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The problem of calculating the zero-temperature mean conductance {c) of a disordered thick metallic
wire coupled at both ends to ideal leads is formulated as a diffusion problem on a Riemannian symmetric
superspace G/K (Efetov). The problem is solved exactly by Fourier transforming the diffusion kernel.
Although the solution agrees with known results for the case of orthogonal and unitary symmetry, it has
the surprising feature that (¢) never falls below the minimum value of e?/2h for long wires with symplec-
tic symmetry, in leading order of the expansion around the metallic and thick limit.

PACS numbers: 71.55.Jv, 02.30.+g, 11.30.—

It is a celebrated result of mathematical physics that
random Schrodinger operators (RSO) in one dimension
have, with probability one, a pure point spectrum and ex-
ponentially decreasing eigenfunctions. This result was
first proved by Kunz and Souillard [1] and subsequently
improved by many authors.

A major motivation for the study of RSO has been
their use in the modeling of disordered solids in the
single-particle approximation. It should be noted, howev-
er, that while mathematicians have studied RSO as self-
adjoint operators on /2(Z) [or L2(R)], present experi-
ments on mesoscopic disordered solids [2] emphasize the
role of finite-size effects and of the leads attached for the
purpose of making voltage and current measurements.
Thus, the challenge from modern solid-state physics is to
study RSO in a finite volume and to take into account the
escape of flux into external leads. To formulate the prob-
lem in concrete terms, let H —iT" be the non-self-adjoint
operator defined on the interval [0,L] by

((H=iD)y)(x)
2
- %Jzi(xn UG —inlsG) + 8 — L w(x)
X

(1)

where U is a random potential and y > 0 a measure of the
loss of probability due to escaping flux. Then an interest-
ing quantity to calculate is (y? times) the absolute square
of the end-to-end Green’s function,

def
c(E)=y*[0|(E—H+iT) "' L)|?,

for real energies E, this being conductance by a formula
of the Landauer type [3].

The results described below do not concern (1), but the
more realistic case of a “thick metallic wire,” meaning a
quasi-one-dimensional disordered system satisfying the
inequalities 1 < Err < kAS with Er the Fermi energy, t
the elastic mean free time, kr the Fermi wave number,
and S the cross-sectional area of the wire. Localization
in such systems has previously been discussed in Ref. [4],
on which the present Letter is based. It is well known
that disordered conductors in the metallic limit come in
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three different symmetry classes, called orthogonal (po-
tential scattering), unitary (magnetic field and/or mag-
netic impurities), and symplectic (strong spin-orbit
scattering). The models I study correspond to these sym-
metry classes and differ from those of Ref. [4] only by the
choice of boundary conditions which are adapted to the
scattering-theoretic formalism of lida, Weidenmiiller,
and Zuk [5] and Altland [6], who have shown how to
treat disordered wires of finite length, coupled semireal-
istically at both ends to a number of continuum states
supported by two ideal leads.

In Refs. [5] and [6] the mean, {c), and mean square,
(c?), of the conductance were calculated by means of an
asymptotic expansion valid for short wires. Here I will
present the exact result for (¢) for wires of arbitrary
length. I am, of course, aware that the focus in meso-
scopic physics has shifted from averages to fluctuations
and, ultimately, to the entire distribution function. While
appearing feasible, the exact calculation of higher cumu-
lants of the conductance requires further research and is
left for the future. In any case, the computation of (¢) is
interesting in its own right, as it generalizes, for the first
time, the Fourier transform to a class of homogeneous su-
perspaces of rank greater than one.

The technique used is a mapping pioneered by Schéfer
and Wegner [7] and Efetov [8], which is valid for the sys-
tems under consideration and associates with each sym-
metry class a nonlinear o model defined over a Riemanni-
an symmetric superspace G/K. I call these spaces
“Efetov’s spaces” and denote by I (ILIII) the space cor-
responding to systems with orthogonal (unitary, symplec-
tic) symmetry. (More precisely, II corresponds to model
I1a of Ref. [4].) The derivation of the nonlinear o model
will not be repeated here. Instead, I will formulate direct-
ly the problem that emerges, when the quantity to be cal-
culated is {¢).

Each of Efetov’s spaces is a supermanifold with 2g
commuting and 2q anticommuting degrees of freedom,
where g =4 (2,4) for space I (IL,III). In addition, each
of these spaces has the structure of a coset space G/K, G
being a Lie group [the definition of which can be inferred
from Egs. (3.55)-(3.59) of Ref. [8]], and K a compact
subgroup. G consists of 8 x8 supermatrices in each case.
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With A denoting the matrix diag(ls, —14), K can be  where I have used the notation of Ref. [4] for the matrix
characterized as the subgroup of elements k € G that  elements of Q, and d =2 (2,1) for model I (ILIII). Now,
satisfy kAk ~!'=A. There is a one-to-one correspondence  if DQ denotes the G-invariant integration measure on
between the elements of G/K, which are cosets gK  G/K normalized by [g/xDQ =1, the average conduc-
(g € G), and supermatrices Q of the form Q =gAg ~'. A tance {(c), measured in units of e /A, has the expression
Riemannian structure on each of the spaces G/K is ( >_df f #O)W( " dL/4E)(0")DO'D
defined by the G-invariant metric tensor str(dQdQ), ¢~ “Jax G/Kf QWQ.0; $/(@IDQ'DQ .
where “‘str” denotes the supertrace. 3)

In the metallic regime, and for zero temperature, infor-  Here & equals 4npD, with D the diffusion constant and p
mation about the propagation of a single electron along a  the density of states per unit of energy and unit of length
thick disordered wire of length L>> \/§, is encoded [4] in  of the wire.

a function W on G/KxG/KxR* defined by Clearly, the problem of calculating {(c) exactly as a
function of length L amounts to the problem of expanding

—Q——A w(Q, 1) =0, lim w(Q,0%)=56(0,0"), W in a complet? system'of eigenfu.nctions of A. The
ot 1—0+ theory of such eigenfunction expansions, known also as

i1

) the theory of the “Fourier transform,” is completely un-
derstood [9] for the case of Riemannian symmetric spaces
where A is the Laplace-Beltrami operator on G/K and & G/K of the classical (i.e., nonsuper) type. It turns out
the unit kernel (Dirac’s delta distribution). The informa-  that the classical notion of Fourier transform can be gen-
tion about the coupling of the disordered wire to the ideal  eralized to a wide class of Riemannian symmetric super-
leads, on the other hand, is encoded in a function f on  spaces G/K. For the case of a rank-one space, the “hy-
G/K. The precise form of f is rather complicated in gen-  perbolic superplane,” a detailed description of this gen-
eral; it can be found in Refs. [5] and [6] and need not be  eralization and a rigorous proof of the Fourier inversion
reproduced here. Simplifications occur for an “open sys-  theorem have been given in Ref. [10]. Relegating all
tem” with a large number y of scattering channels (at mathematical details to a future publication, I here wish
fixed energy Er) in the leads. In this case, which is the  to announce the nontrivial result that the method of Ref.
one that I will consider, f is approximated with sufficient ~ [10] can be adapted to Efetov’s spaces.

accuracy by _ Let ¢J" be an eigenfunction of —A with eigenvalue
i A(v), m being a set of quantum numbers that account for
S(@) =(y/d)Q15 expl — (y/4d) strAQ] degeneracy. The main series of eigenfunctions appearing

| in the Fourier expansion of W have the eigenvalues
(D AU A) =I2+Af+23+1 €N+, 1 R, 1 ERT),
an AU =1*4+2? (e2N—-1,L€R"),
1) AULLA)=IE+13+02—1 (,€2N—1,/,€2N—1,L€R™?).
For spaces I and III there appear, in addition, the subsidiary series
(M A AL =22 +1) L eRY),

) AG,L,I1—2)=2(—1)% (l € 2N+1) and AG,1,1)=0.

Finally, an eigenvalue zero, corresponding to the constant function, appears in all cases.
The Fourier expansion of W has the general form

W(Q,050) =1+ [e AV 615 () du(v) , @)

where the integral sign actually stands for both integrations (over A’s) and summations (over /’s), and the measure
du(v) depends on how the functions ¢ are normalized [11]. Taking ¢? to denote a function with the invariance proper-
ty 02(kQk =) =92(Q) for k € K, I fix the normalization by requiring that ¢ has the expansion

02(Q)=—2"*A(v)strAQ+ - - -

around @ =A. Upon insertion of (4) into (3), the double integral factors into a sum of decoupled integrals over Q and
Q'. Since I have only a generating function for ¢/, but no closed-form expression in terms of elementary functions, I
cannot evaluate these integrals analytically in general. However, in the limit under consideration (y>>1) knowledge of
the “Q-close-to-A” expansion is sufficient, and I am able to show that

(v =4d [ A expl—d(L/E+1/PAW/ATdp (V). )
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Finally, I calculate the measure du(v) by studying the asymptotic behavior of ¢ in the “noncompact” directions of
G/K. To do this, [ write down a suitable integral representation for ¢9 (“‘Harish-Chandra’s formula”) and pass to an
integral over a certain nilpotent group N, as explained in Refs. [9,10]. With the definition T =exp[—d (L/E+1/y)A/4],

I then obtain expressions for the average conductance of the following form:

) <c>=nf0°°dmanh2(xx/2)r(1,u)

+2¢ Y

1€ 2N+1

x I

o,05,0,= 1t 1

an =22 X

I€N—1

ITn =71G1,102+ X

1 € 2N+1

+2¢ ¥

L, €2N—1
x I
g,0,0,=F |
Numerical evaluation of these expressions as a function
of s=L/E+1/y yields the curves displayed in Fig. 1.
They show {c) always to be less than ( greater than) the
Ohmic value 1/s for models I and II (model III).

The limits s— 0 and s — oo lend themselves to further
analytic evaluation [12]. By making a heat kernel expan-
sion in ordinary space (rather than Fourier space), one
obtains for s small:

(1) ()=1/s—2/3+4s/45+0(s?),
an (ed=1/s—4s/45+0(s?),

(1D (c)=1/s+1/3+5/45+0(s?).
It turns out that these asymptotic expansions approxi-
mate the exact result very well, the deviations in relative
magnitude being smaller than 0.4 (1.7,1.2) percent in the
range s <0.5 (1.0,2.0) for I (ILIII). In the opposite lim-
it, s— oo, one easily finds by keeping only the dominant
terms in the Fourier series:

(1) (e)=2"4n"2% " exp(—s),
(1) (e)=2"27¥2 =3 2exp(—s/2),
(I11) {e)=1/2+42%3 " 2z¥25 =3 2exp(—s/4) .

Note especially the appearance of a constant, 1/2
=T70(,1,1)/2, for model III. The Fourier coefficient
T(,1,1) is associated with a function ¢ which satisfies
A¢ =0 and has finite integral [¢/x#(Q)¢(Q)DQ =1 [13].
Its presence in the Fourier series prevents {¢) from going
to zero when L — oo, In other words, while the localiza-
tion length is finite and is given by & =4xpD (2£ =8xpD)
for model I (I1), it is infinite for model II1, in leading or-
der of the expansion around the limit kAS > Ept>> 1.

Surely, the result for model 111 comes as a tremendous
surprise and calls for further research. To investigate the
stability with respect to changes in the boundary condi-
tions, I have reconsidered the calculation of

K(x,0) =(GRO,x:EF) G x,0;Er+ ®))
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j:) d}qfo dha (12— 1A tanh (zh /2)1atanh (ho/2) U2+ AF+23+ 1)
(—1+ol+iociA +ioky) “'TUAN),
fo dAtanh(th/2) 12 +12) ' TOL)

TG, 1,1=2)+TG,1=2,D]1/2

fo A2+ 1) tanh(A/2) 1L+ 1R+ 13— 1)

(—1+ior+o)l 1+ o) T L) .

for a wire of infinite length without leads. This correla-
tor has been computed by Efetov and Larkin [4] in the
limit @ — 0. We now ask whether their result is modified
by the discovery of the zero mode ¢ for model III. Evalu-
ation of K by the mapping onto the nonlinear ¢ model
leads again to Egs. (2), except that —A is now replaced
by —A+V where V operates by multiplication with
V(Q) = —2zid “*péwstrAQ. The deformation of A by V
lowers the group symmetry of (2), and the calculation
can therefore no longer be done analytically in general.
For a small frequency w, however, one may attempt to
use perturbation theory in w, applied to the eigenfunc-
tions and eigenvalues of —A. The function ¢ behaves
asymptotically on G/K as ¢~A ~' (with A as defined in
Ref. [4]), which entails that the integral

a= ), 9@)str(AQ)9(Q)DQ

\
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FIG. 1. The product s/{c) as a function of s =L/E+1/y for
the case of orthogonal symmetry (dotted line), unitary symme-
try (solid line), and symplectic symmetry (dash-dotted line).
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converges. Therefore, standard first-order perturbation
theory is applicable to ¢ and gives an additional contribu-
tion to K (x,w) of the form

27p/S)?|b| *explirapw|x|/2) , 6)

where

b= ),k Q3e(@)DQ

converges, too.

Having introduced the term (6), I will now argue that
it must vanish after all. By conservation of probability, K
is subject to the sum rule

—inzj;K(x,w)dx =47p. @)

Note further that (6) has integral 167p|b|%/(—iawS?).
The result of Ref. [4] for K exhausts the sum rule (7)
and, therefore, the term (6) would violate conservation of
probability, if b were nonzero. Since all computations
made in Ref. [4] are verifiably correct (normalization in-
cluded), I am forced to conclude that =0. This con-

clusion is supported by group theory, as Q{3 [¢(Q)] is the

matrix element of a finite-dimensional (infinite-dimen-
sional) representation of G. Hence, the zero mode ¢ does
not contribute to the low-frequency limit of K, and the re-
sult of Ref. [4] is complete as it stands.

We are thus faced with a seemingly paradoxical situa-
tion. The results of Ref. [4], on the one hand, prove the
localization of all states of the system. On the other
hand, the above result for model III cannot but mean that
there exist states whose support extends throughout the
disordered sample, in this case. To reconcile these facts,
recall that the first statement applies to an isolated sys-
tem, while the second has been established for an open
system coupled to perfect leads. It has been known since
the work of Hikami, Larkin, and Nagaoka [14] that sys-
tems with symplectic symmetry differ from those with or-
thogonal and unitary symmetry in that the leading quan-
tum corrections to the conductivity act against localiza-
tion and lead to the existence of extended states and an
Anderson transition in two dimensions. The message of
the present Letter is that this qualitative difference ex-
tends to quasi-one-dimensional systems: The intrinsic
tendency toward localization at large L is not strong
enough in the case of symplectic symmetry, and in this

case only, to resist the broadening of energy levels caused
by the escape of flux into the leads.

In summary, I have used a super generalization of the
Fourier transform to diagonalize the Laplace-Beltrami
operator for Efetov’s spaces and thereby derive exact ex-
pressions for the average conductance of a disordered
thick metallic wire of arbitrary length L. While obtain-
ing complete agreement with known results for wires with
orthogonal and unitary symmetry, I find the conductance
of an open wire with symplectic symmetry never to fall
below the minimum value e2/2h. This is so in spite of the
fact that all states of the isolated system are localized,
and it highlights the need for proper theoretical treatment
of the boundary conditions.
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