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The uncanny power of prediction by
random matrix theory

universal fluctuations in energy spectra, scattering cross sections, ...



Compound nucleus resonances
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Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei.
Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance
spectroscopy, X, Phys. Rev. C 6, 18541869 (1972).

Total cross section versus center of mass energy for scattering of slow neutrons on
232Th and 238U. The resonances all have the same spin 1/2 and positive parity.



Eugene Wigner

The Nobel Prize in Physics 1963

Biography

Eugene Paul Wigner, born in Budapest,
Hungary, on November 17, 1902, naturalized
a citizen of the United States on January 8,
1937, has been since 1938 Thomas D. Jones
Professor of Mathematical Physics at
Princeton University - he retired in 1971. His
formal education was acquired in Europe; he
obtained the Dr. Ing. degree at the
Technische Hochschule Berlin. Married in
1941 to Mary Annette Wheeler, he is the
father of two children, David and Martha. His
son, David, is teaching mathematics at the
University of California in Berkeley. His daughter, Martha, is with the
Chicago area transportation system, an organization endeavoring to
improve the internal transportatiom system of that city. Dr.Wigner
worked on the Manhattan Project at the University of Chicago during




Niels Bohr’s picture of the compound nucleus
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Fig. 35. Picture illustrating the compound nucleus idea, as presented by N. Bohr in

1936. In a neutron-nucleus collision the constituent nucleons are viewed as billiard balls
and the nuclear binding as a shallow basin (taken from [112]).




Nuclear Data Ensemble (1726 levels)
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Fig. 8. Left: nearest neighbour spacing histogram for the nuclear data ensemble (NDE)
(taken from [53]). Right: Dyson-Mehta statistic A for NDE (taken from [54]). GOE
and Poisson predictions are plotted for the sake of comparison.




Quantum chaotic billiard
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Fig. 12. Spectral fluctuations for Sinai’s billiard (see fig. 11). (a) spacing distribution
histogram; (b) Dyson—-Mehta statistic. GOE and Poisson predictions are plotted for the
sake of comparison (taken from [62]).

Random matrix conjecture by Bohigas, Giannoni, and Schmit (1984)



Chiral random matrices

Nonabelian gauge field A, (vacuum fluctuations)

Dirac operator: D = y*(0,-A,) = —ysDys
Verbaarschot, Zahed (1993):

(1, o0 S_ [0z
7/5_ O _1q 1 — Z* O )

random matrix Z (rectangular: pxq),
p — g = topological charge of gauge field.



Chiral random matrix ensembles
for the QCD Dirac operator
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Figure 2.
Schematic picture of the average spectral density of QCD Dirac operator.

Verbaarschot, Zahed (1993)



QCD Dirac spectra

from Berbenni-Bitsch et al. (1997)
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Figure 5: Distribution of the smallest eigenvalue (left) and microscopic spectral
density (right) of the staggered Dirac operator in quenched SU(2). The dashed
lines are the predictions of the chSE for Ny =0 and v = 0.



Im(s)
Riemann zeroes
The Riemann zeta function £(s) is defined for .

Re(s) >1 by its Dirichlet series: ¢£(s) = > n™°.
=

According to the Riemann hypothesis, all
nontrivial zeroes of £(s) lie ontheline Re(s) =1/2.

The six lowest zeroes have imaginary parts
14.13,21.02,25.01, 30.42, 32.93, 37.58

Re(s)




Spacing Distribution of the Riemann Zeroes
from A. Odlyzko (1987)
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Normalized spacings between neighboring Riemann zeroes.
The data set consists of 70 x 10”6 consecutive zeroes,
starting at the zero of order 10"20.



Universality of Spectral Fluctuations

In the spectrum of the Schrddinger, wave, or Dirac operator
for a large variety of physical systems, such as

e atomic nuclei (neutron resonances),
o disordered metallic grains,

» chaotic billiards (Sinai, Bunimovich),
e microwaves in a cavity,

e acoustic modes of a vibrating solid,
e quarks in a nonabelian gauge field,

o zeroes of the Riemann zeta function,

one observes fluctuations that obey the laws of random matrix theory

for the appropriate symmetry class and in the ergodic limit.



Spectral fluctuations are universal.
Why?

Supersymmetric non-linear sigma models ...
Wilson’s renormalization group ...

Universality at RG-fixed points ...



The Threefold Way



Freeman Dyson Born December 15, 1923
Crowthorne, Berkshire,

England
Residence United States
Nationality UK

UsA
Fields Physicist, mathematics
Institutions Royal Air Force

Institute for Advanced Study
Duke University
Cornell University

Alma mater University of Cambridge
Doctoral

advisor TN

Known for Dyson sphere

Dyson operator
Advocacy against nuclear
weapons

Notable awards Templeton Prize (2000)



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 6 NOVEMBER-DECEMBER 1962

The Threefold Way.
Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics

FReEMAN J. DysoN

Institute for Advanced Study, Princeton, New Jersey
(Received June 22, 1962)

Using mathematical tools developed by Hermann Weyl, the Wigner classification of group-repre-
sentations and co-representations is clarified and extended. The three types of representation, and
the three types of co-representation, are shown to be directly related to the three types of division
algebra with real coefficients, namely, the real numbers, complex numbers, and quaternions. The
suthor's theory of matrix ensembles, in which again three possible types were found, is shown to be in
exact correspondence with the Wigner classification of co-representations. In particular, it is proved
that the most general kind of matrix ensemble, defined with & symmetry group which may be com-
pletely arbitrary, reduces to & direct product of independent irreducible ensembles each of which
belongs to one of the three known types.

I. INTRODUCTION In each of the three theories which we aim to unify,

THE purpose of this paper is to bring together there appears a triple alternative, a choice between
and ‘unify three trends of thought which have three mutually exclusive possibilities. (i) The ir-



Unitary and anti-unitary symmetries

In quantum mechanics, one is given
a Hilbert space V with Hermitian scalar product (-, -)
and the Hamiltonian H Is a Hermitian operator on V.

Unitary symmetries (e.g., Space rotations):
(v, vw,) = Uy, ,Uy,) e ™My =ue™

Anti-unitary symmetries (e.g., time reversal) :
(W wo) = Ty, Ty e T =T e




Dyson’s Setting

The basic datais (V,G), aHilbert space V carrying
the action of a group G.

G is the group of unitary and anti-unitary symmetries of an ensemble of quantum systems

with Hilbert space V.

G may be (Dyson:) "arotation group, or an isotopic-spin rotation group, or a time-inversion group,
or all of these in combination”.

The Hamiltonians to be used for random matrix modeling
are the Hermitian linear operators on V which commute
with all of the symmetries G.

Question (Dyson): What can one say about the set of
random matrix Hamiltonians which occur in this setting?



Double Commutant Theorem

G, : a group of unitary operators acting on V.
A = the group algebra of G,. LetdimV < 0.

Thm. Let the action of A on V be reductive. If B =Z(A)
Is the commutant of A in End(V), then

1. B acts reductively on V.
2. Z(B) = A (the double commutant property).

3. V is a direct sum of G -isotypic components:
V=0@,V,=®, R,®Hom(R,,V,)*
" "_there act the

here act the_unltary Hamiltonians
symmetries



Reduction by unitary symmetries (H. Weyl)

V=@V,=®R,®S,) =
. @D

D

Example: G =S0O(3). Rectangles are labeled by total angular momentum, L.
The rows of arectangle are labeled by projection of angular momentum, M.



Enter the Anti-Unitaries

Symmetry group G =G, UTG,, T*==lId.

The decomposition V=@, V, = @, R, ® Hom(R,,V,)*
is preserved by T since U+ T'UT is an automorphism
of G, .

If T(V,)=V, and /17&1’
LT

Hence let T(Vi) =V,. By the G, -irreducibility of R,
the restriction must be a pure tensor: T‘V =a®p.
- . A
real symmetric matrices

There exist but two possibilities: 5% = +1d.
—

complex hermitian matrices

\

guaternion self-dual matrices



Enter the anti-unitaries...

T,, T, anti-unitary = T, T, unitary .

Let T2=zxId, z=¢"7.
Then associativity,
2T =T?T=T-T°=Tz=7T = z=7e{xl},

leaves but two possibilities: T?=+1d .



Conseqguences of anti-unitary symmetry

Recall V=@V, .
Trichotomy :

1L.NoT,orT:V, <V~ — complex hermitian matrices

2.T:V,>V, and T*=+ld = real symmetric matrices
(use g =Tg)

3.T:V,-V, and T*=-1d = quaternion self-dual matrices
(use Te; =e-, Te- =—¢;)



Example: Case 3 (class All, symplectic ensemble)

III. TIME-REVERSAL SYMMETRY.
SYMPLECTIC ENSEMBLE

Dyson (1962). To find out whether the orthogonal ensemble is a
reasonable one to use under all circumstances, a more
careful analysis must be made of the consequences of
time-reversal invariance, It will turn out that under
some (perhaps not very realistic) circumstances a quite
different ensemble should be used. The new ensemble
will be called symplectic, because it bears the same
relation to the symplectic group as E; bears to the
orthogonal group.

mvariance. The case ff = 4 would apply when H is invariant under time-

Dyson reflection, without any rotation-invariance, for a system with half-

. integer spin. Until now no interesting physical examples have been
(1970): _ . .

found of the cases f = 2 and 4. The case § = | has been extensively studied

in connection with the statistics of neutron capture levels in heavy nuclei



Example: Case 3 (class All)

Time-reversal invariant disordered electrons

with spin-orbit scattering:
2

H :zp_m+U(><)+Vso(x)'(‘7>< P)

k,T

The matrix elements <b
of the Hamiltonian b

—k,4 > k'

A4
~
—

. . a b
organize into quaternions: E - j



Modes of guantum interference (All)
Spin-singlet cooperon:

(p;0) <= (-p,-0)

Weak anti-localization enhances conductivity.



Disordered Mg films with Au impurities (G. Bergmann, 1984)
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Fig. 2.10. The magneto-resistance of a thin Mg-film at 45K for different coverages with Au. The Au thickness is given in % of an atomic layer on
the right side of the curves. The superposition with Au increases the spin—orbit scattering. The points are measured. The full curves are obtained
with the theory by Hikami et al. The ratio m/z, on the left side gives the strength of the adjusted spin—orbit scattering. It is essentially proportional
to the Au-thickness.



Wigner-Dyson symmetry classes:
« A :complex Hermitian matrices (‘unitary class’, GUE)
« Al :real symmetric matrices (‘orthogonal class’, GOE)

o All : quaternion self-dual matrices (‘symplectic class’, GSE)

Dyson: The most general kind of matrix ensemble, defined with a
symmetry group which may be completely arbitrary, reduces to
a direct product of independent irreducible ensembles each of
which belongs to one of three known types.”

This classification has proved fundamental to various areas of
theoretical physics, including the statistical theory of complex
many-body systems, mesoscopic physics, disordered electron
systems, and the field of qguantum chaos.



The Tenfold Way



Beyond Dyson:

Random Matrix Theory and Chiral Symmetry in QCD
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Figure 6: Distribution of the smallest Dirac eigenvalue in the v = 1 sector for
all three symmetry classes. The data were obtained using the overlap Dirac
operator on a 4% lattice. Solid lines represent the corresponding RMT results.



Metal / superconductor junctions

FIG. 27. Normal reflection by an insulator (I) versus Andreev
reflection by a superconductor (S) of an electron excitation in
a normal metal (N) near the Fermi level. Normal reflection
(left) conserves charge but does not conserve momentum. An-
dreev reflection (right) conserves momentum but does not
conserve charge: The electron (e) is reflected as a hole (h) with
the same momentum and opposite velocity. The missing
charge of 2e 1s absorbed as a Cooper pair by the superconduct-
ing condensate.



Beyond Dyson: Ensembles of L-functions

from N. Katz and P. Sarnak (1999).
“Random matrices and Frobenius.
eigenvalues”

1.0+

0.5 -

L(s, x)=D, _ x(mn~®

0.0 et r
0 1 2 3 4

Distribution of the first zero

FW[MM ape Cll_‘nsll'»[ o( ))C—,l)



A. Altland, MZ: Non-standard symmetry classes In
mesoscopic hormal-/superconducting hybrid systems,
Phys. Rev. B 55 (1997) 1142-1161

MZ: Riemannian symmetric superspaces and their origin
In random matrix theory,
J. Math. Phys. 37 (1996) 4986-5018



Our setting: Fock space

V = Hilbert space of a single particle; dimV =N

F = Fock space for (identical) fermions::
= OF OF, ©.0F®..0F, .

F, = A" (V) (Pauliprinciple).

CyCg +Cy Cy =0,



Our setting: symmetries

Unitary symmetries :

any group of unitary operators defined on V
and extended to F inthe natural way.

Anti-unitary symmetries :
1. Timereversal T:V -V extendsto T: F, > F,
2.Particle-hole conjugation C: F, - Fy_,



Statement of problem

= fermionic Fock space witha G —action,

G = arbitrary symmetry group made from
generators as described above.

T

H = (polynomials in) G —invariant one-body operators,i.e.,
operators which commute with all symmetry generators and
are quadratic in particle creation and annihilation operators :

H=YW_ c.c,+1> (Z,c.C,+Z,,¢C4C,)

Question: What types of irreducible block occur in this setting?
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Abstract: Building upon Dyson’s fundamental 1962 article known in random-matrix
theory as the threefold way, we classity disordered fermion systems with quadratic Ham-
iltonians by their unitary and antiunitary symmetries. Important physical examples are
afforded by noninteracting quasiparticles in disordered metals and superconductors, and
by relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators
which carry a representation of some symmetry group. Our approach 1s to eliminate all



Theorem (HZZ) ;

Every irreducible block (of the Hamiltonians)
occurring in this setting corresponds to a
classical irreducible symmetric space,

and conversely,

every classical irreducible symmetric space
occurs in this way.



What's a symmetric space?
Infinitesimal version:

Lie algebra g
withinvolution 6: g—g, 6%=1
o([X,Y]) = [0(X),0(Y)].

The negative 6—eigenspace .
p=1{Xeg: O(X)=-X|
IS an infinitesimal model of symmetric space.

Example: g = so(3),
0(3,)=J,, 0(3,)=-34, 0(3y)=-J, .



10-Way Table

%Mvw/?_ name ; Cl
%wwwﬂ;mio spoce : Sp(ZN)/U(N)

Z" 0
Z complex symmetric.

= o
Stondond form :  H = ,

Reabisattion : DY quasiparticle excitations of disordered

spin-singlet superconductors in the Meissner phase.
(Important special case : d-wave superconductors)



10-Way Table

fa/n«w«%‘ name ; C
%_nwwﬂ;mlo spoce ; Sp(2 N )

Z" —-W'
W hermitian, Z complex symmetric.

W VA
gmala/wéfom H:( ],

Reatisation. : SPIN-Singlet superconductor (same as Cl),
but in the mixed phase, with magnetic vortices.



10-Way Table

Larmily nome DIlI
57_%%4/&0470@0&: SO(ZN)/ U(N)
0 Z
Qma‘wwéfom H — N y
" 0
Z complex skew.

Reabisation : SPIN-Singlet superconductor with strong

spin-orbit scattering(e.g., heavy-fermion sup.cond.);
spin-triplet superconductor; B-phase of superfluid *He.



10-Way Table

%mz?nma: D
%mmwﬂ'/mlo space : SO(ZN)
Hondond forrm:  H = (W - j
Z" W'
W hermitian, Z complex skew.

Reabisation : disOrdered superconductor with spin-triplet

pairingand T-breaking p-wave symmetry (Sro,RuQ,);
A-phase of superfluid®He . ("Majoranafermions")



10-Way Table

%mfy,nmw&: Alll
Symméteicspace:  U(p+q) /U(p)xU(Q)

0 Z
S%Mw(a/wéfom H: Z* O y

Z complex pxqg matrix.

Realiyation. : massless Dirac fermions

In SU(N) gauge field background (N > 2);
d-wave superconductor with soft impurity scattering.



10-Way Table

Familiy, name BDI
Symmetiic space : O(P+Q) /0(p)>0(q)

0 Z
gmwaffom H: Z* O y

Z real pxqg matrix.

Reabiyattion : Massless Dirac fermions
with gauge group SU(2) or Sp(N).



10-Way Table

fm%_nm&: ClIlI
Symmetiic space . SP(P+0) /Sp(p)xSp(q)

0 Z

Z quaternion pxq matrix.

Reabisation . SAMe as Allland BDI, but with
adjoint fermions or with gauge group SO(N).



Example
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Effect of a random potential on the quasiparticle
density of states of a d-wave superconductor
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Effect of a random potential on the quasiparticle
density of states of a d-wave superconductor
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Example
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Effect of a random potential on the quasiparticle
density of states of a d-wave superconductor



Example

clean

SCTA

Nersesyan et al. 93

Ziegler et al. 96

Pepin & Lee 98

Senthil et al. 98

Effect of a random potential on the quasiparticle
density of states of a d-wave superconductor



Example (continued)

Quasiparticle excitations in a spin-singlet superconductor

with d-wave symmetry and potential disorder :
V=C"®C,

G=G,uTG,, G,=SU(2)
The symmetry classis CI.

T = time reversal.

spin !

T local density
of states

Altland, Simons & MRZ:
Phys. Rep. 359 (2002) 283

energy




Directions of current research

Analysis of supersymmetric nonlinear sigma models
Symmetry classes of disordered bosons

Classification of topological insulators and
superconductors



Topological Insulators

topol. invariant for guantum Hall systems (Thouless et al.,1982)

Z , topological insulator :

Kane & Mele (2005),

g b _NnrmalJ _Inverted:
S.C. Zhang et al. (2006), > ”qﬂl{j NV
Konig et al. (2007) Eg;z ﬁi_”T ¥

d=2: HgCdTe, ) oo
E : a 01 &<'h
N j T

k o 10°
>L ﬂlL
Insulating bulk,
: Vv QSHI f[w ™
but metallic surface! | \
(robust against disorder) gt o inig 200 "7

FIG. 6 (a) A HgCdTe quantum well structure. (b) As a
function of layer thickness d the 2D quantum well states cross
at a band inversion transition. The inverted state is the QSHI

7T = 7 1 % "Ye - YT T B T A e g N e R e T



Crystal (solid body): regular graphT = Z°xC"
single-electron Hilbert space V =1%(I)

many-electron ground state Y e AN V)

Assume translationinvariance = V = @V, (V, =C")
Then ground state in mean-field approximation

IS given by a mapping

/4 : k - Gl‘m(\/k) —> /\(\/k) {al;sulator n=0

Conduction Band

}. '.. z'._
homotopy C|aSSGS Quantum Hall c

State

Valence Band
1

—m/a 0 k —-mia

FIG. 2 The interface between a quantum Hall state and an
msulator has chiral edge mode. (a) depicts the skipping cy-
clotron orbits, and (b) shows the electronic structure of a semi
infinite gquantum Hall state desecribed by the Haldane model.
A single edge state connects the valence band to the condue-

tion band. (From Haran X Kane, RMP 2010)



Classification of Topological Insulators

Retain setting of Tenfold Way !

G-invariant non-interacting ground state is mapping
Brillouin zone — symmetric space
Gapped single-particle spectrum (band insulator)

Classification of such ground states is problem in
homotopy theory

A.Kitaev (2008) : Bott periodicity, K-theory



Periodic Table (Kitaev, 2008; Ludwig et al., 2009)

Quantum Hall Effect

Symmetry d

AZ © = I1 1 2 3 4 B ® T B
A 0 0 0 0 fZ2|1 0 Z 0 Z 0 Z
AIII| O 0 1 Z 0 Z 0 Z 0 Z 0
Al 1 0 0 0 0 0 Z 0 Zeo Zo Z
BDI| 1 1 1 Z 0 0 0 Z 0 Zo Zo
D 0 1 0| Z2 Z 0 0 0 Z 0 Zo
DIII| -1 1 1 | Zo Zo (Z]| O 0O 0 Z O
Al | -1 0 0 0 |Z2|Z2s Z 0 0 0 Z
Clr| -1 -1 1 Z 0 Zo Zo Z 0 0 O
C 0 —1 0 0 Z 0 Zo Zo Z 0 O
CI 1 —1 1 0 0 Z 0 Zs Zo Z O

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of 7 symmetry O, particle-hole
symmetry = and chiral symmetry II = Z6. 1 and 0 denotes

He-3 (B phase)

HgTe

Bi, Sb,




Periodic Table (kitaev, 2008: A. Ludwig et al., 2009)

Symmetry d

AZ © = I1
A 0 0 0
AIII| O 0 1
Al 1 0 0
BDI| 1 1 1
D 0 1 0
DIII| -1 1 1
AIl| -1 0 0
cir{ -1 -1 1
C 0 —1 0
CI | —1 1

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of 7 symmetry ©, particle-hole
symmetry = and chiral symmetry II = Z0. £1 and 0 denotes



Periodic Table (kitaev, 2008: A. Ludwig et al., 2009)

Symmetry d
AZ © = I1 1 2 4 4 8 @ T 8
A 0 0 0 O 4 9 & 9 4 0 Z
AIII| O 0 1 Z 0 & 8 2 90 Z 9
Al 1 0 0 0 0 Z 0 Zs Z
BDI| 1 1 1 o 8 Z 9
D 0 1 0 0 0 Z
DIII| -1 1 1 0 0
AIl| -1 0 0 0
cir{ -1 -1 1
C 0 —1 0
CI | —1 1

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of 7 symmetry ©, particle-hole
symmetry = and chiral symmetry II = Z0. £1 and 0 denotes
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