real space is set to unity. This enables to measure the transferred
momentum directly in integer multiples of π.

In general, the results show different kind of behavior for the three elementary clusters. In
the case of a single site, plots in Fig. 4.3 show a similar picture to the results discussed
before for the single site system in Fig. 4.2. Note, that no periodic modulation of the RIXS
intensities in transferred momentum is expected to be observed since there is only a single
hole located on a the single site.

For both dimer systems, one can in contrast observe a modulation of RIXS intensity in
transferred momentum demonstrated in Fig. 4.3. This modulation is a clear sign of a
delocalization of wavefunctions between the two sites of the cluster, leading to interference
effects in the outgoing X-ray beams. If one considers the exact modulation frequency in
terms of transferred momentum for the two different dimers, one can find a mismatch
of frequency. This mismatch steams from the mismatch in projected dimer length along
the axis of transferred momentum. Here, the dimer length is the same in both cases but
the second dimer has a shorter projected distance of sites along the direction of deposited
momentum, resulting in a longer period in transferred momentum.

Concluding Remarks

Summarizing the resulting behavior, one can conclude that indeed all three clusters exhib-
ited unique behaviors in the numerical RIXS spectra. The single isolated octahedron did
not show any interference patterns in RIXS intensity (as expected), but only geometric
contributions from the changes to incoming and outgoing polarization when varying the
transferred momentum. In contrast, calculations for both dimer yielded a clearly modu-
lated RIXS intensity in transferred momentum, both with unique periods.

The numerical RIXS intensity data suggests that this system is well suited for compari-
son to experimental data. Individual features in experimental spectra can be investigated
regarding their dependence on transferred momentum and then be compared to the nu-
merical analysis carried out in this section. In principle, such a comparison might be able
to quantitatively determine how disorder locally plays out in Ba3Ti3−xIrxO9 for different
Iridium concentrations x.

4.2.2. Dimers with three holes in Ba3InIr2O9

Let us turn our attention to the next material in the Ba3MIr2O9 family, Ba3InIr2O9, which
is a dimer material with three holes per dimer. Experimental data suggests spin-liquid
behavior in this material so naturally it is a good candidate for numerical investigations.
In the following, the possibilities of numerical ED and RIXS will be demonstrated and
prepared for further analysis. Note that this work is currently work-in-progress [P2] and
therefore does not constitute a finalized project yet.
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Exact diagonalization of Ba3InIr2O9

Setting up exact diagonalization calculations for Ba3InIr2O9 is straightforward. Clusters
in this material are face-sharing dimers similarly to Ba3Ti3−xIrxO9 with the same cluster
Hamiltonian, consisting of spin-orbit coupling, crystal field distortion, a1g-hopping and
Hubbard interactions.

A first comparison to experimental RIXS peak data reveals the following parameter esti-
mates

λ = 430 meV
∆ = 75 meV
U = 1250 meV
JH = 330 meV
ta1g = 510 meV
teπ

g
= 280 meV

(4.8)

where λ and JH can be estimated from other Ir compounds and the rest of parameters are
fitted to the RIXS data.

The actual exact diagonalization calculation can then be performed and is displayed as
a consecutive increase in parameters in Fig. 4.4. First, the increase in U splits states
into t42gt

5
2g and t32gt

6
2g multiplets, i.e. it raises triple hole-occupancies to higher energies.

Then, spin-orbit coupling λ splits the j = 1/2 and j = 3/2 states, leading to four different
combinations for the three holes. Hund’s coupling JH brings down one state with j = 3/2
contribution towards the ground state whereas hopping t mixes states further, inducing
j = 3/2 contribution into the ground state. Note that there are also states unaffected by
hopping. Overall, eigenenergies depend on hoppings approximately linear in t.

Further investigations require additional implementation of symmetries into the numerics
as the nature of the states so far is best expressed in those.

RIXS calculations for Ba3InIr2O9

Based on the exact diagonalization results, calculations of RIXS intensities can be per-
formed. For a general setup similar to the experiment, with momentum transfer along the
dimer axis, typical spectra can be found in Fig. 4.5. Note that all four spectra are for four
different values of transferred momentum, measured in units of π/d where d is the dimer
length. Overall, the excitations are separated into single- and double-spin-orbit-exciton
groups, as already suggested by the exact diagonalization data.

Beyond a clearly visible impact from geometric changes in the scattering geometry, pe-
riodic momentum dependencies of the peaks can be observed. This is a clear signature
of delocalized orbitals across the dimer which lead to a periodic behavior in transferred
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Figure 4.4.: Exact diagonalization for Ba3InIr2O9 - Numerical exact diagonalization
data shown for consecutive increase of parameters in Ba3InIr2O9 which is described by local
dimers with 3 holes. Following states across the diagram reveals that the first splitting,
induced by Hubbard interaction U , raises the states which included triple occupied sites
high up in energy compared to the rest. A further increase in spin-orbit coupling λ separates
all states by how much j = 3/2 moments they include, leaving a ground state which is
purely j = 1/2. This state is then mixed with j = 3/2 states from higher energies as
Hund’s coupling JH and hopping t bring states down from higher energies.

momentum similar to previous discussion. However, with the Hilbert space reaching a
large size, clear statements about the exact nature of individual states are challenging. In
particular, additional information about inherent symmetries would be greatly impactful
in the interpretation of this data.

Concluding Remarks

In summary, the numerical implementation could successfully be applied to modeling
Ba3InIr2O9. Comparing exact diagonalization data to the peaks of experimental RIXS data
suggest that the parametrical description from this section is consistent with previously ob-
tained literature values and that in principle, numerical calculations of the eigenspectrum
are beneficial for the understanding of experimental data.

Furthermore, numerical RIXS intensity data from Ba3InIr2O9 can now readily be compared
to experimental data. This comparison is currently ongoing (during the writing of this
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Figure 4.5.: Numerical RIXS spectrum for Ba3InIr2O9 - Numerical spectra for
different transferred momenta dq in units of π/d where d is the dimer length. Peaks show
a clear signature of momentum modulation, demonstrating the quasi-molecular character
of states.

thesis) and will be part of an upcoming publication [P2]. Particular focus is set on the
qualitative comparison between momentum space periodicities in peak intensity data. A
quantitative comparison will be challenging to obtain in this case as, since the fast collision
approximation, leading to the form of RIXS amplitudes used in the numerics, is much likely
not valid in the context of Ba3InIr2O9. It remains to be seen how much this influences the
agreement of spectral data.
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4.3. Kitaev materials
Along the quest for possible magnetic models, the search for an experimental confirmation
of the Kitaev spin liquid [3] has raised much attention. This elusive state of matter forms
in a model of bond-directional Ising interaction on a honeycomb lattice and raised much
attention as the first ever analytically solvable spin liquid ground state. Since the proposal
by Jackeli and Khaliullin [4] that such bond-directional exchange can be realized between
j = 1/2 moments in edge-sharing octahedra, there has been a lot of interest in the ma-
terials Na2IrO3 and α-RuCl3 which both are layered materials of edge-sharing octahedra.
Inside these octahedra, the Ir in Na2IrO3 or the Ru in α-RuCl3, are expected to provide
the necessary j = 1/2 moments which then can interact within layers of the respective
materials.

The low-temperature behavior of both materials has been studied extensively. Both mate-
rials seem to order magnetically at very low temperatures [1, 21–24] which indicates that a
pure Kitaev spin-liquid can be ruled out. However it was found that in α-RuCl3 inelastic
neutron scattering, THz spectroscopy and Raman scattering all show signs of dominant
Kitaev interactions in the form of a magnetic continuum [25–32]. The continuum has
fermionic character [29, 32] and only shows signs of dynamical spin-spin correlations be-
tween nearest neighbors [26]. Most recently, it was also discovered that α-RuCl3 exhibits
a half-quantized thermal Hall effect in strong magnetic fields [33], substantiating the clas-
sification of α-RuCl3 as a proximate Kitaev spin-liquid.

Similar experimental evidence for Na2IrO3 is still sparse. Neutron scattering on Na2IrO3
proves to be difficult since Ir absorbs neutrons very well. Magnetic excitations are in
principle available in RIXS like in other materials, however the edge-sharing geometry
leads to lower energies, therefore bringing the excitation energies down to the experimental
resolution of 24 meV [34, 35]. However, it was demonstrated that RIXS interferometry can
be used to overcome experimental resolution and show a momentum space interference
pattern consistent with expected Kitaev behavior [15].

This section aims at providing a numerical perspective to the question how the elementary
building blocks in the materials of Na2IrO3 and α-RuCl3 show signs of dominant Kitaev
interactions. It should be noted that this section does not feature an extensive overview
over the analytical solution of the Kitaev model itself, which rather is delayed to Sec. 10.3
in the context of lattice models, but is rather concerned with the physics of its atomic
constituents. In the following, this analysis is based on two assumptions. First of all, since
the interference pattern in RIXS data of Na2IrO3 only shows signs of nearest-neighbor
correlations [15], it is possible to model the RIXS data by only taking into account dis-
connected individual bonds in RIXSCalculator.jl. Modeling these RIXS experiments on
an electronic level including the magnetic excitations is laid out in the first part of this
section. In the second part, the low-energy behavior of α-RuCl3 is investigated, based on
calculations for Ref. [P3]. This investigation reveals a double spin orbit excitation, which
can be seen in both RIXS and Raman data.
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Figure 4.6.: Numerical implementation of Na2IrO3 - The RIXS setup in Na2IrO3
is modeled after experiments performed in Ref. [15], which examines momentum transfer
within the honeycomb planes of Na2IrO3, as depicted in panel a). Locally, Na2IrO3 is
modeled by the individual bonds (x,y,z) in the honeycomb plane which are built up from
two IrO6 octahedra each, sharing a common edge. To model these elementary bonds, three
separate lab systems are implemented, shown in panel b). The local Hamiltonian of these
two-site clusters consists of spin-orbit coupling, crystal field distortion perpendicular to the
honeycomb planes, Hubbard interaction and Hund coupling as well as hopping between
the octahedra.

4.3.1. RIXS interference patterns in Na2IrO3

Let us start by discussing how to probe Kitaev physics with RIXS in the material Na2IrO3,
i.e. as done in the paper [15]. Although ab initio calculations suggest that Na2IrO3 is closer
to a pure Kitaev model than α-RuCl3 [24], it has a magnetic ordering transition at around
TN = 15K below which a zigzag order is built up [1, 24, 36–39]. Dominating Kitaev terms
were already suggested by RIXS [40], however it was only recently that fingerprints of
Kitaev physics were observed [15].

In this part we will discuss these recent RIXS observations from a numerical standpoint.
We will start by introducing a suitable model Hamiltonian for Na2IrO3 after which exact
diagonalization and RIXS simulations are carried out. After having discussed their results,
a brief comparison to experimental data is drawn.

Modeling Na2IrO3

To model Na2IrO3 in numerics, let us make some general assumptions. First of all exper-
imental data only finds correlations on nearest-neighbor scales, therefore it is reasonable
to only take into account individual bonds. In terms of code this means having three in-
dependent samples consisting only of a single bond, whose spectra are summed up finally.
Together, these three bonds span the lattice plane whose normal can be related to the
experimental sample c-direction.

Each bond consists of two Ir-octahedra with Ir being in a d5 configuration, meaning a
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4.3. Kitaev materials

single hole within the t2g states. The two octahedra of every bond are sharing a common
edge which leads to a peculiar form of hopping. The shared edge differs between all three
bonds s.t. the hopping is also different for each bond. For the common edge within the xy
plane of the octahedra, hopping takes the form

Hhop. =
∑

σ=↑↓
tK(a†

1xσa2yσ + a†
1yσa2xσ) + tJ(a†

1zσa2zσ) + h.c. (4.9)

with parameters tK and tJ describing the off-diagonal (Kitaev) and diagonal (Heisenberg)
part of the hopping. The remaining two bonds with their common edge in another plane
have respective cyclic permutations of this hopping Hamiltonian. Apart from hopping
between sites, the usual local operators describe the on-site physics of each octahedron,
including spin-orbit coupling, Hubbard interaction as well as crystal field distortions. Pa-
rameters that are reasonable to describe Na2IrO3 are e.g.

λ = 430 meV
∆ = 0 meV
U = 1300 meV
JH = 250 meV
tJ = 350 meV
tK = 350 meV

(4.10)

which will be used through though the entire section.

Concerning the RIXS geometry, one is interested in particular in momentum transfer which
is either parallel or anti-parallel to one of the bonds while still lying in the lattice plane.
This particular scattering geometry allows to select interference contributions from the
different bonds. From a practical perspective, this geometry can be achieved by rotating
the sample within the lab frame relative to the axis of momentum transfer. In the following,
let us use the convention that the lattice plane is parallel to the plane of incoming and
outgoing X-rays and will only be rotated around its normal vector.

Exact diagonalization of Na2IrO3

Having a complete Hamiltonian for each bond allows numerical exact diagonalization to
be performed. Since the basis contains 66 states in total, the Hamiltonian is of size 66×66
and gives 66 eigenvalues. Particular interest lies on the lowest eigenvalues, denoting not
only the ground state but also the excitations visible in RIXS.

To gain insight in the nature of the different eigenstates, Fig. 4.7 shows the consecutive
evolution of eigenenergies when raising each individual Hamiltonian parameter to its exper-
imental value. As seen in the figure, U separates states with different number of particles
per site, i.e. the states that remain at low energies now only have one hole per site. Next,
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Figure 4.7.: Exact diagonlization of Na2IrO3 - Eigenenergies as function of consecu-
tively increased parameters in the model Hamiltonian for Na2IrO3. Following the different
interactions increase reveals that the low-energy states for finite parameters consists of
mostly j = 1/2 states.

λ splits the j = 1/2 and j = 3/2 states on both sites, leaving three combinatorial solutions
for the combined 2-particle state. The ground state consists of states with both holes in a
j = 1/2 state. Applying Hund’s coupling JH changes nothing within the low energy states
since particles here are on different sites and therefore do not interact with JH . Finally,
hopping tK and tJ mixes states as the two holes on different sites delocalize due to hopping.
One can however observe that for the low energies, more mixing arises from tK compared
to tJ .

Having described these low energy states, one can make some noteworthy observations.
First, the low energy multiplet consists only of states with j = 1/2 for both holes, with
both holes being on different sites. Excitations within this multiplet will therefore only
transition between these states. Second, the first different state is brought down towards
low energies by tK and can be identified as a state having one hole in the j = 3/2 while
the other hole is still within j = 1/2. An excitation from the ground state to this state
would correspond to a spin-orbit excitation.

Having investigated the rich energy spectrum arising from exact diagonalization, let us
now turn towards calculations of the RIXS process.
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4.3. Kitaev materials

Figure 4.8.: Experimental RIXS results on Na2IrO3 - Momentum dependence of
experimental RIXS data on Na2IrO3 and the related compound α-Li2IrO3 shows signs of
periodic modulation. Depending on the scattering geometry (displayed above the data),
either a single or two cosine functions can be observed, which is in good agreement with
theoretical predictions. Figure taken from Ref. [15].

Interference effects in Na2IrO3

The RIXS transitions which can occur in Na2IrO3 take place between the ground state and
states of higher energy. Experimentally, one is interested in the region of energies below
400 meV, which corresponds to the lowest four excitations. Once again it is worth noting
that the spectra of all bonds are calculated separately and only summed up in the end.

The numerical results for the RIXS intensities can be found in Fig. 4.9 and Fig. 4.10. Both
datasets show the RIXS intensities as function of transferred momentum and deposited
energy for the two relevant geometries, transferred momentum perpendicular to one bond
(Fig. 4.9) and parallel to one bond (Fig. 4.10). Each dashed red line denotes a cut at a
certain energy, corresponding to the numerical transition energy. These cuts can be found
below the panel. Similarly, each cyan line corresponds to a constant momentum cut, i.e. a
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Figure 4.9.: Momentum dependent RIXS intensities in Na2IrO3, perpendicular
geometry - Maps of the numerically calculated RIXS intensities for the perpendicular
geometry in Na2IrO3 showing dependencies of intensities on transferred momentum and
deposited energy. All intensity data was calculated by averaging the x,y and z bond
data. Data is calculated for momentum transfer perpendicular to the z bond. Momentum
space map includes vertical (red) and horizontal (cyan) cuts, along which intensities are
displayed below and beside the map respectively. Data shows a clear periodic modulation
in momentum space, owing its existance to the delocalized nature of orbitals along the
bonds. In total, the data can be described by a single momentum space period compatible
with interference from the x and y bonds. The z-bond cannot lead to any interference
behavior in this geometry since its projected length along the momentum transfer is 0.
Behavior can be compared with experimental data in panels c) and e) of Fig. 4.8.
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Figure 4.10.: Momentum dependent RIXS intensities in Na2IrO3, parallel ge-
ometry - Maps of the numerically calculated RIXS intensities for the parallel geometry
in Na2IrO3 showing dependencies of intensities on transferred momentum and deposited
energy. All intensity data was calculated by averaging the x,y and z bond data. Data is
calculated for momentum transfer along the z bond. Momentum space map includes verti-
cal (red) and horizontal (cyan) cuts, along which intensities are displayed below and beside
the map respectively. Data shows a clear periodic modulation in momentum space, owing
its existance to the delocalized nature of orbitals along the bonds. In total, the data can
be described by two momentum space sine/cosine functions, compatible with interference
from all three bonds. Since the x and y bonds have a different projected length along the
momentum transfer, compared to the z-bond, modulation frequencies differ. Behavior can
be compared with experimental data in panels d) and f) of Fig. 4.8.
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regular RIXS spectrum for a fixed geometry. Those spectra are shown in cyan on the right
hand side of the main panel.

Generally one can observe the elastic line at zero energy as well as two transition peaks
for transitions within the j = 1/2 subspace. At around 300 meV, one can observe the first
spin-orbit excitation, i.e. the transition from the j = 1/2 ground state to the j = 3/2
state.

There is a qualitative difference between the two sample orientations. For transferred mo-
mentum perpendicular to one bond, momentum dependence only shows a periodic behavior
which can be described by a single cosine function. In contrast, if the momentum transfer is
parallel to one bond, the periodic behavior shows the superposition of two cosine functions
of different frequency. This behavior can be directly related to the scattering geometry. If
the momentum transfer is perpendicular to one bond, this bond will not show an interfer-
ence pattern as its projected length along the momentum transfer is zero. However, for the
parallel geometry, it will give a contribution along with the other two bonds which have a
different projected length along the momentum transfer axis.

Comparing to experimental data can also be done. In the experiments [15], the RIXS
intensity is integrated for low energies and high energies. These two regions are defined by
a threshold of around 30 meV, up to which everything is counted as low energy and above
which signals contribute to high energy data.

Concluding Remarks

In summary, this section provided an overview over numerical RIXS calculations in the
Kitaev material Na2IrO3. Both exact diagonalization as well as RIXS intensity calculations
have been carried out on three separate clusters, each consisting out of two IrO6 octahedra
with a shared edge. Relative to the scattering geometry, these clusters have been arranged
to resemble the three elementary x-, y- and z-bonds in the honeycomb layers of Na2IrO3.

With parameters in correspondence with experimental data, the low-energy states in
Na2IrO3 form a manifold of j = 1/2 states which can be probed by numerical RIXS
intensity calculations. Employing this technique leads to the two different interference dia-
grams of Fig. 4.9 and Fig. 4.10 which agreed qualitatively very well to experimental RIXS
data published in Ref. [15], shown in Fig. 4.8.

This level of agreement suggests that RIXS responses in Na2IrO3 can very well be mod-
eled by the present numerical implementation. On one side, this is relevant for future
experimental investigations which might probe large regions of momentum space to reveal
the bond-directional character of Na2IrO3 even more strikingly. On the other side, this
agreement is already a striking sign for dominant Kitaev couplings in Na2IrO3.
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Figure 4.11.: Experimental RIXS results on α-RuCl3 - Experimental infrared ab-
sorption and Raman scattering data for α-RuCl3 showing a multi-peak structure. Peaks
A and B are visible both in Raman and Infrared whereas peak C is only seen in infrared
absorption data. Peaks between the two datasets are shifted by phonon modes. Figure
taken from Ref. [P3].

4.3.2. Double spin-orbit exciton in α-RuCl3
Let us shift focus to the most prominent Kitaev material in recent years, α-RuCl3. Al-
though also α-RuCl3 shows signs of magnetic ordering at low temperatures, owing its exis-
tence to interactions beside Kitaev terms [21–23], it has been commonly appreciated that
α-RuCl3 realizes a proximate Kitaev spin-liquid. A magnetic continuum with fermionic
character can be observed in inelastic neutron scattering, THz spectroscopy and Raman
scattering [25–32] which only shows signs of dynamical spin-spin correlations between near-
est neighbors [26]. Most stunning is the recent discovery of a half-quantized thermal Hall
effect [33].

Although the Kitaev character of α-RuCl3 has been investigated to a large extent, the low
energy excitation spectrum of the spin-orbit coupled moments still is not clear. Partially,
this is due to great challenges for RIXS at the Ru L and M edges [41, 42]. Whereas RIXS
could confirm the j = 1/2 character of related iridate materials [P1, 43–46] by measuring
the spin-orbit exciton, i.e. the excitation to the j = 3/2 state, in α-RuCl3 there is no clear
picture of attributing low-energy features to certain excitations, but only many conflicting
proposals so far.

In this spirit, inelastic neutron scattering and Ru M edge RIXS proposed values as spread
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out as 145, 195 and 231 meV for the spin-orbit exciton [25, 42, 47]. Similarly, infrared
absorption finds absorption bands at 0.3, 0.53, 0.75 eV [47–53] with unclear origin. Those
peaks have been proposed to be due to a Mott gap or excitations to eg states [47, 49, 50],
however this is unlikely as it would be in contrast to quantum chemistry calculations [54,
55].

This part of the thesis uses calculations underlying Ref. [P3] to provide an alternative
and consistent picture for the low-energy excitations in α-RuCl3. By combining infrared
absorption and Raman scattering data, it was proposed in Ref. [P3] that the peaks are
single-, double- and triple-spin-orbit exciton excitations. The data from Ref. [P3] is also
displayed in Fig. 4.11. In this section, we want to discuss the numerical calculations
supporting this picture.

Model Hamiltonian for α-RuCl3
Modeling α-RuCl3 within the numerics works very similar to how Na2IrO3 was treated
in the last part. Again, the sample is divided into individual bonds which are simulated
separately. Moreover, since in this case we are only interested in the exact diagonalization,
we can neglect all but one bond.

The single remaining bond consists of two Ir-octahedra with Ir atoms being in a d5 configu-
ration. The octahedra at the ends of the bond are sharing a common edge lying within the
xy plane, ultimately yielding the off-diagonal form of hopping already present in Na2IrO3.
In total, α-RuCl3 is described by the same Hamiltonian as Na2IrO3, however parameter
values differ slightly as

λ = 160 meV
∆ = 60 meV
U = 2000 meV
JH = 400 meV
tJ = 0 meV
tK = 160 meV =: txy

(4.11)

is used for α-RuCl3.

Exact diagonalization for α-RuCl3 and the double-spin-orbit exciton

Fig. 4.12 shows the results from exactly diagonalizing the α-RuCl3 Hamiltonian numeri-
cally. Again, eigenenergies are displayed upon consecutive increase of model parameters.
An initial increase of λ separates the j = 1/2 states from j = 3/2 states. Since the two
holes can either be both in j = 1/2 (lowest energy), one in j = 1/2 and one in j = 3/2
or both be in j = 3/2, there are in total three branches developing. Increasing ∆ splits
the j = 3/2 further, therefore the three levels get split differently depending on how much
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Figure 4.12.: ED for low energy states of α-RuCl3 - Evolution of 2-hole eigenener-
gies in α-RuCl3 when increasing couplings one after another to their experimental values.
Following the states to the experimental parameters (dashed line) shows that the three
groups correspond to (j = 1/2, j = 1/2) states, (j = 1/2, j = 3/2) and (j = 3/2, j = 3/2)
states for the two particles respectively. Corresponding excitations would be described as
single- and double-spin orbit excitons respectively and fit nicely to experimental Raman
and infrared absorption data [P3]. Experimental data is also depicted for illustration pur-
poses in Fig. 4.11.

j = 3/2 they contain. Increasing Hubbard interaction U will drastically lift the energies of
all states in which the two particles are on the same site. From hereon, the ground state
only contains states with one particle per site. Hund’s coupling JH only affects the states
with particles on the same site, which are at this point high in energy, therefore leaving
the low-energy levels unchanged. Finally, hopping txy splits/mixes levels as it induces
delocalization between sites.

Regarding the final states under experimental parameters, one can make some observations.
In total, there are roughly three groups of states for energies below 600 meV. The lowest
lying states contain only two-particle states with both holes being in the j = 1/2 manifold.
The next group contains only states with one hole being in the j = 1/2 and one hole being
in the j = 3/2. Excitations from the ground state to this group therefore correspond to
a spin-orbit excitation. The third group further up in energy corresponds to states where
both holes are in the j = 3/2 manifold. Therefore excitations to this manifold correspond
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to performing a double spin-orbit excitation.

Concluding Remarks

In this part, numerical calculations of the eigenspectrum in α-RuCl3 have been performed.
Motivated by the previous success in modeling a Kitaev material locally with individual
bonds only, the numerics focused on two edge-sharing IrO6 octahedra with parameters
adapted to fit α-RuCl3.

All in all, calculations of eigenenergies showed a remarkable agreement with peaks in the
Raman and infrared data presented in [P3]. This agreement indicates that the low-energy
structure of α-RuCl3 can indeed be understood from the perspective of single- and double-
spin-orbit excitons, unifying many conflicting approaches.
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4.4. Beyond RIXS
So far, the numerical implementation allowed only for the computation of eigenstates
in Ir clusters and their respective excitation spectra in terms of L2 and L3 edge RIXS
processes. Although it is able to handle a variable number of holes and sites within the
clusters, the numerical implementation is tailored to tackle this specific situation. A general
question one might naturally have is how the code handles beyond these specific problems.
This will be addressed in the present section. More precisely two extensions or changes
will be discussed. First, the RIXS process will be substituted by measurement of optical
conductivities and second, a temperature dependent state occupation with Boltzmann
weights is introduced.

Let us start with discussing the optical conductivity. It essentially describes the ability of
electrons to flow through the cluster upon interaction with light. On a technical level, tran-
sitions from initial states |i⟩ to other eigenstates |f⟩ are introduced in a similar formalism
to the dipole amplitudes, one only replaces the dipole operator by the hopping operator.
Since at this point it is a purely conceptional discussion, only qualitative features of the
optical conductivity are of interest, so that it can be written as

σ(ω) =
∑

f

⟨f |Hhop.|i⟩ δ(ω,Ef − Ei) (4.12)

for some number of eigenstates.

As a second change, eigenstates of the system are thermally distributed, i.e. have an
occupation probability given by their eigenenergy

pi = 1
Z
eβEi (4.13)

with Z given by
Z =

∑
i

eβEi . (4.14)

This in principle allows for excitations from any state to any other state.

For illustration purposes, let us consider the following example system containing two sites
connected by hopping as well as some local Hamiltonians on each site. Results for the
optical conductivity as defined above can be seen in Fig. 4.13. In principle, the code is
able to show basic features of this optical conductivity and even changes in peak intensities
for varying temperatures. In a subsequent step, this data can be compared to experimental
data as well.
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Figure 4.13.: Optical Conductivity from ED - Temperature dependence of optical
conductivity in a system modeling a fictitious 2-hole dimer. The system includes spin-
orbit coupling, crystal field distortion effects, Hubbard interaction and hopping between
two corner-sharing IrO6 octahedra. Calculations of the optical conductivity have been
performed by computing transition amplitudes while replacing the dipole operator by the
hopping operator according to Eq. (4.12). Temperature dependence has been modeled by
including thermal occupation of quantum states.

62



5. Summary and discussion

In this Part I, a numerical toolbox called RIXSCalculator.jl [S1] has been developed
for computing exact diagonalization and RIXS calculations in a variety of iridate (cluster)
materials. Overall, the implementation allows flexibility in choosing applications with the
only limitation being a description in terms of ℓ = 1 states. This requirement was met
as all examples in Chapter 4 focused on the t2g subspace of the 5d shell in various iridate
materials. Between examples, not only the relevant interactions were changed, but also
the geometry and number of particles. Numerically, the full many-body Hamiltonian for a
variable number of holes or electrons can be computed, including interactions such as spin-
orbit coupling, crystal field distortions, external magnetic fields, hopping, Hund’s coupling
and Hubbard interaction.

Concerning physical examples, this chapter focused mostly on iridate materials in which the
local geometry was described by IrO6 octahedra. It was seen that "real" dimer materials,
where pairs of IrO6 octahedra were structurally isolated from other pairs, could be described
similarly well as extended Kitaev systems that only took a single bond into considerations.

Generally, materials with more than a single IrO6 octahedron allowed for the application
of RIXS interferometry, i.e. the search for interference patterns in the RIXS intensities.
Such periodicities are thought of as signatures of quasi-molecular orbitals which describe
states that are delocalized across (parts of) the cluster.

The physical motivation for investigating such materials lies within the formation of mag-
netic models. All of the materials investigated show the formation of local j = 1/2 moments
which subsequently can interact across the material in different forms, yielding a variety
of effective spin models. Whereas the resulting spin models were not the main focus of
this part, the interest was mainly about the intrinsic electronic structure forming these
magnetic moments.

The discussion of example systems started with the material Ba2CeIrO6, a double-perovskite
material in which local j = 1/2 moments form inside the IrO6 octahedra on one of the
fcc sublattices. Whereas structure analysis confirmed the extraordinary purity of cubic
symmetry, RIXS data revealed that the character of local moments still includes j = 3/2
mixtures originating from finite crystal field distortions away from the cubic limit. In
particular numerical calculations of this chapter could confirm the components of local
wavefunctions when comparing excitation energies to measured RIXS data.

In a subsequent section, the family of Ba3MIr2O9 materials with face-sharing Ir-dimers was
investigated. Particular interest has been paid to Ba3Ti3−xIrxO9, in which an increase of Ir
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concentration was experimentally found to suppress magnetism, an observation which was
counterintuitive at first. Calculations however support another view on this observation as
the increase in Ir concentration facilitates the formation of dimers which are non-magnetic,
yielding different momentum space signatures in RIXS intensities. This work allows com-
parison with experimental RIXS data, which is currently work-in-progress. Yet another
work-in-progress project in the family of Ba3MIr2O9 is the work on Ba3InIr2O9 which fea-
tured a dimer with 3 holes. First results of exact diagonalization and RIXS calculations
have been shown, however most of the comparison and discussion on the ground state is
still work-in-progress.

As a last class of example systems, the famous Kitaev materials Na2IrO3 and α-RuCl3 have
been investigated. Although these materials do not form isolated dimers, RIXS intensity
measurements suggested that correlations only persist up to nearest neighbors, facilitating
a local cluster picture yet again. In Na2IrO3 was on the precise form of momentum space
interference effects [15], which could be verified to show signs of dominant Kitaev exchange
up to high temperatures. Currently there is again more work-in-progress. In α-RuCl3,
calculations focused more on the precise form of low-energy excitations confirming the
existence of a double-spin orbit exciton [P3]. Here, calculations could be brought into
correspondence with both Raman and infrared absorption data.

A small and final section demonstrated that in principle the code in RIXSCalculator.jl
is not limited to RIXS. Here, also a principle form of optical conductivity was calculated to
demonstrate once again the versatility that this full diagonalization approach can achieve.

Currently, work on the code focuses mostly on adding symmetries into the numerical
implementation. Symmetries allow generally for a reduction of Hilbert space and access
to larger clusters of IrO6 octahedra. Another benefit of implementing symmetries is the
improvement in interpretability of the output. Particularly, the interpretation of output
for larger systems has proven to be challenging and thus could greatly benefit from this
additional information.
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Supersymmetry and Topology
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6. Introduction

A substantial part of modern condensed matter physics can be expressed as the study
of correlated electrons in the periodic arrangement of atoms. As the study of the full
quantum-many body problem of correlated electrons is too extensive, a necessary first step
is to discuss the free electronic problem first, i.e. the single particle description. Although
being very simplistic, these free electronic models describe many phenomena to a surprising
accuracy.

Within the field of electronic models, it has long been appreciated that symmetries play
a major role in characterizing the behavior of a system. Besides crystalline symmetries
of the underlying lattice, especially the behavior of a model under internal symmetries
such as time-reversal symmetry, particle-hole symmetry or chiral symmetry, was shown to
determine if and which topological phases are possible to realize in a system [56].

Yet another symmetry is supersymmetry. This symmetry, originally introduced in high-
energy physics [57–59] to explain physics beyond the standard model [60], relates the
electronic (fermionic) degrees of freedom to other bosonic particles. In contrast to other
conventional symmetries it therefore does not map states within a given system, but rather
provides a link to other related models which behave similarly. Although the concept was
introduced in high-energy physics, supersymmetry can also be relevant for a non-relativistic
context, e.g. in the study of random phenomena and quantum chaos in mesoscopic systems
[61].

A similar concept of relating two models with identical properties has been explored in the
field of topological mechanics. Here, mechanical models are constructed that contain the
(topological) properties of electronic models [62]. Exploiting this correspondence lead to
fascinating incarnations of electronic features in mechanical systems such as the realization
of floppy boundary modes in isostatic lattices which can be identified with topologically
protected boundary modes in topological insulators [63, 64].

Conventionally, topological mechanical systems can be constructed by defining a classical
system with Newtonian equation of motion ẍ = −Dx where the dynamical matrix D comes
from the Schrödinger equation

i
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∂t

(√
DT

x
iẋ

)
=
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0
√
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√
D 0

)(√
DT

x
iẋ

)
, (6.1)

of a corresponding quantum problem. It has already been noted [62, 63] that such Hamil-
tonian matrices as in Eq. (6.1) correspond to symmetry class BDI [56] and therefore gener-
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ically exhibit a supersymmetric form [61]. Moreover, connecting the two concepts of SUSY
and topological mechanics can even be done explicitly [65], which hints at a supersymmetric
formulation of topological mechanics.

Usually, supersymmetry is performed on the level of identifying operators and Hamiltonians
between subsystems. In this thesis however, a different approach is proposed which instead
relies on the underlying lattice graph structure. By interpreting interaction matrices as
adjacency matrices one can then obtain supersymmetric relations formulated on the level
of lattice graphs.

Overall, the part is organized as follows. First, Chapter 7 provides a brief introduction
to quadratic lattice models and their numerical solution, as they are the building blocks
of the upcoming discussion. Then in Chapter 8, the concept of supersymmetry is intro-
duced and it is shown how graph theoretical language of lattice graphs can help in defining
supersymmetric relations. With these technical details discussed, a series of different ap-
plications are demonstrated. First, complex fermions are mapped to complex bosons with
a sublattice-to-sublattice mapping in Chapter 9. Then, Majorana fermions are demon-
strated to be the natural counterpart of topological mechanical systems in Chapter 10.
In this chapter, the isospectrality between mechanical and Majorana models is explicitly
shown at two examples. Finally, some discussion of additional correspondences is given in
Chapter 11 before finishing with a summary and outlook in Chapter 12.

In principle, the arguments in this part are basis for a work-in-progress manuscript [P4],
which is currently in preparation. However, details on the Majorana fermion correspon-
dence have already been published in Ref. [P5].
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7. Lattice models

Let us start the discussion of graph theoretical supersymmetry by first introducing the
basic concept of lattice models. We will first discuss the notion of lattices, unitcells and
graphs and then extending it by adding quadratic Hamiltonians. These physical models
yield bandstructures whose numerical computation will be discussed at the end of the
section.

7.1. Lattices and unitcells
In condensed matter physics, any crystalline lattice structure can be written as being
composed of two parts, a Bravais lattice and a basis. The Bravais lattice defines the
translations under which the crystalline structure is invariant. For d spatial dimensions,
there are at most d of such independent translations, which are also referred to as Bravais
lattice vectors a⃗1, . . . , a⃗d.

The basis contains the atomic positions of the crystal, which are shifted by translations of
the Bravais lattice. Because of these translations it does not need infinitely many of such
positions but typically only a few so called basis sites r⃗i with i ∈ [1, N ], which are then
subsequently periodically arranged.

Combining the two concepts of Bravais lattice and basis, any atomic position in a crystal
lattice can be written as

R⃗ = r⃗i +
d∑

j=1
nj a⃗j, (7.1)

with integer prefactors nj ∈ Z. The combination of Bravais lattice and basis is also referred
to as unitcell of the lattice. Examples of such unitcells and lattices are shown in Fig. 7.1.
Here, atomic positions are also connected by so-called bonds which are edges between sites
of minimal distance. Later, bonds will play a role when defining interactions between
degrees of freedom situated on the individual sites.

When solving a model on a periodic lattice, one often performs a Fourier transformation
into momentum space, as will be demonstrated later. This is a beneficial operation, since
a Bravais lattice in real space, always has a momentum space partner which is a Bravais
lattice as well. This so-called reciprocal lattice is spanned by reciprocal lattice vectors
b⃗1, . . . , b⃗d which fulfill the condition

a⃗i · b⃗j = 2πδij, (7.2)
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Figure 7.1.: Unitcells in 2d / 3d with corresponding Brillouin zones - Exemplary
illustrations of unitcells for the honeycomb, square-octagon, diamond and hyperkagome
lattices, shown in panels a) - d). Each lattice can be constructed from a Bravais lattice
and a basis, whereas lattice vectors of the Bravais lattice are shown as blue arrows and
the basis consists of sites within the unitcell (blue region). The corresponding reciprocal
lattices, including a respective illustration of the Brillouin zone, are shown in panels e) -
h).

where a⃗i refers to the Bravais lattice vectors of the lattice in real space.

Furthermore, in reciprocal space, the concept of a basis is replaced by the concept of a
(first) Brillouin zone. The first Brillouin zone is the Wigner-Seitz cell of the reciprocal
lattice and thus is defined as the set of points which is closer to the origin than to any
other point of the lattice. This allows a rewriting of any momentum q⃗ as

q⃗ = k⃗ +
d∑

i=1
ñi⃗bi, (7.3)

with integer prefactors ñi ∈ Z and a k⃗ within the first Brillouin zone. Fig. 7.1 contains
also the reciprocal lattices and Brillouin zones for each of the 2d and 3d examples shown
before.
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7.2. Bandstructures of quadratic lattice models

7.2. Bandstructures of quadratic lattice models
Now let us focus on models defined on lattices, specifically on one special family of models
only including quadratic interaction terms. Such quadratic models are also often called
free models because they describe non-interacting particles. Although at first glance seem-
ing quite restrictive, many materials are very well described by these free models as the
assumption of non-interacting particles is well justified within the quasi-particle picture.
In the following, one can imagine particles occupying localized orbitals and hopping from
site to site. In fact, these models are also a generic solution in periodic structures due
to Bloch’s theorem. In total, all of these models allow a generic solution, which will be
discussed in the following.

Let us start with a generic free model of the form

H =
∑
µν

a†
µMµνaν (7.4)

describing particles created and annihilated by operators aµ defined on sites µ of an infinite
lattice. Particles can hop from site µ to ν with amplitudes Mµν following the same trans-
lational invariance as the underlying lattice. In principle, there can be multiple orbitals on
each lattice site, which would result in aµ having d̃ components as well as the interaction
being described by a d̃× d̃ matrix M.

The periodic lattice structure allows utilizing a Fourier transform of this generic model
which will finally bring it in a block-diagonal form. Let us start by formalizing the lattice
structure, i.e. defining that lattice points µ are located at positions

r⃗µ = R⃗α + r⃗i (7.5)

where R⃗α is the corresponding Bravais lattice site and r⃗i the position of the basis site within
the unitcell. With this definition, we can split the summation and rewrite the model to

H =
∑
αβ

∑
ij

a†
αiMαβijaβj. (7.6)

The next step is to define the actual Fourier transform. Let us use the convention

a†
αi = 1√

N

∑
k⃗

a†
k⃗i
e+ik⃗·(R⃗α+r⃗i)

aβj = 1√
N

∑
k⃗′

ak⃗′je
−ik⃗′·(R⃗β+r⃗j)

(7.7)

where N describes the total number of Bravais lattice sites and k⃗ and k⃗′ label momenta
within its first Brillouin zone. For any finite lattice, these momenta are discretely spaced
resulting in N different momentum values for a Bravais lattice of N sites.
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Inserting the Fourier transform into Eq. (7.6) results in

H = 1
N

∑
αβ

∑
ij

∑
k⃗k⃗′

a†
k⃗i
e+ik⃗·(R⃗α+r⃗i)Mαβijak⃗′je

−ik⃗′·(R⃗β+r⃗j) (7.8)

= 1
N

∑
αβ

∑
ij

∑
k⃗k⃗′

a†
k⃗i

Mαβijak⃗′je
i(k⃗·r⃗i−k⃗′·r⃗j)ei(k⃗·R⃗α−k⃗′·R⃗β) (7.9)

which can now be further simplified by the use of lattice periodicity. To do so, note that
many elements of M are actually zero. The only non-zero elements are those given by
hopping processes from site µ to ν, i.e. from Bravais lattice site α to β. For those elements,
let us write

R⃗β = R⃗α + δ⃗αβ (7.10)

i.e. explicitly introducing the distance in terms of Bravais lattice vectors δ⃗αβ. Inserting this
into the Hamiltonian removes the sum over β and simplifies further to

H = 1
N

∑
α

∑
ij

∑
k⃗k⃗′

a†
k⃗i

Mαβijak⃗′je
i(k⃗·r⃗i−k⃗′·(r⃗j+δ⃗αβ))ei(k⃗−k⃗′)·R⃗α . (7.11)

Lattice periodicity of the Bravais lattice allows to use the identity

1
N

∑
α

ei(k⃗−k⃗′)·R⃗α = δ(k⃗ − k⃗′) (7.12)

which is partially already contained in the previous expression. Therefore, also the sum-
mations over α and k⃗′ can be resolved and one obtains

H =
∑

k⃗

∑
ij

a†
k⃗i

Mijak⃗je
ik⃗·∆⃗ij (7.13)

where the hopping spans real space distances of ∆⃗ij = r⃗i − (r⃗j + δ⃗αβ).

In total, the simplification steps yielded a block-diagonalized Hamiltonian matrix. Each
individual of the in total N blocks is of size d̃b × d̃b where d̃ is the number of orbitals on
every lattice point and b the basis size of the lattice. Each momentum k⃗ thus describes
d̃ · b eigenstates that are intrinsically periodic with period k⃗. A common theme is to follow
the eigenenergies upon variation of k⃗. Plotted along a high-symmetry path, this form of
diagram is called a bandstructure and can be used to extract information about the model
in a pictorial way.
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Figure 7.2.: Honeycomb bandstructure - Numerically calculated bandstructure (c.f.
panel a) ) for a model of nearest-neighbor hopping on the honeycomb lattice, which is shown
in panel b). The bandstructure is calculated along a path in reciprocal space depicted in
panel c).

7.3. Numerics of lattice models and LatticePhysics.jl
Having established the general formalism of quadratic models on lattices, let us discuss
how to solve the models and extract spectral properties in practice. The core element of
the bandstructure calculation is the construction and diagonalization of the momentum
space interaction matrix Mij(k⃗) = Mij exp(i⃗k · ∆⃗ij). Of course, for models with only a
few degrees of freedom or small bases one can write down the momentum space interaction
matrix explicitly and diagonalize it analytically. This process however works in practice
only for matrices which are at most 2 × 2 or 3 × 3 and one would usually employ some
form of numerical diagonalization for bigger matrices.

Numerical diagonalization itself comes in many shapes and forms. There are different
approaches and partial software solutions existing. These solutions range from programs
like Mathematica, in which one can obtain analytical eigenvalues for k⃗-dependent matrices
of larger sizes by using computer assisted linear algebra, all the way to numerical packages
as MKL, offering C-routines to quickly diagonalize complex matrices. One common feature
of all of these software solutions is that the diagonalization itself is already implemented,
however one has to construct the appropriate form of matrix explicitly beforehand.

Constructing the interaction matrix can again be simply implemented in many forms. The
simplest one being a hard-coded function within the code to return the appropriate matrix
for a passed value of k⃗. Although being a valid approach, the scope of the current chapter is
taking a different perspective. First of all, there are many different lattice examples in the
current chapter, which all would need their own function. Second, most of the work in this
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chapter builds upon the underlying lattice graph and transformations thereof. Both these
aspects show the necessity for a code-package that builds a suitable interaction matrix
for an underlying lattice graph. This graph can then be visually debugged and modified
between the following examples while still retaining a suitable interaction matrix.

During the work behind the following sections, all lattice graph related routines have been
grouped together and developed as a single package for the programming language Julia,
called LatticePhysics.jl [S3]. This package provides the underlying lattice graph struc-
ture as well as bandstructure calculation and plotting capabilities for it. In the following,
let us quickly discuss the extent of automation possible with such a package and how
certain aspects of bandstructure calculations can be automated with LatticePhysics.jl.
This section however should not be misunderstood for an extensive documentation, which
instead can be found on github [S3].

Unitcells and Lattices
The central object which needs a code representation is the lattice graph underlying the
system. Generally speaking, such a lattice graph consists of sites and bonds, which are
edges connecting different sites, as well as some form of periodicity. Whereas sites are
directly inferred from the Bravais lattice and basis sites of the physical lattice, bonds have
no direct physical counterpart. However it is useful in the following to identify every bond
with exactly one hopping or interaction term Mij in the Hamiltonian.

Sites of a lattice are represented in LatticePhysics.jl as their own type Site which
contains a label as well as a real space position. Similarly, bonds are represented as objects
of type Bond, containing indices of connected sites, a label and information on wrapping
periodic boundary conditions, if applicable. Since bonds are only defined in the context of
either a finite lattice graph or a unitcell, giving dependent information such as indices or
periodic boundary is reasonable.

From a physical perspective, any lattice can be represented as a Bravais lattice plus a
basis, which together form the unitcell of such lattice. In LatticePhysics.jl, unitcells
have their own type Unitcell which contain both basis sites and bonds as well as the
lattice vectors of the underlying Bravais lattice. Unitcells are the basis of later calcu-
lations in momentum space since they represent exactly the needed combination of basis
site positions and Bravais lattice periodicity.

A finite lattice graph can be constructed. These objects are called Lattice in the code
context of LatticePhysics.jl and contain the same information as a Unitcell object
with the addition of the unitcell that the lattice was built from. Lattice objects can be
used whenever a finite representation of a lattice is needed, e.g. in the context of plotting
and visualizing or for codes on finite lattices like Monte Carlo methods. The use of unitcells
and lattices within LatticePhysics.jl is also briefly highlighted in Fig. 7.3.
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Momentum space
Since many of the upcoming bandstructure calculations are carried out in momentum space,
it is worth automating the process of generating contextual momentum space data for a
given unitcell within LatticePhysics.jl. More precisely, the focus will be on creating
reciprocal unitcells and lattices as well as meaningful representations of the first Brillouin
zone for any unitcell. A final helpful tool will be to automatically find high-symmetry points
within the Brillouin zone and generate paths through momentum space that navigate from
point to point.

Most of the momentum space calculations are based around reciprocal unitcells.
LatticePhysics.jl provides functionality to directly obtain such a reciprocal unitcell for
any real-space unitcell. A reciprocal unitcell contains reciprocal lattice vectors satisfying
perpendicularity relations with the real-space lattice vectors.

A Brillouin zone can be computed automatically for any 2d or 3d unitcell object by con-
structing the reciprocal lattice and its first Wigner-Seitz cell respectively. Corners, edges
and faces of the Brillouin zone are saved in an object of type BrillouinZone which can
then be used for plotting or further computation. Additionally, there are functions provided
which check if a passed momentum point is within the first Brillouin zone or which fold
a passed momentum point into the first Brillouin zone by shifting it along the reciprocal
lattice.

Finally, the BrillouinZone object can implicitly be used to quickly define high-symmetry
points in momentum space for a passed unitcell. These points can then be chained together
to form a ReciprocalPath in momentum space, which can be plotted or also used for
further computation. In Fig. 7.3, these momentum space objects are constructed and
plotted after the real space unitcell and lattice construction has taken place.

Hamiltonians
Having the ability to generate any geometric lattice graph in code allows to further define
Hamiltonians based on these lattices. To stay within the scope of this chapter, let us
concentrate on how to represent models that are quadratic, i.e. that have exactly two
interacting objects on two different sites. These are models of the form

H =
∑
µν

a†
µMµνaν (7.14)

with objects a⃗µ defined on sites µ as well as interaction between sites µ and ν. This
interaction can e.g. be some form of hopping as described above or a spin interaction.

In principle, one can distinguish two different approaches to solve these models, one being
exact calculations on finite graphs in real space, the other one being in momentum space
utilizing the periodicity of the Bravais lattice, as laid out in section 7.2. Both approaches
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have in common that two ingredients have to be known:

1. The connectivity of the underlying lattice graph, represented by the sum ∑
µν which

sums over interaction terms

2. The parametrical values of couplings or hoppings, represented by the interaction
matrix elements Mµν .

The connectivity information is already encapsulated in either a Unitcell or Lattice
object as a list of bonds and thus readily available within the code. Note again that
the convention of representing every pairwise interaction as a single bond is used. To also
supply parametrical values to the individual bonds, i.e. give a value on how strong a certain
interaction is, a new object of type BondHamiltonian is provided in LatticePhysics.jl.
A BondHamiltonian translates any bond to a complex number denoting the interaction
strength. If there is more than a single orbital per site or more than one spin component,
the BondHamiltonian can also return an entire d̃× d̃ matrix.

It is further possible to group the BondHamiltonian and Unitcell together into a
Hamiltonian object to contain all information of a quadratic Hamiltonian in a single
object. A Hamiltonian object also already contains all information necessary to build
up the momentum interaction space matrix Mij(k⃗) = Mij exp(i⃗k · ∆⃗ij), thus a respective
function is also provided to quickly compute such a matrix.

Bandstructures and momentum space manifolds
With the definition of Hamiltonians complete, let us turn our attention towards the goal
of the numerical implementation, the automated calculation of bandstructure data for
models only specified by a unitcell. As mentioned before, the Hamiltonian object al-
ready contains everything necessary for building the momentum interaction space matrix
Mij(k⃗) = Mij exp(i⃗k · ∆⃗ij). Thus it can be combined with a ReciprocalPath allowing the
matrix creation along a path.

In LatticePhysics.jl, functions are already implemented to automatically create and
diagonalize the interaction matrix along a given path, yielding a Bandstructure object
containing eigenvalues of eigenstates along the path. These energies can either be used
for further computation or simply be displayed. Formatting a plotted bandstructure can
be done automatically as well since the reciprocal path describing the x-axis is also stored
within the Bandstructure object.

Instead of calculating the bandstructure as a function of momentum, one is also often
interested in finding the set of momenta that have an eigenstate at a certain energy E0
like e.g. the Fermi surface. These momentum space manifolds are implemented as objects
of type EnergyManifold. Functions that compute them perform a mixture of Newton’s
method and minimization to find sample momenta satisfying E(k⃗)−E0 = 0. An additional
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search constructs high-symmetry points and lines from the Brillouin zone and adds any
relative high-symmetry points with eigenstates of energy E0 to the list as well.

Example workflow
All of these definitions provide a versatile framework with lattice related functions based
on abstract specification and without a detailed individual implementation for every case.
A brief highlight showing the versatility of the workflow can be found in Fig. 7.3. Here,
subplots have been made with functions provided in the scope of LatticePhysics.jl and
the relevant code snippet generating the plots has been provided as well.

Final notes on implementation
All in all, LatticePhysics.jl [S3] provides an efficient implementation for lattice-based
calculations. It defines the lattice and unitcell functionality that can be used in further
codes as well as a complete workflow for bandstructure calculations. During its develop-
ment, both speed and user accessibility have been equally prioritized.

One example for the accessibility of bandstructure calculations is the conciseness of the
overall workflow. One can obtain a custom bandstructure in as little as four steps:

1. Define geometry in terms of a unitcell. Some unitcells are already included and thus
do not have to be defined manually.

2. Define parameters for the interaction, i.e. a BondHamiltonian. Again, some very
common parametrical models have already been implemented. Together with the
unitcell from step 1, this defines the Hamiltonian object.

3. Define a path in momentum space, either explicitly by using coordinates or by passing
labels of high-symmetry points.

4. Calculate and plot the bandstructure along the path. Construction of the interaction
matrix, diagonalization and extraction of eigenvalues are automated along the path
and can readily be used.

However, the code is not only accessible but also fast. The speed comes mainly from the
utilized programming language, Julia. It features a just-in-time compilation (JIT) which
compiles every function when it is called instead of interpreting it every time. The initial
costs of compilation are outweighed by far, especially in a large project where functions
are called repeatedly.

To fully utilize JIT, functions have to be type-stable, which is facilitated by a large type-
tree in LatticePhysics.jl, in which object types already contain vital information on
what objects are supposed to do. The type tree goes hand-in-hand with another Julia
feature called multiple dispatch. This allows Julia to dispatch a function call to individual
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Figure 7.3.: Example workflow of LatticePhysics.jl - Code snippet shows an exem-
plary workflow for obtaining bandstructure data from LatticePhysics.jl. First, in line 1, a
unitcell is specified from the set of pre-implemented unitcells. Lines 2 and 3 construct a fi-
nite lattice, which extends at most 6 bonds beyond the first basis site in the central unitcell,
and plot it. In the subsequent lines 6-8, the electronic hopping model and reciprocal space
information is gathered. Line 6 specifies a pre-implemented hopping term which weights
all bonds with hopping 1.0. The reciprocal path in line 8 is then used for bandstructure
calculation. Lines 11 and 12 visualize the path as well as the Brillouin zone obtained in
line 10. Line 14 finally calculates and visualizes the bandstructure. All subplots have been
directly obtained from LatticePhysics.jl.
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methods based on the type structure of the input parameters, in principle similar to C++’s
overloading principle. In the context of JIT however, multiple dispatch allows the respective
functions to be type stable since they are only defined for the respective input types.

With these features, julia itself can reach performances like C code. In the context of
LatticePhysics.jl this is particularly important when it comes to the runtime of band-
structure calculations. The bottleneck in a bandstructure calculation is the diagonalization
of interaction matrices, which scales as O (N3) where N is the linear dimension of the ma-
trix. However, interaction matrices are usually sparse and only contain O (N) elements,
i.e. every site can interact with a finite number of surrounding sites. A good rule of thumb
is therefore that the runtime of the matrix creation should not be larger than the runtime
of matrix diagonalization. Since matrix diagonalization is utilizing an internal C library
like MKL or OpenBLAS, one has to essentially write fast code as well.

Through the rest of the thesis, LatticePhysics.jl will play a major role as the numerical
backbone of calculations. In the current chapter, all bandstructure calculations have been
performed with this code. Furthermore, the majority of figures is directly obtained from
plotting functions within the library. Last but not least, the geometry information from
finite lattices has been crucial in constructing matching boson and fermion lattices in the
rest of this chapter, in particular in section 10 when calculating spectra of classical lattice
models.

In the next chapter about Moiré materials, LatticePhysics.jl is used to generate the
huge Moiré cells needed for describing twisted bilayer graphene. Since the code itself is
already optimized it is then sufficient to generate the unitcells, since the matrix creation
and bandstructure calculation are automated already.

Even beyond the scope of this thesis, LatticePhysics.jl provides a good starting ground
for numerical codes. The connectivity data of lattices and unitcells is also particularly
important for codes such as Monte Carlo methods. In such codes a huge hurdle for a
fast and readable implementation is the definition of the lattice geometry, which can be
outsourced to this library now.
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8. Graph theory and supersymmetry

Having addressed lattice models and their solution, let us turn our attention now towards
supersymmetry. In order to understand supersymmetry from the perspective of graph
theory, let us start by examining a basic property of block matrices. It is generally known
that squaring a hermitian matrix of the form

H =
(

R
R†

)
, (8.1)

yields a block-diagonal matrix with two blocks on the diagonal

H2 =
(

RR†

R†R

)
(8.2)

in which the two blocks RR† and R†R have the same eigenvalues except for zero values
which result from the dimension mismatch between the kernels of R and R†.

Although quite well-known, this property will be at the core of the following correspon-
dence. This chapter aims at providing an overview of how the identification of RR† and
R†R as supersymmetrically linked boson and fermion lattice models can be understood
already at the level of interaction graphs or lattices. The section starts by reviewing the
matrix property from the perspective of supersymmetry. Then, the matrix property is once
again analyzed from the context of graph theory. Finally, both perspectives are unified.
The next sections will then present numerous and extensive examples for this kind of view.

8.1. Block matrices and supersymmetry
Let us start by examining the matrix property from the perspective of supersymmetry.
The central part of the matrix property is the isospectrality of sub-blocks under squaring.
Similarly, supersymmetry is also about matching spectra between bosonic and fermionic
models. In fact, the entire formalism of supersymmetry has great similarities to the matrix
property identification. Here, let us recount some basic aspects of SUSY which are neces-
sary for the later discussion. For simplicity, let us specialize on models of non-interacting
fermions and bosons which still describe a variety of condensed matter systems like Fermi
liquids and exotic phases of matter such as superconducting phases and Bose gases.

Let us consider a system containing both fermionic (c , c†) and bosonic (b , b†) degrees of
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8. Graph theory and supersymmetry

freedom. The central object of interest in supersymmetry is the (fermion-odd) supersym-
metric charge operator Q that identifies fermions with bosons

Q = c†Rb. (8.3)

Its definition uses some matrix R which can be square or rectangular depending on the
number of the fermionic and bosonic degrees of freedom in the system. Note however
that there are different implications on the spectra of partner models generated by Q
depending on the mismatch between fermion and boson number. Written as a matrix, Q
can be identified with the matrix H in Eq. (8.1).

With the SUSY charge operator defined above, the SUSY Hamiltonian can be constructed
by

HSUSY = {Q,Q†} = c†RR†c+ b†R†Rb ≡ HF + HB. (8.4)

As one can see, the entire Hamiltonian decomposes into two non-interacting parts which
describe the fermionic and bosonic Hamiltonians, respectively. These are given by the two
matrices, RR† and R†R, which can be identified with the two diagonal blocks of H2 in
Eq. (8.2).

As already argued in the matrix property, the eigenvalues (or even momentum dependent
spectra) of HF and HB agree and the respective eigenstates can be explicitly related by
Q. This allows a one-to-one identification of bosonic states |v⟩ and fermionic states |u⟩ as

|u⟩ = R√
ω

|v⟩ and |v⟩ = R†
√
ω

|u⟩ , (8.5)

which will have far-reaching consequences as demonstrated later on.

A final note can be made on the appearance of zero modes in the spectra of either bosons
or fermions. For a square matrix R, HF and HB are entirely isospectral, even including
any present zero modes. This comes from the fact that RR† and R†R have the same
eigenvalues and dimension, leaving no additional kernel to compensate any occurring zero
modes. However, for a rectangular matrix R, this is no longer the case. As a result,
one system will have more zero-energy eigenmodes than the other, as outlined before. In
supersymmetry, such a mismatch is characterized by the Witten index

ν = dim(kernel[R]) − dim(kernel[R†])
= col[R] − row[R]. (8.6)

which is the topological invariant of a SUSY theory. A finite Witten index ν ̸= 0 indicates
the appearance of flat bands in the band structure of either HF and HB.
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8.2. Topological invariants under supersymmetry

8.2. Topological invariants under supersymmetry

With a notion of supersymmetry introduced, one might think about how topology can
be related between the two SUSY partner Hamiltonians. Whereas the identification of
possible topological phases in fermionic systems has been understood to a great extent,
owing its existence to the classification of fermion symmetries, the corresponding boson
side has long been neglected. In the following, let us discuss first, how symmetries on
both the bosonic and fermionic side are related by supersymmetry. Then, the relation of
topological invariants at the example of Berry phases is discussed.

First, let us talk about symmetries in fermionic band structures in general and how they
transform under supersymmetry. As the topology in the fermion system is dictated by
symmetries, one might naturally wonder about their existence in the boson system. In
general, the following set of symmetries in a fermion Hamiltonian is important: Time-
reversal symmetry (T ), particle-hole symmetry (P), and chiral/sublattice symmetry (C =
PT ). Both T and P are anti-unitary symmetries, whereas C is a unitary symmetry. T
generally commutes with the Hamiltonian, with a set of symmetry-eigenvalues T 2 = ±1.
P and C anti-commute with the Hamiltonian with respective symmetry eigenvalues P2 =
±1, C2 = 0, 1. These lead to a total of ten distinct combinations forming the ten distinct
topological classes of Hamiltonians describing any non-interacting electronic system [56].

In mapping the fermionic states to their bosonic counterparts via SUSY as displayed in
Eq. (8.5), the aforementioned anti-unitary and unitary symmetries prevail to retain the
topological properties of the band structures. Each symmetry comes therefore as a natural
analogue on the boson side. In this spirit, e.g. the time-reversal symmetry in a fermionic
system TF translates to its partner bosonic system via SUSY as TB = R−1TF R. In a later
section, this process will be demonstrated in greater detail for an example.

Since symmetries can be related from one SUSY-partner to the other, one might wonder
how topological invariants map in the same process. In the following discussion, let us
focus on the Berry phase as a prime example of such an invariant. The Berry phase has
provided a useful way to characterize band topology in generic electronic systems. In lattice
models specifically, the conventional form of the Berry phase can be computed from Bloch
eigenfunctions of the Hamiltonians RR† and R†R but may differ substantially depending
on what type of lattices they describe. In general, the closed-orbit Berry phase for an
eigenfunction of RR† is given by

θRR†

B = i
∮

⟨u(k)|∂ku(k)⟩ · dk, (8.7)
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whereas similarly an eigenfunction of R†R at the same energy has Berry phase

θR†R
B = i

∮
⟨v(k)|∂kv(k)⟩ · dk (8.8)

= θRR†

B + i
∮ ℑ(⟨u(k)|(∂kR)|v(k)⟩)√

ωn(k)
· dk,

where the additional term in the last line can be seen as a consequence of the identification
in Eq. (8.5). For integrands in this term which can be written as ∂kF(k) for some function
F(k), the conventional Berry phases θB of the partner systems will be equal.

In general, the relation in Eq. (8.8) shows that supersymmetry can be used to deduce
one Berry phase from the other. Furthermore, it is possible to define two supersymmetric
Berry phases

θRR†

SUSY ≡ θRR†

B + i
∮ ℑ(⟨v(k)|R†(∂kR)|v(k)⟩)

ω(k) · dk,

θR†R
SUSY ≡ θR†R

B − i
∮ ℑ(⟨u(k)|(∂kR)R†|u(k)⟩)

ω(k) · dk, (8.9)

in which the additional terms can be regarded as covariant corrections induced by super-
symmetry.

8.3. Block matrices and graph theory
In condensed matter physics, matrices are often appearing as interaction or hopping ma-
trices in a lattice system. These matrices generally describe the relation between degrees
of freedom which are defined on some underlying lattice, yielding a graph structure. In
graph theory, such matrices would therefore also be called weighted adjacency matrices as
they are based on the adjacency of the underlying graph structure. More generally, an
adjacency matrix A for a graph with vertices {vi} is defined as

Aij =
1 vi connected to vj

0 otherwise
(8.10)

and can be extended to a weighted adjacency matrix by including a label lij for every
non-zero element of Aij.

For the special case of block-off-diagonal matrices in Eq. (8.1), the matrix H can be seen
as the adjacency matrix of a graph with vertices that fall into two distinct categories {vA

i }
and {vB

i }. Vertices in one set are exclusively connected to vertices in the other set, i.e. not
to the ones in their own set. This property defines a bipartite graph. In condensed matter
theory, lattices with this property are also called bipartite lattices and often times exhibit
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+

+

+

="                 "

Figure 8.1.: Square and Square-root of adjacency matrices - Graphical representa-
tion of squaring and taking the square-root of an adjacency matrix describing a bipartite
lattice. Different rows show elementary z-coordinated sites with increasing coordination z.
Each site transforms under squaring to a fully-connected plaquette (clique) consisting of z
sites which are all-to-all connected. Due to this mapping, a square-root can be being the
inverse process, i.e. replacing fully-connected plaquettes by respectively coordinated sites.

a sublattice symmetry.

Matrix squares – Let us turn our attention to the process of squaring an adjacency
matrix A and in particular how this process changes the underlying graph. For a generic
adjacency matrix A, elements of the squared matrix can be computed as

(A2)ij =
∑

k

AikAkj. (8.11)

This can be interpreted as a new adjacency matrix, describing a different adjacency on the
same vertices. Whereas A connected vertices vi and vj with weight Aij, A2 now chains
two of those connections together, thus connecting next-nearest neighbor vertices vi and
vj separated by an additional vertex vk in between. On a pictorial level one can therefore
understand squaring an adjacency matrix by taking next-nearest neighbors in the graph.

Coming back to the matrix property of Eq. (8.1) and Eq. (8.2), let us focus on the case
of A describing the adjacency of a bipartite graph. In this case, next-nearest neighbors
of vertices in set A are necessarily also in set A (as there is an additional vertex of set
B in between). Therefore, a bipartite graph necessarily decomposes into its two distinct
subgraphs under squaring. These subgraphs are not connected any more. In total, this
result could already be predicted from the special form of Eq. (8.2), since interpreting this
equation as an adjacency matrix would yield two disconnected graphs. Summarizing the
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whole procedure of squaring a bipartite adjacency matrix is also depicted in Fig. 8.1.

Moreover, the aforementioned mismatch of rank leading to a nonzero kernel dimension and
resulting appearance of zero modes also has a pictorial representation in graph language.
As the number of rows and columns of R is determined by the number of elements in sets
A and B respectively, a graph with different numbers of A sites and B sites will necessarily
lead to an adjacency matrix with zero modes. In the context of lattices, the number of
elements in set A is proportional to the number of basis sites in sublattice A within the
unitcell which means that a mismatch in number of basis sites results in the appearance
of zero modes.

Matrix square-roots – Similar to how squaring an adjacency matrix can be interpreted as
taking next-nearest neighbors, one can also ask about the inverse direction, i.e. taking the
square-root of an adjacency matrix. Note that for a generic matrix, the square-root cannot
be defined uniquely, but only up to unitary transformations. For the graph theoretical
view however, let us focus on finding a square-root that has a meaning in another graph.
From a technical side, this can be understood in finding a matrix H for a given matrix M
s.t. H2 = M or alternatively H =

√
M.

As seen previously, squaring the adjacency matrix of a bipartite graph yielded two discon-
nected subgraphs. One approach to find a square root is therefore to invert this process
and propose a new second subgraph for a given graph so that both together can form a
bipartite square-root graph. This would naturally decompose into the original graph under
squaring, separating off the additionally defined second subgraph.

The construction of such a second subgraph can in principle be facilitated by an algorithm
which builds on a simple observation. As seen in Fig. 8.1, z-coordinated sites in a bipartite
graph will produce fully connected plaquettes with z vertices under squaring. Such fully
connected plaquettes are also called cliques in graph theory. An algorithm to find the
square-rooted graph for a given graph would therefore naturally replace all such fully-
connected plaquettes by respectively coordinated sites that are newly introduced. These
new sites form the second sublattice of the bipartite graph.

Although the algorithm itself can be described broadly speaking by the replacement of
cliques, let us focus on some minor details, which go along with this process. First of
all, in most cases the graphs will be labeled graphs yielding weighted adjacency matrices.
These labels have to fulfill Eq. (8.11) under squaring, which might pose a problem in itself,
especially at boundaries. Second, every z clique contains cliques of order z − 1. Therefore
an efficient algorithm should start by replacing plaquettes in descending order. Third, it is
known in computer science that finding all maximal cliques in a graph (which is relevant
for the algorithm to work) is an NP-hard problem. However in a physics situation this can
usually be circumvented as one encounters unitcells which put an upper limit on how large
cliques can become.
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complex
boson

sublattice A

SUSY charge
bipartite

complex
fermion

sublattice B

real
boson

sublattice A

SUSY charge

isospectral Majorana
fermion

bipartite

isospectral
b)a)

Figure 8.2.: Different SUSY mappings with corresponding graph language -
Sketch of the correspondence between graph language and supersymmetry. Panel a) shows
the schematic relation between complex bosons and fermions which can be connected by
a SUSY charge defined on a bipartite lattice. In this case, both models are residing on its
respective A and B sublattices. In panel b), the same correspondence is demonstrated for
real bosons and Majorana fermions. Here, the real bosons reside on the sublattice of the
bipartite Majorana fermion lattice. In total, graph language can help in quickly identifying
geometric structures within the corresponding models, however each class of models has
to be studied in detail.

8.4. Supersymmetry as a graph correspondence
It is the central idea of the SUSY-lattice graph identification, that the two supersymmetric
partner systems can be viewed as the two subgraphs in a bipartite graph. Similar to how
under squaring the graph its two sublattices become decoupled, the SUSY charge yields
two distinct Hamiltonians under squaring which do not interact. Therefore, the procedure
of generating matching boson and fermion Hamiltonians can be simplified from the view
of generating matching sublattices of a bipartite lattice.

Similar to how the bare graph correspondence was illuminated from different angles, also
the implications of a graph language on supersymmetry can be investigated from many
directions. As a first and direct consequence, it is helpful to associate the SUSY charge
with a bipartite lattice whose A sites describe fermions and whose B sites describe bosons.
Such a graphical correspondence already implies a graphical understanding of the two
subsystems which was not hitherto unexplored without additional investigations.

Nevertheless, from a practical perspective one usually does not start with the supersymmet-
ric charge. Instead, supersymmetry is often used to find a matching counterpart for either
a bosonic or fermionic system. However, constructing such a SUSY partner, i.e. finding
RR† for R†R is in general fairly complicated since the matrix square-root R†R → R does
not have a unique solution. Moreover, general methods such as a Cholesky decomposition
yield non-local results R which physically do not seem to match a local R†R.

To preserve locality, the graph square-root algorithm comes into play. As demonstrated
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before, a graph square-root can be obtained by a replacement of cliques with newly added
sites. This procedure generically produces a bipartite lattice capable of yielding the original
lattice under squaring. When interpreting the newly added sites as particles of the other
type (i.e. bosons or fermions for a given fermion or boson model respectively), the process
of finding a SUSY charge can be recasted as substituting interaction-cliques in the given
problem with newly added operators.

All in all, the consequences of identifying supersymmetry with a graph correspondence are
quite substantial. The following part of this thesis is devoted to showing two particular ex-
amples in which the graph-language greatly simplifies the analysis, schematically depicted
in Fig. 8.2. The first example discusses SUSY implications for complex fermions and bosons
which turns out to be a correspondence between sublattices of a bipartite lattice.

The second example turns to the role of supersymmetry in Majorana fermion systems
which turn out to be connected to real boson systems. In this example, the real bosons are
defined on one of the sublattices of the bipartite Majorana fermion lattice, leading again to
a "lattice-to-sublattice" correspondence, albeit in a different form compared to the complex
boson case.
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In this chapter, let us turn our attention towards the first practical example of how su-
persymmetry can be assisted by graph theory. To this endeavor, we will discuss how a
system of well-known complex fermions can be equipped with a matching system of com-
plex bosons which are isospectral to the fermion system. This supersymmetric matching
goes along a special form of supersymmetric charge in these systems as well as an extensive
list of examples.

Overall, this chapter aims to provide an introductory example to how supersymmetry can
be expressed by graph theory. It is by no means an extensive overview, since a lot of the
contents are still work in progress.

9.1. Supersymmetric charge

For some matrix R, consider the SUSY charge

Q = c†
iRbj (9.1)

which defines bosons bj and fermions ci linked by a matrix R. All degrees of freedom can
be understood in graph language as being defined on the sublattices of a bipartite graph
whose adjacency between sublattices can be described in terms of R.

From the SUSY charge, partner Hamiltonians HF and HB can be calculated which describe
free fermion and boson models, respectively. The partner Hamiltonians are derived by
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utilizing the anti-commutator of the SUSY charge operator, i.e.
{
Q,Q†

}
, which leads to

HSUSY =
{
Q,Q†

}
=
∑
ijkl

RijR
∗
lk{c†

ibj, b
†
kcl }

=
∑
ijkl

RijR
∗
lk{b†

kcl , c
†
ibj}

=
∑
ijkl

RijR
∗
lk

(
b†

k{cl , c
†
i}bj − c†

i [b
†
k, bj]cl − [b†

k, c
†
i ]cl bj − c†

ib
†
k[cl , bj]

)
=
∑
ijkl

RijR
∗
lk

(
b†

kδlibj − c†
i (−δkj)cl

)
=
∑
ijk

RijR
∗
ikb

†
kbj +

∑
ijl

RijR
∗
ljc

†
icl

=
∑
ij

b†
i

(
R†R

)
ij
bj +

∑
ij

c†
i

(
RR†

)
ij
cj

where the identity

{AB,CD} = A{B,C}D − C[A,D]B − [A,C]BD − CA[B,D] (9.2)

has been used, along with the commutation / anti-commutation relations

{ci , c
†
j} = δij Fermionic anti-commutation

[bi , b
†
j] = δij Bosonic commutation

[ci , bj] = 0 Bosons and Fermions commute
[c†

i , b
†
j] = 0 Bosons and Fermions commute

Finally, the two partner Hamiltonians can be read off as

HF = c†
iRR†cj (9.3)

HB = b†
iR†Rbj (9.4)

which again resemble the blocks of matrix R2 in Eq. (8.2). From a graph perspective, the
two Hamiltonians are defined on the sublattices of the bipartite SUSY charge graph since
RR† and R†R describe next-nearest neighbor processes in terms of adjacencies.

Note that this identification between a bosonic and fermionic model works explicitly both
in real and momentum space as long as one can define a suitable matrix R. In real space,
R can be directly obtained from the hopping matrix, describing the interaction adjacency,
whereas in momentum space additional phase factors may come into play depending on
the gauge used to perform the Fourier transform.
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In the following, many explicit examples of isospectral boson / fermion models will be
discussed. Although they should certainly do not represent a complete set of models, they
show the vast applicability of the supersymmetric relation between lattice models of bosons
and fermions.

9.2. Examples
In this section, let us look at some examples of isospectral boson and fermion models which
can be linked by the supersymmetric charge defined in Eq. (9.1). All models are under-
stood as nearest-neighbor hopping models on the respective lattice graphs with hopping
constants being derived from the respective SUSY charge graph (details on this follow in
the individual examples).

Technically, all calculations and plots have been performed by utilizing LatticePhysics.jl.
This comes in particularly handy since the matching unitcells of boson and fermion models
have been constructed algorithmically within the scripts, following the processes outlined
in the graph constructions before, without any manual interaction. To do so, most of the
following examples start from the perspective of the SUSY charge lattice, however there
are also a substantial amount of examples which start from the fermion or boson lattices,
respectively.

Results of the models include sketches and spectra of the boson and fermion model respec-
tively, as well as the SUSY charge. Before showing results, it is worth noting that there
are some key features which one should pay attention to:

• Subgraphs – The boson and fermion models are defined on the subgraphs of the
SUSY charge lattice as laid out before

• isospectrality – The spectra between bosonic and fermionic models are guaranteed
to be isospectral due to the supersymmetric connection

• Flat bands for non-zero Witten index – For a mismatch between the number of
bosonic and fermionic degrees of freedom, the model with more degrees of freedom
will inherently include flat bands at the bottom of the spectra. In the language of
supersymmetry, the number of flat bands is given by the Witten index, describing
the mismatch in the number of DOFs.

In the following, examples are discussed with figures showing both lattices and spectra.

To pay more attention to individual features, let us now go briefly through all examples
one by one. Examples will be given as pairs sublattice A, sublattice B, bipartite lattice,
reflecting the isospectrality between sublattices. The respective figures are also organized
in a unified way, showing the graph correspondence above the spectral correspondence.
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Figure 9.1.: SUSY corresponding Honeycomb and Kagome lattices - Complex
fermions (blue, left) on the honeycomb lattice can be shown to be supersymmetrically
linked to complex bosons (red, right) on the Kagome lattice. The mapping can be es-
tablished with a SUSY charge which can be interpreted as the adjacency matrix of a
honeycomb-X lattice, i.e. a honeycomb lattice with additional sites on every bond whose
two sublattices are the honeycomb and Kagome lattices respectively. Plots have been di-
rectly obtained from LatticePhysics.jl.

Honeycomb, Kagome, Honeycomb-X – The first example concerns fermions on the
honeycomb lattice connected to bosons on the Kagome lattice, displayed in Fig. 9.1. Both
the honeycomb as well as the Kagome lattice are two-dimensional lattices with hexagonal
unitcells. Whereas the honeycomb contains two sites per unitcell, the Kagome lattice has
a unitcell consisting out of three sites. Concerning experimental realizations, especially the
honeycomb lattice is famous for being the underlying lattice beneath graphene, the first
truly two-dimensional material [66, 67].

When studying the spectra of the nearest-neighbor hopping models on the honeycomb and
Kagome lattices, one can see the close resemblance of their bandstructures. The celebrated
Dirac cone in the honeycomb spectrum at the K point of the Brillouin zone is matched
with a similar structure at the same place in the Kagome spectrum. Similarly, the band
extremes are located at the same places and spectra agree also quantitatively.
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From the perspective of supersymmetry, this resemblance of spectra is no coincidence.
As the honeycomb and Kagome lattices form the two sublattices of the honeycomb-X
lattice, their nearest-neighbor hopping models are guaranteed to be isospectral. Moreover,
the honeycomb-X as the graph underlying the supersymmetric charge, can be recovered
from both individual models. Replacing either all bonds (2-cliques) in the honeycomb or
triangles (3-cliques) in the Kagome lattice yields the honeycomb-X lattice.

In the context of supersymmetry, the flat band in the Kagome spectrum also has a mean-
ing. Since the number of basis sites differs between honeycomb and Kagome lattice, the
Witten index in the supersymmetric connection has to be finite and equal to the respec-
tive difference, in this case ν = 1. Since a finite Witten index goes along with a finite
number of zero-energy modes, the flat band in the Kagome can be viewed as the necessary
consequence of the difference in number of basis sites to its superpartner, the honeycomb.

Finally note that the flat band from the Kagome spectrum also is repeated in the spectrum
of the SUSY charge (which has no physical meaning but can be computed nevertheless).
Here, the flat band is situated exactly in the center of bands at zero energy. This can
be understood as the Kagome sublattice emerges under a square operation, bringing all
negative eigenvalues to above zero, therefore transforming the bottom flat band to a mid-
spectrum flat band in the reverse direction.

Triangular, Triangular, Honeycomb – For the second example, let us stick to the honey-
comb lattice, however alter its context. Let us discuss what happens when the honeycomb
lattice is used as the supersymmetric charge graph. In this case, its two sublattices are
the two models which can be related, which are free bosons and fermions on the triangular
lattice as displayed in Fig. 9.2. Both models have single-band dispersions and matching
spectra.

From the point of SUSY construction, the honeycomb lattice can be constructed from the
triangular lattice by replacing triangles until all bonds interactions are substituted. Here
it is necessary to specify which triangles are substituted, since an interaction edge in the
lattice graph always is part of an up- and a down-triangle. Replacing either up or down
triangles in the entire lattice yields the honeycomb lattice.

Note that similar to how the Kagome bottom flat band was repeated as the central flat
band in the spectrum of the SUSY charge, the honeycomb SUSY charge can give insight
into the low-energy features of the triangular lattice model. In this spirit, the Dirac cone
at the K point yields a quadratic band minimum under squaring, visible at the K point
within the triangular lattice spectrum.

Last but not least it can be noted that the Witten index for this particular example is
zero, since both sublattices have the same number of sites per unitcell. Therefore, no flat
bands are expected at the bottom of the triangular lattice spectrum.
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Figure 9.2.: SUSY corresponding triangular lattices - Complex fermions (blue, left)
on a triangular lattice can be shown to be supersymmetrically linked to complex bosons
(red, right) on the same triangular lattice. The mapping can be established with a SUSY
charge which can be interpreted as the adjacency matrix of a honeycomb lattice whose two
sublattices are the triangular lattices respectively. Plots have been directly obtained from
LatticePhysics.jl.

Square, Checkerboard, Square-X – The next example changes the two-dimensional
geometry to a square unitcell. As depicted in Fig. 9.3, the nearest-neighbor models on
the square and checkerboard lattices are isospectral. This correspondence can be once
again understood in terms of the graph correspondence since both the square lattice and
the checkerboard lattice form the sublattices of the square-X lattice.

Although there are remarkable similarities to previous examples – general isospectrality,
observation of a flat band in the checkerboard spectrum due to a finite Witten index, which
again can be observed in the spectrum of the SUSY charge – there is one aspect which was
previously unexplored, namely the precise form of interaction geometry.

Investigating the square-X lattice, one would conventionally conclude that its two sub-
lattices are square lattices. Here however, the focus lies more on the interaction graph
in terms of connectivities than in terms of geometrical placement. It is true that the B
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Figure 9.3.: SUSY corresponding square and checkerboard lattices - Complex
fermions (blue, left) on the square lattice can be shown to be supersymmetrically linked to
complex bosons (red, right) on the checkerboard lattice. The mapping can be established
with a SUSY charge which can be interpreted as the adjacency matrix of a square-X lattice
(center plot), i.e. a square lattice with additional sites on every bond whose two sublattices
are the square and checkerboard lattices respectively. Plots have been directly obtained
from LatticePhysics.jl.

sublattice has sites placed at positions compatible with a square lattice. However, tak-
ing next-nearest neighbors explicitly when going from the square-X to the boson problem
reveals that the interactions are not those of a pure square lattice but resemble a checker-
board lattice in which each other square plaquette receives additional interactions across
the plaquette diagonal.

Note also that the same construction mechanism implies that the diagonal hoppings across
the square plaquettes in the checkerboard lattice have the same hopping strength as the
square hoppings. This constraint is also crucial when constructing the square-X lattice
from the checkerboard. Here, one would replace all 4-cliques, which are the fully connected
square-plaquettes, with a new site, which is only possible for fine-tuned hoppings.
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Figure 9.4.: SUSY corresponding fully connected square lattices - Complex
fermions (blue, left) on the square lattice with full connectivity can be shown to be super-
symmetrically linked to complex bosons (red, right) on the same fully connected square
lattice. The mapping can be established with a SUSY charge which can be interpreted
as the adjacency matrix of a square lattice (center plot) whose two sublattices are the
fully connected square lattices respectively. Plots have been directly obtained from Latti-
cePhysics.jl.

Fully connected Square (×2), Square – The next example stays with the square geom-
etry, however investigates what happens when using the square lattice as the SUSY charge
graph. To incorporate the bipartite nature into the graph, one has to enlarge the unitcell
which is done in Fig. 9.4 to a four-site cell. Its two sublattices are again square-lattices,
however with a next-nearest neighbor connectivity that is beyond nearest neighbor in the
sublattices.

Again, both sub-models are isospectral and have no additional flat bands across the entire
spectrum, the result of a vanishing Witten index. Apart from these features induced by
supersymmetry, this example is mainly of interest because it shows that the SUSY charge
lattice must be investigated in the correct unitcell to make statements on the sublattices.
In this example, a single-site unitcell would not allow for a bipartite representation of
sublattices and therefore not yield the respective sub-models graphically.
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Figure 9.5.: SUSY corresponding square-octagon and Squagome lattices - Com-
plex fermions (blue, left) on the square-octagon lattice can be shown to be supersymmet-
rically linked to complex bosons (red, right) on the Squagome lattice. The mapping can
be established with a SUSY charge which can be interpreted as the adjacency matrix of
a square-octagon-X lattice (center plot), which is a square-octagon lattice with additional
sites on every bond, whose two sublattices are the square-octagon and Squagome lattices
respectively. Plots have been directly obtained from LatticePhysics.jl.

Also, similar to the last square example, the hoppings within the fully connected square
lattices are fixed in strength by the SUSY map. The ratio of short (diagonal) to long
(vertical / horizontal across plaquettes) hoppings is 2 : 1 as there different numbers of
next-nearest neighbor hopping paths in the SUSY charge graph yielding the respective
hoppings. From the inverse perspective, this means that the fully-connected square lattice
model (or more often called t1-t2 square lattice model) can only be mapped to the pure
square lattice SUSY charge for t1 = t2/2.

Square-octagon, Squagome, Square-octagon-X – For the last two examples in two
spatial dimensions, let us stick with a square geometry but increase the unitcell. To be
precise, the first example concerns fermions on the square-octagon lattice and bosons on
the Squagome lattice, as depicted in Fig. 9.5.
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Figure 9.6.: SUSY corresponding Shastry-Sutherland lattices - Complex fermions
(blue, left) on Shastry-Sutherland lattice can be shown to be supersymmetrically linked to
complex bosons (red, right) on the same lattice. The mapping can be established with a
SUSY charge which can be interpreted as the adjacency matrix of a square-octagon lattice
(center plot) whose two sublattices are the Shastry-Sutherland lattices respectively. Plots
have been directly obtained from LatticePhysics.jl.

Both models are isospectral apart from additional zero-energy modes at the bottom of the
Squagome spectrum. As the squagome lattice has four basis sites more than the square-
octagon lattice, the Witten index in this case is ν = 4, resulting in four zero-energy bands
at the bottom of the Squagome spectrum.

Concerning the construction between lattices, this example works similar to the ones be-
fore. Both square-octagon and Squagome lattices can be obtained by taking next-nearest
neighbors of the square-octagon-X lattice, which is a square-octagon lattice with addi-
tional sites on every bond. These additional sites form the Squagome lattice which already
hints at the construction from fermions to SUSY charge, i.e. replacing all bonds in the
square-octagon with newly added sites. Similar to the example of the Kagome lattice cor-
respondence, the Squagome can be transformed to the square-octagon-X by replacing all
triangles with newly added sites.
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Shastry-Sutherland (×2), Square-octagon – In the last example, let us discuss what
fermion and boson models one obtains for a SUSY charge defined on the graph of a square-
octagon lattice. Its two sublattices are known as Shastry-Sutherland lattices. Although
identical in terms of connectivity, sublattices A and B are related by a mirror symmetry.
The total relation can be seen in Fig. 9.6.

Similar to the last examples, the spectra of the two sub-models, i.e. bosons and fermions on
the Shastry-Sutherland lattices, are isospectral with no zero modes. The absence of zero
modes on either side can be understood from the vanishing Witten index due to identical
unitcells in the two sublattices.

Concerning the lattice graph construction to reconstruct the SUSY charge graph from one
of the models, one can see that replacing all triangles in the Shastry-Sutherland lattice
with newly added 3-coordinated sites yields the square-octagon SUSY charge graph.

Diamond, Pyrochlore, Diamond-X – In the first 3D example, let us discuss fermions on
the diamond lattice. This model is well known for exhibiting a nodal line at the square-
surfaces of its Brillouin zone, depicted as points K and X ′ in Fig. 9.7.

Performing the SUSY mapping and replacing all 2-cliques (bonds) with newly added sites,
one arrives at the diamond-X lattice as a SUSY charge graph, i.e. a diamond lattice with
additional sites on every bond. Taking the next-nearest neighbors and decomposing this
graph into its two sublattices, one finds bosons on the pyrochlore lattice as the second
model.

Comparing the fermion and boson spectra, one finds a spectral agreement with the two
models apart from two flat bands at the bottom of the pyrochlore spectrum. Similar to
the two two-dimensional cases, these two flat bands are caused by the finite Witten index
ν = 2, coming from the larger basis of the pyrochlore which contains two sites more than
the basis of the diamond lattice.

As a final note, one can also construct the diamond-X lattice from the pyrochlore. This is
done by replacing all tetrahedra which are the largest fully-connected plaquettes (cliques)
in the pyrochlore lattice.

Family of models from (10,3)b lattice – As a second example in three dimensions, let
us discuss the family of models obtained from the (10,3)b lattice, depicted in Fig. 9.8. The
(10,3)b lattice appears in modern literature mostly in the context of Kitaev spin liquids as
it is realized in the materials α-Li2IrO3 where j = 1/2 moments are shown to interact with
bond directional couplings possibly realizing Kitaev spin liquids. Geometrically, the lattice
(10,3)b, also known as hyperhoneycomb lattice, is a tricoordinated lattice with minimal
loop length 10.

A fermion model on the (10,3)b lattice can be mapped to a boson model on a lattice
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Figure 9.7.: SUSY corresponding diamond and pyrochlore lattices - Complex
fermions (blue, left) on the diamond lattice can be shown to be supersymmetrically linked
to complex bosons (red, right) on the pyrochlore lattice. The mapping can be established
with a SUSY charge which can be interpreted as the adjacency matrix of a diamond-X
lattice (center plot) which is a diamond lattice with additional sites on every bond and
whose two sublattices are the diamond and pyrochlore lattices respectively. Plots have
been directly obtained from LatticePhysics.jl.

in which the tri-coordinated sites of the hyperhoneycomb are replaced by corner-sharing
triangles. Although having remarkable similarity to the hyperkagome, this is in fact not
it. The relevant SUSY charge graph is on the hyperhoneycomb-X lattice and leads to a
finite Witten index reflected in the flat band at the bottom of the boson model.

From the point of this chapter, the remarkable aspect is that the well-known feature of
the nodal line in the fermion model is mapped to the boson model as well, leading to yet
another model with a nodal line structure.

Taking the lattice (10,3)b as a graph for a SUSY charge transforms the nodal line in a
different way. Its two sublattices, hosting fermion and boson model respectively, show
the nodal line as a line of minimal energy states. The mapping here involves the next-
nearest neighbor lattice of the hyperhoneycomb which consists of many triangular planes
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Figure 9.8.: Further 3D examples for SUSY corresponding lattices - Fermion,
SUSY charge and boson lattices shown with corresponding bandstructures for examples
from the family of tricoordinated lattices. Plots directly obtained from LatticePhysics.jl.
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9. Complex fermions and complex bosons

interwoven at a unique way.

All in all, the many examples of isospectral complex boson and fermion models demon-
strated in this section show the ubiquitous applicability of the supersymmetric graph map-
ping.
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10. Majorana fermions and topological
mechanics

Having established a rigorous supersymmetry connection between complex fermions and
complex bosons, let us turn our attention towards another flavor of particle, namely Ma-
jorana fermions. These fermions are real versions of the conventional (complex) fermions
with the additional feature of being their own antiparticle.

The following chapter aims at providing a cohesive introduction to supersymmetry for
Majorana fermions and why their models can be linked to topological mechanics. Most of
the work presented in this section is based on paper [P5].

10.1. Supersymmetric charge
Let us start by defining a supersymmetry charge for Majorana fermions. Naturally, Majo-
rana fermions, as they are real fermions, will link to real bosons. Specifically for Majorana
fermions on bipartite lattices, one can define a SUSY charge of the form

QMF = γB
i 1ij p̂j + γA

i Aij q̂j (10.1)

which corresponds to a rigidity matrix

R =
(
1 0
0 A

)
(10.2)

utilizing the previous notation of Q = γ⃗Rb⃗. This supersymmetric charge divides the
Majorana fermions into two flavors which are both defined on the respective sublattices of
the bipartite lattice. They are connected to two flavors of real bosons, p̂j and q̂j, which are
both defined only on the B-sublattice. Bosons and fermions are connected both directly
on the B sites as well as through the connectivity matrix A which describes how sites from
the A sublattice connect to sites of the B sublattice within the bipartite lattice.

To calculate the respective partner Hamiltonians, one has to again calculate HSUSY ={
Q,Q†

}
which will result in four terms when using the identity

{AB,CD} = A{B,C}D − C[A,D]B − [A,C]BD − CA[B,D] (10.3)
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which was already used in the complex boson case. These four terms can then be resolved
with the commutation relations of the bosons

[x̂i, p̂j] = iδij (10.4)
[x̂i, x̂j] = 0 = [p̂i, p̂j] , (10.5)

and Majorana fermions {
γA

i , γ
A
j

}
= 2δij =

{
γB

i , γ
B
j

}
(10.6){

γA
i , γ

B
j

}
= 0. (10.7)

Resolving all terms results in a SUSY Hamiltonian that decomposes into two distinct parts

Hfermion = iγB
j AT

jkγ
A
k − iγA

j Ajkγ
B
k (10.8)

Hboson = p̂ip̂i + q̂i(AT A)ij q̂j (10.9)

describing hopping of Majorana fermions on the initial bipartite lattice, as specified by
the connectivity matrix A, and boson interaction on one of its sublattices. The boson
part takes a form that is very reminiscent of a classical Hamiltonian like coupled balls
and springs, including both a quadratic momentum term as well as interactions that are
quadratic in position.

10.2. Real bosons and classical balls and springs
Before investigating the implications of the SUSY link to real bosons, let us first discuss a
much more well known context of real bosons, namely canonical quantization. Since real
bosons are the particles that are naturally introduced by canonical quantization, let us
start with a detour on how classical mechanics first transitioned into quantum mechanics.

Canonical quantization: From classical to quantum mechanics
In classical mechanics, particles are described by their phase space trajectories (xi, pi)
as function of time. The shape of these trajectories can be determined by solving the
particle’s equation of motion, which is a differential equation setting derivatives of position
and momentum into context.

One possibility to obtain such equations of motion is from Newton’s axiom

mẍi = Fi (10.10)

where Fi describes a force acting on particle i. In general, the force will again depend on
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10.2. Real bosons and classical balls and springs

position and momentum, yielding a differential equation upon insertion.

For systems with energy conservation, another more modern route to the equation of
motion can be chosen. In this formalism, a new Hamilton function H = H(xi, pi) is intro-
duced which describes the system’s energy as function of particle position and momenta.
Subsequently, equations of motion can be obtained from the Hamilton function by use of
Hamilton equations

ẋi = ∂H

∂pi

, ṗi = −∂H

∂xi

. (10.11)

Even more generalized, the Hamilton equations can be derived from Poisson brackets {f, g}
which are defined as

{f, g} =
∑

i

(
∂f

∂xi

∂g

∂pi

− ∂f

∂pi

∂g

∂xi

)
(10.12)

and allow for obtaining the total time derivative of any function f in a Hamiltonian system
by calculating

d
dtf = {f,H} + ∂

∂t
f. (10.13)

Inserting f = x and f = p allows recovering the Hamilton equations. It is worth noting
that the coordinates themselves have Poisson brackets

{xi, pj} = δi,j (10.14)
{xi, xj} = 0 = {pi, pj} (10.15)

The historic route from classical to quantum mechanics, known as canonical quantization,
is to replace all classical coordinates xi and pi by operators x̂i and p̂i which measure the
respective quantities. To implement dynamics, Poisson brackets {f, g} are replaced by
commutators

[
f̂ , ĝ

]
with an additional factor of i. This replacement first and foremost

completely changes the formalism. Where in classical mechanics, particles had a well-
defined position and momentum, now in quantum mechanics their position and momentum
are subject to measurement. Measurement probabilities can be computed from the square
of a new object ψ(xi, t), called wavefunction,

ρ(xi, t) = |ψ(xi, t)|2. (10.16)

whose dynamical behavior can be captured by the Schrödinger equation

Ĥ(x̂i, p̂i) |ψ(xi, t)⟩ = −i ∂
∂t

|ψ(xi, t)⟩ . (10.17)

To bridge the gap to the supersymmetric charge at hand, it is worth noting that these
elementary operators x̂i and p̂i are exactly what was previously introduced as real bosons,
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e.g. seen in their commutators

[x̂i, p̂j] = iδi,j (10.18)
[x̂i, x̂j] = 0 = [p̂i, p̂j] (10.19)

which can be retrieved from their previously mentioned classical Poisson brackets. It is
thus only naturally to identify any real boson model with a classical mechanical origin.

Real boson models from classical balls and springs
Since real bosons occur naturally upon replacing classical variables by quantum mechanical
operators, let us now do the opposite: replace real boson operators in the SUSY connection
with classical variables. The real boson model can thus be written as a mechanical model
with the following Hamilton function

H = p2
i + qi(AT A)ijqj (10.20)

with momenta pi of classical coordinates qi.

A possible realization of this mechanical model is the one-dimensional movement of coupled
balls or masses. Since in principle the lattice structure of the boson model is reproduced in
the classical model, the one-dimensional movement can e.g. be modeled in the out-of-plane
direction of the 2D lattice or just any direction in higher lattice dimension. The coupling
can be facilitated by springs which have a potential energy of V (qi − qj) = kij(qi − qj)2.
Having only the momenta and springs leads to a Hamiltonian of the form

H =
∑

i

p2
i

2m +
∑
ij

kij

2 (qi − qj)2 +
∑

i

κi

2 q
2
i

∼
∑

i

p2
i +

∑
ij

qiDijqj

(10.21)

in which spring constants can be computed from comparison of the dynamical matrix D
with Eq. (10.20) s.t.

kij = −2
∑
a∈A

AT
iaAaj (10.22)

κi = 2
∑
a∈A

A2
ai −

∑
b∈B

kib. (10.23)

In principle, two types of springs occur. One type of springs is coupling the masses among
each other with spring constants kij. The second type of springs is coupling the masses
on-site to an offset position, e.g. the lattice plane.

At this point, supersymmetry has enabled a consecutive link of any Majorana fermion
Hamiltonian on a bipartite lattice to a classical balls-and-springs model with the additional
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step in between of a real boson model. To underline the impact of this kind of map, let us
in the following discuss two examples of well-studied Majorana fermion models which now
have a classical counterpart that inherits their topological properties, yielding a topological
mechanical model.

10.3. Example I: Mechanical Kitaev model
Let us start the discussion of examples by constructing a mechanical realization of the
famous Kitaev model [3]. Although introduced as a quantum spin model to describe the
formation of quantum spin liquids, and also being discussed in this context earlier in
this thesis, it is also well known for featuring Majorana fermions as part of its analytical
solution. Because it features Majorana fermions on a bipartite honeycomb lattice, it is
suitable for the supersymmetric map to a classical model demonstrated in this chapter.

The example is laid out as follows. First, a brief introduction to the Kitaev model and its
analytical solution is presented. Then, the mapping to its mechanical SUSY counterpart
is described and analyzed. Attention is paid especially to the classical time evolution and
the comparison of mechanical to Majorana fermion spectra.

10.3.1. The Kitaev model and its analytical solution
The Kitaev model has been introduced in 2006 by A. Kitaev [3] as an analytically solvable
model suitable for describing quantum spin liquids. These exotic states of matter evade the
conventional ordering of magnetic moments at finite temperatures by fluctuating between
degenerate ground states even at zero temperature. In 2009, G. Jackeli and G. Khaliullin [4]
showed that the Kitaev model can be realized in the spin-orbit coupled iridates, leading to a
rush in experimental advances. This experimental realization is also part of the main focus
in chapter I, where the so-called Kitaev materials and their experimental investigation play
a crucial role.

To not repeat the same discussion as in chapter I, let us here focus on the technical aspects
of the Kitaev model and its analytical solution. The model itself can be written as as spins
interacting on a honeycomb lattice with interactions

H =
∑
ν,ij

Jνσ
ν
i σ

ν
j , (10.24)

where bonds are labeled in three classes, ν = x, y, z and interactions are Ising couplings
of neighboring spins with components given by the bond. These competing interactions
cannot be simultaneously satisfied, i.e. the system is highly frustrated.

Already upon introduction of his model, A. Kitaev demonstrated an analytical solution [3],
revolving around recasting the spin operators in terms of Majorana fermions. On each site
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j, four Majorana fermions γx
j , γ

y
j , γ

z
j , γj are introduced such that the spin components σν

j

on these sites can be rewritten as
σν

j = iγν
j γj. (10.25)

This reformulation of spin operators leaves the underlying spin algebra intact but allows
for a drastic simplification of the spin model.

The bond-directional coupling of spin components γν
j allows them to pair along such bonds,

to so called bond operators
ûν

ij = iγν
j γ

ν
j , (10.26)

which commute with both themselves as well as the Hamiltonian. Since the bond operators
commute with the Hamiltonian, they are an effective (gauge) symmetry of the Hamiltonian
and the Hilbert space separates into blocks which are characterized by the respective bond
operator eigenvalues uν

ij.

In principle, the bond operators implemented a static background flux field in which the
rest of the problem resides. The remainder of the spin model only consists of the fourth,
unbound Majorana fermion on each site which can now interact along all bonds as

HMF = i
∑
ν,ij

Jνu
ν
ijγiγj (10.27)

i.e. describing an effective free Majorana fermion hopping problem on the underlying hon-
eycomb lattice.

A full solution to the Kitaev model therefore consists of both a solution to the background
flux (gauge) field as well as solving the quadratic Majorana model in this flux configuration.
At low temperatures, the flux field will be in its ground state given by Lieb theorem,
however at finite temperature more flux configurations are accessible.

For the remainder of this chapter, we will focus more on the remaining Majorana problem.
Since it is a quadratic hopping model on a bipartite lattice, it readily fulfills the criteria
for the supersymmetric mapping and therefore can be in principle implemented in a balls
and springs model.

10.3.2. Classical balls and springs model
The Majorana fermion SUSY procedure can be readily applied to the Majorana form of the
Kitaev model. Here, let us incorporate both the spin coupling Jµ as well as the eigenvalues
of bond operators uij into a bond dependent hopping amplitude tµ s.t. the model reads

HMF = i
∑
µ,ij

tµγiγj (10.28)

where sites i and j of course reside on the honeycomb lattice.
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10.3. Example I: Mechanical Kitaev model

Figure 10.1.: Mechanical Kitaev model - Sketch of the mechanical version of the
Kitaev model defined by masses on the triangular lattice, c.f. panel a). Masses on adjacent
sites are connected by intersite springs of coupling constant kij. Additionally, masses are
also connected to the lattice plane by springs with constants κi (c.f. panel b) ). Figure
adapted from [P5].

Applying the outcome from the SUSY procedure, i.e. in particular Eq. (10.9), to the
Majorana model on the honeycomb lattice, leads to a real boson model on one of the two
sublattices of the honeycomb lattice which is a triangular lattice. This real boson model can
be further identified with a classical balls and springs model, c.f., which describes masses
on sites of the triangular lattice with movement constraint to the direction perpendicular
to the lattice plane and coupled by springs with spring constants given by Eq. (10.23)
(coupling to the lattice plane) and Eq. (10.22) (coupling between masses). More explicitly,
the spring constants in the bulk can be written as

kσ
ij = −2tµtν (10.29)
κi = 2(t2x + t2y + t2z) + 2(txty + tytz + txtz), (10.30)

with σ, µ, ν describing a cyclic permutation of x, y, z.

In principle one would expect the bulk spring constants to be repeated periodically through
the lattice up to the boundary at which springs are cut away by open boundary conditions.
However, since the spring couplings are derived from supersymmetry, one has to be more
careful. The intersite spring constants kij defined in Eq. (10.22) take into account only
fermion hopping from i to j which will not change at the boundary. However, the on-site
spring constants κi defined in Eq. (10.23) take into account both the fermionic as well as
the bosonic neighborhood of the respective sites and therefore have to be adapted based
on both fermion and boson boundary conditions.

Another exception from the bulk spring constants occurs in different flux sectors of the
Kitaev model. In principle, any flux sector can be implemented as a certain sign con-
figuration uij on the bonds of the honeycomb lattice. This sign configuration translates
to a distribution of hopping constants tµ which again translates to new spring constants.
Especially the excitation of a single vison in a large finite lattice, i.e. by changing the
flux configuration only by a small amount, spring constants have to be adapted locally.
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In principle, a vison excitation in the Majorana model can be implemented as a sign-flip
which translates to a similar sign-flip of spring constants in the mechanical model as well
as some change of on-site spring constants.

However, with these exceptions carried out, any finite sized honeycomb lattice hosting a
Majorana description of the Kitaev model can be directly translated to a corresponding
balls-and-springs model on the triangular lattice. Let us use the remainder of this example
to analyze these resulting mechanical models in greater detail.

10.3.3. Measuring spectra in the mechanical model
Before discussing a detailed comparison between the Majorana form of the Kitaev model
and the mechanical model derived in the previous part, let us first consider what exactly
we want to compare. In principle, supersymmetry guarantees isospectrality between the
Majorana fermion Kitaev model in Eq. (10.28) and the corresponding real boson model on
the triangular lattice defined by Eq. (10.9). Moreover, any fermion state can be mapped
under supersymmetry to a corresponding boson state, thus not leaving any room for new
physics only in the real boson model.

In contrast to the exact SUSY relation of the real boson model to the Majorana system,
the classical balls-and-springs model is not exactly related. In general it is widely unclear
to what extent a classical model inherits properties from its quantum origin, with the hope
of course being that any classical version arises from an ℏ → 0 limit of the quantum model.
In the example at hand, we will nevertheless see, that single-particle wavefunctions in the
Majorana model correspond to amplitude patterns in the classical model.

Such an identification in principle lays out a route to compare any classical property,
that can be computed directly from one of the arising matrices, to a fermionic analogue.
Therefore to test isospectrality between the classical and the Majorana model, a practical
approach is applied. In principle, a classical eigenspectrum can be obtained by probing
a finite path of the classical model. This involves exciting the model with some periodic
force and then investigating the developing wave patterns in momentum space. Let us
investigate these steps one by one in the following.

Constructing a finite lattice of classical balls and springs can be done explicitly by using a
lattice library like LatticePhysics.jl. Such a library provides both the real-space positions
of individual lattice sites as well as their graph connectivity. On top of this underlying
lattice structure, the equations of motion of individual masses including forces between the
masses can be implemented. Here, the framework of DifferentialEquations.jl [68] is used.
In principle, all that is left now is to provide initial conditions and external forces or drive
to simulate the time evolution of the classical mechanical model.

To mimic an experimentally realizable excitation to the model, the following force profile
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10.3. Example I: Mechanical Kitaev model

Figure 10.2.: Classical time evolution under applied force - Classical balls and
spring model of the Kitaev model under applied force. Force has a frequency of f = 1 and
is applied with a Gaussian envelope, time dependence of profile can be seen at the top right.
Panels show amplitude snapshots for various times where red denotes amplitudes in the
plane and blue denotes amplitudes out-of-plane. One can see that upon exertion of force,
a spherical wave spreads outward through the material and reflects at the boundaries.

is used:
F (t) ∼ sin(f · t) exp

((
t− t0

∆t

)2)
. (10.31)

It describes a periodically oscillating force with driving frequency f which occurs at time
t0 and roughly lasts ∆t. In principle one could also use an infinitely oscillating profile or
move the respective site directly instead of applying a force F .

Now let us investigate the resulting time-evolution of the classical model when applying the
aforementioned force profile to the center site, depicted in different snapshots in Fig. 10.2.
One can see that upon exerting the force profile to the model, a spherical wave packet is
initiated around the center, as one would have naively expected. The spherical symmetry
is not perfect but still accounts for the underlying honeycomb lattice symmetries and the
wave packet bares a lot of substructure. After long times, boundary effects start to occur
when the wave packet is reflected from the open boundary of the finite lattice and interferes
with itself. Note that in order to resolve the boundary correctly, one has to built a finite
fermion lattice and map it to the respective balls-and-springs model instead of simply
replicating the balls-and-springs unitcell.

In principle, the developing wave patterns will depend on the driving frequency f both
in real and momentum space. Results for different driving frequencies are depicted in
Fig. 10.3. One can see that especially the local structure of the wave packet, i.e. the corre-
lations between neighboring sites, is varying. These local discrepancies for different driving
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10. Majorana fermions and topological mechanics

Figure 10.3.: Frequency dependence of wave patterns in real and momentum
space - Snapshots of the evolving wave pattern for drives of different frequencies. Top
row (panels a)-d)) shows wave pattern in real space, bottom row (panels e)-h)) shows the
corresponding Fourier transform, averaged over a time interval. Additionally, the Brillouin
zone of the honeycomb lattice is indicated in the bottom panels with a cyan outline. One
can see that drives of different frequencies produce wavepatterns with qualitatively different
momentum space characteristics.
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Figure 10.4.: Measurement of mechanical spectrum - Stacking Fourier transformed
wave patterns by driving frequency as depicted in panel c) allows for the measurement of
a mechanical spectrum. Each frequency cut corresponds to an individual simulation with
the respective drive frequency. To obtain a spectrum, the real space configurations, c.f.
panel a), are Fourier transformed to momentum space, c.f. panel b), and finally stacked,
c.f. panel c). Taking a cut through this stack along a momentum space path reveals the
band structure of the classical mechanical model in close analogy to the fermion equivalent.
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Figure 10.5.: Spectra of mechanical Kitaev model - Panels show the extracted me-
chanical spectra of the balls and springs model constructed from the Majorana fermion
Kitaev model in comparison to the analytical bandstructure of the Majorana fermions.
Mechanical spectra have been calculated by exciting a finite system with a certain fre-
quency and then Fourier transforming the resulting wave patterns, finally showing the
time-averaged Fourier weight as color coded in the driving frequency - momentum plane.
Analytical spectra are calculated by diagonalizing the momentum-dependent interaction
matrix and its eigenvalues are displayed as cyan lines. Both the gapless as well as the
gapped phase analytical Majorana spectrum can be reproduced perfectly by the mechan-
ical model, including the excitation gap which denotes a region in driving frequencies for
which the mechanical model can not be excited by stimulus. Figure adapted from Ref. [P5].

frequencies translate to qualitative differences in momentum space, where the respective
Fourier transforms show vastly different images.

Finally, a classical spectrum can be extracted from this sort of data by stacking the Fourier
transforms for different driving frequencies as seen in Fig. 10.4. Plotting the Fourier in-
tensities along specific cuts of momentum space provides plots that can be compared to
fermion bandstructures. As we will see in the following, these classical excitation spectra,
which are obtained in a completely experimental way, reproduce the corresponding fermion
spectrum quite well in all cases.

10.3.4. Spectral correspondences
Let us discuss the mechanical spectra in the following. For this purpose, mechanical spectra
of the two relevant regions of the Kitaev model have been obtained with the method laid
out before. In Fig. 10.5, these spectra for the gapped and gapless region are compared to
their counterparts in the analytical Majorana fermion solution.

As one can see, the mechanical spectra in Fig. 10.5 agree stunningly with their analytical
analogues for both parameter cases. An agreement between the real boson model and the

113
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Majorana fermion model was enforced by supersymmetry, however the agreement of the
classical mechanical model to the Majorana fermion model had to be confirmed explicitly.

Note that this spectral correspondence is including some important details. First of all,
the mechanical spectra include zero modes at the Dirac points of the Brillouin zone. These
correspond to states which can be excited without an investment of energy. Furthermore,
these points have been found stable across the entire gapless phase, showing a linear dis-
persion also seen in the mechanical model.

Upon reaching the boundary of the gapless phase, the Dirac points in the Majorana model
merge and gap out the spectrum. This behavior is reproduced in the classical model,
including the gap which can be observed. One naively might expect this gap to be prohib-
ited and a Goldstone mode to form in its place, however Goldstone modes are suppressed
because translational symmetry in the mechanical model along the movement direction is
explicitly broken by the on-site springs. Therefore, no Goldstone mode can form and a gap
is possible.

A similar gap can also be observed for high frequencies which also show no signs of exci-
tation response. The lack of response for certain frequencies lets the material behave like
an acoustic band-pass filter.

All in all, the data in Fig. 10.5 shows that mechanical spectra of the Kitaev model gener-
ically inherit the behavior of their quantum analogues, leading to mechanical behavior
previously only achieved by fine-tuning. Here however, the mechanical behavior originates
from a well-understood electronic system, in which tuning becomes natural.

10.4. Example II: Mechanical second order topological
insulator

Let us turn our attention towards the second example in building mechanical Majorana
models with supersymmetry. In this example, a mechanical second order topological insula-
tor (SOTI) is constructed from the famous quadrupolar insulator by Bernevig and Hughes
[69, 70]. In contrast to the previous example, the mechanical SOTI inherits a topologically
protected zero-energy mode from its Majorana fermion counterpart which can be probed
by mechanical means.

The section is organized as follows. First, a brief introduction to the quadrupolar insulator
and its mapping to a mechanical model is given. Then, the mechanical model is investi-
gated with respect to spectra. Finally, a discussion of the corner mode and the connected
topological invariant is added.
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10.4.1. Second order topological insulator from Majorana fermions
The octupolar insulator of Bernevig and Hughes [69, 70] is a prime example for a second
order topological insulator (SOTI) with gapless protected corner modes. SOTIs are a
special cases of so-called higher-order topological insulators which are generalizations of
the conventional topological insulators but with protected hinge or corner modes instead
of the conventional protected boundary modes [71].

Experimentally, SOTIs have recently been discussed in the context of engineered phononic
insulators [72], microwave systems [73] and electrical circuits [74]. Also, it has been shown
that elementary bismuth behaves like a SOTI with protected hinge modes along the crystal
hinges [75]. From a theoretical perspective, SOTIs have also been discussed in the context
of frustrated quantum magnetism [76].

In the context of this thesis, let us focus on two particular features of the quadrupolar
insulator. First of all, it can be formulated as a nearest-neighbor hopping problem for
fermions on a square lattice (which is bipartite). Second, it exhibits a localized corner
mode which originates from a finite topological polarization.

Since mostly spectral properties of the model as well as explicit eigenstates are of interest, it
can be formulated in Majorana fermions alike. In total, the model then describes Majorana
fermions on a square lattice with an extended four-site unitcell. Hopping is staggered
between different plaquettes with alternating hoppings. Hoppings within the unitcell have
amplitude tγ and hoppings across unitcells have amplitude tδ as depicted in Fig. 10.6.
Additionally, a π-flux is introduced into every plaquette which can be implemented into
the model by flipping the signs on some bonds (drawn dashed in Fig. 10.6).

Depending on the relative strength of hoppings tγ and tδ, the model is either gapless
(tγ = tλ) or gapped (tγ ̸= tλ). The two gapless phases can be classified as trivial (tγ > tλ)
and topological (tγ < tλ). The original model also exhibits localized cornermodes in the
topological phase whose wavefunctions are localized in the corners of a finite system and
therefore are distinct from any other state.

With these features, the Majorana SOTI is a prime candidate for yielding a rich mechanical
model, featuring both isospectrality to the Majorana SOTI and localized mechanical modes
at zero frequency, both of which are laid out in the following.

10.4.2. Classical balls and springs model
Constructing a classical balls and springs model out of the SOTI can be done by employing
the procedure from section 10.2. This process will first generate a model or real bosonic
operators and consecutively a classical balls and springs implementation of the real boson
model. The entire mapping process can be seen in Fig. 10.6.

Following the construction algorithm produces a model with real boson operators on the B
sublattice of the initial square lattice. On each site, one finds a momentum and a position
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Figure 10.6.: Second order topological insulator and its mechanical analogue -
Model describes hopping on a square lattice with staggered hopping amplitudes. Blue and
red lines denote hopping of different strength while dashed lines signal a negative hopping
sign. These hopping signs implement a π-flux through every square plaquette. When con-
structing the classical spring model, negative signs from π-fluxes lead to annihilation of
different hopping paths across square plaquettes, thus resulting in two decoupled mechan-
ical models. Figure adapted from [P5].

operator q̂i and p̂i, interacting with neighboring sites in the B sublattice.

Going further, the real boson model can be identified with a classical balls and springs
model, describing masses on the B sublattice sites moving out of the lattice plane, as well
as springs connecting masses and masses to the lattice plane. Spring couplings can be
derived using Eq. (10.23) (springs coupled to the lattice plane) and Eq. (10.22) (springs
between masses). More explicitly, one can extract bulk spring constants

kα
ij =


−4t2α (B1 ↔ B2, 0-flux)(α = γ, δ)

0 (B1 ↔ B2, π-flux)
−2tγtδ (B1 ↔ B1,B2 ↔ B2)

(10.32)

κi =
4(t2γ + t2δ) + 8(t2γ + t2δ + tγtδ) (0-flux)

4(t2γ + t2δ) (π-flux),
(10.33)

which depend on both the flux within the square plaquettes as well as which sublattices
of the square B-sublattice they connect. Since the square B sublattice is a square lattice
as well, it contains two sublattices, B1 and B2, which are again square lattices. From
Eq. (10.32) it is apparent that a π-flux decouples the B1 and B2 sublattices as all spring
constants between them vanish. This decoupling originates from the relative minus signs of
interfering hopping paths across the square plaquettes when squaring the hopping matrix,
as being visible in Fig. 10.6.

Having gone through the entire process of mapping the π-flux SOTI, one is left with a
mechanical SOTI that is described by two decoupled balls and springs models. Each
model is defined on one sublattice of the B sublattice respectively and features masses
moving perpendicular to the lattice plane coupled by springs. Let us turn our attention
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Figure 10.7.: Spectra of mechanical SOTI - Panels show the extracted mechanical
spectra of the balls and springs model constructed from the Majorana fermion SOTI.
Spectra have been calculated by exciting a finite system with a certain frequency and then
Fourier transforming the resulting wave patterns. Spectra show the time-averaged Fourier
weight as a color in the driving frequency - momentum plane. Both the gapless as well as
the gapped phase spectrum can be reproduced perfectly by the classical model, including
the excitation gap which denotes a region in driving frequencies for which the mechanical
model can not be excited by stimulus. Figure adapted from Ref. [P5].

now to investigating this mechanical model in a similar way to investigations of the Kitaev
model beforehand in the search for isospectral properties and topological features such as
the celebrated zero-energy corner model.

10.4.3. Spectral correspondences
Having derived a mechanical analogue of the SOTI model, one can now start examining this
classical model. Let us first focus on results for the energy spectra of the mechanical SOTI.
In principle, spectral properties can be extracted in the same way as with the mechanical
Kitaev model, i.e. constructing a finite patch of the mechanical system, exciting it with
different driving frequencies and Fourier transforming the resulting wave patterns.

Results for such classical spectra can be found in Fig. 10.7. Here, both the gapless as
well the gapped phase have been investigated. Overall the results agree very well with the
Majorana fermion spectra, once again confirming the isospectrality of the two models.

Note that similarly to the Kitaev model, the mechanical SOTI also reproduces the gapped
spectrum perfectly. This might be particularly surprising since it includes a region in
driving frequency where the mechanical model is immune to external stimulus and cannot
be excited. Thus the gap in mechanical SOTI implements a mechanical band-pass filter
for a certain frequency range. The gap itself is only possible because of the on-site springs
connecting the masses to the lattice plane. These springs explicitly break the continuous
translational invariance of the masses and therefore preventing a Goldstone mode.
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Note also that depending on the values of tγ and tδ, two gapless regions are possible, namely
tγ < tδ and tγ > tδ. For the bulk spectra, there is however no difference between the two
regions since tγ < tδ is the same as tγ > tδ where labels γ and δ have been changed on
each bond as well as the whole lattice being shifted by half a unitcell. The only difference
in these two regions will appear once boundary effects are taken into account. Then the
transformation of exchanging γ ↔ δ cannot be compensated by a shift in lattice anymore,
resulting in a different boundary behavior for the two cases as we will discuss in the next
section.

10.4.4. Localized corner modes
Having established a general spectral correspondence between the mechanical SOTI and
its Majorana fermion origin, let us turn our attention now towards the topological mode
which is part of the fermion model. In the Majorana fermion model, this topologically
protected mode has an energy of 0 and is localized on the corners of any open-boundary
square lattice. More precisely, the Majorana model hosts 4 modes, one for each corner.
In the mechanical SOTI, only one sublattice is available which again decomposes into two
independent models, thus hinting at only being able to observe a single cornermode for
any applied excitation.

Exciting the cornermode in the mechanical model requires additional considerations. Pre-
viously, any bulk mode could be probed by applying a periodically oscillating force to the
bulk, however the corner mode is 1) at the limit of zero drive frequency and 2) located
at the corner. Therefore, the necessary excitation one can perform is to apply a force
F (t) = const. which is constant in time. In practical terms, this form of drive can also
be understood as attaching a weight to the corner. The resulting motion that is expected
from a zero-energy mode would be that of a free fall.

The observed motion of the mechanical SOTI in the topological phase under static force is
shown in Fig. 10.8. Especially the trajectories of individual masses give great insight in the
nature of the cornermode. In the logarithmic plot of Fig. 10.8 the elongations of individual
masses are shown to be parallel lines with slope 2. Thus as log(A) ∼ 2 log(t), one can
infer that A ∼ t2 which indicates a free-fall motion of individual masses as expected for a
zero-energy mode. Furthermore, the lines being parallel indicates an exponential decay of
amplitude from one site to the other which in combination with the colorcode of the figure
or the other panel confirms the exponential localization to the corner.

At this point, it is worth noting that the cornermode is not generically inhabiting the
corner of the model. For the trivial phase of the mechanical SOTI, no such mode can be
observed. Also, if the excitation by constant force is not localized at the corner mode,
the mode will still be excited at the particular corner, however under a time-delay that is
necessary for the perturbation to reach the respective corner.

There is yet another aspect of the cornermode which can be probed in the mechanical SOTI.
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Figure 10.8.: Topologically protected cornermode in mechanical SOTI - Visual-
ization on the emergence of a topologically protected cornermode in the mechanical SOTI
model under constant force applied to the corner. Panel a) shows a real space plot with
amplitudes color coded logarithmically to demonstrate the localized nature of the mode.
Red and blue dots denote masses located below and above the lattice plane respectively.
Panel b) shows individual trajectories in time where colors denote the distance from the
excited corner with red corresponding to the excited corner itself and blue to the opposite
corner. Parallel equal-spaced lines in the log-log plot indicate exponential localization in
space, whereas the slope agrees with a free-fall motion x ∼ t2 which is expected for a
zero-energy mode under constant force.

Figure 10.9.: Influence of system size on cornermode in mechanical SOTI -
Individual panels show trajectories of sites upon excitation of the cornermode in systems
of different linear system size L. One can see that for small system sizes, the mode exhibits a
periodicity in time which indicates a finite but very small frequency of the mode. Increasing
the system size reduces this effect until at L = 9 no traces of a finite periodicity can be
seen on time scales shown in the plot.
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From the fermion model of the octupolar insulator, it is known that the cornermodes are
not strictly at zero energy but exhibit a small finite energy which vanishes with increasing
system size. This behavior can also be found in the mechanical model as seen in 10.9 where
cornermodes in systems of different linear size L are shown. For small system sizes, the
trajectories do not show free fall behavior for all times but instead oscillate periodically in
time. This oscillation frequency decreases as the system size is increased until the effect
can no longer be observed even for medium sized systems, thus proving a direct analogue
to the finite energy of the fermion mode.

Looking more closely on the time evolution of the mechanical model, one can even observe
a qualitative explanation for the finite frequency of the corner mode. In principle, one
can observe the free-fall motion to end when the mass on the opposite corner reaches an
amplitude of O(1). Therefore, the time period of the mode is given by the time it takes to
excite the opposite corner to A ∼ O(1). This time depends on the exact ratio of couplings
(and therefore the size of the bulk gap), as well as the system size. In particular, one can
see that the increase in system size exponentially suppresses the mode’s frequency. This
comes from delaying an O(1) amplitude in the opposite corner by exponentially suppressing
amplitudes away from the driven corner.

10.4.5. Topological invariant

Having observed the formation of the localized corner mode in the mechanical SOTI model,
let us discuss the occurrence of a non-zero topological invariant in the bosonic model,
indicating its presence in the first place. In fermionic models it has been long established,
that non-trivial topology is accompanied by a finite topological charge. Such a charge
can then be used as a probe to infer on non-trivial topology. In the case of the second
order topological insulator, the respective topological charge is the Berry phase. Since it is
calculated directly from eigenstates of the fermion bandstructure, supersymmetry allows to
map it consequently to the bosonic side, where it naturally yields a corresponding bosonic
observable indicating the bosonic topology. This following discussion aims at providing
more insight in this mapping and argues similarly to the respective section in Ref. [P5].

Let us start by considering a general SUSY pair of fermion and boson models. In the
fermion model, the Berry connection can be defined as

A = ⟨um(k)|i∇k|un(k)⟩ , (10.34)

where |um(k)⟩ denotes eigenvectors of the fermion Hamiltonian. Employing supersymme-
try, fermion eigenstates can of course be mapped to boson eigenstates |vm(k)⟩ by employing
the SUSY charge, or more specifically the rigidity matrix on which it is built. Ultimately,
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Figure 10.10.: Bosonic topological invariants in mechanical SOTI - The Berry
phase θB/π of the mechanical SOTI model as calculated from the supersymmetric Berry
curvature (10.36) depending on the staggered hopping γ/λ. Inset panels display eigenvalues
νx of the edge Hamiltonian Hx,k plotted against ky in the topological (γ/λ < 1) and trivial
(γ/λ > 1) phase. In each phase, the two bands acquire distinct Berry phases of θB = π or
θB = 0, respectively. Figure adapted from Ref. [P5].

bosonic equivalents of the fermion states read

|um(k)⟩ = R(k)√
|ωm(k)|

|vm(k)⟩ ≡ R̃(k) |vm(k)⟩ , (10.35)

where a prefactor of 1/
√

|ωm(k)| is added to fulfill symplectic normalization in the real
boson problem.

By inserting the SUSY mapping into Eq. (10.34) one can rewrite the fermionic Berry
phase with bosonic states, thus defining a bosonic invariant with the same properties as
the fermionic invariant.

ASUSY = ⟨vm(k)|iR̃†∇k

(
R̃|vn(k)⟩

)
= ⟨vm(k)|iσ2

(
∇k + σ2R̃†∇kR̃

)
|vn(k)⟩ . (10.36)

In contrast to the conventional fermionic Berry curvature, this bosonic variant is extended
by an additional covariant derivative term coming from the SUSY mapping. This ad-
ditional term ensures that bosonic eigenstates which were found to be trivial under a
conventional investigation can now have a non-trivial charge due to this additional term
in the augmented definition.

Let us now turn towards applying this general formalism to the mechanical second order
topological insulator at hand. Revealing the topology on the boson side can be done
by constructing bosonic Wilson loop operators, which are defined from their fermionic
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equivalents using the formalism of Eq. (10.36). These Wilson loop operators Wx,k and
Wy,k, defined along the kx and ky-directions respectively, define edge Hamiltonians Hx,k
and Hy,k which also can be connected adiabatically to the effective edge Hamiltonian of
the respective edges in the mechanical model.

As seen in the results depicted in Fig. 10.10, eigenfunctions in the phase tγ/tλ < 1 acquire a
Berry phase of π, demonstrating that this phase is indeed the topological phase, proposed
earlier by the existence of localized corner modes. In the other phase of tγ/tλ > 1, eigen-
functions of the edge Hamiltonians Hx/y,k are found to posses a vanishing Berry phase,
indicating that this is the trivial phase of the model. In total, the bosonic Berry phase can
successfully demonstrate the existence of two topologically distinct phases in the mechan-
ical model.

Note that a much more thorough discussion of the topological invariant with focus on the
second order topological insulator can be found in the supplementary material of Ref. [P5],
also discussing the formation of individual Wilson loop operators in depth. Here however,
the bare possibility to define a topological charge through supersymmetry, revealing the
non-trivial topology of the bosonic states, can be regarded as a proof of concept and
possibility for further research.

10.5. Additional aspects
Having established a rigorous SUSY connection between a Majorana fermion model and a
real boson model with a direct connection to classical topological mechanics, let us finally
turn our attention to some last aspects that should be mentioned in this context. In the
following part, both the negativity of the appearing spring constants as well as the influence
of noise on the SUSY connection is discussed. Most of this discussion is according to the
supplementary material of [P5], however enriched with additional figures.

10.5.1. Negative spring constants
Let us start by discussing the sign of spring constants in the topological mechanical model.
As shown in Eq. (10.22) and Eq. (10.23), the spring constants are calculated from products
and sums of fermionic hopping constants. Although in principle both on-site and intersite
couplings are subject to sign changes, in particular the intersite springs come with an
inherent additional minus sign kij −tijtjk < 0. Especially in the example of the mechanical
Kitaev model, one can show that there is no combination of signs on the hoppings tµ such
that there are no negative sign springs kij. All that goes to show that in principle one
cannot hope to avoid negative sign springs in the mechanical models derived from the
SUSY connection.

Springs with negative spring constants are however problematic in general. The potential
energy of a spring is V (l) ∼ k(l − l0)2 where l0 is the rest length of the spring and l its
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Figure 10.11.: Realizations of springs with negative spring constant - Two propo-
sitions on how to realize springs with a negative spring constant approximately, one using
gravity (panels a,b) and one using conventional springs (panels c,d). Figures taken from
supplementary material of [P5].

current length. For a positive k, this energy grows quadratic with l and therefore indicates
that energy has to be invested to stretch the spring. However for a negative value of k,
elongation of the spring gains energy indefinitely and accelerates the elongation even more
the longer the spring is. This behavior for k < 0 is of course unphysical.

Since such unphysical negative sign springs cannot be found in nature, one has to engineer
systems which behave like these negative sign springs approximately. Two of such examples
will be laid out in the remainder of this part.

One possible realization of a negative spring constant uses gravity and is depicted in
Fig. 10.11 a)+b). Here, a belt with some mass M is connected to the sample mass m
and fed inside a U-shaped pipe. In the rest position of equal lengths of belt in the left and
right part of the U-pipe, there is no force acting on the test mass m, however an imbalance
between the belt segments creates a force on m. The orientation of the U-pipe, facing
up or down, can now determine if this imbalance relaxes back or accelerates itself. Thus
a downward facing U-pipe emulates the behavior of a negative sign spring constant for
elongations that are comparable with the total belt length.

Another realization of a negative spring constant uses conventional springs and constraints,
depicted in Fig. 10.11 c)+d). Here, a conventional spring with rest length l0 is connected
to the sample mass m and some point P . The sample mass can only move along a one-
dimensional rod which is mounted in distance L to the point P . For a distance L > l0,
the overall force on the mass will point towards the shortest distance of the rod and P .
However for a distance L < l0, two energy minima emerge in equal distance to the now
unstable rest position. Around this unstable point, the effective forces along the rod again
emulate a spring with negative spring constant.
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Figure 10.12.: Noise in SUSY mechanical model - General considerations regarding
noise in the SUSY process. For any classical model, adding noise will randomize the
energies of eigenmodes around the original dispersion. For a mode with zero energy and
depending on the precise form of noise, this can either lead to the mode becoming unstable
or the mode effectively gapping out to finite energy. Figure taken from supplementary
material of [P5].

In principle, both approximations demonstrated in Fig. 10.11 have their own drawbacks
and limitations. However, even the existence of such examples indicates that building such
negative sign springs is in principle possible and remains to be solved in the respective
practical implementations.

10.5.2. Noise
Another aspect worth discussing is the relevance of noise in the SUSY connection. In gen-
eral, any topological feature is per definition robust to noise in the model. More precisely,
topological gapless modes are protected against noise as long as the bulk gap does not
close. Let us therefore not discuss the fermion side of noise but instead how noise enters
the mechanical model and how if effects its dynamics and topology. Particular interest
will be directed towards the topologically protected cornermode in the example of the
mechanical SOTI.

In general, noise can enter the SUSY connection from different sources. Noise in the
fermion model is well understood and can be translated by the SUSY connection directly

124



10.5. Additional aspects

0.0 1.0 2.0 3.0

4

2

0

2

0.0 1.0 2.0 3.0

4

2

0

2

0.0 1.0 2.0 3.0

4

2

0

2

0.0 1.0 2.0 3.0

4

2

0

2

Figure 10.13.: Impact of noise in mechanical SOTI - Following the general consid-
erations regarding noise in the SUSY process depicted in Fig. 10.12, two distinct forms of
noise are implemented into the spring couplings of the mechanical SOTI. For noise which
leaves the mean dispersion intact, depicted in panels a) and c), the corner mode is rendered
unstable. For a form of noise which simultaneously lifts the mean dispersion away from
zero energy, depicted in panels b) and d), this instability is not observed, however a finite
periodicity of the mode can be observed, corresponding to a finite energy. Figure taken
from supplementary material of [P5].

to a noise pattern of the bosonic and consequently of the mechanical model. Since SUSY
is exact, as long as the fermion model retains its topology the boson and mechanical model
will be topological as well.

Due to the way spring constants are inferred from the fermion model, any fermionic noise
will result in noise fine-tuning on the mechanical side. Fine-tuned noise cannot be imple-
mented experimentally, as springs will have natural errors in their constants which do not
depend on each other. Therefore, the relevant question to investigate is: What happens to
the mechanical model, when there is noise that breaks SUSY?

In any mechanical model, noise will broaden the spectrum of eigenmodes in energy, with
details depending on the exact form of noise. This has minor consequences for anything at
finite energy, however for modes at zero energy, there are direct consequences. Depending
on the form of noise, the energies of eigenmodes can be altered in two different ways,
depicted in Fig. 10.12. Noise can either lift the mean value of the dispersion which gives a
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10. Majorana fermions and topological mechanics

finite frequency to some previous zero-frequency modes or it can drive some of the modes
to negative energies which will render them unstable.

Which of the two scenarios is implemented into a model depends on the choice of springs. If
the spring constants only fluctuate with a certain amount, an instability cannot be avoided.
If springs are also tightened so that they are less negative the spectrum can be gapped.
Both scenarios can be implemented numerically into the classical mechanical simulations
of the Kitaev model and SOTI alike.

In Fig. 10.14, the time evolution of the mechanical Kitaev model is shown under the
influence of additional noise. One can observe that the tightened noise gaps out the zero-
energy modes at the Dirac points whereas naively fluctuating spring constants lead to
an unstable zero-energy mode that grows in amplitude indefinitely. Still, as Fig. 10.15
demonstrates, the spectrum itself is largely unaffected by the noise.

Similar results can also be obtained for the topologically protected cornermode in the
mechanical SOTI. Results for the time evolution of the cornermode are shown in Fig. 10.12.
They demonstrate once again that the cornermode does form in the SUSY-broken case
of noisy springs independent of the form of noise. However, since noise in general will
change the dynamics of the mechanical model in general, the cornermode is either rendered
unstable or to a finite frequency.
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Figure 10.14.: Time evolution under noise in Classical Kitaev model - Snapshots
at various times for a classical simulation of the balls-and-springs Kitaev model. Noise is
included in all type of springs. Data shown here compares between random noise (upper
panel) and tightening noise (lower panel) which drive the system unstable around the zero
mode as well as gap the spectrum out respectively. Data can in principle be compared to
the time evolution shown in Fig. 10.2.
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10. Majorana fermions and topological mechanics

Figure 10.15.: Frequency dependent impact of noise in Classical Kitaev model
- Snapshots after finite time evolution for classical simulation of the balls-and-springs
Kitaev model under drives of different frequencies. Noise is included in all type of springs.
Data shown here compares between random noise with zero mean (left column, panels
a),d),g),j)), clean system with no noise (center column, panels b),e),h),k)) and tightening
noise (right column, panels c),f),i),l)). Frequency changes between top panels a)-f) (f = 1)
and bottom panels g)-l) (f = 3). Gapping out and increasing weight on the zero mode
(around the K point) can be observed in the Fourier transforms. For higher frequencies,
the differences between the noise profiles vanish as noise has less effect on these regions of
the spectrum.
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11. Beyond supersymmetry: Fermions and spin
spirals

In this chapter, let us discuss some earlier work from Ref. [P6] which utilizes a different
form of linking to bring a classical spin model into correspondence with a quantum fermion
model. Although this work is not directly formulated as supersymmetry, its lattice iden-
tification laid the groundwork for the supersymmetric identification in later papers [P4,
P5].

The chapter is organized as follows. First, classical spin models are reviewed from the
perspective of Luttinger Tisza calculations which offer a method of obtaining classical
ground states similar to bandstructure calculations. Then, Luttinger Tisza is actually
brought into correspondence with bandstructure calculations by choosing suitable models
linked by a lattice construction. This allows constructing models of matching ground
states. Finally, some examples are given and the link to the supersymmetric language of
this part is emphasized.

11.1. Classical spin-spiral ground states
Classical spin models often are the first steps in the search for exotic phases of quantum spin
systems. Although these classical counterparts do not contain all of the quantum behavior,
they can be a good starting point for many investigations and rule out certain parameter
regions entirely. In principle, there are different types of classical spins, however here let
us concentrate on the so called Heisenberg spins which can be described by 3-component
vectors S⃗ = (Sx, Sy, Sz). According Hamiltonians are of the form

HHeisenberg =
∑
ij

MijS⃗i · S⃗j (11.1)

and in particular their ground states are of interest for further analyses. Although many
classical Heisenberg models only have one unique ground state, there are others exhibiting
(macroscopically) degenerate ground states. Specifically these extensive degenerate states
are good candidates in a consecutive search for quantum spin liquids and exotic states of
matter.

Only few Heisenberg models bare an analytic estimate on their ground state, so often
a (partial) numerical solution has to be performed. There are many methods available,
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Figure 11.1.: Ground state manifolds of spin spiral models – Panels a) and b)
illustrate the Luttinger Tisza method. Conceptually, a bandstructure of the spin system is
calculated, c.f. panel a), and its minima are then investigated within the first Brillouin zone,
c.f. panel b). Similar results can also be obtained from other methods which investigate
the spin spiral states directly. Panels c)-e) show the ground state manifolds of spin spirals
in different lattice geometries. Panel c) shows the 120◦ order on the triangular lattice,
panel d) shows ground state spirals surfaces on the fcc lattice which form one-dimensional
lines, panel e) shows the spin-spiral surfaces on the diamond lattice. Plots a) and b) are
directly obtained from LatticePhysics.jl, panels c)-e) are reproduced from Ref. [P6].
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11.1. Classical spin-spiral ground states

working on finite systems with different boundary conditions however here, let us focus
on the Luttinger Tisza method. This particular method bares great resemblance to a
band structure calculation. The Luttinger Tisza method is based around the assumption
that the ground state can be written as a coplanar spin spiral with the same unitcell
as the underlying lattice. Note that of course not all classical spin ground states can
be characterized in this way, however Heisenberg models have a tendency to form these
coplanar spiral states in their ground state.

To emphasize the similarities of the Luttinger Tisza method with ordinary band structure
calculations, let us briefly discuss its main steps. Starting with the Heisenberg Hamiltonian
of Eq. (11.1), one first performs a Fourier transform to momentum space. This transforms
the Hamiltonian as ∑

ij

MijS⃗i · S⃗j →
∑

k⃗

∑
ij

M̃ijS⃗k⃗,i · S⃗k⃗,je
ik⃗·δ⃗ij (11.2)

where M̃ij now only describes the connectivity within a single unitcell. Summation over k⃗
indicates that the Fourier transform decomposed the Hamiltonian into a block structure in
which individual blocks for separate k⃗ can be treated separately. The minimal energy of the
model, which is needed as the ground state, can be found by consecutively diagonalizing
the interaction matrices

M(k⃗) = eik⃗·δ⃗ijM̃ij (11.3)
in every block and looking for minimal eigenvalues both within the block as well as across
different k⃗. Conceptually, Fig. 11.1 a)-b) illustrates the process of constructing a band-
structure and resulting spin-spirals surface. Having found a minimal energy eigenvalue,
one can construct a coplanar spin spiral solution. The wavevector of this spin spiral is
given by the momentum k⃗ of the minimal energy eigenstate. The phases of individual
spins within the basis are then given by the components of the eigenstate itself. Concep-
tually, Fig. 11.1 a)-b) illustrates the process of constructing a bandstructure and resulting
spin-spirals surface.

Note that a solution found in this way is only valid as long as the so-called hard spin
constraint is fulfilled. This constraint demands spins on each site having equal length.
In many cases, this constraint will select a subset of states found by the minimization,
however in some systems like Heisenberg models on Bravais lattices the constraint is also
generically fulfilled. Note also that spin-spiral solutions are not unique to the context of
Heisenberg models or Luttinger Tisza calculations, but can similarly be found in systems
exhibiting spin-interactions of higher order [P7].
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11. Beyond supersymmetry: Fermions and spin spirals

11.2. Lattice construction to free fermion models
In principle the diagonalization of M(k⃗) yields a band structure similar to electronic band
structures when shown in dependence on k⃗. Furthermore, the search for a specific (mini-
mal) energy resembles the search for a Fermi energy and the corresponding states resemble
the Fermi surface in electronic models, as seen in panels c)-e) of Fig. 11.1. These simi-
larities might facilitate the idea of linking both calculations and being able to construct
corresponding models with respective ground state manifolds or Fermi surfaces alike.

Linking Luttiner Tisza and ordinary band structure calculations revolves around linking the
elementary interaction matrices in momentum space. Where the core of band structure
calculation is to find eigenvalues of the momentum space hopping Hamiltonian H(k⃗) =
t̃ije

ik⃗·δ⃗ij , Luttinger Tisza searches for eigenvalues of the spin interaction matrix M(k⃗) =
M̃ije

ik⃗·δ⃗ij . The striking visual similarity of the two might tempt one to simply associate
a spin-interaction Mij with every hopping tij, however the correspondence is more subtle.
In principle, the energies of interest in the two methods are vastly different. Whereas
Luttinger Tisza is searching for minimal eigenvalues, ordinary electronic calculations search
for eigenvalues in the middle of the spectrum, which can be shifted by the Fermi energy
to be at E = 0.

The conceptual main idea is now to square the hopping matrix which moves all states to
positive energies and makes the E = 0 Fermi surface states the lowest energy states of
the matrix. The resulting squared matrix can now be compared to the spin interaction
matrix. Similarly, the square-root of the spin interaction matrix yields a fitting matrix
whose mid-energy states are given by the former ground state and can thus can yield a
suitable hopping model.

On the level of underlying models, the process of squaring or taking the square-root can be
understood in terms of the lattice connectivity. Squaring of the hopping matrix corresponds
to chained hoppings, i.e. the next-nearest neighbors in terms of the graph connectivity.
Similarly, going the other way from a spin to a fermion system, revolves around inserting
new sites such that the next-nearest neighbor connectivity matches that of the original
spin system.

In Ref. [P6], most of these steps have already been conceptualized for bipartite fermion
systems. In such lattices, hopping only between different sublattices ensures a decom-
position into independent systems when taking next-nearest neighbors which becomes an
important aspect when constructing a lattice-based algorithm to ensure the inverse direc-
tion. In Ref. [P6], it was proposed to substitute the fully connected plaquettes of a spin
lattice by newly added z-coordinated sites to go to a corresponding fermion lattice. This
construction naturally added the missing sublattice of the bipartite fermion lattice and
ensured a systematic procedure that generates corresponding systems of matching Fermi
surface and spin spiral ground state manifold.
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11.3. Lattice construction vs. supersymmetry
Of course having discussed the supersymmetry construction of this part at length, the
key features in the spin-fermion correspondence, i.e. squaring of matrices, next-nearest
neighbor lattices, bipartite systems decomposing into two independent subsystems, bare
a striking resemblance to supersymmetry. In fact, much of the graph-based algorithms
of this entire SUSY part as well as in Ref. [P4, P5] have been influenced by the lattice
construction outlined in Ref. [P6]. However, let us look in greater detail at some aspects
of how supersymmetry enters the spin-fermion correspondence.

The essence of supersymmetry is to link a fermion system to an isospectral boson system
with the help of a new object called supersymmetric charge which essentially is squared to
decompose into the respective boson and fermion systems. This triagonal relation between
two systems and the SUSY charge is also reflected in the spin-fermion correspondence,
where two individual spin systems are connected to a bipartite fermion system which
decomposes into the two spin systems upon squaring. Especially the supersymmetric
examples in section 9 about complex fermions and bosons look very similar to the spin-
fermion examples outlined in Ref. [P6]. This resemblance of lattices is not coincidental as
both the supersymmetric charge for complex bosons as well as the fermion model in the
spin-fermion correspondence are represented as bipartite graphs. These bipartite graphs
decompose into boson-/fermion-subsystems and two spin subsystems under squaring, i.e.
taking the next nearest neighbors.

The concept of next-nearest neighbors also enters section 10 about Majorana fermions in
which one of the sublattices of a bipartite Majorana fermion system hosts real bosons.
Here, squaring is required by the particular form of supersymmetric charge, which again
uses a bipartite graph to connect bosonic and fermionic degrees of freedom on different
sublattices.

Finally, the concept of flat bands in the occurring systems is of great interest for many
reasons. In supersymmetry, flat bands can naturally occur due to a non-zero Witten
index which is graphically reflected in a mismatch between number of sites in the boson
and fermion sublattices of the bipartite SUSY charge graph. Such flat bands will always
emerge at the band bottom of one of the two systems. In the spin-fermion correspondence,
flat bands also emerge for the individual spin systems due to similar reasons. However, in
Luttinger Tisza calculations, such bands are often found to violate the hard-spin constraint,
i.e. they do not contribute meaningful spin spiral states. It is only in some examples like
the Kagome antiferromagnet where these bands do carry physical states and contribute an
extensive ground state degeneracy.

All in all, the spin-fermion correspondence bares great resemblance to the graph-based
supersymmetry connections outlined in this chapter. Although the spin-fermion corre-
spondence is focusing on relating ground states whereas the supersymmetry construction
aims at providing isospectrality, the underlying motifs agree to a large extent. Especially
the process of squaring and taking next-nearest neighbors are rooted deep in the graph
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11. Beyond supersymmetry: Fermions and spin spirals

language of interaction matrices and thus will reappear in different situations.

11.4. Examples
Let us also discuss some examples of the spin-fermion correspondence for better illustration.
In principle, Ref. [P6] contains an extensive list of different examples which will be also
briefly summarized in the following. Generically, every example comes with either a well-
known spin or fermion system which will be linked to a lesser known system of the other
kind.

The most prominent example of the spin-fermion correspondence is probably linking the
Dirac points in graphene to the 120◦ order in triangular Heisenberg antiferromagnets [P6].
Here, the bipartite fermion system is a model of free electrons (or even spinless fermions)
hopping on the honeycomb lattice. It is well-known that this simple hopping system ex-
hibits two Dirac points, i.e. a Fermi surface which is zero-dimensional, and has a linear
band dispersion around it. Squaring this model in the context of the spin-fermion cor-
respondence links it to Heisenberg spins on one of its two triangular sublattices. These
triangular lattice antiferromagnets have been studied independently as well. It was found
that the ground state can be characterized by a series of spin-spiral states in which neigh-
boring spins enclose an angle of 120◦, hence the name 120◦ order. This order can be
seen in Fig. 11.2 a). The wavevectors of these 120◦ spin spirals coincide exactly with the
Dirac points in the honeycomb dispersion, as it is expected from the spin-fermion corre-
spondence, thus linking the two systems. Even beyond the limit of isotropic couplings, a
rigorous connection between spin-spiral states and Dirac cones can be drawn. Panels b)-d)
of Fig. 11.2 therefore show the evolution of spin-spiral states from isotropic coupling to
the limit of Dirac cones merging. This limit corresponds to the onset of Neel-order in the
antiferromagnet.

Even beyond the pure ground state correspondence between the triangular antiferromag-
net and the fermions on the honeycomb lattice, the spectral properties between the models
can be compared. Where the honeycomb dispersion shows linear behavior in the vicinity
of the Dirac points, the Luttinger Tisza spectrum shows a quadratic band behavior near
its minimum. Although remarkable, this is however unphysical. Since the Luttinger Tisza
spectrum describes spin spiral states, it is unsuited for describing the actual thermal exci-
tations that occur in antiferromagnets as those are described by single spin reorientations
or flips. Nevertheless, the spectral correspondence once again underlines the origin of the
spin-fermion mapping.

Another interesting example of the spin-fermion correspondence concerns the formation
of flat bands when squaring a fermion system with differently sized sublattices. In this
regard, Heisenberg spins on the honeycomb lattice can be mapped to free fermions on
the honeycomb-X lattice [P6], which is a honeycomb lattice with additional sites on every
bond. Upon squaring, this fermion system corresponds to both the original spins on the
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b)

c) d)

a)

Figure 11.2.: Triangular lattice 120◦ order – Panels a)-d) show the evolution of the
120◦ order on the triangular lattice upon decreasing vertical couplings. Momenta describing
this tilted order move on the edge of the Brillouin zone and can be linked to the Dirac
points merging in the corresponding honeycomb model. Figure adapted from Ref. [P6].
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a) b)

e)

c)

d)

Figure 11.3.: Mapping J1-J2 Heisenberg models to free fermions – Panel a) illus-
trates the relation of J1-J2 Heisenberg models on bipartite lattices to bilayer free-fermion
models on the same lattice. The connection is drawn by replacing plaquettes which are
spanned from J1 and J2. Additional sites can be rearranged to form a second layer. Pan-
els b)-e) show the progression of spin-spiral ground state manifolds upon increase of J2,
emerging from the Γ point in panel b) and merging into the K points in panel e) for large
J2. Figure adapted from Ref. [P6].

honeycomb as well as additionally spins on the Kagome lattice. The mapping procedure
guarantees that the spin models on honeycomb and Kagome are isospectral albeit with an
additional flat band in the Kagome which comes from its larger unitcell and is actually
physical.

Coming from the perspective of classical spin models, the class of J1-J2 Heisenberg models
host many promising candidate systems with already classically degenerate ground state
manifolds. Especially the J1-J2 Heisenberg models on honeycomb and diamond lattice
have been shown to exhibit spin-spiral manifolds with sub-extensive degeneracies. It can
be shown generically with the spin-fermion correspondence, that ground states of any J1-J2
Heisenberg model on a bipartite lattice, where J2 strictly describes interactions between
next-nearest neighbors defined by bond distance, can be mapped on the Fermi surface of
a bilayer nearest-neighbor free fermion model, as demonstrated in Fig. 11.3 a). This is in
particular interesting as these fermion models can also be rephrased in single-layer spinful
fermions with additional spin-flip terms on every site. The spin interaction ratio J2/J1
would then be reflected in the ratio between intersite hopping and on-site spin-flip in the
fermion model. Such fermion models are also generically expected to show a sub-extensive
Fermi surface which might yet be another interesting perspective on why the corresponding
spin models exhibit a degenerate ground state manifold.

A final set of examples concerns the precise numerical parameters in spin models. It was
already shown in Ref. [P6], that for the case of bipartite J1-J2 Heisenberg models, the
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parametric transition from antiferromagnetism to spin-spiral order can be determined only
based on properties of the mapping to a fermion bilayer system. Moreover, since the spin-
fermion correspondence connects the spin ground state to the fermion Fermi surface, the
exact ground state energy of the spin-spiral state can also be explicitly given only based
on investigation of the underlying lattice structure.

In other classes of models, some parameter combinations allow for particular choices of
plaquettes that could not have been identified for other parameters. This is particularly
important for the J1-J2 Heisenberg model on the square lattice where J2 denotes the
diagonals through square plaquettes. Since here J2 does not describe next-nearest neighbors
by bond-distance, the model does not fall in the aforementioned category. However at the
parametrical value of J2 = J1/2, each nearest neighbor bond can be split into two of half
the coupling strength and every existing fully connected square plaquette can be replaced
entirely. This replacement only works for J2 = J1/2, thus leading to a qualitative difference
in behavior between J2 = J1/2 and other parameters.

A very similar explanation can also be facilitated for the emerging classical J1-J2-K model
on the fcc lattice in Ref. [P1]. This reference has already been discussed in the context of
RIXS for probing the underlying electronic degrees of freedom. However, in the context of
spin systems there is yet another aspect worth noting. In this paper, the electronic structure
allows for an effective description in pseudospin j = 1/2 moments which interact with both
Heisenberg and Kitaev terms on the underlying fcc lattice. It was shown that the classical
limit of this model in the K = 0 limit (i.e. pure Heisenberg interactions), the parameter
combination J2 = J1/2 facilitates an extensive ground state degeneracy which is absent for
smaller or larger values of J2. From the perspective of the spin-fermion correspondence,
this point is again singular. Only for J2 = J1/2 one can replace checkerboard plaquettes
spanned by J1 and J2 in the underlying fcc lattice by newly added 4-coordinated sites to
form a fermion lattice.

Both these parametrical examples go along to show that even beyond mapping a well-
known model to another one, the spin-fermion correspondence can be used to explain
certain qualitative changes in model behavior.

137





12. Summary and discussion

In this part, the role of graph theory in formulating supersymmetry has been discussed.
Fundamentally, this was understood as bringing the SUSY concept of relating boson to
fermion models in correspondence with the formulation of matrices as adjacency matri-
ces of graphs. Throughout the chapters, various examples of this correspondence have
been discussed, including isospectral complex fermion and complex boson lattice models,
Majorana fermion models which are isospectral classical mechanical systems as well as con-
nections to other mappings such as spin spirals to fermions. Overall, the impact of graph
theory allowed a direct formulation of SUSY through the use of interaction graphs, having
a broad range of implications ranging even to the definition of topological invariants for
bosonic systems.

In the first part, a complex fermion to complex boson mapping has been discussed. A
particular focus was put on the isospectrality between models on sublattices of a bipartite
lattice which have been interpreted as boson and fermion models. The bipartite lattice
played the role of the supersymmetric charge. Numerous example systems in both two and
three spatial dimensions showed the persistence of isospectrality and the reliability of the
graph-based construction when defining corresponding models or the SUSY charge.

Furthermore, the concept of the Witten index, known from supersymmetry, was brought
into the graph language. Already in basic supersymmetry, the number of flat bands at the
bottom of either the fermion or boson spectrum is equal to the Witten index. Brought
into the context of graph language, the Witten index can be interpreted as the mismatch
between basis sizes in the two sublattices, therefore allowing to determine the number of
zero modes in the system from a geometric property alone.

The second example demonstrating the graph-theory assisted SUSY connection concerned
Majorana fermion models. These systems could be connected to real boson models which
in return could be rephrased as classical mechanical systems. Whereas previously, both
the fermion and the boson model were defined on sublattices of the bipartite SUSY charge
graph, in this context the Majorana model occupied a bipartite lattice graph and the
corresponding mechanical model one of its sublattices.

The first incarnation of a Majorana model being implemented into a classical model was
performed on the well-known Kitaev model, famous for hosting an analytically solvable
spin liquid ground state. Although being defined as a spin model, Majorana fermions
come into play when fractionalizing the spins into Majorana fermion and gauge field, both
being defined on a honeycomb lattice. The mechanical version then describes balls and
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springs on a triangular lattice with spring constants on-site and between sites. Emerging
wavepatterns under periodic drive could be observed when numerically solving the classical
equations of motion and were observed to be dependent on the drive frequency. This lead
to the numerical measurement of mechanical spectra which agree remarkably well with
their Majorana fermion counterparts.

A second incarnation mapped the famous quadrupolar insulator of Bernevig and Hughes,
a prime example for a second order topological insulator (SOTI), to a mechanical model
which again was found to exhibit mechanical spectra agreeing with their Majorana fermion
counterpart. Additionally, a zero-frequency mode with topological origin could be observed.
This mode showed corner-localization as expected for the topological mode of a SOTI and
agreed well to the states predicted by the Majorana model. Moreover, SUSY allowed the
definition of a non-trivial topological invariant in the mechanical model, demonstrating its
topology and extending conventional definitions of topological invariants by an additional
SUSY term.

As a final example showing the impact of graph-theory on supersymmetry, the mapping
between spin spiral states and free fermion systems has been discussed. In this case, a
lattice construction allowed to relate ground states of spin spirals and Fermi surfaces of
free fermion systems. This lattice construction is identical to the one used in the super-
symmetric graph construction and therefore could be identified as having connections to
supersymmetry. In principle, incarnations of this mapping bare a remarkable similarity to
the complex boson systems, however with the change that the SUSY charge is the fermion
model and the SUSY partner systems are the two spin models.

All in all, geometric graph language has been proven helpful in discussing supersymmetry
through these examples. Many of these examples have only been possible because of the
graph interpretation underlying the SUSY language. However, there are also aspects that
needed additional discussion. Most prominently, conserving supersymmetry often demands
a fine-tuning of couplings in the individual systems, imposing additional constraints on
them.

In the case of complex boson, this fine-tuning manifests itself in only mapping between
large systems for very fine-tuned cases of hopping parameters. Even small changes in
individual hoppings could sometimes render the mapping impossible, therefore making a
qualitative change in the SUSY partner system. In particular for the closely related case
of spin-spiral states, the qualitative change in behavior could be interpreted as a change
in ground state structure, coinciding with a phase-transition in the ground state phase
diagram.

For the case of Majorana fermions, fine-tuning meant precise tuning of mechanical springs
constants. As this is of course experimentally not possible, one can only conclude that
supersymmetry is not present in a true experiment. However, the isospectrality and cor-
respondence between individual (topological) states still was found to be preserved on
average, yielding either gapped or unstable features as a result of SUSY-breaking noise.

140



Through all those examples, a recurring theme of special fine-tuning have been lattice
boundaries. Whereas a bulk graph correspondence with SUSY would relate bulk param-
eters to the bulk connectivity of the lattice, connectivities are usually different at the
boundary. Therefore one naturally encounters modified parameters at the boundary to
ensure a conservation of supersymmetry, which was particularly important in the case of
topological mechanics and finite systems.

In total, many systems have been explored in the context of this chapter. Apart from
simply extending this list of examples, there are also some fundamental open questions.
For example, it is currently unclear if there is a better incarnation of the real boson systems
then the one laid out in the topological mechanics section. Also, the possibility of defining
topological invariants hints at the question if one can also measure these quantities in an
experiment.

Last but not least, it is also unclear if one can extend the graph-based SUSY framework
beyond a single particle to interacting systems. A basis for such an analysis would be
to identify graph structures that correspond to four-particles terms like ∑ij n̂in̂j where
n̂i = c†

icj or even∑ijkl c
†
ic

†
jckcl . This would naturally lead to fascinating questions regarding

the implementations of more than a single Majorana fermion in a classical system with
implications not only on a fundamental level but also for practical applications such as
quantum computing.
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13. Introduction

In the quest for materials with new and exciting properties, the synthesis of a true isolated
two-dimensional material was long believed to be most challenging as any buckling in its
third dimension would inherently lead to it clumping and collapsing. Naturally, inter-
est in two-dimensional materials exploded upon the first successful isolation of graphene
by Andre Geim and Konstantin Novoselov, achieved by exfoliating individual layers from
bulk graphite [66]. These first samples allowed for experimental confirmation [67] of long-
standing theoretical proposals on electronic properties in two-dimensional honeycomb ma-
terials, such as a bandstructure exhibiting Dirac cones with linear dispersion in which emer-
gent quasi-particles behave quasi-relativistically [67]. For their advances in the synthesis
and investigation of graphene as the first two-dimensional material, Geim and Novoselov
were ultimately awarded the 2010 Nobel prize in physics [77].

Following the success of single-layer graphene, honeycomb structures today have become of
general interest in other systems like molecular graphene [78], different elemental analogues
of graphene [79] as well as optical lattices and cold atoms [80]. Similarly, exfoliation tech-
niques beyond graphene nowadays produced an entire zoo of two-dimensional materials [81].
Alongside the growing number of different materials, more and more mechanical manipu-
lation techniques for two-dimensional materials were established, including straining [82],
stacking [83, 84], and twisting [83–86] of individual two-dimensional sheets.

With the invention of scanning tunneling microscopy (STM) it had also been recognized
that Moiré effects appear in the study of two-dimensional materials. In general such effects
arise from a mismatch of two periodic structures leading to an additional periodicity with
a large wavelength. A demonstration of the Moiré effect can be seen in Fig. 13.1 a). Moiré
effects are quite common in nature and occur naturally in surface science when materials
have different lattice constants or a mismatch in orientation. First thought of primarily as
cosmetic effects, Moiré patterns were e.g. found on graphite surfaces [87]. In the context
of pure graphene, Moiré effects have been known to occur when graphene is grown by
chemical vapor decomposition (CVD) on a substrate like Iridium [88]. Since this method
yields very clean graphene sheets [89], large-scale Moiré patterns can be observed by STM,
forming between the graphene lattice and the underlying Ir[111] surface [90].

Only within the last decade it was realized that twisting and the Moiré effect can sub-
stantially alter the electronic properties as well [84]. A first proposal by Bistritzer and
MacDonald to find anomalously flat bands in sheets of graphene twisted by a precise angle
[91] raised further interest in investigating such twisted materials. The bands can be found
at half filling of the band structures and are displayed in Fig. 13.1 b). Flat band systems
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13. Introduction

Figure 13.1.: Example of a Moiré system with bandstructure - a) Sketch of twisted
bilayer graphene as an example for a Moiré system. Two sheets of graphene are stacked
and then rigidly twisted with respect to each other. Panel b) shows the band structure
for such a twisted bilayer system tuned to the magic twist angle of θ ≈ 1.1◦. Note that to
better illustrate the Moiré pattern in panel a), the twist angle in the sketch of panel a) is
θ ≈ 7.3◦, which is much larger than the magic angle yielding the bandstructure of panel
b).

are of general interest for topics of strongly correlated matter since tuning the narrow
bandwidth allows controlling how dominant interaction effects between quasi-particles are
compared to the kinetic energy within the bands. Such interaction-dominated or strongly-
correlated behavior provides the basis for many modern phenomena in physics like, e.g.,
the fractional quantum Fall effect [92, 93], Mott insulators and superconductivity. Whereas
correlated states generally exhibit a tantalizing complexity [94], twisted bilayer graphene
seemed to offer an accessible platform for systematically finding and investigating such
states.

The interest in twisted bilayer graphene exploded when advances in material fabrication
[83] enabled the first experiments [95, 96] revealing a plethora of correlated phases that
bear remarkable similarities to high-temperature superconductivity in cuprate systems [97].
Similar to cuprates, a change in doping allows the system to pass through a sequence of
exotic phases in which superconducting phases are in close proximity to Mott-like insulating
phases. Remarkably, the superconductivity resembles the high-TC superconductivity found
in cuprates as TC/TF is close to other high-TC systems and the superconductivity itself
occurs close to the metal-insulator transitions [97]. Furthermore, linear-in-T resistivity
measurements suggest the existence of strange metal phases above the superconducting
domes, again similar to high-TC cuprates [98]. While the results are strikingly similar,
twisted bilayer graphene offers a much more accessible platform for experiments as no
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chemical alteration of the sample is required to measure different doping levels and doping
can be achieved by gating.

Altogether, these findings promoted increasing interest in strongly correlated topics from
engineering two-dimensional materials with designed band structures [99–105], enabling
the observation of various strong correlation effects [106–109]. With this ever-growing
interest, more and more materials are currently under investigation, ranging from twisted
double bilayer graphene [110–113], via trilayer graphene [114, 115] all the way to hexagonal
boron nitride [116, 117] and twisted bilayer transition metal dichalcogenides [118–120] as
well as other even more exotic candidates [121, 122].

Within the field of Moiré materials, this part, which is based on Ref. [P8], aims at pro-
viding a unifying approach to describing flat band Moiré systems. As the Moiré pattern
generically covers large regions in real space, bandstructures of such Moiré systems, as
shown exemplarily in Fig. 13.1 b), include a plethora of typically O(103) bands. Under
close investigation of such bandstructures, one finds both regions of stiff band crossings
as well as regions of band avoidances. The statistic of such band avoidances is a quantity
often explored in the field of random matrices [123] and quantum chaotic systems. Similar
approaches might also be applicable to Moiré systems as the presence of a Moiré potential
locally can act as a source of disorder. The complexity of gigantic Moiré band structures
might therefore be encapsulated in a statistical approach [124, 125] which can describe
the formation of flat bands by inherent band pressure. In contrast to previous approaches
describing the flatness of magic angle flat bands in twisted bilayer graphene by such a
statistical approach [126–130], it is the goal of this part to describe a universal mechanism
for generic bands within the bandstructure. The central question is to discuss, (How) do
flat bands generically form in Moiré systems?

Scales of generic Moiré systems
Before answering the question at length within this part, let us first consider some basic
relations in any Moiré system. Since the Moiré effect is not uncommon in nature, all Moiré
systems share a common framework on which essential properties can be defined. In the
following section, let us consider some generic quantities specific to 2D materials including
both a two-dimensional lattice as well as a periodic perturbation. Although examples in
this chapter are heavily focused on twisted bilayer graphene, the arguments themselves can
be applied in a broader context. Therefore the results not only apply to bilayer systems
who form the Moiré perturbation by sliding or twisting of layers, but also to monolayer
systems which inherit the Moiré from an interaction with their host materials if they are
grown on top of others.

We start the discussion by defining a periodic, two-dimensional lattice consisting of Bravais
lattice vectors a⃗1 and a⃗2 as well as a number of basis sites r⃗i. For simplicity, we assume
the Bravais lattice to only have one length scale, namely a uni-directional lattice constant
a. We will later refer to this lattice as the initial lattice or unperturbed system.
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13. Introduction

Figure 13.2.: Universal considerations for Moiré systems - a) Sketch of a generic
Moiré system with underlying lattice of periodicity a and Moiré lattice with wavevector
am b) reciprocal space shows Brillouin zone of underlying lattice with reciprocal vectors
G being filled with Moire reciprocal lattice points with distance Gm c) bandstructure gets
backfolded so that typical levels are only D/L2 apart.

The initial lattice is brought into contact with a perturbation V which itself is periodic on
length scales aM = La. Generically, aM is assumed to be much larger than the periodicity
of the initial lattice, i.e. L ≫ 1. The perturbation can be either commensurate or incom-
mensurate with the initial lattice, commensurate meaning that Moiré lattice vectors can
be written as

a⃗M = ma⃗1 + na⃗2 (13.1)
for some integers m and n, e.g. see an example of m = 5 in panel a) of Fig. 13.2. A
commensurate perturbation results in a periodic Moiré structure whereas an incommen-
surate perturbation necessarily leads to a quasi crystal. In the following discussion, most
of the calculations are performed in the commensurate case. However, this is mostly a
restriction that the numerical tool is imposing as it requires to define unitcells which are
strictly periodic in space. In any of these cases, we will from hereon refer to the initial
lattice with effects of the perturbation as the Moiré system.

Periodicity allows to Fourier transform into momentum space in which two length scales
emerge for this particular situation. The periodicity of the initial Bravais lattice leads to
reciprocal lattice with lattice constant G = 2π/a. In contrast, the Moiré cell yields a denser
momentum space lattice with lattice constant GM = 2π/aM = G/L, which is smaller by
a factor of L compared to the unperturbed reciprocal lattice constant. In total, there are
O(L2) momentum points GM within the first Brillouin zone of the initial lattice. This can
again be observed in panel b) of Fig. 13.2 where it is demonstrated schematically.

Considering a tight-binding like model on the initial lattice leads to a band structure
with typical bandwidth D, defined on the first Brillouin zone of this lattice. Switching
perspective to the Moiré perturbation, one finds momenta k mod GM are conserved which
in return means that all ∼ L2 momentum points of the reciprocal Moiré lattice within the
first Brillouin zone of the initial lattice have to be equivalent. This equivalence leads to

148



a so-called backfolding of bands into the first Moiré Brillouin zone such that the average
bandwidth of the Moiré system is ∼ D/L2.

The perturbation acts in real space as a potential V and induces coupling between bands
within the bandstructure. Let us assume that the potential V is weak enough to be
considered a perturbation but strong enough to couple adjacent bands, i.e. V ≳ D/L2.
This is well justified for twisted bilayer graphene since V for these systems behaves like
V ∼ 1/L. As the values of V in real space seem locally random due to the Moiré pattern,
one might expect that efficient level repulsion within the spectrum takes place, i.e. bands
only vary on energy scales ∆ε ∼ D/L2 upon variation of k⃗. Level repulsion in return would
imply reduced velocities of the form v⃗ ∼ ∆ε/∆k⃗ ∼ vF (a/L)α where vF describes the initial
group velocity and 1/2 ≤ α ≤ 1 is a measure of how much neighboring bands are allowed
to be coupled. Independent of the typical values of α, v ∼ 1/Lα implies a great reduction
of velocities compared to the uncoupled case – an effect that is not observed in typical
twisted bilayer graphene systems with experimental parameters.

Momentum space hopping picture
To resolve this puzzle, one has to look beyond the naive picture. The real space potential
V can also be understood in terms of an effective hopping in momentum space between
neighboring momentum points Q⃗n = n1G⃗m,1 +n2G⃗m,2. Together with the dispersion of the
unperturbed lattice problem on these points, ε(k⃗), the whole Moiré problem can then be
formulated as an effective Hamiltonian in momentum space, defined on momentum ’sites’
Q⃗n containing a quasi-random on-site potential ε(k⃗+Q⃗n) ≡ εQ⃗n

as well as hopping between
these points which is dependent on the Moiré potential V .

Looking at a typical wavefunction in momentum space with energy ε, one can see that for
small values of V it will necessarily spread close to regions where its energy matches the
initial dispersion ε(k⃗). Those regions are generically one-dimensional lines and intersect the
momentum sites in a quasi-random pattern. The quasi-random intersection provides a form
of randomness on the otherwise normal hopping Hamiltonian that brings it in close relation
to the problem of Anderson localization in one-dimensional wires [131]. In this setting, the
Moiré potential V acts as a measure of hopping or mobility, whereas the geometry of the
underlying dispersion provides the random potential in which wavefunctions can localize
or delocalize.

In any case, the relative strength of V compared to other constants determines the behavior
of states. Low relative values of V can lead to strong localization in momentum space
whereas large values allow wavefunctions spreading out. This in return can facilitate level
repulsion and flat bands. The following sections of this chapter are devoted to showing
the implications of such an Anderson localization scenario and how it can be probed by
numerical calculations.
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14. Modeling twisted bilayer graphene

Electronic calculations for twisted bilayer graphene are mostly performed either with a
real-space lattice model or a momentum-space continuum model. Whereas the real-space
model utilizes explicit hopping terms between different sites within the Moiré unitcell [132–
134], thus naturally performing best for large angles and small Moiré cells, the momentum
space model makes a continuum approximation and offers an approximate description of
the system [91] for small angles. Therefore, both methods can be seen complementary as
they offer solutions for two distinct limits of twist angles.

In Ref. [P8], which serves as the basis of this chapter, most data has been calculated with
the momentum space model. In the context of this thesis however, let us concentrate
on the real-space model, i.e. employing bandstructure calculations for the Moiré unitcell
which are in principle similar to those in the previous chapter on supersymmetry. As we will
see, the long-ranged connectivity and the large periodicity of the Moiré cell pose additional
challenges for the numerics, however in return rewarding the entire band structure including
regions inaccessible to the momentum space model.

This section is structured as follows. We will first discuss the geometry of single layer and
twisted bilayer graphene. Then, the real-space Hamiltonian is introduced, including all
relevant model parameters. Finally, before coming to the results, the continuum model is
briefly introduced for comparison.

14.1. Real space geometry

Twisted bilayer graphene consists of two layers of graphene which themselves can be repre-
sented as two-dimensional honeycomb lattices twisted by a relative angle θ. The honeycomb
lattice consists of a unitcell with two sites located at

r⃗1 = (0, 0)

r⃗2 =
(
a√
3
, 0
) (14.1)
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14. Modeling twisted bilayer graphene

as well as Bravais lattice vectors

a⃗1 = a

(√
3

2 ,−1
2

)

a⃗2 = a

(√
3

2 ,+1
2

) (14.2)

which are defined with the lattice constant a. The honeycomb lattice as well as its unitcell
and Bravais lattice vectors are depicted in Fig. 14.1.

Twisting the two graphene sheets leads to the formation of a Moiré pattern. This pattern
is visible by the distinct opacity of the lattice in regions of AA stacking and AB stacking
as seen in Fig. 14.2. AA regions are those regions where site 1 of the upper layer is on
top of site 1 in the lower layer, whereas AB regions are those where site 1 in the upper is
on top of site 2 in the lower layer. The Moiré pattern of AA and AB regions forms again
a triagonal Bravais lattice. The size of the Moiré lattice constant depends on twist angle
and typically grows with decreasing angle.

For most twist angles, the Moiré lattice constant will not be commensurate with the under-
lying honeycomb lattice constant. Therefore, the Moiré cell is not truly periodic on small
length scales and exact diagonalization and band structure calculation cannot be applied
to generic angles θ. However, angles for which the two lattice constants are commensurate,
can be constructed by twisting the site Ru = ma⃗1 + na⃗2 in the upper layer on top of site
Rl = na⃗1 + ma⃗2 in the lower layer. These commensurate angles, constructed by pairs of
integer numbers m and n, follow the relation

cos(θ(m,n)) = 1
2
m2 + n2 + 4mn
m2 + n2 +mn

(14.3)

An example of four different commensurate angles can be seen in Fig. 14.2.

From a numerical perspective, dependence of the linear size of the Moiré cell on the twist
angle θ implies a dependence of numerical cost on twist angle. Calculating the entire band
structure for a certain set of parameters is numerically equivalent to diagonalizing matrices
of size N × N where N is the number of sites within the Moiré cell. However, since the
Moiré cell increases with decreasing twist angle, so does the numerical computation time.
The extent of this increase should not be underestimated. To compute the bandstructure
for a twist angle of 2.3◦ (m = 15, n = 14), one needs to diagonalize matrices of size
∼ 2500 × 2500. Upon decreasing the angle to the magic angle of ∼ 1.1◦ (m = 27, n = 26),
the matrices increase in size to ∼ 8400 × 8400 which means an increase in linear size by a
factor of 4 and therefore an increase in computation time by a factor of 64. To get a better
grasp on scaling, Fig. 14.3 shows the relations between various parameters of the Moiré
cell. It is this scaling in particular, which provides the necessity of a fast bandstructure
code later on.
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14.1. Real space geometry

a1

a2

1 2

Figure 14.1.: Graphene unitcell - Small patch of honeycomb lattice including the two
numbered basis sites / sublattices. Primitive lattice vectors a⃗1 and a⃗2 are shown as well
as the primitive unitcell.

 = 9.43°a)  = 6.01°b)  = 3.89°c)  = 2.28°d)

Figure 14.2.: Twisted bilayer graphene - Two twisted layers of graphene on top of each
other show a Moiré pattern. Twist angle θ is decreased from left to right. Note that the
pattern is centered at the AA region of the Moiré. Examples from left to right correspond
to commensurate angles with m = 4, 6, 9, 15.
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Figure 14.3.: Relations between Moiré unitcell parameters - Twist angle, Moiré
unitcell size and parameters m and n shown in functional dependence. Horizontal dashed
line denotes the later mentioned magic angle in the numerics at m = 27, n = 26 corre-
sponding to a twist angle of θ = 1.25◦ with a Moiré unitcell of 8428 sites.

Apart from the twisting of the individual honeycomb layers rigidly, real twisted bilayer
graphene includes two more geometric effects, corrugation and relaxation. Relaxation de-
scribes the effect of carbon atoms relaxing in the in-plane direction to minimize interaction
energies between the layers, whereas corrugation describes the buckling of graphene sheets
in the out-of-plane direction. Both forms of modulation are spatially correlated with the
Moiré structure, however the precise form of relaxation often relies on extensive numerical
calculations and only in rare cases can be modeled in a concise analytical fashion [135]. In
contrast, corrugation can be approximated more straight forward by a spatially modulated
interlayer distance

d(R⃗) = d0 + 2d1

 cos
R⃗ · C⃗1

|C⃗1|2
· 2π

+ cos
R⃗ · C⃗2

|C⃗2|2
· 2π

+ cos
R⃗ · C⃗3

|C⃗3|2
· 2π

. (14.4)

Here, the layer distance is expressed in distances d0 and d1 which can be written in terms
of the AA-region layer distance dAA and the AB-region layer distance dAB as

d0 = 1
3(dAA + 2dAB)

d1 = 1
9(dAA − dAB)

(14.5)

Also, vectors Ci span the corrugation in different directions. All Ci enclose angles of 60◦

with each other and C1 can be written in terms of Moiré Bravais lattice vectors as

C⃗1 = 1
2(⃗a1,M + a⃗2,M). (14.6)
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Figure 14.4.: Hopping elements and corrugation - Visualization of the different
hopping elements within the two layers shown in panel a). Hopping elements going out
from the central site are shown as blue lines, the blue circle denotes the range beyond which
hopping elements are numerically cut off. Panel b) shows a side view on the corrugation
in twisted bilayer graphene which describes a height modulation within the layers. The
modulation is following the Moire structure and shown from a top view as a color map in
panels c)-e) for varying twist angle.

14.2. Real space hopping model

Having discussed the geometric aspects of twisted bilayer graphene, this section aims at
providing the hopping Hamiltonian of electrons on the lattice. Generically, the problem of
electrons hopping on the bilayer structure can be described by a tight-binding Hamiltonian
in real space

H =
∑
i,j

t(r⃗i,j)c†
jci (14.7)

where i and j denote lattice sites in either the upper or lower layer.

Hopping amplitudes t(r⃗i,j) are generically formed by atomic overlaps between sites i and j
and therefore can be assumed to only depend on distance and direction of the distance vec-
tor. For graphitic systems such as twisted bilayer graphene, one can use hopping elements
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of the Slater-Koster form which can be written as

t(r⃗) = Vppπ(r)
1 −

(
r⃗ · e⃗z

r

)2
+ Vppσ(r)

(
r⃗ · e⃗z

r

)2

Vppπ(r) = V 0
ppπe

−(r−a0)/δ0

Vppσ(r) = V 0
ppσe

−(r−d0)/δ0

(14.8)

Here, the hopping strength is written as the overlap between the out-of-plane pz-orbitals,
which can either take place between layers (called Vppσ) or within a layer (called Vppπ).
The hopping elements are parameterized by nearest-neighbor distance a0 = a/

√
3, mean

layer distance d0, decay distance of the orbital overlap δ0 as well as fundamental overlap
integrals V 0

ppπ and V 0
ppσ. For the sake of reducing numerical costs, hopping elements are cut

off at a numerical cutoff distance of ∼ 5 nearest-neighbor distances.

In total, the hopping Hamiltonian contains the following mix of electronic as well as geo-
metric parameters:

• Single layer graphene geometry, especially the lattice constant a and nearest neigh-
bor distance a0 = a/

√
3. In the following, experimental values of nearest-neighbor

distance a0 = 0.142 nm are used.

• Twist angle θ(m,n) given in terms of pairs (m,n) with usually n = m − 1. The
celebrated magic angle is at 1.1◦ which corresponds to m = 27, however most calcu-
lations in the following do not rely on this magic angle condition and are performed
at larger angles, corresponding to smaller m.

• layer distance and corrugation of the bilayer system. Experimental studies find AA
and AB distances as dAA = 0.360 nm and dAB = 0.335 nm. In the following exam-
ples, a parametrization relative to the experimental findings is used, where relative
corrugation c and relative interlayer distance d are defined s.t.

dAA = d · (0.335 nm) + c · (0.360 nm − 0.335 nm)
dAB = d · (0.335 nm)

(14.9)

• electronic hopping parameters such as overlaps V 0
ppπ and V 0

ppσ as well as the decay
distance δ0. A good agreement to experimental findings can be achieved with δ0 =
0.319 nm as well as atomic overlaps V 0

ppπ = −2.7 eV and V 0
ppσ = 0.48 eV. In the

following sections of this chapter, the interlayer coupling and changes of it will be of
great importance. To vary this coupling, a relative interlayer overlap V is used

V 0
ppσ = V · 0.48 eV (14.10)

Upon having defined the hopping Hamiltonian, one can now calculate bandstructures of
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14.2. Real space hopping model

Figure 14.5.: Bandstructure of twisted bilayer graphene - Parameters that match
experiments at the flat band condition. Zoom into the bandstructure shown in c) and
further highlights in panels a) and b), supplemented by density of states in panel d).
Magic angle flat bands are clearly visible in the center of the spectrum and also as a peak
in the density of states. Cutouts a) and b) display different regions of the spectrum which
feature crossing and repelling levels alike. Figure recreated from [P8].

twisted bilayer graphene like for any other tight-binding model, namely by calculating the
k-dependent interaction Hamiltonian in momentum space and diagonalizing it along a path
within the first Brillouin zone. The difference compared to a usual tight-binding model
lies in the extent of the calculation, more precisely the size of the twisted bilayer unitcell.
Whereas normal tight-binding models usually have O(1 − 10) sites within their unitcell,
twisted bilayer graphene can have O(1000 − 10000) sites within the Moiré cell depending
on the twist angle, leading to correspondingly many bands.

Panel c) of 14.5 shows an example bandstructure for twisted bilayer graphene using ex-
perimental parameters and an angle of θ = 1.1◦. The celebrated flat band can be clearly
identified in the center of the spectrum of panel c) and the density of states which is shown
in panel d). The flat bands are surrounded by a vast number of conventional bands. The
two zooms into the bandstructure, displayed in panels a) and b), show that individual
bands among those show both level crossings as well as level avoidances, foreshadowing
the relevance of a statistical analysis later on.

Lastly, it is worth mentioning some numerical aspects of the band structure calcula-
tions. Since the Moiré cell is much larger than conventional unitcells, the matrices within
the calculation also become much larger. These large matrices with many entries are
posing and additional challenge on numerical implementations and computing resources
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14. Modeling twisted bilayer graphene

alike. From a software perspective, all calculations have been performed with the package
LatticePhysics.jl [S3]. This package provides a fast and ready-to-use bandstructure
code for Julia, and was developed in the scope of Part II of this thesis. Especially the
graphical representation of unitcells and lattices helps in implementing and testing the
large Moiré unitcells. From the perspective of computing resources, calculations were
performed on the CHEOPS cluster at RRZK Cologne and the JUWELS cluster at the
Forschungszentrum Jülich.

14.3. Momentum space continuum model
Before coming to the actual analysis of twisted bilayer graphene bandstructures, let us first
consider an alternative approach. Instead of considering real space positions and hopping
amplitudes, one can also formulate an effective Hamiltonian entirely in momentum space,
the so-called continuum model. This alternative approach uses different model assumptions
like approximating the single-layer dispersion by its linear behavior close to Dirac points
and thus provides an important reference calculation for the real space results.

The start of the continuum model is the dispersion of single-layer graphene close to the
Dirac points where it takes the linear form

H(K⃗ + p⃗) = −
√

3at
2 (σ⃗ · p⃗) . (14.11)

Eigenstates of this Hamiltonian are Bloch wavefunctions which are defined with respect to
the sublattice β = 1, 2 as

∣∣∣Ψk⃗β

〉
= 1√

N

∑
R⃗

eik⃗·R⃗
∣∣∣R⃗ + τβ

〉
. (14.12)

Here, N is the total number of lattice sites and τβ is the position of basis site β.

The next step is to form twisted bilayer graphene by twisting two individual sheets of
graphene by a relative angle θ. For symmetry reasons this is done by twisting the upper
layer by +θ/2 and the lower layer by −θ/2. The twisted wavefunctions can then be written
as ∣∣∣ΨU/L

k⃗β

〉
= 1√

NU/L

∑
R⃗U/L

eik⃗·R⃗U/L
∣∣∣R⃗U/L + τ

U/L
β

〉
(14.13)

with rotated basis vectors τU/L
β = e±iθσz/2τβe

∓iθσz/2. Similarly, the single-layer Hamiltonian
of the individual layers transforms to

H(K⃗U/L + p⃗) = HK⃗
U/L(p⃗) = −

√
3at
2

(
σ⃗±θ/2 · p⃗

)
(14.14)
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14.3. Momentum space continuum model

with rotated Pauli matrices σ⃗±θ/2 = e±iθσz/4σ⃗e∓iθσz/4.

Up to this point, the two layers have only been rotated but not brought into contact.
Therefore as a necessary next step, interlayer hopping is added to the model, written as a
Hamiltonian HT which describes the tunneling between upper and lower layer. After some
simplifications HT can be written as

〈
ΨL

p⃗′

∣∣∣HT

∣∣∣ΨU
p⃗

〉
=

∑
i=1,2,3

δp⃗−p⃗′,q⃗i

(
tAB

[
σx cos(2π

3 (i− 1)) + σy sin(2π
3 (i− 1))

]
+ tAA

1

)
.

(14.15)
where tunneling between sublattices of different layers is parameterized by tAA and tAB.
Also note that in contrast to the single-layer Hamiltonian, the hopping term starts adding
interactions between different momenta p⃗ and p⃗′. Under the assumption that the Moiré
potential is smooth in real space, which is typically well justified, the hopping in momentum
space is dominantly restricted to small momenta q⃗i, equal to the K or K ′ point of one of
the layers. Therefore, momenta p⃗ and p⃗′ form a grid in reciprocal space which is consistent
with the Brillouin zone of the Moiré cell, i.e. p⃗′ = p⃗ + i1G⃗m,1 + i2G⃗m,2 − K⃗. Thus all
accessible points p⃗′ in momentum space can be defined from one initial p⃗ which acts as the
origin of the grid.

Another beneficial feature of this particular parametrization of the interlayer hopping is
its ability to easily add corrugation effects by mismatching tAA and tAB. One approach to
parameterize the entire interlayer coupling is therefore to describe corrugation by a tuning
parameter ϕ which regulates the relative ratio between tAA and tAB as well as an overall
tunneling strength between the layers called t⊥. Couplings then read

tAA = t⊥ sin(ϕ) tAB = t⊥ cos(ϕ) (14.16)

Here, ϕ = π/4 corresponds to the uncorrugated case whereas ϕ = 0 describes hopping only
between different sublattices and therefore the ultra-corrugated case, also called chiral
limit. In this limit, the continuum model shows remarkable features, such as exactly flat
bands at a sequence of magic angles [129]. Furthermore, the chiral limit also allows for
identification of magic angle flat bands with Landau levels on a torus [129, 136].

All in all, the continuum model features as similar range of tunability compared to the real
space model with regard to tuning interlayer coupling and corrugation. Tuning the twist
angle between the graphene sheets is even more straight forward in the continuum model
as it does not rely on any commensurability assumptions.

There are however strong differences especially in its numerical applicability. First and
foremost, the continuum model is defined for small twist angles θ i.e. it only works for
sufficiently large real-space Moiré cells. In this regard, it is complementary to the real-
space model which encounters numerical problems when Moiré cells become too large. On
the other hand, the real space model can calculate entire band structures in which the
number of bands matches the number of sites in the Moiré cell, whereas the continuum
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14. Modeling twisted bilayer graphene

model builds up an approximation to the band structure from the central bands by adding
more momenta p⃗′ and therefore accessing more and more bands, independent on twist angle
θ. On hand, this reduces numerical complexity especially for smaller angles compared to
the real space model, on the other hand it lacks the features far away from the Dirac points
as they are not part of the approximation.

In the following sections of this chapter, the continuum model will therefore only play a
minor role. It is mostly used for comparison and to have a second, independent approach
to the example of twisted bilayer graphene.
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15. Delocalized states in twisted bilayer
graphene

Having established means of calculating bandstructure information for twisted bilayer
graphene, let us turn our attention to the localization mechanism at play. To measure
localization in real and momentum space, different observables have been favored in the
context of chaotic systems. First, the observables are presented, after which they are in-
vestigated one by one, starting by velocity and energy level statistics and ending with
wavefunctions.

The discussion of different observables will reveal the three main regimes of qualitatively
different localization behavior, dominant in twisted bilayer graphene. In principle, all bands
follow this scheme, however there are some qualitative exceptions which will be discussed
at the end of the chapter.

15.1. Measures of localization
Let us start by considering the different observables in which one can find traces of
localization-delocalization transitions in general chaotic systems. In the following, these
statistical measures are considered:

• Band velocities: A first way to observe a localization-delocalization transition is the
direct observation of band flattening. Since the slope of a band is related to its group
velocity by v⃗n(k⃗) = ∇⃗εn(k⃗), a band flattening can be observed as a reduction of
group velocity. Numerically, band velocities can be calculated from the gradient of
the dispersion.

• Energies: It is known from the study of random matrices and chaotic systems that
also the dispersion of a chaotic system shows traces of the underlying physics. In
particular it is known that the relative spacing of energy levels, ri = ∆Ei+1/∆Ei,
will follow different distributions, depending on the amount of localization at play
[123, 124, 131]. For a fully localized system, no level repulsion will occur and the
distribution of rn is a Poisson distribution. In contrast, in the delocalized case,
the distribution of rn follows Wigner-Dyson statistics. In practice, the agreement
will not be perfect [137]. However, a quantitative statement can still be made by
utilizing the so-called Kullback-Leibler divergence [138, 139] which measures the
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15. Delocalized states in twisted bilayer graphene

relative agreement between two distributions. The distribution of rn is numerically
readily available since it can be computed directly from the band structures.

• Wavefunctions: The third measure which is discussed in the context of this chapter
accounts for the wavefunctions themselves. Here, the delocalization and localization
in momentum space can be explicitly investigated graphically when plotted or it can
be measured by computing the inverse participation ratio (IPR) [131]. Furthermore,
symmetries of these wavefunctions will become important as well.

In general, all of these different measures can show different behavior for different regions
of energies. Therefore, the remainder of this section goes through the different observables
one by one, analyzing in detail what can be read from different observables.

15.2. Velocity statistics
Let us start by discussing the statistics of band velocities. In general, these velocities can
be calculated from the slope of individual bands. A band flattening is then signaled by
vanishing of velocities as the slope of the dispersion goes to zero. Therefore in the sce-
nario of quasi-chaotic interlayer couplings, a sufficiently strong coupling on the order of
experimental values should be able to efficiently suppress velocities by a factor 1/L com-
pared to the uncoupled layers. However, consulting the results obtained with experimental
parameters in numerical calculations we will find out that this is not the case.

Numerically, the it is feasible to calculate the band velocities by numerical derivatives of
the band structure, i.e. for an eigenstate at momentum k⃗ with index n and dispersion εn(k⃗)
the corresponding velocity v⃗n can be directly obtained from

v⃗n(k⃗) = ∇⃗εn(k⃗). (15.1)

To get a better statistical understanding, the velocities v⃗n(k⃗) are calculated for a set of
random momenta {k⃗} within the first Moiré Brillouin zone and then displayed in one of
two ways:

• histogram: The most direct way to display velocity data from the band structure is
to calculate a histogram p(v) which shows the relative occurrence of a given velocity,
averaging over velocity directions, momenta and band index.

• energy-velocity curves: Another form of presentation are scatter plots in which band
energy and band velocity are put into correspondence. This form of presentation
has the advantage that one can access information on different parts of the spectrum
separately

In the following, both means will be combined to extract energy-dependent velocity infor-
mation for twisted bilayer graphene.
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15.2. Velocity statistics

Figure 15.1.: Velocity statistics for experimental parameters - Distribution of
velocities in twisted bilayer graphene depending on interlayer overlap V for parameters
matching those of an experimental system, i.e. m = 27, and flat band conditions. Data
can be compared to Fig. 15.2 which shows the same evolution but for a larger twist angle.
Magic angle flat bands can be seen to evolve in panel g). Further: Harmonic oscillator
ladder states emerge in panel h) for larger values of couplings. Those will be discussed
later on in more detail. Figure recreated from [P8].
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15. Delocalized states in twisted bilayer graphene

Let us first answer the most prominent question: Is there a (naively expected) velocity
reduction by a factor 1/N for experimental parameters in which the interlayer coupling is
substantial? To answer this question, results for experimentally relevant parameter regions
are displayed in Fig. 15.1 c) and g). Comparing e.g. the velocity histogram obtained for
experimental parameters in panel c) with the one obtained for uncoupled layers in panel
b), one can observe that the mean velocity did not change drastically at all. Consulting
the energy-velocity data for those two cases, the initial observation is confirmed as the
two curves seemingly still support strong branches of high velocities, a good indicator of
crossing bands.

The argument that interlayer coupling is still too weak to efficiently couple neighboring
bands can be neglected if one looks at the lower end of the spectrum and its corresponding
velocities in Fig. 15.1 g). The lower branch of high velocities, originating from the parabolic
band around the Γ point, is now split due to interlayer coupling into two branches, sep-
arated by ∼ 2 eV which is about 20% of the entire spectral bandwidth. This splitting is
also in accordance with the ratio of bare tunneling strengths or atomic overlaps in-layer
(∼ 2.7 eV) and between layers (∼ 0.5 eV). Therefore, one can conclude that interlayer
coupling is indeed very strong for the experimental system, however it seems yet to be
unable to efficiently mix neighboring bands.

Still, there seems to be room for vanishing velocities in twisted bilayer graphene as shown
in panels d) and h) of 15.1. Here, parameters have been tuned well beyond experimental
realizations by doubling the orbital overlap between layers as well as bringing the layers to
55% of their experimental interlayer distance. Velocities in this case are reduced strongly
in comparison with the experimental case in panels c) and g) or the uncoupled case in
panels b) and f). Especially the energy-velocity data shows that over large regions of the
spectrum, velocities mostly vanish.

This general trend of velocities can again be confirmed by the results for a different bilayer
graphene system of larger twist angle shown in Fig. 15.2. Again, band velocities tend to
decrease substantially for very large interlayer hopping but remain largely unchanged for
experimental values that still result in strong energy splits of the lower band. Additionally,
the precise form of velocities decrease in interlayer hopping can be observed in the upper
heatmap data. Different velocity regions drop to low velocities at different values of cou-
plings in a process that resembles a crossover. Especially at extreme values of interlayer
hopping, only infinitesimal velocities can be observed.

The origin of different velocities within the same bandstructure can also be traced back by
using energy-velocity data in Fig. 15.1 and Fig. 15.2. Especially for the uncoupled case,
certain high-symmetry points and their respective features within the spectrum translate
to striking features of the velocity data. In this manner, the band extremes of the graphene
dispersion at the Γ point can be seen as branches touching zero velocity. Similarly, the
saddle point of the graphene dispersion with its van-Hove singularity around the M point
touches zero velocity. Particularly high velocities are observed mostly in the center of the
graphene bands and are further split by increased interlayer coupling into a fast and a slow
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Figure 15.2.: Velocity statistics - Band velocities in twisted bilayer graphene as a
function of atomic overlap V for a system of large twist angle Θ = 2.2◦. A histogram of
velocities as a function of parameters can be seen in panel a), panels c), d) and e) show
cutouts with a more detailed view on the velocity statistics for the particular parameters
V = 0, 2, 6. Further information can be extracted when plotting the band velocities as a
function of the corresponding band energies, as seen in panels g), h) and i). These plots
should be read in comparison to the density of states in panel f), as well as the generic
honeycomb bandstructure in panel b). A general decrease in velocities can be observed
upon increasing the overlap V . However, different parts of the spectrum will collapse to
flat bands of infinitesimal velocity at different values of V .
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branch. The well-known Dirac cone with linear dispersion at the K points can be seen as
a single value of velocities in the energy-resolved plots.

In general, the velocity data has shown that suppression of velocities takes place for in-
creased interlayer coupling, just not at the experimental values. This contradicts the naive
estimation of simply having some quasi-random interlayer coupling on the order of the
band spacing in order to suppress velocities greatly. It remains to be shown that the lead-
ing principle behind this delayed suppression is the process of Anderson localization in
momentum space.

Apart from the general trend, some special points of anomalously low velocities can be
observed in the velocity data. These include

• magic angle flat bands: with experimental values of parameters, one obtains flat
bands around the center of the spectrum as clearly visible dots at zero velocity, c.f.
panel g) of Fig. 15.1. These flat bands only appear for the magic angle but clearly
pose an exception to the general trend of band flattening observed in the rest of the
velocity data.

• equally spaced states: For strong values of interlayer hopping, a ladder-like series
of equally spaced dots forms at the lower end of the spectrum at zero velocity, c.f.
Fig. 15.1 h). These states will be interpreted as harmonic oscillator states in a later
section of this chapter and mark yet another exception from the general trend of
velocities.

In the following sections of this chapter, these two exceptions will be mostly excluded
as they refer to individual states and do most likely not describe the general behavior
prevalent in most Moiré systems. However at the end of this chapter, we will come back
to discussing their relevance beyond twisted bilayer graphene.

15.3. Energy level statistics
We now turn our focus to the observables directly related to the energies within the band-
structure. It is especially helpful to determine statistically how many levels are crossing
or avoiding a crossing by level repulsion. A useful quantity in this context is the relative
level spacing

r̃i = Ei+1 − Ei

Ei − Ei−1
(15.2)

of some band i in the bulk of the spectrum, or even better the back-folded version

ri = min(r̃i, 1/r̃i). (15.3)

Despite a single value ri not giving much information, a large set of ri can tell a different
story. In the case of freely crossing levels, a set of such relative level spacings shows Poisson
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statistics, whereas avoided crossings lead to some form of Wigner-Dyson statistics. These
differences come from extreme quotients ∆Ei/∆i−1 always appearing at the crossing points,
in turn leading to an effective accumulation of small ri values. Therefore, displaying the
set of measured ri values as a histogram can give insights into how much energy levels try
to repel each other.

A more quantitative measure of agreement with a certain distribution can be obtained by
the so-called Kullback-Leibler divergence. This entropic measure quantifies the distance
between two distributions P and Q as

DKL(P |Q) =
∑

i

Pi log
(
Pi

Qi

)
(15.4)

which is minimal if P and Q are the same distribution. Note that DKL(P |Q) ̸= DKL(Q|P ),
i.e. the measure is not symmetric.

Results for an initial calculation measuring the dependence of statistics on the interlayer
coupling in twisted bilayer graphene are shown in Fig. 15.3. Both the Kullback-Leibler
divergence as well as individual histograms show that the ensemble of ri values resembles a
Poisson distribution for V = 0, whereas it tends to disagree stronger with Poisson statistics
for increased V . For finite V , the shape of the distribution approaches a Wigner Dyson
statistics curve for the orthogonal symmetry class (GOE). This behavior is also expected,
since the Hamiltonian matrices for fixed momentum k⃗ are orthogonal matrices.

Overall, the Kullback-Leibler divergence shows good agreement with velocity data which
already suggested level flattening in the previous section. Decreases in velocity for moderate
interlayer tunneling can be brought into correspondence with decreases in the KL|GOE
curve which indicates an increasing agreement with Wigner-Dyson statistics.

However, this agreement with velocity data only holds up for intermediate values of V .
Upon increasing the value of the interlayer tunneling further, both Kullback Leibler diver-
gence as well as histograms show a revival of Poisson resemblance and a suppression of
the resemblance to GOE. This behavior is in contrast to the unchanged suppressed band
velocities, which still indicate flattened bands in a direct way.

A closer inspection of the individual histograms reveals signs of variation beyond a simple
change from Poisson to Wigner Dyson. Especially histograms for larger values of V seem
to be superimposing different elementary Poisson or Wigner Dyson curves which might
originate from different regions of energies.

A possible explanation for the shift back from Wigner-Dyson to Poisson might be the
formation of effectively separate sectors within the Hilbert space of wavefunctions. This
can e.g. be induced by the onset of (crystalline) symmetries. If those separate sectors build
up, different parts of the spectrum are effectively decoupled and can freely cross without
level mixing while bands within each sector feel enormous repulsion among themselves. A
necessary next step is now to search for possible symmetries within the wavefunctions and
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Figure 15.3.: Energy level statistics - Statistics of relative level spacing ri =
∆Ei/∆Ei−1 for variation of interlayer tunneling V in comparison to velocity data shown
in panel a). A histogram of r values will follow either Poisson or Wigner Dyson statistics,
indicating trivially crossing levels or level repulsion respectively. Histograms for various
values of overlap V are shown in the lower row in panels c) - f). Panel b) shows the
Kullback-Leibler (KL) divergence as a quantitative measure on how well the histograms
agree with either distribution. In general, lower values of the KL-divergence signal better
agreement. There is a general trend for the levels to show Poisson statistics at low values
of V whereas they show more Wigner Dyson statistics for higher values of V , signaling
the importance of level repulsion induced by increased interlayer coupling. For very high
values of V , this trend seems to reverse.
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15.4. Wavefunction statistics

Figure 15.4.: Twisted bilayer wavefunctions in real space - Representative set of
wavefunctions for the m = 27 system with parameters close to experiment. Wavefunctions
are taken for different parts of spectrum, increasing in energy from to left to bottom right.
Only the upper layer is plotted for simplicity. Color in the plots indicates the complex
phase whereas the transition from white to colorful represents an increase in magnitude.
Lower lying states are localized either in the AB or AA regions of the Moire cell with the
AB localized states lying even lower in energy since hopping is smaller for those states. AA
localized states mostly form very clear patterns which will later be identified as harmonic
oscillator states. The rest of wavefunctions is dominated by seemingly random stripes of
intensity across the unitcell.

investigate those in greater detail.

15.4. Wavefunction statistics
As a last measurable quantity, let us examine properties of individual wavefunctions in
this section, such as qualitative features and / or inverse participation ratio (IPR) in real
and momentum space. Wavefunctions in real space are directly obtained from exact di-
agonalization of the Hamiltonian matrix as the respective eigenvectors. To also obtain
wavefunctions in momentum space, one has to perform a Fourier transform on these eigen-
states. For the matter of this section, it is helpful to look at the two layers of twisted
bilayer graphene separately.

Particular focus is put on two distinct features. For one, emergent symmetries in the pa-
rameter region of strong interlayer tunneling are relevant for the contrast between velocity
and energy level statistics pointed out in the last section. Secondly, discussing the wave-
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15. Delocalized states in twisted bilayer graphene

Figure 15.5.: Twisted bilayer wavefunctions in momentum space - Fourier trans-
forms of the wavefunctions in Fig. 15.4. The Fourier transform reveals the connection of
the wavefunctions to the original honeycomb dispersion as the wavefunctions trace equal
energy contours of this dispersion.

functions themselves is a good opportunity to examine the general trend of delocalization
along one-dimensional contours in momentum space that is proposed as an alternative
delocalization scenario.

Let us start by discussing typical wavefunctions for experimental parameters which are
shown in Fig. 15.4. In this figure, wavefunctions are shown for several different energies
within the spectrum. Wavefunctions of lowest energies are slowly varying functions that
are localized in AB regions where hopping effects are comparably weaker. The next lower
energies show slowly varying wavefunctions in the AA regions. These states have a re-
markable resemblance to harmonic oscillator eigenfunctions which will be of importance
later on. The rest of states seem to be mostly composed of random stripy patterns.

More structure can be seen if one performs the Fourier transform to momentum space as
displayed in Fig. 15.5. Here, the same wavefunctions as shown in Fig. 15.4 are Fourier
transformed and plotted. It can be seen that these wavefunctions show a clear tendency
to localized along the equal-energy contours of the initial graphene dispersion of that par-
ticular energy. For low energies, the wavefunctions localize close to the Γ point. For
increasing energy, they spread more outwards but stay localized at one-dimensional con-
tours. Even the random looking real space data for states of higher energies now appears
to be consistent in momentum space.

Another feature of individual wavefunctions is their change upon increasing the interlayer
tunneling V as shown in Fig. 15.6. Here, representative states are shown in both real
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Figure 15.6.: Delocalization of wavefunctions in momentum space - Represen-
tative set of wavefunctions for a system of fixed twist angle θ = 1.25◦, i.e. m = 27, for
increasing values of overlap V . Upper row shows the wavefunctions in real space, lower
row shows their Fourier transform. V is increased from left to right. A general tendency
can be observed for states to become more delocalized in momentum space along the cor-
responding parts of the honeycomb dispersion. Also symmetries within the real space
wavefunctions become more relevant with increasing V .

space (upper row) as well as momentum space (lower row). Note that due to several
band crossings it is very difficult to track individual wavefunctions when increasing V .
Therefore, for each value of V a representative state is shown which reflects the typical
behavior of wavefunctions for this value of interlayer tunneling. The progression of these
states shows a continuous evolution from states which are localized in momentum space
to states which are completely delocalized in momentum space. In between these two
limits, states seem to only delocalize along the one-dimensional equal-energy contours of
the single-layer dispersion. Although in Fig. 15.6 only shows four example wavefunctions,
this trend can be observed to be quite universal across the entire spectrum and for different
tunneling values.

Yet another open question to answer is the discrepancy between velocity and energy level
statistics for high interlayer tunneling, specifically why parts of the spectrum seem to be
delocalizing but do not show level repulsion in the Kullback-Leibler divergence. In the last
section, symmetries of the wavefunctions were proposed to be forming, which could lead
to a division of the Hilbert space into sub-blocks.

An initial observation from the data are very symmetric real space wavefunction for high
interlayer tunneling V displayed in Fig. 15.6. On the level of individual wavefunctions
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one can qualitatively observe that many states show emerging (crystalline) symmetries for
high values of interlayer tunneling, strengthening the hypothesis of Hilbert space blocks
developing.

The conclusions that can be drawn from this data are quite far reaching. First of all, the
data strongly suggests that wavefunctions in momentum space are (de-)localizing along
specific equal-energy contours of their initial single-layer dispersion. These contours are
chosen by the relative energy of the respective state within the bandstructure. The amount
of localization depends on the interlayer tunneling, with no interlayer tunneling leading to
fully localized states and high values of interlayer tunneling leading to fully delocalized
states that even spread away from the equal-energy contours. Second, for larger values of
interlayer tunneling, (crystalline) symmetries can play an important role when the wave-
functions delocalize into the 2d plane.

All in all, the analysis of individual wavefunctions proved to be a crucial piece in describing
a concise picture of delocalization in momentum space. Wavefunctions not only strength-
ened the delocalization trend in momentum space but also showed that different regions
of the spectrum have very different eigenfunctions. In the next section, let us therefore
discuss all observables together for different regions of the spectrum separately.

15.5. Spectral dependence of observables
Having discussed velocity statistics, energy level statistics as well as individual wavefunc-
tions in the last sections, let us here apply their implications on different parts of the
spectrum. The Kullback-Leibler divergence already showed signs of different spectral re-
gions contributing differently to the overall quantities, which is why an energy resolved
analysis of all quantities is a necessary endeavor.

Before starting the discussion, let us define more quantitative measurements to describe
properties of the individual wavefunctions. As a direct measure of (de-)localization, the
inverse participation ratio (IPR) of the wavefunctions has proven to be a useful tool. The
IPR quantifies the number of sites over which a wavefunction is spread in real or momentum
space [131] and is defined as

IPR(ψ) =
∑

i |ψi|4∑
i |ψi|2

. (15.5)

For a wavefunction that is equally delocalized on N sites, ψi ∼ 1/
√
N , the IPR can be

calculated to be IPR(ψ) ∼ 1/N . Therefore, the number of sites that a given wavefunction
occupies can be estimated as N ∼ 1/IPR(ψ). In the following, this is used as a quantitative
measure of delocalization of individual states in momentum space.

To quantify this emergence of symmetry, let us define a quantitative measure as well. In
particular, spatial symmetries will be in the focus of the following discussion. These sym-
metries are in general defined by a transformation S : r⃗i 7→ r⃗j = S(ri). This transformation
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defines a symmetry matrix in the basis of the Moiré cell as

Sij =
1 r⃗j = S(ri)

0 else
(15.6)

i.e. states ψ can be probed to be symmetric under S in terms of checking Sψ ∼ ψ or
computing ψ†Sψ as a quantitative measure of the strength of this symmetry. If this
number is zero, no symmetry is present as ψ and Sψ remain orthogonal. However if this
number is 1, the state is fully symmetric under S.

In the following, we want to focus on the mirror-and-layer-flip symmetry present in twisted
bilayer graphene. This symmetry mirrors the lattice around the x-axis as well as exchanges
the two layers. Wavefunctions do not necessarily have to fulfill this symmetry but can be
probed to what extent they do.

With these definitions in place, observables in three distinct regions of the spectrum have
been computed. Data for low-energy bands is shown in Fig. 15.9, data for states around
half-filling and the flat bands is shown in Fig. 15.8 and data for states at higher energies
is shown in Fig. 15.9. Let us now go through the observables one-by-one, comparing these
different spectral regions.

Starting with the analysis of band velocities, depicted in panels b) respectively, one can see
that the different branches, already visible in Fig. 15.2 a), can be attributed to different
regions of the spectrum. Whereas high energies generally contribute low velocities up to
Ø1, low energy states contribute the two crossing branches at high velocities. Nevertheless,
independent of energy, all velocities decrease for increasing value of V , showing a general
trend to flatten bands for increasing interlayer couplings.

As a direct measure of delocalization, the data for the IPR depicted in panels c) shows that
delocalization in momentum space is in principle present all across the spectrum. This is
in agreement with the velocity statistics as the onset of delocalization seen in the IPR is
coinciding with a decrease of velocity.

Coming to the Kullback-Leibler divergence depicted in panels e), the three regions seem to
behave differently at first glance. Whereas the central and upper parts of the spectrum show
Wigner Dyson statistics for intermediate values of tunneling, lower parts of the spectrum
seem to host only Poisson statistics for all values of coupling. Furthermore, the trend to
fall back to Poisson statistics for strong increase of interlayer tunneling is most pronounced
in the upper parts of the spectrum.

However despite these differences, all three regions of the spectrum follow the same general
trend. They all show clear Poissonian statistics for no interlayer tunneling, a developing
tendency for non-Poissonian behavior when increasing tunneling and finally coming back
to Poisson statistics at large values of tunneling. This trend is pronounced differently in
all three regions but especially the Kullback-Leibler divergence shows this trend for all
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Figure 15.7.: Delocalization at high energies - Panels show statistics for states at
high energies, highlighted within the density of states in panel a). Panels b)-d) display
statistics of different observables as a function of interlayer coupling V . Histograms of
the observables are displayed by color, whereas averages are drawn as a red line. Both
velocities (panel b)) and IPR (panel c)) show clear signs of delocalization. This trend is
only reflected partly in the Kullback-Leiber divergence of level spacings, displayed in panel
e), which finds signatures of Poisson statistics again for larger values of V . However, this
trend can be attributed to the role of symmetries which show increased relevance for large
V by more finite symmetry overlaps in panel d).
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Figure 15.8.: Delocalization around half filling - Panels show statistics for states at
medium energies around half filling, highlighted within the density of states in panel a).
Panels b)-d) display statistics of different observables as a function of interlayer coupling
V . Histograms of the observables are displayed by color, whereas averages are drawn as a
red line. Both velocities (panel b)) and IPR (panel c)) show clear signs of delocalization.
This trend is mostly reflected in the Kullback-Leiber divergence of level spacings, displayed
in panel e). In contrast to the other parts of the spectrum, symmetries play only a reduced
role at the investigated values of interlayer coupling V . This is reflected by still retaining
the majority of symmetry overlaps near zero in panel d) for large V .
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Figure 15.9.: Delocalization at low energies - Panels show statistics for states at low
energies, highlighted within the density of states in panel a). Panels b)-d) display statistics
of different observables as a function of interlayer coupling V . Histograms of the observables
are displayed by color, whereas averages are drawn as a red line. Both velocities (panel b))
and IPR (panel c)) show clear signs of delocalization. This trend is only poorly reflected in
the Kullback-Leiber divergence of level spacings which finds signatures of Poisson statistics
across all coupling values V . However, it should also be noted that symmetries, depicted
in panel d), seem to play a more pronounced role compared to other parts of the spectrum.
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regions.

On the level of individual histograms, depicted in panels f) - h) respectively, this trend
is reflected. At zero interlayer coupling in panels f) the statistics of level spacings follows
a nearly perfect Poisson distribution in all three cases. For higher values of interlayer
coupling, the histograms then show partly very clear signs of Wigner-Dyson statistics and
partly signs of recovering Poisson statistics, all in agreement with the general KL trend.

Last but not least, let us discuss results for the symmetry overlap ψ†Sψ which are shown
in panels d) respectively. In general, symmetries can be seen to develop consistently for
increased interlayer coupling. Although data is not very clean, it becomes apparent that
the three regimes show similar behavior while still varying in detail.

In the upper bands of the spectrum, depicted in Fig. 15.7, the Kullback-Leibler divergence
previously showed only a narrow window of Wigner Dyson statistics. The fast onset of WD
statistics agrees with both IPR falling rapidly as well as symmetry overlaps being mostly
zero. However already for V > 10, the majority of symmetry overlaps is non-zero which
indicate a stronger role of symmetries reflected in Poissonian level statistics.

The central bands of the spectrum, depicted in Fig. 15.8, behave in many ways similar to
the upper bands. However, there are two key differences. First of all, the IPR is falling
much less rapidly, which is reflected in the Kullback-Leibler divergence transitioning to
Wigner Dyson statistics only at intermediate values of V . Secondly, symmetries are much
less relevant as the majority of symmetry overlaps stays close to zero even for larger values
of V . This agrees nicely with the extended region of WD statistics as shown by the
Kullback-Leibler divergence.

Finally, in the lower bands of the spectrum, depicted in Fig. 15.9, symmetries are more
relevant as hinted by an increased number of non-zero symmetry overlaps. Also, since the
IPR starts dropping slower compared to the other regions, one might conclude that sym-
metries are more effective at low energies to split the Hilbert space into sub-blocks which
effectively prevent the Kullback-Leibler divergence from showing non-Poisson behavior for
all coupling values V .

Another helping factor for the lower part of the spectrum might be the presence of harmonic
oscillator states which further interfere with level statistics as well as the split of the lower
graphene band, which is clearly visible in the velocity statistics. One can therefore conclude
that delocalization is also present in the lower bands, but does not show up on the Kullback-
Leibler divergence of level statistics due to a number of reasons.

Overall, the data suggests that different regions of the spectrum behave qualitatively the
same, however with different signatures in the respective observables. This universal mech-
anism is layed out in the following section.
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15.6. The three regimes of localization
Throughout the previous sections, many observables have contributed to forming a con-
sistent picture of how the transition from a single-layer system to a strongly layer-coupled
Moiré system looks like. Initial expectations of interlayer coupling being able to strongly
flatten bands already at experimental parameters have been rejected by numerical results
and been extended to the picture of Anderson localization in momentum space. Findings
through the many observables agree qualitatively very well and follow a generic trend suit-
able for most Moiré materials that is described in the following as the three regimes of
localization. In principle, the three regimes of localization describe the tendency of wave-
functions to (de-)localize in momentum space for a certain interlayer coupling which in
return leads to a mixing and repulsion of levels.

Regime I, small interlayer coupling – For small interlayer coupling, energy spectra of
the Moiré system remain close to their original single-layer dispersion. Energy levels cross
because of backfolding into the Moiré (unit) cell but are not mixing. In momentum space,
the Moiré system is represented by weak hopping between momentum sites which results
in effective localization to a certain momentum.

Regime II, medium interlayer coupling – For intermediate values of interlayer coupling,
e.g. close to experimental values in twisted bilayer graphene, the system is stronger ex-
erted to the Moiré potential. Energies are already influenced stronger by the interlayer
coupling, e.g. as seen as the split of the lower band in twisted bilayer graphene, however
neighboring levels are not yet effectively coupled. The lack of level mixing originates from
a momentum space mechanism. Here, hopping between momentum sites grows and leads
to a delocalization in momentum space. However, since the momentum on-site potential
given by the single-layer dispersion is still relevant, the delocalization only happens along
equal-energy contours of the initial single-layer dispersion. Incomplete delocalization along
these contours necessarily still retains the finite band velocity of states and also preserves
level crossings in the spectrum.

Regime III, strong interlayer coupling – For high values of interlayer coupling, states of
the Moiré system become more and more delocalized in momentum space as the hopping
between momentum sites is far greater than any quasi-random on-site potential. This re-
duces band velocities as well as introducing mixing between neighboring levels, leading to
an effective level repulsion within the spectrum. While wavefunctions spread out in mo-
mentum space, the effect of disorder weakens and crystalline symmetries develop. These
symmetries are dividing the Hamiltonian into blocks which prohibits level crossings be-
tween levels of different blocks entirely, resulting in Poissonian level statistics despite fully
delocalized states with vanishing velocity.
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In principle, the behavior in different parts of the spectrum follows the three regimes as
shown by all observables. However, quantitative predictions in the different parts might
be more nuanced as the regime boundaries depend on many parameters. For high energies
(upper bands) a very fast transition through the regimes occurs where symmetries only
become relevant for high coupling values and are overall not pronounced strongly compared
to other parts of the spectrum. For medium energies (bands close to half filling) one can
observe a pronounced transition through the three regimes, especially since symmetries only
become relevant for very high coupling values. Thus, an extended delocalized phase can be
seen for intermediate interlayer coupling. For low energies (lowest bands) the transition can
only be seen in velocities and momentum space occupation. Kullback-Leibler divergence
does not show any trace of level repulsion due to a number of reason. For once, symmetries
are more pronounced even at lower interlayer coupling, also other states such as harmonic
oscillator ladder states interfere with the spectrum to effectively prohibit the development
of Wigner Dyson level statistics.

Apart from this general trend, the remainder of this chapter is used to describe those states
within the bandstructure that do not follow this general mechanism. As seen in Fig. 15.10
f), twisted bilayer graphene can in principle host two regions of vanishing velocities. For
once, there is the celebrated magic angle flat band in the center of the spectrum, visualized
in panels a) and b) of Fig. 15.10. Secondly, the band bottom of the upper split of the
lower graphene band gives rise to equally spaced states with zero velocities, seen in panel
c) and d) of Fig. 15.10. These states can be identified as harmonic oscillator states whose
occurrence is naturally linked to the momentum space picture and the band minimum.
The following two sections are dedicated to discuss these two cases of anomalously flat
bands in greater detail.

15.7. Anomalously flat bands: Magic angle flat bands
Let us start the discussion of anomalously flat bands with the well-known example of magic
angle flat bands, indicated in panels a) and b) of Fig. 15.10. These bands occur in the
center of the spectrum at half filling and only turn extremely flat for a specific angle. More
precisely, the bandwidth of these central bands has a series of minima close to zero for a
set of special angles, so-called magic angles. In experiments, these small bandwidths are
observed as well.

In the present calculations, magic angle flat bands only occur at a twist angle of ∼ 1.2◦

which is given by the commensurate pair m = 27, n = 26. Fig. 15.11 shows bandstructures
and corresponding density of states for a set of angles which decreases from top to bottom
beyond the magic angle of ∼ 1.2◦. One can observe that the central bands are only flat
and separated from the rest of bands at the magic angle but start to mix with other bands
again for larger angles. The separation itself originates from a finite corrugation as without
such corrugation, the central bands do not exhibit a band gap to the rest of the spectrum
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15. Delocalized states in twisted bilayer graphene

Figure 15.10.: Anomalously flat bands - Data for the experimental parameter set
of twisted bilayer graphene, panels a)+c) show parts of the bandstructure, panels b),d)
and e) show the density of states, panel f) shows band velocities as function of energy.
Two anomalously flat regions emerge in the spectrum: magic angle flat bands (c.f. panels
a)+c) which show data from the upper highlighted area of e) and f) ) as well as harmonic
oscillator ladder states ( c.f. panels c)+d) which show data from the lower highlighted part
of e) and f) ).
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Figure 15.11.: Formation of magic flat bands - Sequence of bandstructures of twisted
bilayer graphene with corresponding density of states. The twist angle θ is decreased from
top to bottom. At the angle of θ = 1.25◦ (corresponding to m = 27, n = 26), displayed
in panels e) and f), the bandwidth of the flat bands is minimized and starts to increase
upon further decrease of angle. This corresponds to the magic angle condition seen in
experiments and proceeding studies.
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but are still flat at the magic twist angle.

In principle, the magic flat bands can also occur at different angles, however only through
fine-tuning of other coupling parameters. In this regard, one can understand the angle of
∼ 1.2◦ as the magic angle for the experimental parameter set. In real experiments, the
magic angle is also slightly smaller at around ∼ 1.1◦ which can be traced back to effects
of relaxation which are not included into the real space model at hand.

At this point, one might wonder if the magic angle flat bands can also be described in terms
of the Anderson localization mechanism in momentum space, discussed in the previous
section. The answer to this is both yes and no.

In principle, the flat bands are localized at the K points in momentum space which means
that the graphene dispersion of their specific energy is not a 1d contour (which it is for
all other energies) but a single point. Therefore, true two-dimensional delocalization in
momentum space can already occur for small values of interlayer coupling, i.e. the magic
angle flat bands don’t have to traverse the three regimes of localization laid out before.
One can thus conclude that magic angle flat bands are in general allowed as flat bands
within the spectrum.

However, it is well-known that the magic angle flat bands only turn flat at certain magic
angles. This cannot be reproduced in terms of the Anderson localization scheme discussed
previously. One can argue that from this localization point of view, there is now special
reason why the bands should be flat generically or why they should not, i.e. one has to
conclude that the magic angle flat bands are indeed flat magically.

15.8. Anomalously flat bands: Harmonic oscillator states
The second region of anomalously flat bands within the spectrum of twisted bilayer graphene
can be found at the band bottom of the upper split of the lower graphene band. This regions
hosts equally spaced states with zero velocity as shown in panels c) and d) of Fig. 15.10.
As having noticed in previous sections, these states emerge for an increase in interlayer
coupling and appear in various parameter regimes, in contrast to the magic angle flat
bands.

Qualitatively these bands are far more abundant than the magic angle flat bands as illus-
trated in Fig. 15.12. Here, three vastly different parameter sets are compared with respect
to the emergence of equally spaced flat bands. One can observe a different spacing between
levels as well as a different number of total levels, however the feature of equally spaced
states remains the same.

Another observation in numerics is the degeneracy of these bands. If one concentrates on
a single value of k⃗, the lowest of these levels is not degenerate, the second level is shared
between two states, the third level by three and so on. In general one observes that the
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Figure 15.12.: Harmonic oscillator ladders - Velocity statistic data for twisted bi-
layer graphene systems of different angle, atomic overlap and layer geometry. Each system
exhibits the same tendency to form harmonic oscillator states at the upper split of the Γ
point. Harmonic oscillator spacing depends on angle as well as on other coupling parame-
ters, therefore varies in between the plots.

nth level is n-fold degenerate.

The degeneracy of levels as well as the equal spacing reveals resemblance to generic har-
monic oscillator levels. Upon close inspection, these levels can indeed be understood in
terms of eigenstates of a harmonic oscillator in momentum space as the following argu-
ment reveals. Previous sections already introduced the core concept of identifying the
Moiré problem with those of a hopping Hamiltonian in momentum space where hopping
was given by the interlayer coupling V and where the on-site potential was given by the
original single-layer dispersion ε(k⃗). Applying this argument to the bottom of the graphene
bands leads to a hopping problem with a leading-order quadratic potential, i.e. a harmonic
oscillator.

More precisely, the potential in momentum space will take the form ε(k⃗) ∼ G2
M/m near the

band minimum where m denotes the local curvature. Since hopping in momentum space
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Figure 15.13.: Harmonic oscillator wavefunctions - Eigenstates of the m = 27 system
show resemblance with harmonic oscillator levels. Their energies are degenerate with degree
n in level n. Here, wavefunctions are shown up to n = 5 in correspondence to the energy-
velocity plot discussed before. Colors in the wavefunctions correspond to their complex
phase.

is given by the interlayer coupling denoted by V , the harmonic oscillator frequency can be
roughly estimated to be ω ∼

√
V G2

m/m ∼
√
V /L. The dependence ω ∼ 1/L can also be

seen qualitatively in Fig. 15.12 where the largest spacing between levels was observed for
the largest angle, which corresponds to the smallest value of linear Moiré cell size L.

The last piece of well-fitting resemblance with a true harmonic oscillator are the wavefunc-
tions of the states themselves. In general, these wavefunctions show little to no variation
upon change of parameters as well as a striking difference from the usual twisted bilayer
wavefunctions. A set of wavefunctions for the levels n = 1 up to n = 5 can be found in
Fig. 15.13.

In terms of universality, the harmonic oscillator states are to some extent generically ap-
pearing at the band bottom. The main ingredients, a quadratic band minimum as well as
hopping in momentum space, are very likely to be present in most Moiré systems. However,
one last key ingredient for the clean appearance of these states is missing. This become
apparent from the observation that harmonic oscillator states are not developing equally
in both the upper and lower band minimum in twisted bilayer graphene.

The difference between the band minima in the upper and lower split of the band is their
localization center within the real space unitcell. While the lower band features localization
within the AB regions of the Moiré cell, the upper band has states that are localized in
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the AA regions. The regions themselves differ in symmetry. Whereas the AA regions are
nearly rotationally symmetric, the AB regions have more of a six-fold rotational symmetry.
This difference seems to translate to the harmonic oscillator states as well since one finds
six-fold degenerate states at the bottom of the spectrum, but harmonic oscillator ladders
at the bottom of the other split.

Still approximate rotational symmetry around some center of the Moiré pattern is realized
in many materials and as such one can expect the ladder of harmonic oscillator states to
appear in other systems beyond twisted bilayer graphene as well.
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16. Summary and discussion

In summary, Ref. [P8] as well as this chapter provided a statistical description of band-
structures in twisted bilayer graphene to investigate the localization behavior of states.
The investigation was driven by the initial observation that incommensurabilities between
the single-layer lattice periodicities of the twisted layers act as an efficient source of dis-
order and therefore should lead to level repulsion within the bandstructure. Although
calculations have been specific to this single system, similarities in modeling suggest that
they extend to generic Moiré systems alike.

In total, many different observables have been calculated within the real-space model of
twisted bilayer graphene yielding results that allow for the definition of three distinct
regimes of localization in momentum space. Regime I is characterized by small interlayer
coupling and corresponding strong localization in momentum space. Energy spectra within
this regime show no sign of level repulsion. In regime II, an increase in interlayer coupling
leads to effective delocalization of states along the one-dimensional Fermi lines in momen-
tum space. As a consequence, states become correlated and levels in the bandstructures
have a tendency to avoid crossings. In regime III, the delocalization in momentum space is
enhanced by even stronger interlayer coupling. However, the strong coupling also enhances
the importance of internal symmetries which divide the Hilbert space into blocks and ham-
per the development of global level repulsion as individual blocks become independent and
do not interact. Nonetheless, levels are still mostly flat and avoid crossings within their
respective Hilbert space blocks.

Apart from the general localization-delocalization mechanism, two types of non-generic flat
bands have been identified. First, the celebrated magic angle flat bands have been found to
be indeed of special origin. On first glance, they do not show a transition through the three
regimes. This exception can be explained by the fact that their Fermi surface is given solely
by the Dirac point and delocalization in momentum space can therefore immediately occur
in two dimensions. The other type of flat bands are harmonic oscillator states which form
at the bottom of bands. Increases in interlayer coupling lead to a pronounced developing of
these bands, although their experimental relevance is questionable as they lie deep within
the bandstructure far away from the Fermi energy.

In comparison to Ref. [P8], this chapter provided a slightly different perspective on the
localization mechanism. Whereas Ref. [P8] mainly discussed results obtained by the mo-
mentum space continuum model, this chapter aimed at providing results from the real-space
perspective. Altogether, both models give similar results while approaching calculations
from different limits. Whereas the momentum space model is inherently defined for small
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twist angles, the real-space model works best at large twist angles which correspond to
small Moiré cells yielding matrices that can still be exactly diagonalized. However, the
exact diagonalization also has the benefit of yielding the entire bandstructure in the real-
space model, whereas the continuum model only describes the vicinity of the flat bands
and therefore can only probe behavior in the center of the spectrum.

Concerning results, both models reach their limits in the scope of this chapter and Ref. [P8].
The momentum space model, discussed in Ref. [P8], captures the transition through the
three regimes in the vicinity of the flat bands. In comparison, results utilizing the real-
space model are lacking in the number of independent momenta, which are limited by
numerical reasons, as well as struggling with interpretations as different regions of the
spectra transition through the three regimes at different rates. Still, the three regimes
could be resolved in the real-space model through the entire spectrum. All in all, both
models complement each other very well and in combination can give much insight into
the physics of twisted bilayer graphene and Moiré systems in general.

Coming back to the initial question about how flat bands generically evolve in Moiré
systems, one can argue that all Moiré materials should follow the localization transition
of the three regimes. Details may vary as the individual single-layer dispersions vary
between different compounds, however the sequence of regimes appears to be universal. It
is therefore necessary to reach regime III in a material to generally find flat bands. This
can either be done by extraordinary high values of interlayer tunneling or by doping to a
small Fermi surface and therefore facilitating momentum space delocalization away from
the Fermi surface for much lower values of interlayer coupling, similar to the magic angle
flat bands in twisted bilayer graphene.

Yet another approach for more level flatness is to implement long-ranged momentum space
hopping. Such a hopping could greatly improve the delocalization abilities of wavefunctions
in momentum space. To implement this kind of hopping in a material, one had to imple-
ment short-ranged real-space structures, like individual atoms that share the periodicity
of the Moiré.

All in all, the localization process of the three regimes offers a broadly applicable tool to
design new flat-band Moiré materials based on already existing compounds as it offers a
qualitative description of how flat bands can form in these systems.
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In summary, this thesis showed the relevance of electronic spectra and their numerical
solution. Throughout the chapters, examples from different areas of Condensed Matter
Physics have been discussed, including variations to particle number and system size. In
total, each example highlighted a different aspect of electronic spectra taking yet another
perspective on their solution.

In Part I about RIXS, the focus has been set on measuring electronic spectra of many par-
ticles at the example of Iridate materials with partially filled d-shells. To this extent, the
electronic structure was calculated numerically first by exact diagonalization techniques.
Then in a subsequent step, the numerical eigenstates have been used together with geomet-
rical information to obtain a numerical approximation to the RIXS scattering process and
corresponding scattering intensities which were further compared to experimental spectra.

These methods could be applied to a variety of different materials, including systems with
a single or more Ir sites per cluster. A general trend in this part was to examine the
formation of effective j = 1/2 moments under strong spin-orbit coupling and Hubbard
interaction as well as their delocalization under hopping on the cluster. Such effective
j = 1/2 states played an important role in the formation of so-called Kitaev systems,
which mark a natural incarnation of a spin system exhibiting a spin-liquid ground state.
All in all, the first part demonstrated how a versatile numerical approach to electronic
spectrum calculation can be used to probe the building blocks of topological models on a
fundamental level.

In Part II, focus shifted towards the application of supersymmetry in electronic spectra.
In practice, this shift was accompanied by going from many fully interacting particles on a
small cluster to a single non-interacting particle on an infinite periodic lattice. It was then
demonstrated that the resulting electronic band structures could be mapped to related
bosonic lattice systems by employing supersymmetry. In particular, supersymmetry was
shown to be acting as a graph correspondence which greatly simplified the mapping process.

The applicability of such mappings was demonstrated in two examples. For the first
example, a lattice model of complex fermions was shown to be corresponding to a lattice
model of complex bosons when their two lattices could be casted as the two sublattices
of a bipartite lattice. In the second example, a model of Majorana (real) fermions on a
bipartite lattice was demonstrated to be connected to a model of real bosons on one of
its sublattices. This correspondence also implied a connection to a classical mechanical
system, a natural mechanical counterpart of the real boson system. In particular it was
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shown that the mechanical system exhibited signs of topological features, previously only
present in the Majorana fermion spectrum.

In Part III of this thesis, the investigation of electronic spectra shifted towards Moiré sys-
tems which are characterized by a large number of electronic bands stemming from enlarged
unitcells. This complexity in the huge number of bands was shown to be encapsulated in
a statistical description of the electronic band structure and in particular in the formation
of flat bands.

Calculations at the example of twisted bilayer graphene (TBG) were used to investigate
the statistics of energy bands, allowing to find an Anderson localization mechanism in
momentum space that generically flattens bands by increased Moiré potential. Although
the celebrated magic angle flat bands of TBG evade this mechanism, it still presents a
basis for other Moiré systems and therefore generically exhibits a broad applicability.

Beyond those three examples, it is worth noting that in the context of this thesis two big
code projects have been developed. The first is the Julia package RIXSCalculator.jl [S1]
which can be utilized to exactly diagonalize multi-particle Hamiltonians for systems on
localized clusters. Second, for lattice based calculations the package LatticePhysics.jl
[S3] has been implemented. This code project focuses on a graph representation of lattices
with particular applications in bandstructure calculations, employed both in the context
of supersymmetric bandstructures as well as Moiré bandstructures.

Already from looking at the code projects, it becomes apparent that there is a mutual over-
lap between the different projects. Therefore, one might naturally ask about connections
between the chapters which also provide a basis for future work.

Starting with the methods of calculating many-particle electronic spectra, as used in the
first part of this thesis about RIXS, those calculations are challenging to extend beyond
small clusters as the numerical complexity grows exponentially in the number of single-
particle states. For this reason, discussing entire lattice models as done in the second part
of the thesis about supersymmetry, on the level of many particles, might not be feasible at
all. However, it might be an option to incorporate the single-particle structure underlying
the individual Ir sites, into bandstructure calculations. Such an extension could be again
rephrased in a graphical way as a multi-layered material and might hold future applications
of supersymmetric relations alike. The combination between spin-orbit coupled moments
which hop on an infinite lattice might thus be hosting interesting connections to certain
bosonic models as well. How these aspects hold up under the presence of strong Hubbard
interaction however is yet to be seen.

Concerning a second possible connection between supersymmetry and Moiré systems, one
can first acknowledge that in this thesis computations in both parts are carried out utiliz-
ing the same optimized code package for band structure calculations, LatticePhysics.jl.
However, the two projects reside in different limits of calculations: whereas the supersym-
metric bandstructures utilize typically few interactions but are explicitly handling individ-
ual bonds or plaquettes, Moiré systems are hosting a multitude of different interactions
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and rely to a large extent on geometric information of hoppings. Especially the number of
interactions in a Moiré system prevents finding suitable plaquette substitution rules which
would allow the identification of a graphical SUSY partner system. However, yet another
system which is in close relation to Moiré systems might prove more fruitful: quasi-crystals.
Such systems are defined by a repetitive tiling of the plane in absence of strict periodic-
ity. The big structural extent can lead naturally to a multitude of different states. As
quasi crystals still only have a small local connectivity one might expect them to be the
perfect basis for a mix of statistical analysis and supersymmetry. Here, it might be possi-
ble to find supersymmetrically related quasi-crystals solely based on the local interaction
geometry by just replacing plaquettes or z-coordinated sites. In this context, fascinating
questions might arise which connect electronic states in quasi-crystals to bosonic ones.

Lastly, the statistical approach of quantum chaotic systems, discussed in the third part
of this thesis about Moiré systems, might pose the potential of further applications to
other parts within this thesis. Note that since in principle supersymmetry preserves the
energy spectrum (apart from adding flat bands at the bottom), supersymmetry generally
preserves the level statistics, yielding direct implications for bosonic systems as a conse-
quence. Moreover, applying these principles to the multitude of many-particle bands in the
systems discussed in the RIXS part might be helpful in determining different regimes or
hidden transitions. In this case, the level statistics would be rather treated as a numerical
tool than a spectroscopic measure but could give insights nonetheless.

All in all, the three parts and their intimate connections hint that there are still various
aspects of electronic spectra unexplored today and that exact diagonalization techniques
as employed in this thesis can go a long way in providing long sought-after solutions.
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Kurzzusammenfassung

Abstract

The descrip�on of electronic behavior within solids is a major part of 

modern Condensed Ma�er Physics. It is well known that depending on 

the precise condi�ons, very diverse phenomena arise from the interac�ng 

electrons in the material. To make predic�ons, it is therefore crucial to 

understand the electronic structure in a material and to compute its 

electronic spectrum. This thesis discusses three different aspects of 

electronic spectra including their numerical solu�on, each highligh�ng a 

dis�nct approach.

Die Beschreibung elektronischen Verhaltens in Materialien ist ein 

Kernpunkt moderner Festkörperphysik. Es ist bekannt, dass sich abhängig 

von den genauen Materialparametern sehr unterschiedliche qualita�ve 

Eigenscha�en aus den wechselwirkenden Elektronen ergeben können. 

Daher ist es grundsätzlich unumgänglich, für jede Art von Vorhersage das 

elektronische Verhalten des Materials zu kennen und dessen sogenanntes 

elektronisches Spektrum berechnen zu können. Das Ziel dieser Arbeit ist 

es, in drei verschiedenen Teilen jeweils verschiedene Aspekte der 

Berechnung elektronischer Spektren hervorzuheben und zu disku�eren.
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