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Universal Conductance Fluctuations (UCF) 

From Lee, Stone & Fukuyama (1987): 

0.8 mm-diameter gold ring Quasi-1D silicon MOSFET Anderson model (numerical) 

Compare with fluctuations of slow neutron scattering cross sections  
on nuclear targets 



Symmetries 



Eugene P. Wigner 

Q:  What’s a symmetry in quantum mechanics? 

A:   An operator                             on Hilbert rays that preserves  

       all transition probabilities:  

Symmetries in quantum mechanics 

Remark 2:  Symmetries commute with the Hamiltonian (                  ).  

                    Thus “chiral symmetry” (                      ) is not a symmetry.  

Remark 1:  The symmetries form a group, 

Wigner’s Theorem:  

A symmetry       in quantum mechanics can always 

be represented on Hilbert space by an operator       

which is either unitary or anti-unitary. 
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Example 1: diffuson contribution to UCF 



.  Hence, Fourier transform is diffusive: 

The role of symmetries: massless modes 

Green (or resolvent) operator: 

Resolvent identity: 

For                                        the U(1) symmetry of particle number  

conservation entails                            This gives rise to a sum rule: 

Time-reversal symmetry gives:  

Sum rule:  cooperon: 

diffuson: 
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The cooperon contribution to UCF 

The presence of the cooperon mode doubles the variance. 



 “Symplectic” disordered wires (i.e. time-reversal inv. electrons  

      subject to spin-orbit scattering in quasi-one dimension) 

 Model: 1d Dirac fermions in class AII ( Kramers degeneracy) 

 For large N, disorder averages are computable by the 

     mapping to a nonlinear sigma model (Wegner, Efetov).  

Example 2: wires with symplectic symmetry 

2N channels coupled by N x N random matrices                                         

                                  with i.i.d. Gaussian entries 



where 



J. Phys. Soc. Jpn. 73 (2004) 1430  

Y. Takane on wires with symplectic symmetry 



The role of symmetries: symplectic zero mode 

Split the expression: 

The zero mode for odd N is robust! 

In fact, it is none other than the edge  

state of the  quantum spin Hall insulator  

(protected by symmetry & topology). 

(Brouwer & Frahm, 1995) 

(Takane, 2004) 



Symmetry Classes 

“Symmetry classes of disordered fermions and topological insulators” 
http://www.uni-koeln.de/zirn 



Universality of spectral fluctuations 

 atomic nuclei (neutron resonances), 

 disordered metallic grains, 

 chaotic billiards (Sinai, Bunimovich), 

 microwaves in a cavity, 

 acoustic modes of a vibrating solid, 

 quarks in a nonabelian gauge field, 

 zeroes of the Riemann zeta function, 

In the spectrum of the Schrödinger, wave, or Dirac operator 

for a large variety of physical systems, such as 

one observes fluctuations that obey the laws of random matrix 

theory for the appropriate symmetry class and in the ergodic limit. 



Universality: quantum chaotic billiards 

Random matrix conjecture by Bohigas, Giannoni, and Schmit (1984) 



J. Math. Phys. 3 (1962) 1199 



Wigner-Dyson symmetry classes 

 A   :  complex Hermitian matrices (‘unitary class’, GUE) 

 AI  :  real symmetric matrices (‘orthogonal class’, GOE) 

 AII :  quaternion self-dual matrices (‘symplectic class’, GSE) 

This classification has proven fundamental to various areas of 

theoretical physics, including the statistical theory of complex 

many-body systems, mesoscopic physics, disordered electron 

systems, and the field of quantum chaos. 



Symmetry classes: the need for an extension 

 Chiral classes: random matrix models for the Dirac operator 

     (Gade & Wegner 1991, Verbaarschot & Zahed 1993)  

 

 Novel interference phenomena due to Andreev reflection at  

     interfaces between normal metals and superconductors 

     (Oppermann 1990, Altland & MZ 1997) 

 

 Universality in the statistics of the zeros of the Riemann zeta  

     function and ensembles of related functions (Katz & Sarnak 1996) 

Developments (going beyond Dyson) after 1990: 



Example: massless q.p. modes in superconductors 

The Gorkov-Green operator                                                          satisfies 

due to the canonical anti-commutation relations for fermions. 

Sum rule (C exchanges particles and holes): 

gives rise to the D-type diffuson (Altland & MZ, 1997): 

(D-type diffuson) 
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D-type diffuson in UCF 

 fluctuations in spin and heat transport (quasi-particles) 



The Tenfold Way 
MZ (1996), Altland & MZ (1997), Heinzner, Huckleberry & MZ (2004) 



Our setting: Fock space with symmetries 

 Fock space for (identical) fermions: 

Single-particle Hilbert space  

Particle creation           and annihilation operators         satisfy CAR, 

 Unitary symmetries:   
     any group of unitary operators defined on      and extended to         
     in the natural way.  

 Anti-unitary symmetries: 
     1. Time reversal                         extended to           
     2. Particle-hole conjugation   



Statement of problem 

Q:  What types of irreducible block occur in this setting? 

     =  arbitrary symmetry group made from generators  

         as described above 

 

     =  fermionic Fock space with a      action 

 

      :=  set of all (polynomials in)      invariant one-body operators, i.e., 

           operators which commute with all symmetry generators and  

           are quadratic in particle creation and annihilation operators:  

 





Theorem (HHZ): 

Every irreducible block (of the Hamiltonians) occurring in this 

setting corresponds to a classical irreducible symmetric space,  

 

and conversely,  

 

every classical irreducible symmetric space occurs in this way. 



Example: class D 

Topological quantum computing 

Realizations:  

disordered superconductors with spin-triplet pairing and  

T-breaking p-wave order (                  );  A-phase of superfluid  

Majorana operators:  

Hamiltonian in Majorana basis:  

Time evolutions                 are in  



Symmetric Spaces 



What’s a symmetric space? 

Def.:   A (locally) symmetric space is a Riemannian manifold    

                            with covariantly constant curvature: 

 Complete classification by E. Cartan (1926)  

     Large families: A, AI, AII, AIII, BD, BDI, C, CI, CII, DIII 

Some facts: 

 Metric tensor        is the only     -invariant rank-2 tensor on 

Ex. 1:  the round two-sphere 

Riemann tensor: 

Ex. 2:  the set 

            of all subspaces  



 Many-body ground states in the mean-field approximation  

     (Hartree-Fock-Bogoliubov) organize into symmetric spaces. 

 The large families of symmetric spaces are in one-to-one 

     correspondence with symmetry classes for disordered fermions.  

 Symmetric spaces are target spaces for nonlinear sigma models. 

     One-parameter renormalizability (in 2 dimensions): 

 Symmetric spaces are natural candidates for order parameter  

     spaces            (spontaneous symmetry breaking). 

Symmetric spaces in physics 



Mean-field ground states 

Fock operators:           (creation),          (annihilation) 

Fock vacuum: 

Quasi-particle vacuum: 

where 

Remark:  q.p. vacua are also referred to as ground states in the    
                 Hartree-Fock-Bogoliubov mean-field approximation. 

In the presence of a group      of symmetries, we require 

Special case (N-particle Slater determinant): 



Mean-field ground states & symmetric spaces 

Fix a symmetry group      . 

As the (mean-field) Hamiltonian varies, so does                           . 

Note: our variable q.p. vacua constitute a Riemannian manifold  

by the (geodesic) distance function 

Q:  What can be said about the structure of      in general? 

A:  For any symmetry group     , the manifold     of     -invariant  

      quasi-particle vacua is a symmetric space (corollary of HHZ). 

Ex. (                 ):  the space of N-particle Slater determinants in    

is a Riemannian manifold  



Quantum Spin Hall Insulator (AII)  

Particle number  conserved    q.p. vacua are Hartree-Fock states. 

    :=  translation group;       :=  Brillouin zone (momentum space). 

Let        be generated by      and time reversal (                  ). 

K-theory (for class AII and              )     

there exist 2 isomorphism classes of  

such vector bundles (Kane & Mele, 2005). 

Fact:  the HF ground state of a band insulator  

is a vector bundle                                             , 

                     :=  vector space of valence states. 

Time-reversal symmetry implies 

At    -invariant momenta                      one has 



Alternative view (symmetric spaces) 

Recall:                                    determines 

Thus                           determines a mapping 

General picture: 

Constraint 

and 

Topological phases (mean field) are given by homotopy classes 

of mappings into a symmetric space,                        ,  subject to an  

equivariance condition                                         for all                  . 

Insert diagram here 



“Periodic Table” 

Kitaev (2008),  

Ludwig et al. (2009) 

Remark: Table is incomplete because 

 only special symmetry groups are considered, 

 K-theory may miss some finer points of topology. 

from Hasan & Kane,  
Rev. Mod. Phys. (2011) 

Quantum Hall Effect  

He-3 (B phase) 

QSH: HgTe 

xx1
SbBi

-



The End 


