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Introduction



Introduction: notion of free probability

'Free probability' introduced by D. Voiculescu
(1986) in the study of von Neumann algebras.

Gives calculational scheme by which to handle
Invariant ensembles of N x N random matrices, N = .

Large-N limit of density of states encoded in
Voiculescu R-transform: R(k)=) ¢, k".
n=0

Free cumulants ¢, are additive under addition
of independent random matrices (for N — ).



Introduction: free probability (II)

Voiculescu's analytical approach : define R-transform
by inverting z+— g(z) (average trace of resolvent).

Combinatorial description of free cumulants interms
of non-crossing partitions given by R. Speicher (1994).

Free probability theory has not yet produced results for
spectral correlation functions in the microscopic limit.



Introduction: supersymmetry method

Method of commuting and anti-commuting variables
(Wegner, Efetov) : results for correlation functions
(e.g., level statistics of small metallic grains,

localization in thick disordered wires,

scaling exponents at the Anderson transition, etc.)

Traditional variant (Hubbard-Stratonovich transformation)
limited to Gaussian random variables.

Recent variant called 'superbosonization' allows to treat
much wider class of distributions.



Introduction: supersymmetry method (first steps)

H = H" linear operator on Hermitian vector space C".

Gaussian integral over commuting variables ¢ € C"

Det*(z— H) = je‘@’g’”_H@, @ =—isign(Imz) @ € (C")

Gaussian (Berezin) Integral over anti-commuting

variables . Det(w—H) = je(E;,l//w—Hl//)

Det(w-H) ~ ~\ =2 (9. @)+ w (7. W)
= | QloP®p +yQy)e ’ Y
<Det(Z_H) >ﬂ |a(p®g +yoy)

Characteristic function: Q(KX) =_[ exp(Tr HK ) du(H) .



From moments to cumulants



From moments to cumulants (I)

Commutative case (N =1):

Moments m, :jx”dy(x) are generatedby the
kn

characteristic function Q(k) = j ekxdy(x) :Zmn |
n=0 n.

The logarithm w(k) =In Q(k) =) c, kl
n=1 n.
dl’l
generates the cumulants ¢, = (k)
dk” -




From moments to cumulants (lI): combinatorial description

Moments are expressed in terms of cumulants,
dn

m,=—Qk)| =-— = > ],
dk k=0 dk k=0  pell(n) 1

by summing over partitions p eI1(n): > Iv,(p) =n

[>1

_ 4" ok

where v,(p) Is the number of blocks of length /.

Example (n=8): p= {136} {28} {45}U {7}
vi(p)=1, v,(p)=2, v4(p)=1, v,(p)=...=0.



From moments to cumulants (lll); R-transform

Probability measure du, (H) for Nx N matrices H =H"
Tr HK
r dpy (H)

Moments m, ,, = N‘ler (H")du, (H) are generated by

Characteristic function: Q(K) = je

differentiation: m, , =N ) K 8@[( x, Q(K)

2y K=0

ll ..... l

Let m, =lim,__m,

—n-1

By definition, z+» g(z)=) " m,z""" isinverted by

k> k™ +R(k) where R(k)=>" ¢, k" (R-transform).

n+1



R-transform (examples)

z=k7+R(k) & k=g(2)

Example 1: R(k) =k (GUE)

2(z2) =§ (1—‘/1—i2 ) (Wigner semicircle)
Z

k
1—k*

\1/3 \1/3
(d_iJl_l__l _iJl_l'+l
s 27 4z° 2z 27 4z° 2z

Lueck, Sommers, MZ: J. Math. Phys. 47 (2006) 103304

Example2: R(k) =




From moments to cumulants (IV): freeness

Recall R(k)=> c, k"

R. Speicher (1994): Combinatorial definition of

free cumulants ¢, by m,= > []¢""” where
peNC(n) |

the sumruns over non-crossing partitions p € NC(n).

3

Example (n=8): p = {158} {234} U {67| 57<>\21

)

Free cumulants add under convolution of -
measures (or addition of independent random matrices).




Large-N characteristic function

by free probability



Cumulants (non-commutative case)

Note: w(K) =lim, .. N 'InQ(NK) is additive
under addition of independent random matrices.

N—w

Assume du, (H) =e """ dH. Then o(K)=w(gKg)
for g eGL,, and cumulants must be of the general form
[where y (r)Is constant on conjugacy classes]
an
o (K = T
oK. oK. . ---0K (K) Z 7, (%) H i+ T2 (1)

01 irjp Ly k-0 7SS

Graphical methods suggest large-N hypothesis:
y () =c, If z irreducible cycle,and y (z) =0 else.



Heuristics from planar graphs (1)

—~NTrV(H)+ N Tr HK
Recall Q(NK) = je

Perturbation theory for In Q(NK) (connected graphs)
leads to topol. expansion: In Q(NK) = > N (K).

r=1,0,-1,...
Leading contribution comes from summing
all planar graphs (Euler characteristic y =1).

K \ / K
o
Example: graph \/ 9 vertices: N
. -12
contributing to Tr K* 12 edges: N
4 faces: N*

t'Hooft, Witten, Gross% \\
K K




Heuristics from planar graphs (ll)

Tr(K*)

Tr(K3Tr(K?)



Large-N characteristic function from free probability (I)

Recall the large-N scenario from planar graphs:
ai’l
oK..---0OK. .

1 Ly Jn K=0

N INQ(NK) e, > 116,

zefirr] [

By Speicher's combinatorial description the numbers
c, are identified as the free cumulants. In fact, taking
N — oo In the formula for the moment, we have m,, =

N"o" In Q(NK) Noso vi(p)
:E: oK ..0K © f :E: Iﬁ[cﬁ

i eendy NG iy, -0 peNC(n) 1




Large-N characteristic function from free probability (I1)

Summary.
o(K)=lim, . N'InQ(NK).
For ensembles with GL,-symmetry

00 TI‘ (Kn+1)
we have w(K)=) c .
( ) HZ(; n+1 I’l‘l‘l

N—>o0

Note : the derivative of o (K) for K =Al1
(rank-1 projector I1) is the R-transform .

ico(kn) =Y ¢, k" =R(k)
dk n=0



Non-perturbative argument: reduction to 1D integral

Let K =NkIl (keC,rank-one projector IT).
Recall: Q(NIT) = [ TN gy

Diagonalize H =gdiag(4,,...,4,) g™
Do integral over g e U, usingHCIZ formula:

N+ Nkx—-NV(x
Q(NKIT) =c, k™ 1IRe ( )pN_LN(x)dx

where p,_, v (x) orthogonal polynomial of

degree N-1fore V™),

Note: p,,,has N-1 zeroesin [a,b] cR.



Asymptotics for k large

Saddle point of x-integral lies outside of [a,b].

Large-N asymptotics of p,_, , whenx ¢[a,b]:
N{"In(x-»)dv(¥) NG«
PN (x) = e Ia =€ () :

Integral for scaled logarithm of char. function
o(kI)=c—Ink+lim, ,, N7 In [ e VHHNER g

has good saddle point: 0=k—-V"'(x)+ g(x).

Final result (Dyson Coulomb gas): w(4I1) = jokR(t) dt.



Asymptotics for k small

No good saddle point for previous integral
(saddle wants to be in oscillatory region).

Use known asymptotics of p,_, ,, to switch
to new representation (contour integral) :

o(dT)=—-1+Ink+lim, N |n§CeN"Z‘NG(Z) dz
with saddle point equation k£ = g(z).

N>

Final result (again): w(kI1) = jokR(t) dt.
Guionnet & Maida (2004)



Superbosonization

Hackenbroich, Weidenmidiller (95)

Lehmann, Saher, Sokolov, Sommers (95)
Barruto, Brower, Svetitsky (01)

Efetov, Schwiete, Takahashi (04)

Guhr (06); Basile, Akemann (07)

Bunder, Efetov, Kravtsov, Yevtushenko, MZ (07)

Littelmann, Sommers, MZ (08)



Reminder: supersymmetry method

Tr HK

Characteristic function Q(K) = je du(H)

isevaluatedon K, =>" @ @, .+ W, V,, -

Generating function for spectral correlation functions::
J.Dgp,a;l//,& flo,0;v,w) = jf

where the integral is along @,j =—lsign(Imz,) ¢, , and

flo,0:w.w) = Q(K) exp (— > (Za Dy Za Pui+ Wi W, &b,,-)) -

If du(H) Invariant by some group G acting by conjugation

H gHg ™ then f(p,0;v,w)=f(gp.0g " ;gv.wg™).



Superbosonization (special case: commuting variables only)

Let p=1, ¢ =0 and consider GL ,-invariant holom. fctn
[C'x(C") —>C, flp.p)=f(gp.pg™), g€CGL,.

Fact (invariant theory): there exists a holomorphic
function F: C—C suchthat F((¢,9)) =f(¢,9).

By push forward of the integral one has
LN flp,9)d" ¢ =c, j[R F(r)yr"dr (if integral exists).

generalization to p > 1: see Fyodorov, Nucl. Phys. B 621 (2002) 643



Superbosonization (special case: Grassmann variables only)

p=0,g=1. Let F:C — C be holomorphic.
Anticommuting variables v = (. ,...,wy ).

Berezin integral _[F(<y7,z,y>) dydy =

O? O?
= - — Fyw, +..+y
5W15W1 aWNaWN (l//1l//1 WN';”N)

= F™)(0) (the N" derivative at the origin)
— | -N-1 .
N! §U(1)F(z)z dz[2r1.

g > 1. Kawamoto and Smit, Nucl. Phys. B 192 (1981) 100



The idea of superbosonization

Recall f(p.0:v.w)=f(gp.0g igv.Wg™)
forge G. Let G=GL, or G=0, or G=Sp,, .

Superbosonization exploits this symmetry
to make a step of reduction :

The integral over ¢, ¢,y ,y of the G-invariant
function £ is converted to anintegral over a
Riemannian symmetric superspace.

(The large number N of variables ¢, ¢,y ,y
then becomes a parameter of the integral.)



Superbosonization: unitary symmetry

Let G=GL,.
Lift f(p, 0 v, w) to F(Q):

-~ (o0 (p.v)
f(co,co,w,w)—F(@;,(/)> W’WJ

Theorem (Littelmann, Sommers, MZ).If N > p and

f holomorphic and Schwartz along ¢ = —i@", then
| 1 =[D0 spet"(0) F(Q)
g=—ip' M

with integration domain M = (GL (C)/U )xU,
and gl-invariant Berezin integration form DQ.



Application to disordered scattering



The setting

N internal states (random matrix Hamiltonian H)
coupled to M scattering channels.
Heidelberg approximation to scattering matrix :

1
E-H+iww-*

S(E)=1d,, —2iw"

To compute correlations,
Copea (Eur ) = (S, (E) = 8,,) (S, (B,) = 6.,))
use generating function:

Det(E, — H +iWXW")Det(E, —H —-iWW~)
Det(E,—H +iWW*)Det(E, — H +iWYW")

Z(X,Y) =<



Averaging trick

Problem: can't use superbosonization directly,
since presence of WW ™ breaks U ,-symmetry.

Use trick of averaging integrand over U , to
enforce (!) U,-symmetry.

For large N we have formula

-1
lim,,, [ "% Vge ~Det(1d- 4® B)

If rank of both 4 and B is kept fixed. (Entries of
g € U, become Gaussian random variables.)



Universality of correlation function

Correlation function by superbosonization:

Cab,cd (El’EZ) — ||m IMDQ eN(STrInQ+Cf)(Q)—ZSTr Q)

N—>w

oWV 2(E-Ey)STrAQ - (0.

a

Taking N — o« gives saddle-point equation for O
Q_l +R(Q)=z= %(El +E,).

Solution (saddle-point manifold) is determined by
symmetry and hence universal (up to scale factor).

Conclusion: Correlations of S-matrix elements
are universal(i.e.,independent of the choice of
random matrix ensemble) in the large-N limit.



Conclusions

Free probability theory provides the proper framework
In which to take the large-N limit of the density of states
for ensembles which are invariant but non-Gaussian.

Free cumulants are the Taylor coefficients of the
(logarithm of the) characteristic function which s
encountered when using superbosonization.

The group of supersymmetries determines the
critical integration manifold (saddle points).

Our formalism establishes random matrix universality
of spectral correlations as well as transport observables.
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