


1-5 What are the fields? 

We now make a few remarks on our way of looking at this 
subject. You may be saying: "All this business of fluxes and 
circulations is pretty abstract... ... 

Also, the ideas of the field lines do not contain the 
deepest principle of electrodynamics, which is the 
superposition principle. Even though we know how the field 
lines look for one set of charges and what the field lines look 
like for another set of charges, we don't get any idea about 
what the field line patterns will look like when both sets are 
present together... ... 

The best way is to use the abstract field idea. That it is 
abstract is unfortunate, but necessary. The attempts to try to 
represent the electric field as the motion of some kind of gear 
wheels, or in terms of lines, or of stresses in some kind of 
material have used up more effort of physicists than it would 
have taken simply to get the right answers about 
electrodynamics... ... 

 



In the case of the magnetic field we can make the following 

point: Suppose that you finally succeeded in making up a 

picture of the magnetic field in terms of some kind of lines or of 

gear wheels running through space. Then you try to explain 

what happens to two charges moving in space, both at the 

same speed and parallel to each other. Because they are 

moving, they will behave like two currents and will have a 

magnetic field associated with them (like the currents in the 

wires of Fig. 1-8). An observer who was riding along with the 

two charges, however, would see both charges as stationary, 

and would say that there is no magnetic field. The "gear 

wheels" or "lines" disappear when you ride along with the 

object! All we have done is to invent a new problem. How can 

the gear wheels disappear?! The people who draw field lines 

are in a similar difficulty. Not only is it not possible to say 

whether the field lines move or do not move with charges - 

they may disappear completely in certain coordinate frames. 
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Atomistic Picture: Chains (I) 

Approximate the continuous by the discrete. 

Points ip iqand point charges 
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Atomistic Picture: Chains (II) 

Electric excitation  

is a 1-chain (with inner orientation): 
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Surface elements      and voltage drops       : 

 

 

 

 

Electric field strength  

is a 2-chain (with outer orientation): 

 

In the static limit, the surface elements of      combine to 

closed surfaces, the so-called equipotential surfaces. 

Atomistic Picture: Chains (III) 
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Atomistic Picture: Chains (IV) 

Lines      and magnetic fluxes      : 

Magnetic field strength                    

is a 1-chain (with outer orientation): 
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Boundary Operator  (I) 

Introduce a linear operator   , 

 

which extracts the boundary (while 

preserving the type of orientation). 

Example 1: 

The boundary of a line element (with inner orientation) 

is the final point minus the initial point: 
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Boundary Operator  (II) 

Example 2: 

The boundary of a surface element with 

outer orientation is a closed line, still 

with outer orientation: 
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Homogeneous Maxwell Equations (I) 

 The 1-chain of       is closed: 

 

                                        (no magnetic monopoles) 

 

     „Magnetic flux lines have no beginning and no end.“ 
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Homogeneous Maxwell Equations (II) 

 (1-chain of     ) + (boundary of     ) = 0  

                            

                                       (Faraday´s law of induction) 

      

      Pictorially:                            
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A Simple Application 

Current carrying coil at 

rest (cross section) 

B
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Coil in motion 

(velocity    ) 
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In formulas:                     (+ closed surfaces). 

          means this: attach vector        to the lines of     ; 

multiply resulting surface elements by        ;             

take limit              . 
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 Atomistic Picture: Chains (V) 

Current density     is a 1-chain: j
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Define line element      by attaching velocity vector  

to point     : 
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Inhomogeneous Maxwell Equations (I) 

 (0-chain of    ) + (boundary of     ) = 0 

                                                

                                                  (Gauss‘s law) 

 

     „Charges are sources of electric excitation“. 
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Inhomogeneous Maxwell Equations (II) 

• The boundary of the 2-chain of      equals the 1-chain 

of  

 

                                        (Ampere-Maxwell law) 

 

      Pictorially: 
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Metric: Star Operator (Hodge) 

Introduce a linear operator     , 

                                                   , 

which turns surface elements into line elements,                                        

(in the perpendicular direction), and vice versa. 

 

Example 1: 
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Constitutive Laws 

Example 2: 
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Discussion (I) 

• The notion of chains is intuitive, and the operators    

        ,   and         are easily grasped by students. )(v

• In the form presented, Maxwell´s equations are 

not modified by general relativity (the metric 

appears only in the constitutive laws). 

 
• The nature of the chains                  precisely 

matches the way they´re measured. 
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• The right-hand rule isn´t ever used, so parity 

invariance of Maxwell´s theory is manifest! 

 



Discussion (II) 

• The electric excitation      is measured by 
Maxwell´s double plates. 
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• Measurement of the magnetic excitation      : 
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ElectroMagnetostatics (I) 

Charge density of a dipole layer       

with      = dipole moment / unit area: 

 

Verification: 
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ElectroMagnetostatics (II) 

Electric excitation of a dipole layer      : S
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ElectroMagnetostatics (II) 

Proof. Ansatz: 

The same equations have the same solutions. 
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ElectroMagnetostatics (III) 



Further examples of the equivalence 
electrostatics        magnetostatics: 
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Discharge of a Capacitor (I) 

Capacitor with electric dipole moment     : 

is discharged instantaneously at 

time zero. 

What´s the electromagnetic signal 

emitted? 
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Discharge of a Capacitor (II) 

Wave equation for       : B jB *0 

Initial value problem:                               , and 0B )0( t
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Discharge of a Capacitor (III) 

Solution: with 

Pictorially: 
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Magnetic excitation by point charge 

Charge at rest: 0H
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Magnetic excitation by point charge 

Charge in motion 

v

D

D



Magnetic excitation by point charge 

Charge in motion: 0H
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Magnetic excitation by point charge 

Charge in motion: 0H
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In the case of the magnetic field we can make the following 

point: Suppose that you finally succeeded in making up a 

picture of the magnetic field in terms of some kind of lines or of 

gear wheels running through space. Then you try to explain 

what happens to two charges moving in space, both at the 

same speed and parallel to each other. Because they are 

moving, they will behave like two currents and will have a 

magnetic field associated with them (like the currents in the 

wires of Fig. 1-8). An observer who was riding along with the 

two charges, however, would see both charges as stationary, 

and would say that there is no magnetic field. The "gear 

wheels" or "lines" disappear when you ride along with the 

object! All we have done is to invent a new problem. How can 

the gear wheels disappear?! The people who draw field lines 

are in a similar difficulty. Not only is it not possible to say 

whether the field lines move or do not move with charges - 

they may disappear completely in certain coordinate frames. 

 





Quantum Hall Effect (I) 

Two-dimensional electron gas in a strong magnetic field: 

2+1 space-time dimensions 

time 

space 

J
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J

1-chain      (3-current) consists of the world lines of 

charged excitations: 
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Quantum Hall Effect (II) 

time 

space 

F
F

F

1-chain      (Faraday form) consists of the world lines 

of the points of intersection of the flux lines of      

with the plane of the electron gas: 
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Quantum Hall Effect (III) 

In every plateau regime (= quantum Hall state) 

we have (Jürg Fröhlich): 

H     = Hall conductivity (a pseudo scalar) 

q
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Every excitation with charge     is accompanied 

by a magnetic flux 
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