Of symmetries, symmetry classes
and symmetric spaces:
from disorder and quantum chaos to
topological insulators
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Universal Conductance Fluctuations (UCF)

From Lee, Stone & Fukuyama (1987):
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Quasi-1D silicon MOSFET Anderson model (numerical)

Compare with fluctuations of slow neutron scattering cross sections

on nuclear targets



Symmetries



Symmetries in quantum mechanics

Q: What’s a symmetry in qguantum mechanics?
A: An operator T : Zvy; — Zvy, on Hilbert rays that preserves
all transition probabilities: | (T2, . TZ ) \2 = [(Zv, . Z ) \2.

Wigner’s Theorem:

A symmetry 7 in quantum mechanics can always
be represented on Hilbert space by an operator 7
which is either unitary or anti-unitary.

N
(Tya|Ty1) = (ya| ) |
Remark 1: The symmetries form a group, G. Eugene P. Wigner

Remark 2: Symmetries commute with the Hamiltonian (TH =HT ).
Thus “chiral symmetry” (5D = —D) is not a symmetry.



Example 1: diffuson contribution to UCF
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The role of symmetries: massless modes
Green (or resolvent) operator: G(z) = (z—H)™!

Resolvent identity: (z—w)G(z) G(w) =G(w) — G(z)

For G* := (E +ie — H)~! the U(1) symmetry of particle number
conservation entails G_Cjb: G, . Thisgivesrise to a sum rule:

Z\G \ = (2ie)"Y(G,, — G/,). Hence, Fourier transform is diffusive:

J"c/(‘G ‘) (Dg” +ie) ! diffuson: ‘

--*

. o +
Time-reversal symmetry gives: G, =Gy,

. 4
Sum rule: ZGTb Ta G;b = (2ie) " (G,u — GJo) cooperon: li



The cooperon contribution to UCF

con

lead disordered metal lead

The presence of the cooperon mode doubles the variance.



Example 2: wires with symplectic symmetry

= “Symplectic” disordered wires (i.e. time-reversal inv. electrons
subject to spin-orbit scattering in quasi-one dimension)

= Model: 1d Dirac fermions in class All (= Kramers degeneracy)

o (v A B
Bf(x)  —velg+AT(x)

2N channels coupled by N x N random matrices
A=A, BT = —B withi.i.d. Gaussian entries

= Forlarge N, disorder averages are computable by the
mapping to a nonlinear sigma model (Wegner, Efetov).
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Super Fourier Analysis and Localization in Disordered Wires
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The problem of calculating the zero-temperature mean conductance (¢? of a disordered thick metallic
wire coupled at both ends to ideal leads is formulated as a diffusion problem on a Riemannian symmetric
superspace G/K (Efetov). The problem is solved exactly by Fourier transforming the diffusion kernel.
Although the solution agrees with known results for the case of orthogonal and unitary symmetry, it has
the surprising feature that {¢) never falls below the minimum value of e2/2A for long wires with symplec-
tic symmetry, in leading order of the expansion around the metallic and thick limit.
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where T(?L,ll,lg) = exp (—(124‘[124‘[%_1)([‘/45))



Y. Takane on wires with symplectic symmetry

J. Phys. Soc. Jpn. 73 (2004) 1430

Quantum Electron Transport in Disordered Wires with Symplectic Symmetry

Yositake TAKANE

Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima
789-8530, Japan

The conductance of disordered wires with symplectic symmetry is studied by the supersym-
metric field theory. Special attention is focused on the case where the number of conducting
channels is odd. Such a situation can be realized in metallic carbon nanotubes. The average
dimensionless conductance (g) is obtained using Zirnbauer’s super-Fourier analysis. It is shown
that with increasing wire length, (g) — 1 in the odd-channel case, while (g) — 0 in the ordinary
even-channel case. It should be emphasized that the so-called Zirnbauer’s zero mode, which
has been believed to be unphysical, is essential for describing the anomalous behavior in the
odd-channel case.



The role of symmetries: symplectic zero mode

Split the expression:

(/)™ He) = 3fo(L)+ 3 (L)

> 3/2
even N: fo(L) = 39 (gﬁ) e L/25 + . (Brouwer & Frahm, 1995)

odd N: fi(L)=1+ 2¢*/5 4 .. (Takane, 2004)

CdTe
The zero mode for odd N is robust! HgTe

CdTe

(a) i

In fact, it is none other than the edge

state of the quantum spin Hall insulator E >T<1 y
(protected by symmetry & topology). ) !
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Symmetry Classes

“Symmetry classes of disordered fermions and topological insulators”
http://www.uni-koeln.de/zirn



Universality of spectral fluctuations

In the spectrum of the Schrodinger, wave, or Dirac operator

for a large variety of physical systems, such as

atomic nuclei (neutron resonances),
disordered metallic grains,

chaotic billiards (Sinai, Bunimovich),
microwaves in a cavity,

acoustic modes of a vibrating solid,
quarks in a nonabelian gauge field,
zeroes of the Riemann zeta function,

one observes fluctuations that obey the laws of random matrix

theory for the appropriate symmetry class and in the ergodic limit.



Universality: quantum chaotic billiards
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Fig. 12. Spectral fluctuations for Sinai’s billiard (see fig. 11). (a) spacing distribution
histogram; (b) Dyson—Mehta statistic. GOE and Poisson predictions are plotted for the
sake of comparison (taken from [62]).

Random matrix conjecture by Bohigas, Giannoni, and Schmit (1984)



J. Math. Phys. 3 (1962) 1199

The Threefold Way.
Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics

FREEMAN J. DysoN

Institute for Advanced Study, Princeton, New Jersey
(Received June 22, 1962)

Using mathematical tools developed by Hermann Weyl, the Wigner classification of group-repre-
sentations and co-representations is clarified and extended. The three types of representation, and
the three types of co-representation, are shown to be directly related to the three types of division
algebra with real coefficients, namely, the real numbers, complex numbers, and quaternions. The
author’s theory of matrix ensembles, in which again three possible types were found, is shown to be in
exact correspondence with the Wigner classification of co-representations, In particular, it is proved
that the most general kind of matrix ensemble, defined with a symmetry group which may be com-
pletely arbitrary, reduces to & direct product of independent irreducible ensembles each of which
belongs to one of the three known types.



Wigner-Dyson symmetry classes

= A : complex Hermitian matrices (‘unitary class’, GUE)
= Al : real symmetric matrices (‘orthogonal class’, GOE)

= All: quaternion self-dual matrices (‘symplectic class’, GSE)

This classification has proven fundamental to various areas of
theoretical physics, including the statistical theory of complex
many-body systems, mesoscopic physics, disordered electron
systems, and the field of quantum chaos.



Symmetry classes: the need for an extension

Developments (going beyond Dyson) after 1990:

= Chiral classes: random matrix models for the Dirac operator
(Gade & Wegner 1991, Verbaarschot & Zahed 1993)

= Novel interference phenomena due to Andreev reflection at
interfaces between normal metals and superconductors
(Oppermann 1990, Altland & MZ 1997)

= Universality in the statistics of the zeros of the Riemann zeta
function and ensembles of related functions (Katz & Sarnak 1996)



Example: massless g.p. modes in superconductors

The Gorkov-Green operator @(z) = (z—.7)"! = (gpp gph> satisfies
hp hh

G;TJp(Z) — —th(—Z) ? G;T)h (Z) — _Gph(_z)? GI{p (Z) — —th(—Z)

due to the canonical anti-commutation relations for fermions.

Sum rule (C exchanges particles and holes):

+ — - (=
%ggﬁ (E)97, cp(E) = _%gojﬁ (E) 45 (~E) = Yoo E) 2 E%a( E)

gives rise to the D-type diffuson (Altland & MZ, 1997):

n (D-type diffuson)



D-type diffuson in UCF

diffuson

disordered superconductor

[tact

- fluctuations in spin and heat transport (quasi-particles)



The Tenfold Way

MZ (1996), Altland & MZ (1997), Heinzner, Huckleberry & MZ (2004)



Our setting: Fock space with symmetries
Single-particle Hilbert space V, dimV =N

" Fock space for (identical) fermions:
F=FoFHNoho..OF ...k, F,=N"(V)

Particle creation (¢') and annihilation operators (c) satisfy CAR,
c&cﬁ +cﬁcjx = Og}p
= Unitary symmetries:

any group of unitary operators defined on V and extended to F
in the natural way.

=  Anti-unitary symmetries:
1. Timereversal T": V —V, extendedto 7T : F,, — F;,
2. Particle-hole conjugation C: F, — Fy_,,



Statement of problem

G = arbitrary symmetry group made from generators
as described above

F = fermionic Fock space with a G-action
C = set of all (polynomials in) G-invariant one-body operators, i.e.,

operators which commute with all symmetry generators and
are quadratic in particle creation and annihilation operators:

H:Zhaﬁcgcﬁ%— 2 (AaﬁcchnLZaﬁcﬁca)
of oa<f3

Q: What types of irreducible block occur in this setting?
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Abstract: Building upon Dyson’s fundamental 1962 article known in random-matrix
theory as the threefold way, we classify disordered fermion systems with quadratic Ham-
iltonians by their unitary and antiunitary symmetries. Important physical examples are
afforded by noninteracting quasiparticles in disordered metals and superconductors, and
by relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators
which carry a representation of some symmetry group. Our approach 1s to eliminate all



Theorem (HHZ):

Every irreducible block (of the Hamiltonians) occurring in this

setting corresponds to a classical irreducible symmetric space,

and conversely,

every classical irreducible symmetric space occurs in this way.



Example: class D

Majorana operators: Yq = %ﬁ (ca +CTO¢) s Ya2 = \%(Ca - CToc)

2N
Hamiltonian in Majorana basis: H =) Xy WaWs . Xop = —Xpa = Xpq
a<b

Time evolutions ¢ /" arein SO(2N).

Realizations:
disordered superconductors with spin-triplet pairing and

T-breaking p-wave order (Sr, RuQy); A-phase of superfluid “He.

Topological quantum computing



Symmetric Spaces



What’s a symmetric space?

Fi

Im

m Fi

n
[j* km 1_‘k

Riemann tensor:  R'j;, =o'}, — 9T} +T f

Def.: A (locally) symmetric space is a Riemannian manifold
X = G/K with covariantly constant curvature: VR=0.

Ex. 1: the round two-sphere X =S?, ds> =d6” +sin’ 0 d¢?

Ex. 2: the set X = Gr,,(C"™™) =U(m+n)/U(m) x U(n)
of all subspaces C*'~V c C"*™"

Some facts:

= Complete classification by E. Cartan (1926)
Large families: A, Al, All, Alll, BD, BDI, C, Cl, Cll, DI

" Metric tensor g;; is the only G-invariant rank-2 tensor on X



Symmetric spaces in physics

= Symmetric spaces are natural candidates for order parameter
spaces G /K (spontaneous symmetry breaking).

= Symmetric spaces are target spaces for nonlinear sigma models.

One-parameter renormalizability (in 2 dimensions):

= The large families of symmetric spaces are in one-to-one
correspondence with symmetry classes for disordered fermions.

" Many-body ground states in the mean-field approximation
(Hartree-Fock-Bogoliubov) organize into symmetric spaces. «



Mean-field ground states

Fock operators: cTa (creation), C¢ (annihilation)

Fock vacuum: c¢q|vac) =0 (x=1,2,...)
Quasi-particle vacuum: Ce|vac) =0 (x=1,2,...)
where  Cq = Z (Caf Uy o T CTOC/ Voc’a)
ai

Remark: g.p. vacua are also referred to as ground states in the
Hartree-Fock-Bogoliubov mean-field approximation.

Special case (N-particle Slater determinant):

In the presence of a group G of symmetries, we require
glvac) = |vac)e'? (forall g € G)



Mean-field ground states & symmetric spaces

Fix a symmetry group G.

As the (mean-field) Hamiltonian varies, so does x = Z |vac) .

Note: our variable g.p. vacua constitute a Riemannian manifold X
by the (geodesic) distance function
dist(x1.x0) =1 <= Z|vac,) = Ze’|vac)), ||A]|=t.

Ex. (G = U(1)): the space of N-particle Slater determinants in C**V
is a Riemannian manifold X = Gry(CY*™) = UM +N)/UM) x U(N).

Q: What can be said about the structure of X in general?

A: For any symmetry group G, the manifold X of G-invariant
quasi-particle vacua is a symmetric space (corollary of HHZ).




Quantum Spin Hall Insulator (All)

Particle number conserved > q.p. vacua are Hartree-Fock states.

I := translation group; 1 := Brillouin zone (momentum space).
Let G be generated by I"and time reversal ( T2 = —1).

Fact: the HF ground state of a band insulator
is a vector bundle I' 3k~ V (k) € C™"",
V (k) ~ C" := vector space of valence states.

Time-reversal symmetry implies TV (k) =V (—k).
At T-invariant momenta ko = —ko one has TV (ko) =V (ko).

K-theory (for class Alland T =S2) >

beoo
there exist 2 isomorphism classes of \y/“‘7’
such vector bundles (Kane & Mele, 2005). .




Alternative view (symmetric spaces)

Recall: V(k)~C"c C""" determines x € X :=U(m+n)/U(m) x U(n).
Thus {k+— V(k)} determinesa mapping {k— w(k) e X}.

Constraint TV(k)=V(—k) = Twy(k)=wy(—k),
and TV(ky)=V(ko) = (ko)< Xo=Sp(m+n)/Sp(m)xSp(n).

General picture:

Topological phases (mean field) are given by homotopy classes
of mappings into a symmetric space, ¥ : I — X, subject to an

—

equivariance condition g-w(k) =y(g-k) forall g e G.q-



“Periodic Table”

Quantum Hall Effect

Symmetry d
AZ © = Im|1 2 3 4 5 6 T 8 He-3 (B phase)
A 0 0 0 o |Z| 0 Z 0 Z 0 Z QSH: HgTe
AIIT| 0 0 1 Z 0 Z 0 Z 0 Z 0
ALl 1 0 0] 0 0 0 Z 0 Zy Zy Z Bi,,Sb,
BDI| 1 1 1 Z 0 0 0 Z 0 Zo Zo
D 0 1 0| Zo Z 0 0 0 Z 0 Zo
DIIT| -1 1 1| Zo Zo |Z| O O O Z 0 .
AIl | -1 0 0 0 |Zo Zo Z 0 0 0 Z Kitaev (2008);
cir| -1 -1 1 Zo 0 Zo Zo Z 0 0 0 .
cl o -1 0|0 Z 0 Zy Zs Z 0 0 Ludwig et al. (2009)
CI 1 —1 1 0O 0 Z 0 Zo Zo Z 0
TABLE I Periodic table of topological insulators and super- from Hasan & Kane,

conductors. The 10 symmetry classes are labeled using the Rev. Mod. Phys. (2011)
notation of Altland and Zirnbauer (1997) ' ' '

Remark: Table is incomplete because
= only special symmetry groups are considered,
= K-theory may miss some finer points of topology.



The End



