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Kitaev’s Periodic Table of topological insulators/

from Hasan & Kane, Rev. Mod. Phys. (2011): superconductors
Symmetry d QSHI = Quantum

AZ © = 1l 1 92 3 4 5 6 T 8 Spin Hall Insulator
A 0 0 0 o |\Z| 0 Z 0 Z 0 Z
Al 0 0 11 Z2 0 Z 0 Z 0 Z 0 Quantum Hall Effect
Al 1 0 0 0 0 0 Z 0 Zo Zo Z
BDI| 1 1 1 Z 0 0 0 Z 0 Zo Zo He-3 (B phase)

D 0 1 0 [|Zsl Z O 0 0O Z 0 Zs
DIII| -1 1 1 Lo Do |Z 0 0 0 Z 0 QSHI: HgTe

ATI| =1 0 0] 0 Z Z2 Z 0 0 0 Z _

Cll| =1 -1 1| 2Z 0 Zy Zo Z 0 0 0 MENOIENE!

C 0 —1 0 0O Z 0 Zs Zo Z 0 0 Bi, Se,

CI 1 —1 1 0O 0 Z 0 Zo Zo Z O

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997)

Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009); Teo & Kane (2010);
Stone, Chiu, Roy (2011); Freedman, Hastings, Nayak, Qi, Walker, Wang (2011);
Abramovici & Kalugin (2012); Freed & Moore (2013)



Integer Quantum Hall Effect
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D.J. Thouless (1982-5; Nobel Prize Physics 2016):
Ground state = complex line bundle .~/ over 12

Hall conductance = [/ V4 = ne/h
n = (integral of) first Chern class of .°/

bulk-boundary correspondence



I CdT d
Quantum Spin Hall Insulator Sl T
(Kane & Mele, 2005) CdTe

Strong spin-orbit scattering (preserves time-reversal invariance)
causes band inversion ~ the bundle of Fermi projections is twisted.

This twisting is detected by the
Kane-Mele index.

Bulk-boundary correspondence:

G =0.01e2h

non-trivial bulk topological invariant of T

[ T=30mK

- perfectly conducting surface mode

R14,23 (Q)

Molenkamp group ™|
< (Wiirzburg, 2007) 10°L—




Majorana chain (gapped 1d superconductor)

No symmetries, “spinless fermions”, single band; momentum k

Bogoliubov transformation: v = u(k) ¢ + v(k) cik (ke R/217)

u=20

Fermi constraint: {7, 7.« =0 S -

A u(k)v(—k) + (k) u(—k) = 0. ver{  Viws
Weak pairing: u(0) =v(x) =0 (topol. invt.) Q "

V=20

Weak pairing: bulk-boundary correspondence —> gapless edge state

(a) (b) E (c) Ah/A (d)
AL \T// el vovesc /B
y& 4 W R - - fY‘—g—; - B —
X o N : I wire I
S-wave Superconductor TrIVIaI /L/A
> I >

FIG. 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin-orbit-coupled wire. (b) Band structure
for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the chemical
potential lies within the field-induced gap at £ = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate super-
conductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy Majorana






Bott Periodicity



Bott Periodicity ()

X compact Riemannian manifold

Vv triple (p,q;h)
XV space of minimal geodesics of class v

'V| minimum over all non-minimal geodesics of class v
of no. of negative eigenvalues of Hessian of length function

Thm (Bott, 1959). If X is a symmetric space, thensois XV,
and m;(X")=my;.(X) for O0<d<|v|]—1.

P
Example. X=¢5" xV P =gs"1"|y|=2(n-1) g
— 1y(S"") =m0 (S") for 0<d<2n-3 | S
(Freudenthal suspension theorem). "



What’s a symmetric space?
Riemann tensor:  R'j;; =9I}, — 9T, +I}iT;, —T/iT},

Def.: A (locally) symmetric space is a Riemannian manifold
X = U/K with covariantly constant curvature: VR=20.

Ex. 1: the round two-sphere X =S?, ds* =d6?+sin’0d¢?

Ex. 2: the set X = Gr,(C") =U(N)/U(n) x UN —n)
of all subspaces C"~Vv c CV

Classification:

Globally symmetric spaces classified by E. Cartan (1926)
10 large families: A, Al, All, Alll, BD, BDI, C, Cl, Cll, DIl




Bott Periodicity (I1)

v—sequences: complex and real

T Ty T3 T4 T5 Tg T7 T8 Raoul Bott

Ceven | U/Ux U o 7Z 0 7 0 7 0 7 (1923-2005)
Codd U Z 0 Z 0 Z 0 Z 0

Fo O/U 0 Z 0 0 0 Z Zy Z

iy U/Sp Z 0 0 0 Z Zy Zy 0

Ry |Sp/SpxSp| 0 0 0 Z Zy Zo 0 Z

B Sp 0 0 Z Zy Zy 0 Z 0

Ry Sp/U 0 Z Zo Zo 0O Z 0 0

1s Uu/0o Zi Lo Zo 0 Z 0 0 0

R 0/0 x O Zo 7o 0O Z 0 0 0 7

fiz O Z, 0 Z 0 0 0 Z Z

Table 1. Bott Periodic Table of the stable homotopy groups of symmetric spaces



Bott Periodicity (lll): Morse Theory

Manifold M, function f: M — R (smooth and proper).

M :={xeM| f(x) <a}l.

homotopy-equivalent

Thm 1. If f has no critical values in |a,b], then M* m‘dﬁ.

Thm 2. Let x € M be a non-degenerate critical point of f
of index n. If x isthe only critical pointin f'[f(x)—e,f(x)+¢],
then MW+ L pMF=€ e (n-cell ).

.....

. <o ey >a>c
critical values
Ca> > 0y>C 5

Example: 2-torus
¢ >a>c,

height function f/ O

Fact. Functions f of the needed kind (Morse functions) do exist.




Bott Periodicity (IV): Idea of proof

M = QVX (space of pathsin X from p to ¢ of homology class /),
Morse function f = length of path.

M® =0 if a <L = geodesic distance from p to ¢,
MP=X" if L<a<L+e,

Q"X =XYUe,Ue, U... where dime, > |V|.

Hence 7y (X)) =my(QYX) =my(XY) if 0<d<|v|—1.



Bott Periodicity (V): Clifford algebra

W = C?* Hermitian vector space with compatible
symmetric bilinear form {-,-}: WoW — C.

Ji,....Js generators of Clifford algebra on W':

NI +dndy = =28, 1dw,  (JF =01 =Jl).
Note: W = E+i(.]) @E_i(.]).
Let Cy(n) := Gr,(W) Grassmann m’fld of complex n-planesin W.
Define ¢ (n):={acCym) | A= ...= A=A},

Ry(n) :={A €Cs(n) | {A,A} =0}.

Lemma.

Co(n) D Ci(n) D Ca(n) O ... complex Bott v—sequence,

Ry(n) D Ri(n) DRy(n) D ... real Bott v—sequence.



More precisely,

5 Cy(8r) Ry (8r)
0 | Uprg=t6rUter/(Up x Uy) O16r/Us,

1 (U8r X U8r)/U8r USr/Spgr

2 Up+q=8rU8r/(Up X UQ) Up—l—q=4r SpSr/(Sp2p X Squ)
3 (U4i” X U4i”)/U4F (Sp4r X Sp4r)/sp4r

4| Uppg=arUar/(Up xUy) Sp4r/Uar

5 (UZr X UZr)/U2r U2r/02r

6 Up+q:2rU2r/(UP X Ut]) Up+q=2r OZr/(Op X Oq)

7 (U, xU,) /U, (Oy x 0;) /0

Sketch of proof for Ry (n).
Let W =A4 A and {A,A} =0.
Then for g € UW) N O(W) = Oy, it follows that
W=gAD g-A%, and {gA,gA} =0.
The O,,-action on Ry(n) is transitive.
The stabilizer of A is U(A) = U, C O,,. Hence Ry(n) = 0,,/U,.



Bott Periodicity (VI): Bott Map

Make the identifications X = Ry 1(n), XY = R(n);
and QVX = paths from E;(J;) to E_;(Js).

Given A € Ry(n),

assign to A a minimal geodesic f: |—-7/2.7/2] — R, {(n)
by Bi(a) = DA AL J(A) = i(TTy — TTge).
E.;(3)
This is the Bott Map ... R (w)
R(n)
R

Comment. Same for Cs(n) instead of Rg(n).



Bott Periodicity (II’)

v—sequences: complex and real

Ty T2 T3 T4 Ts Te T7 T8

Ceven U/UxU o 4 0 Z 0 #Z 0 Z
Codd U Z 0 Z 0 Z 0 Z 0
Ry O/U 0 Z 0 0 0 Z Zo 7o
Ry U/Sp Zo 0 0 0 Zo 0
Ry | Sp/SpxSp| 0 0 0 Z 0 Z
Rs Sp 0 0 Z Zo 0
R U/0O Z. 0 0
Rs | O/OxO | Z 0 Z
R~ O Lo 4 7o

Bott Map

Table 1. Bott Periodic Table of the stable homotopy groups of symmetric spaces



Free-Fermion Ground States



Universal model (notation/setting)

Quasi-particle vacuum = free-fermion ground state
= Hartree-Fock-Bogoliubov mean-field ground state

Single-particle annihilation (creation) operators ¢ (ij)

U = spanc{ci,....cn}, V:Spanc{clr,... ¢l

A )

W =U®YV space of field operators (Nambu space)
Structureon W: CAR bilinear form {-,-}: WeW—=C

Hermitian conjugation v: W — W
Fact. Free-fermion ground states |g.s.) HW=A0A°
where A =spanc{c),....¢;} CW andthe ¢y are
quasi-particle annihilation ops: ¢,lg.s.) =0 (a=1,...,n)

Fermi constraint: {A,A} =0



Symmetries in quantum mechanics

Q: What’s a symmetry in quantum mechanics?
A: An operator T : Zvy; — Zvy» on Hilbert rays that preserves
all transition probabilities: | (TZv, . TZ ) \2 = [(Zv, R ) \2.

Wigner’s Theorem:
A symmetry T in guantum mechanics can always

be represented on Hilbert space by an operator T
which is either unitary or anti—unitary.\l

(Tya|Tyr) = (ya|yn) .
Remark 1: The symmetries form a group, G. Eugene P. Wigner

Remark 2: Symmetries commute with the Hamiltonian (TH = HT).
Thus “chiral symmetry” (5D = —D) is not a symmetry.



J. Math. Phys. 3 (1962) 1199

The Threefold Way.
Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics

FReEMAN J. DysoN

Institute for Advanced Study, Princeton, New Jersey
(Received June 22, 1962)

Using mathematical tools developed by Hermann Weyl, the Wigner classification of group-repre-
sentations and co-representations is clarified and extended. The three types of representation, and
the three types of co-representation, are shown to be directly related to the three types of division
algebra with real coefficients, namely, the real numbers, complex numbers, and quaternions. The
author’s theory of matrix ensembles, in which again three possible types were found, is shown to be in
exact correspondence with the Wigner classification of co-representations, In particular, it is proved
that the most general kind of matrix ensemble, defined with a symmetry group which may be com-
pletely arbitrary, reduces to & direct product of independent irreducible ensembles each of which
belongs to one of the three known types.
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Abstract: Building upon Dyson’s fundamental 1962 article known in random-matrix
theory as the threefold way, we classify disordered fermion systems with quadratic Ham-
iltonians by their unitary and antiunitary symmetries. Important physical examples are
afforded by noninteracting quasiparticles in disordered metals and superconductors, and
by relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators
which carry a representation of some symmetry group. Our approach is to eliminate all

In this paper, it is proved that the symmetry classes of disordered fermions are
in one-to-one correspondence with the 10 large families of symmetric spaces.



Symmetry operations of the Tenfold Way

= Anti-unitary symmetries:
1. Timereversal T: U®V UGV, T? = (—1)%.
2. Particle-hole conjugation C: UV = VaU, C =Idy.

= Unitary symmetries include
U(1)4 symmetry (charge operator 0),

—10,, 4 o110y,

e utvise
SU(2) = Spin(3) spin rotations generated by Sy, S», S3 .

R: u+v— Ru+ (R ")v.



Universal Model (including symmetries)

Clifford algebra (Kitaev) of pseudo-symmetries Ji,...,Js:
J[-];n _I_J;}IJ[ — _26[”11(1”/, J[ = U(W) ﬂ O(W)

Definition. A free-fermion ground state of symmetry class s is
a polarization W = A G A° where the complex vector space A
is subject to

— Fermi constraint: {A,A} =0

— pseudo-symmetries: JJA=...=J,A=A".

Example. Time-reversal symmetry (spin%): TA=A
N Jy=voT (y: ¢+ ¢" Hermitian conj.)
Indeed, JIA =7y(TA)=yA=A° and J; =T? = —Idy.



Kitaev Sequence (“real” and “complex” classes)

class | symmetries S | pseudo-syms
D none O | Fermiconstraint
D T (time reversal) 1| Jy=yT
All | T,Q (charge) 2 h=1yTQ
CIl |T,Q,C (ph-conj) 3 J3=1yCQ
C 51,82, S3 (spinrot) |4 | seebelow
CI S1,8, 8, T 5
Al S1,8,8, T, 0 6
BDI | §1,8:,,. 85, 7T,0,C ]
class | symmetries S | pseudo-syms
A Q O | Fermi constraint
Alll | O.C 1| J; = i}/C




Diagonal Map



Bott-Kitaev Periodic Table

Question: does there exist a " 'Diagonal Map”’?

from Hasan & Kane, Rev. Mod. Phys. (2011):

?

Quantum Hall Effect

Symmetry d
AZ © = 1
U/UxU Al 0 0 0
U AIITl 0 0 1
O/OxO AI| 1 0 0
O BDI| 1 1 1
O/U D| 0 1 0
U/Sp DIIT| —1 1 1
Sp/SpxSp  AIl| -1 0 0] 0 Z
Sp CIIf| -1 -1 1| Z 0
Sp/U cC| 0 -1 0] 0 0
u/o CI| 1 -1 1|0 0 Z 0 Zy Zo Z 0

He-3 (B phase)

QSHI: HgTe

Majorana

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997)

Bi, Se;

?




Clean & Disordered Systems

Clean limit: translations are symmetries

Conserved momentum kK € M ™ decomposition A = @keM

Gapped system (insulator) ™~ {Aj }repm vector bundle

Disorder: Non-Commutative Geometry approach, developed
for IQHE by Bellissard et al. (following A. Connes)

C*—algebra < of bounded operators
Pairing between cyclic cohomology and Ky(<7)

~ Hall conductance = non-commutative Chern number

Prodan, Schulz-Baldes (2013), Thiang (2014), Kellendonk;
Boersema, Loring (2015), Carey et al. (2016)

A



Diagonal Map: heuristic

Under the decomposition A = @keMAk (conserved momentum)

the Fermi constraint {A,A} = 0 refines to

{AkaA—k} =0 (forall ke M).

Thus our free-fermion ground states are vector bundles 7w: & — M
subject to a Z»-equivariance condition

o L of
T |7
M Mom

with non-trivial involution Ty : M — M, k+— —k.



Diagonal Map (d,s) = (d+1,s+1)

Starting point: Ji,....J; and {A;}ien,

Preparatory step: jack up by (1,1) periodicity

~ New starting point: Jy,....Js;[,K and {A;}ren,

Define:

Note:

Ay = el/2DKIA) 4

J(A) = i(I1lg —I1a¢)

1. Fermiconstraint: {A,,,A ; ,} =0V

2. Pseudo-syms:
3. Degeneration:

JlAkﬁf — = J.S‘Ak,f :Az,; — [Ak,r v
Ai-trr=E=i(K) vV

—~

Outcome: V.B. {A;;} . em,,, inclass s+1 on Mg =S(My)



Diagonal I\/Iap2= Bott Map

Re(n) >
~ Dot M
QSH,I (lh) aP -

Dia ol
qc;re w

Vv

Tha -F(bv-a;l—ion P exists

0uﬂ7 fet- s=l,/b.




Summary of colloquium

Motivation: topological insulators and superconductors
Bott periodicity theorem from Morse theory

Free-fermion ground states with symmetries (imposed in a

prescribed order) realize the complex/real Bott sequences.
For Kitaev’s Periodic Table replace Bott Map by Diagonal Map

Reference: R. Kennedy and M.R. Zirnbauer, arXiv:1509.2537,
Commun. Math. Phys. 342 (2016) 909—963






Thank you!
(The End)



