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1 De Rham Theory

1.1 Differential complexes

Definition.| A direct sum of vector spaces C' = @ _, C? indexed by the integers (or a subset

€z
thereof) is called a differential complex if it is equipped with a linear mapping (actually, a collection
of linear mappings),
oot Lo Ly oot
such that d* = 0. The linear operator d is called the differential operator of the complex C'.
One says that the elements of Z9(C) := (kerd) N C? are closed, while those of BY(C) :=
(imd) N CY are exact. [In certain contexts, the elements of Z7(C') are also referred as g-co-cycles,

those of BY(C') as g-co-boundaries.]
The cohomology of C' is the direct sum of vector spaces H(C) = P, c,, H?(C) defined by

HY(C) = 29(C)/BY(C).

An ezxact sequence in this context is a differential complex (C, d) with vanishing cohomology, i.e.,
with the property that Z¢(C') = BY(C) for all q.
Reminder. A group action X x G — X, (z,g9) — xg on a topological space X induces an
equivalence relation

r~r & 3IgeG: 2 =uag
on X. Such a relation ~ organizes the elements of X into equivalence classes, which we write as
[z] = [zg]. The space of equivalence classes [z] is denoted by X/G and referred to as the quotient
of X by G. (It is a topological space by the so-called quotient topology.)

These general notions define what is meant by the quotient space HY(C) = Z9(C)/Bi(C).
Indeed, the vector space Z9(C') of closed elements is acted upon by the vector space BY(C') of
exact elements (viewed as an abelian group), with the group action simply being the operation
of vector addition. The equivalence class [z] € HY(C) of a closed element z € Z9(C) is called a
cohomology class. By definition, [z] is the set of all closed elements 2’ € Z%(C') which differ from
z by an exact element, i.e., 2/ = z 4+ b for some b = df$ € B?(C'). Note that by the law of addition

[2] + [¢] i= [z + 2],

the quotient of two vector spaces is still a vector space.

1.1.1 [Example: Q(R?)

An example of a differential complex known to every physicist is the following. Let C°, C*, C?,C3
be the spaces of differentiable functions, vector fields, axial vector fields, and pseudoscalar func-
tions, respectively, each with domain of definition R3. We set C? = 0 for ¢ < 0 and ¢ > 3.
Then C' = @
conventionally by Q(R3)] with differential operator

ez C1 is a differential complex [and essentially the same thing as what is denoted

0— &S ot o2 s g (1.1)



because curl o grad = 0 and div o curl = 0. In this example one has the following cohomology:
1. H° = R because the only functions on R? with vanishing gradient are the constant functions,
2. H' = 0 because every rotationless vector field in R? is a gradient,
3. H? = 0 because every divergenceless axial vector field on R? is a curl,

4. H3 = 0 because every pseudoscalar function is the divergence of an axial vector field.

This cohomology gets more interesting when R? is replaced by some _ For

example, if U consists of n connected components, then H® = R" because we get to choose a
constant value for our function on each connected component of U separately.

Let x,y,z be the coordinate functions associated with a Cartesian basis e, e,, e, of R3. If
U = R3\ z-axis, then H' = R. In fact, every rotationless vector field on R? \ z-axis is, modulo

gradients, some multiple of
ey — ye,

ZL‘2 + yQ
If we remove from R? a single point, say the origin: U = R3 \ {0}, then the second cohomology

becomes non-trivial, H? = R, with generator

reg, +yey + ze,

= 3
Va2 +y?+ 22

(viewed as an axial vector field). In other words, every divergenceless vector field on R? \ {o} is

some multiple of v modulo curls.

- If it worries you that you can’t verify the claims made above, please be patient. It is
the very purpose of the present chapter to develop the mathematical tools needed to compute this

type of cohomology (which is called the de Rham cohomology).

1.1.2 [Bxample: 0. (R)

Recycling the previous example, let us change the rules of the game slightly and require that all
our differentiable functions and vector fields on R? are compactly supported, i.e., vanish outside a
finite and closed domain. The zeroth cohomology then becomes trivial, H® = 0. Indeed, there
exists no compactly supported constant function on R? other than the zero function.

The first and second cohomologies remain trivial (H' = H? = 0). However, the third coho-
mology H3 = Z3/B3 now is non-trivial. In fact, Z3 = C? [since the last map of the differential
complex (1.1) is the zero map] and B? with compact supports is strictly smaller than Z3. To verify

the last fact, note that the integral of a compactly supported function f = dive € B? vanishes:

// fda:dydz://v-dzn:(),

by Gauss’ theorem. On the other hand, there certainly exist compactly supported C* functions

f € Z3 with non-zero integral.



Problem. Show that two compactly supported functions f and g differ by a divergence (f —g =
divu) if and only if they have the same integral, [o, f dxdydz = [4s g dzdydz. O

By using the solution of the problem, one immediately sees that H? = R.

Remark. Let us make the following observation: in the case at hand, the cohomology H? with
compact supports is the same as the cohomology H379 without compact supports. This is no
accident but reflects a principle known as Poincaré duality. We will meet the general statement

of Poincaré duality later in the chapter.

1.1.3 Example: homology of a tetrahedron

The next class of example is of a combinatorial nature (and belongs to the realm of what’s called
homology). For simplicity let us consider the concrete situation of (the surface of) a tetrahedron.
We associate with it a differential complex as follows.

A tetrahedron consists of four O-cells (these are the vertices, or corners, or sites of the tetra-
hedron), six 1-cells (the edges, or links), and four 2-cells (the faces). Formal linear combinations
of g-cells with real coefficients are called g-chains. They can be added and multiplied by scalars
and thus form a vector space. The vector space of g-chains is denoted by Cj .

We now assign (in an arbitrary way) a sense of direction to each 1-cell and a sense of circulation

to each 2-cell, see the figure below.

3, = 2=

Then we have a boundary operator 0 : C; — C,_; which is defined in the following natural way.
The boundary of a 0-chain always vanishes by decree. The boundary of a 1-cell is the 0-chain
made from the end point with coefficient +1 and the starting point with coefficient —1. (This
already defines 0 : C7 — Cj by linear extension.) The boundary of a 2-cell S of the tetrahedron
is the 1-chain 0S = £¢;, £ {;, = {;, made from the three 1-cells ¢;,, ¢;,, ¢;, in its boundary, where
the coefficient of ¢; in 0S is +1 (—1) if the sense of direction of ¢; agrees (disagrees) with the sense
of circulation of S. (Again, this already defines the boundary operator 9 : Cy — Cf.)

Problem. Show that this definition of boundary operator 9 : C, — C,_; satisfies > = 0. O

Thus our boundary operator O has the property 9% = 0 of a differential operator. There is, however,

a slight difference: 0 lowers the degree ¢ whereas the definition above wants the differential



operator to increase the degree. This can be repaired by letting C~% := C, for ¢ = 0,1, 2 (and of
course, C? = 0 for ¢ < —2 and ¢ > 0). Alternatively, one may dualize the situation by defining
C? = C; (dual vector space) and taking the differential operator d : C9 — Ot to be the

so-called co-boundary operator, i.e., the transpose of 0.

-Compute the (co)homology H(C) of the differential complex C' = C~2@® C~1 @ C of
the tetrahedron with differential operator d = 0.

1.1.4 _de Rham complex on R"

Let z1,x9,...,x, be the standard linear coordinates of R". By ) we denote the exterior algebra

(or Grassmann algebra) over R generated by the differentials dxy, dz,, . .., dz, with relations
dz;dx; = —dx;dx; .
(Note that dz'da’ = 0.) Q is graded by Q = @,_, Q7 where the vector space 2 has the basis
d;, dwgy - drg, (i <y < ... <ig).
Note dim Q¢ = (Z) and dim 2 = 2". The C* differential forms are the elements of
Q(R"™) := C=(R™) ®R Q.
The algebra Q(R") inherits from Q2 a grading Q(R") = P,_, Q/(R") by
Q9(R") := C®(R") @R Q9.

The elements of 29(R™) are called C* differential forms of degree ¢, or g-forms for short. Thus a
g-form is a sum of terms each of which is the product of a C* function with an element of €29.

There exists a differential operator called the exterior derivative,
d: QIR") — QITHR™),
which is defined as follows. If f € Q°(R") = C*°(R") then df is simply the differential:

dfzzgi du; .

If w e QI(R™) then
dw = dZwil g dl’il cee d.’Ifiq = Z dwil g d.’Ifil cee d%iq .

d(&n) = (d&)n+ (—1)*=@ ¢ dn.

-Show that d is an anti-derivation, i.e.,

Show that d> = 0. O

The complex Q(R") together with the differential operator d is called the de Rham complex on
R™. The kernel of d are the closed forms, the image of d the exact forms.
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_ The g-th de Rham cohomology of R" is the vector space
Hiz (R™) = {closed ¢-forms on R"}/{exact ¢-forms on R"}.

- All of the above makes sense for any open domain U C R". Thus in the same vein we
have Q(U) and Hj, (U).

1.1.5 Snake lemma

Let A, B be a pair of differential complexes, with differential operators ds : A? — AT d4 =0,
and dp : B? — B! d% = 0. A degree-preserving linear mapping f : A — B is called a chain

map if it commutes with the differential operators of A and B:

dg f=fda.
- The map f: A — B descends to a map in cohomology:
fe: HI(A) — HYB).
Indeed, being a chain map f maps kerd, into kerdg, and im d4 into imdg , so we can define the
image under f of a cohomology class a + d(A9™) = [a] € HY(A) by
filla]) = f(a) +d(B*") = [f(a)]. O

_ Let ¢ : M — N be a differentiable map between two manifolds. Then

there is a map ¢* : Q(N) — Q(M) called the pullback by ¢. Look up the precise definition of
pullback, and show that pullback is a chain map. [J

Next comes a quick reminder of something basic from linear algebra. We recall that a differential

complex with vanishing cohomology is called an exact sequence. An exact sequence of three vector
spaces A, B, C,

0—A-LB-%0—0, (1.2)
is called a short exact sequence. In this case the following properties are immediate:
ker f =0, imf=kerg, img=C.
Thus f is injective, g is surjective, and go f = 0. It follows that the induced mapping
B/f(A) = C, b+imfw— g(b),

is an isomorphism.

f / S

Next, consider a short exact sequence (1.2) of differential complexes A, B, C, with the addi-

L ]
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tional property that the operators f and g are chain maps:

Then, as we already know, the maps f: A — B and g: B — C descend to maps in cohomology:
fe: HY(A) — HY(B), g¢g.: HY(B)— HYC).
What is less obvious is that one also has a canonical mapping
d,: H1(C) — HIT(A).

This map d, is defined as follows. [We now drop the subscript from d,4 , dp, and de. Which of
these differential operators is meant will always be clear from the context.] Let ¢ € C%. Then,
since g : BY — (7 is surjective there exists some b € B such that g(b) = c¢. If ¢ is closed (i.e.,
c € kerd) then

g(db) = dg(b) = dc =0,

and owing to ker g = im f there exists some a € A?"! such that f(a) = db. This element a is

closed since f is injective and
f(da) =d f(a) =d°b=0.
Thus for [¢] € HI(C') we tentatively make the assignment |[c] & [a] € HITL(A).
To see that this defines an operator d, : H?(C) — H7™'(A) as desired, we must check that the

result [a] does not depend on the choices made. Hence let ¢ be replaced by another representative

c+dy of [¢] € HI(C). Because g is surjective in degree ¢ — 1, there exists § € B4~! such that
c+dy=c+dg(B)=g(b+dp).

Thus b gets replaced by b + df, which is a substitution that leaves db unchanged. Now, what
happens if we replace b by b + by with kerg > by = f(ay)? In this case we get

d(b+b) = f(a) +d flar) = fla+don),

which again yields an unchanged result [a+da;] = [a] in cohomology. Thus our map d, : H(C) —
H1(A) is indeed well-defined.

_ Prove the exactness of the long sequence

s HOYC) S HI(A) L BHYB) S HY(C) S HotNA) s O



1.2 Mayer-Vietoris sequence

In Section 1.1.4 we introduced the de Rham complex of R™. Its differential operator, the exterior
derivative d, has the important property of being independent of the chosen coordinate system.
This property allows one to define the de Rham complex (M) for any differentiable manifold M.
To that end, one covers the manifold M by an atlas {U,} of open subsets (or domains) U, each of
which is diffeomorphic to R™ (for n = dim M). A differential form w on M then is a collection of

forms wy for U in the atlas of M such that wy, for every non-zero intersection

‘UamUﬂ = Wug |UaﬁU5
U, NUz. On each domain U, one defines the exterior derivative as before (Section 1.1.4). By
the coordinate-independence of the exterior derivative, these pieces of exterior derivative piece
together to give a globally defined exterior derivative d : Q(M) — Q¢"'(M). The de Rham
cohomology H?(M) is still the quotient of the closed g-forms on M by the exact g-forms.

The Mayer-Vietoris sequence is a powerful tool, which will let us understand a number of facts
about H4(M). To introduce it, let M = UUV with two open domains U and V', and let UNV # ()

be their intersection. Defining the inclusion maps
1 U—-M, j:V->M k:UNV-=U [:0UNV-=>YV,
we claim that these give rise to a short exact sequence by the corresponding pullbacks:
0— o) "L oy e o)X ounv) —o. (1.3)

Thus in the first non-trivial map of the sequence a differential form w € (M) is sent to its pair
of restrictions (wy,wy) to U and V. In the second map one sends a pair («a, 5) € QU) @ QV) to
the difference o — 3.

*

It is clear that (i*,j*) is injective, and its image equals the kernel of k* — [*. To prove the
exactness of the sequence, it remains to show that k* — [* is surjective. So, let w € Q(UNV). We
need to find a € Q(U) and f € Q(V) such that a — 5 agrees with w on the intersection U N V.

For this purpose let py + py = 1 be a partition of unity by smooth functions such that

supppy CU, supppy CV.

\ [

] \

?LT \ (

U \

O
—
V
Then o := pywisaformon U, f:= —pypwisaformon V,and a — f = pyw + prw = w, as

desired. Thus the map £* — [* is indeed surjective.
Since the Mayer-Vietoris sequence (1.3) is exact, and the maps (i*, j*) and k* — [* (being

pullbacks by inclusion maps) are chain maps, we get a long exact sequence (also called the Mayer-

9



Vietoris sequence)

)

o =) ) gy e HI(v) 2 B0 V) s B (M) —

by the snake lemma of Section 1.1.5. Let us recall the definition of the operator d, in the present
context. Given a cohomology class [w] € H?(U N'V) we pick a representative w and a pre-image
(py w, —py w) under the surjective map k* — I*. We then apply the exterior derivative, resulting
in

A pv w0, —puw) = (dpy Aw, —dpy Aw) € HH(U) & HIF(V),
since dw = 0. Now owing to py + py = 1 we have dpy = —dpy, and therefore dpy Aw = —dpy Aw
makes sense as a form on M = U U V. One thus defines d, : HY(UNV) — HI™ (M) by

di[w] == [dpy A w] = [—dpy A w].

Note that the support of d,|w] is contained in U N V.

Problem. \Why is d.[w] independent of the choice of partition of unity?

1.2.1 Example

As a simple application of the Mayer-Vietoris long exact sequence, we now use it to compute the
de Rham cohomology of the circle S'. To do so, we cover S! by two open domains U and V as

shown in the next figure. =

N—
We then have the following long exact sequence:

(—>H1(sl) — H' ()@ HY(V) — HWUNV) — 0

0 — HSY — HU)a H (V) — HUNV) Jaq,

We now recall that dim H°(M) counts the number of connected components of M. Hence H*(U) =
H°(V) =R and H°(UNV) = R2% Moreover, we have H'(U) = H' (V) = H(UNV) = 0, since
every 1-form in one dimension is exact. Thus our long exact sequence reads more explicitly like

this:
(—) Hl(Sl) — 0 — 0

0 — R — R&R — ROR b
We have that d, : H°(UNV) — H(S') is surjective and that the image of the difference map

k* — I* is one-dimensional. By using im(k* — [*) = ker d, it follows that

H'(S') = imd, HY(UNV)/kerd, =R?/R=R.

HO(UNV) —

10



1.2.2 Compact supports

The Mayer-Vietoris sequence has an analog in the setting of differential forms with  compact
supports. Turning to this case, we first observe that the story has to be run in a somewhat
different way as the pullback of a compactly supported form need not be compactly supported in
general (unless the maps used for pullback are proper). In fact, the good notion to use here turns
out to be that of ‘push forward’.

Let M =U UV with U, V open as before, and consider the sequence of maps

0+ QM) ' Uy @) 2 ounv) o, (1.4)

where the arrows now run from the right to the left and, for example, i, : Q.(U) — Q.(M) is
the mapping which extends a compactly supported form on U by zero to a form (still compactly
supported) on M. The same goes for the other maps.

The short sequence (1.4) is still exact, and this time the exactness of the sequence is easy to see
at every step. In particular, the last step is simpler than before. Indeed, for w € Q.(M) consider
the pair of forms (pyw, py w). Both of them are compactly supported, and their sum equals w.
We thus see that the map Q.(M) pak Q.(U) & Q.(V) is surjective.

The maps i, + j. and (k,, —[,) commute with the exterior derivative and hence are chain maps.

Therefore, by the general principle of Section 1.1.5 we obtain another long exact sequence:

e HIY U AV) S gy T gy e Hev) e i n vy «—

which is called the Mayer-Vietoris sequence for compact supports. (Please be warned that, in
order to avoid an overload of notation, we here refrain from inventing new symbols to denote the
induced maps in cohomology.)

Let us again look briefly at how the operator d, works in the present setting. We choose
some partition of unity, py + pv = 1, as before. For w € QI(M) we then form (pyw,pyw) €
QUU) @ QLV) and take the exterior derivative,

d(pvw, pyw) = (dpu A w, dpy A w).
The operator d, : HI(M) — H (U N V) is then defined by
d.[w] := [dpy A w]| = [—dpy A w].

1.2.3 Example

As another simple lapplication, | let us recompute the de Rham cohomology of the circle, St, by

using the long Mayer-Vietoris sequence with compact supports:

0 «— HYSY) «— HNU)® H:V) «+— HNUNYV) ﬁd"

L HY(SY) «— HXU)® HXV) «— HXUNV) «— 0.

11



We have H)(U) = 0 (recall that on an open U set there exist no compactly supported functions
that have zero differential but aren’t zero) and H!(U) = R (because the total integral of a 1-form
in one dimension is an obstruction to that 1-form being the differential of a compactly supported

function). By filling in these cohomologies we obtain

0 «— H(SY) 72 RerR "2 ReR < d
LHS(Sl) — 0 — 0.

To compute [HA(SY) we observe that the map i, + j. : H}(U) & H}(V) — H}(S!) is surjective.
Thus
He(SY) = im (i + ji) = (H:(U) @ He (V) /ker (i + ji).
Now ker (i, + j) is one-dimensional, being generated by ([a],[8]) € HX(U) & H(V) subject to
onz+fVB = 0. Hence
H!(SY) = (R®R)/R=R.

Turning to HI(SY) we observe that d, : H(S') — HY(U N'V) is injective. Therefore
HY(SY) ~imd, = ker (k,, —L.),

by the exactness of the sequence. The kernel of (k.,—[.) has dimension one; it is generated
by forms on U NV whose total integral vanishes while the integral over either one of the two
components of U NV is non-zero. We thus conclude that H%(S') = R.

In summary, it makes no difference for de Rham cohomology of S* whether we require compact
supports or not:

H°(SY = H)(SY) =R, HYSY)=H!}S")=R.

This is no accident. In fact, one has HI(M) = H?(M) (for all ¢) whenever M is compact.

1.3 Poincaré duality

PD will be seen to be a fundamental result with many applications.

1.3.1 Integration of forms

It would not be appropriate here to give a tutorial in exterior calculus and integration of differential
forms. [A good reference is the classical mechanics book of Arnold.] We will just look at a few
cases to communicate to the unknowing reader that integration of differential forms is a very
natural and easy process.

Let E € Q'(R") be a 1-form. Its integral along a (differentiable) curve v : [0,1] — R" is

[e=] B0/ @) de,

where 7/(t) = 4~(t). This definition is coordinate-independent and, in fact, invariant under

reparametrization of the curve. If zy,xs, ..., x, are the standard coordinates of R" (actually, any

12



coordinate system will do for present purposes) and E = Y E; dz; , then the coordinate expression

[e-% [ soorioa

We turn to the case of a 2-form B € Q?(R"™). To integrate it, we need a parametrized surface,

for the line integral f7 Eis

say o : [0,1]> — R". The integral of B over o is

/ // a(st) ( o(s,1), gt (s,t)> dsdt .

In coordinates we have B = ) ._. B;; dz; dz; and the integral is expressed by

1<J
/ Z// za st (8 o(s, t)) (8,50(3 t)) dsdt ,
7,7=1
where the convention B;; = —B;; is assumed.

It should be clear how this continues to higher degree.

1.3.2 Poincaré lemma

The_says that the de Rham cohomology of R™ is trivial except in degree zero:

n R qu,
Hi(R ):{ 0 else.

When the condition of compact support is imposed, the non-trivial cohomology moves to the top

degree:

n R =n,
H(R ):{ 0 lee.

Let us indicate how the first statement is proved. For this we fix any reference point of R",

say the origin o, and for ¢ > 1 define an operator K : Q¢(R") — Q471 (R"), w — Kw, by

1
(Kw)p(va, ..., vg) = / Wortt(p—o) (P — 0, V2, ..., Vq) ti1ae .
0

-Show that (dK + Kd)w = w. O

From the identity stated in the problem one immediately concludes that every closed form (dw = 0)

of degree ¢ > 1 in R" is exact: w = (dK + Kd)w = d(Kw).
1.3.3 The statement of Poincaré duality

We begin with a few definitions. Let {U,} be an atlas for an n-dimensional manifold M. One calls
{Ua} a good cover of M if all non-empty finite intersections Uy, NUq, N...NU,, are diffeomorphic
to R™.

-Recall that in Section 1.2.1 we used two open intervals U, V to cover the circle S!.
This cover is not good, as the intersection U NV consists of two connected components and thus

is diffeomorphic to two copies of R, not just one. However, it is easy to produce a good cover by
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using three domains U, V', and W. Indeed, we can arrange for each of UNV, VNW and W NU
to be connected, with empty intersection U NV NW = (. O

-What’s the minimal cardinality of a good cover for the sphere S? ? [J

It is a fact that every manifold has a good cover. A manifold is said to be of finite type if it has
a good cover of finite cardinality. (For example, every compact manifold is of finite type.)
A manifold M is called orientable if there exists a top-degree form w € Q*(M) (n = dim M)

which is everywhere non-zero.

_ For every orientable n-dimensional manifold M of finite type

one has an isomorphism

HI(M) =~ (HP~1(M))".

The proof of Poincaré duality will be discussed in a later section.

Here we continue with a_ For this we recall from linear algebra that if a vector
space V is equipped with a non-degenerate bilinear form ) : V®V — R, then the linear mapping
é : V= V*byv— Q(v,-) is an isomorphism. The converse is also true. Similarly, the existence
of a non-degenerate pairing P: V ® W — R between two vector spaces V and W is equivalent
to the existence of an isomorphism P: V — W*, v P(v,-).

By applying this general principle to our situation, we see that Poincaré duality amounts to
the existence of a non-degenerate pairing H4(M) ® H}9(M) — R. This pairing is given by
integration:

/ c HI(M)®@ H Y(M) - R, [o]®[f] r—>/ aNp.
Let us spend a few words verifying that this pairing is Well—deﬁned.MFirst of all, since the second
factor § is compactly supported by decree, the integral |, 1 @A B always converges, regardless of
whether M is compact or not. Second, the integral does not depend on the choice of representative

for either cohomology class. Indeed, if oy and a5 are two representative of the same class [a], then

/Mal/\ﬁ—/MOéz/\ﬁZ/Mdn/\ﬂ:/Md(nAﬂ)=0,

by df = 0 and Stokes’ theorem.

- Stokes’ theorem is the statement [, dw = fBM w. O

Thus Poincaré duality can be restated as follows.

_ For every orientable manifold M of finite type the pairing

HI(M)® H"{(M) - R (n = dim M)

a1 = ap + dn and

by integration is non-degenerate.

1.3.4 The Poincaré dual of a submanifold

For a manifold M of dimension n, let S C M be an oriented submanifold of dimension k. (Oriented

means that there exists an everywhere non-vanishing k-form on S and one has fixed such a form.)

14



Also, let S be closed as a submanifold of M and denote by ¢ : S — M the inclusion. If w is any
compactly supported k-form on M, then the integral f ¢ t"w converges. What’s more, integration
along S descends to a linear functional on [w] € H¥(M) by Stokes’ theorem. Thus we may regard
S as defining an element of (H*(M))". By Poincaré duality (H¥(M))" ~ H"*(M) it follows

that there exists a unique cohomology class, say [ns], in H" *(M) such that

/L*w:/ wAng
S M

holds for every [w] € HY(M). This form ng (or rather its cohomology class [ns]) is called the
closed Poincaré dual of S. By the same token, one speaks of the closed Poincaré dual of a k-chain
on M. (A k-chain on M is a linear combination of k-dimensional oriented submanifolds, actually

k-cells, of M. In the present context all k-cells are required to be closed.)

_ Let M = R3\ {p} and consider the 1-chain D= (Q/N) Zf\il ~; consisting of N rays
7; each of which extends from the point p to infinity and carries ‘electric flux’ Q/N. Note that

each such ray +; is closed as a submanifold of R?\ {p} (albeit not as a submanifold of R3).

A

Q/N

N
v

ks

N

- Show that the Poincaré dual of the 1-chain D is the (cohomology class [D] € H2(R?\
{p}) of the) closed 2-form D = @) 7, where 7, = sin 8, df, A d¢, is the solid-angle 2-form (expressed

in spherical polar coordinates 6, , ¢,) centered at p. OJ

- From the physics viewpoint, the closed 2-form D = () 7, should be interpreted as the
electric excitation of a point charge () at the position p. The benefit from Poincaré duality is that
we may visualize this (perhaps somewhat abstract) electric-excitation 2-form D by the electric
flux lines of the closed 1-chain D. Of course, from the cohomological viewpoint it doesn’t matter
how we arrange the N rays; e.g., we might put them all on top of each other and consider a single
ray from p to infinity. This flexibility stems from the fact that in cohomology one requires the
equality fﬁ W= fM wA D to hold only for closed test forms w (so the ‘test’ isn’t very precise). On
the other hand, in physics one might want such an equality to hold for all test forms w. While
that’s too much to ask for, if we arrange the rays in a way guided by spherical symmetry then we

do get a very good approximation | Hw R / 4w A D by choosing N to be sufficiently large.
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_ Let M = R3\ a for some axis a, and consider the 2-chain H = (I/N) SV, S ofa

circular arrangement of N half planes S; emanating from a and carrying ‘magnetic voltage’ I/N.

—_
a

N _

SIS
|

- Show that the Poincaré dual of H is the closed 1-form H = I d¥, where 9, is the

angular coordinate of a cylindrical coordinate system centered around a .

- Again, in cohomology we could just use a single half-plane S and the Poincaré dual

would still be diJ, . However, as physicists we prefer the circular arrangement (with a large number

)

N of half planes) because then | Fw= Il 1w A H is not only true for closed test forms w, but also
holds approximately for non-closed w. More concretely, our 2-chain His a good approximation

for the magnetic excitation 1-form H due to a stationary electric current I flowing along a. [J

There exists a_of Poincaré dual, which is to be distinguished from the one above.
Let now ¢ : S — M be a compact submanifold (with dimS = k < n = dim M as before). By
the compactness of S the integral |, ¢ t"w makes sense for any k-form w, no matter whether it has
compact support or not. Integration along S again descends to a linear functional on [w] € H*(M)
by Stokes’ theorem, and by Poincaré duality there is a unique cohomology class [ng] in H? (M)
such that

/L*w :/ wAng forall w] € HY(M).

s M

This cohomology class [n%] € H*(M) is called the compact Poincaré dual of S.

_ Let R™ be equipped with the Euclidean distance function d(z,y) = |z — y| (that’s

just for our convenience), and consider some point p € R™. The compact Poincaré dual of p is

represented by a bump form p of mass one, say

2 o 2y—1
c. e~ (E=lz=pl%) |z —p| <,

p=fpedridry - dx,, fp,e(x)z{ 0 o —p| > e

where ¢, is a normalization constant ensuring that [ p = 1.

-We have chosen a bump form which peaks at the point p. It should be emphasized that
the whereabouts of the bump form don’t matter at all in cohomology (as long as p is compactly
supported and has mass one). Indeed, our Poincaré duality equation here reads f(p) = fp f=
Jzn fp and since f € H(R™) is a constant function, the equality holds if [ p = 1. Nevertheless,

the choice of bump form localized at p is optimal in the sense that it achieves approximate equality
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even for the (non-cohomological) case of non-constant f. For example, we might regard p as the

smooth charge density which results from ‘smearing’ a point charge at p.

_ Let M C R? be a spherical shell

M:{p€R3|R1<T(p)<R2}7

where r is the Euclidean distance from the origin, and take S C M to be a sphere of radius
R, Ry < R < Ry. The compact Poincaré dual [ny] € H!(M) then is the cohomology class of
ns = f(r)dr where f(r) is any function with compact support in M and integral |, Ifl > fr)dr=1.
Speaking in physical terms, we may think of the radial electric field strength 1-form E =V f(r)dr

as the compact Poincaré dual of the 2-chain E =V - S with electrical voltage V' across S.

_ Let M C R? be a solid torus (or donut), described in cylindrical coordinates p, 9, z
by
M= {peR’| (p(p) — R1)* +2(p)* < B3},

and take v € M to be the loop (or closed curve) which is the solution set of the equations p = Ry,
z = 0. The compact Poincaré dual of 7 is (the cohomology class of ) a compactly supported closed
2-form 7/ = f (z,p)dz A dp which integrates to unity along any cross section of the donut. We
may think of B o 74 as the magnetic field strength 2-form due to an electric current circulating

around the surface of the donut M.

M

1.3.5 Proof of Poincaré duality

The following lemma will be key to the proof of Poincaré duality.

_). Let there be two exact sequences and five linear maps «, 3,7, 9, € such

that the following diagram commutes:

O‘l Pl ¥ él £
...—>A’L{>B’£C’L§>D/L‘1>E’—>...

Then if the maps a, 3,9, € are isomorphisms, so is the map ~.

- By the commutativity of the diagram, the map § sends im f; into im f] , and the map ~
sends im fo into im f}, and so on. Because (3 is an isomorphism it follows that v : im fo — im f}
is surjective, and because « is an isomorphism, the same goes for § : im f; — im f{. Now the
latter map must also be injective, or else §: B — B’ would not be an isomorphism. Hence, im f;

is in bijection with im f] and we have
ker fo = im f] ~im f; = ker f,,
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by the exactness of both sequences. Owing to the rank-nullity theorem we obtain
dimim f; = dim B’ — dim ker f; = dim B — dim ker f, = dimim f5,

where dim B = dim B’ was used. Therefore, since v : im fo — im f} is surjective, it must actually
be bijective. This concludes the first part of the proof.

The- of the proof begins with the observation that, again by the commutativity of
the diagram, the map 7 sends ker f3 into ker f;. Thus v pushes down to a map

7 : CJker fy — C' [ker f3.

Because 0 is an isomorphism it follows that 7 is injective. We will now prove that 7 is actually
bijective, by showing that C'/ker f3 and C’/ker f} have the same dimension.

By rank-nullity, dim C/ker f3 = dim C’/ker f} is equivalent to the statement that im f3 and
im f} have the same dimension. The latter is true because im f3 = ker f; and im f; = ker f] by the
exactness of the two sequences. Indeed, since § and ¢ are isomorphisms, the kernels of the maps
fa and f} have the same dimension. Thus 7 is in fact bijective.

Altogether then, we have two isomorphisms
v :im fy — im fy 5: C/im fo — C"/im fy

where for the second one we used that im fo = ker f5 and im f} = ker f;. Since C' decomposes as
C ~im fy @ (C/im fy) (and similar for C”) it follows that v: C'— C” is an isomorphism. [J
For open sets U, V' as before, we now pair the two Mayer-Vietoris sequences (with and without
compact supports) to form the diagram
H™Y {UNV) — HY(UUV) — HYU)® HIV) — HY(UNYV)

X X X 029
H=YUNV) « HY9UUV) « H U)o H™ (V) « H9(UNV)

I R S

-The diagram above is (sign-)commutative.
-Let us first show the commutativity of the middle square,

gwuvy U8 gawye HY(V)

& ‘ ®
H—9(UUV) €L H(U)e H9(V

[ ooy lf+f

Thus let [w] € H(U U V) and ([o], [8]) € HY9(U) & H?%(V). Computing the pairing for the
left row we have

W] @ (ix + 7:)(la], [B]) = LN (ivcx + juf3)
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and computing it for the right row

<z’*,j*><[w1>®<[a1,[m>H/Ufmw/vj*ww.

The two pairings give the same value because i*i, is the identity map and hence, e.g.,

/i*w/\oz:/i*(w/\i*a):/ w/\i*a:/ w Ao,
U U i(U) Uuv

where the last equality holds because i« vanishes outside of U. The right square is very similar.
We turn to the left square:

H(UnV) L H(UUVY)
® ®

YU NV) <= H—(UuYV)
Y

A

Now let [¢] € HTH U NV) and [n] € H* (U U V). We recall that d*[¢] = [dpy A €] = [—dpy N €]
(note the change of notation d*) and d.[n] = [dpy A n] = [=dpv A n]. The pairing on the left is

€] @ di[n] — ENdpy A,
unv

that on the right is

reeh - [ (~dpy)nEnn= (—1>Q/ € ANdpu Ay,

Uuv Uuv
Because the support of dpy is localized in U NV these agree but for a difference in sign. [
Remark. We can remove the sign difference, e.g., by redefining d* — (—1)?d*. Since the inversion
of the sign of an operator changes neither its kernel nor its image, the Mayer-Vietoris sequence
remains the same. [J
Returning to our pair of Mayer-Vietoris sequences, we reverse the arrows in the second row to
present the diagram in the following fashion:

HYUNV) — H(UUV) —  HU)eH(V) — H(UNV)

HY Y UNV)* — HY9(UUV)* — HY9U)*® H4(V)* — H1(UNV)*

The proof of Poincaré duality now proceeds by induction on the cardinality of a good cover. First
of all, in the case of M = R" Poincaré duality HY(R™) ~ H» %(R")* holds as a result of the
Poincaré lemma. Indeed, the only non-trivial cohomologies are H°(R") = R = H"(R") and the
pairing H°(R") ® H*(R") = R by f ® p + [ fp is obviously non-degenerate.

Next suppose that Poincaré duality holds for any manifold having a good cover with at most
p open sets, and consider a manifold that has a good cover {Uy,...,U,} with p+ 1 open sets.
Now (UpU...UU,_1) N U, has a good cover with p open sets, namely (Uy N U,,...,U,_1 NU,).
By hypothesis, Poincaré duality holds for U, , for Uy U...UU,_;, and for (UyU...UU,_1) NU,.
By applying the Five Lemma to the commutative diagram above, it then follows that Poincaré
duality also holds for Uy U ... U U,_; UU,. This induction argument proves Poincaré duality for

any orientable manifold that has a finite good cover.

19



1.3.6 Two properties of the Poincaré dual

Let us mention two geometric properties of Poincaré duality. For one thing, let S; C M and
Sy C M be two closed oriented submanifolds of dimension k; and ks respectively, and denote by
[ns,] € H ™™ (M) and [ns,] € H" *2(M) their Poincaré duals. The following statement gives a

geometric interpretation of the operation of exterior multiplication (or wedge product).

Fact. If S| and S, intersect each other transversally, then

P
Msin5.] = s, A [ns,] - transversal

intersection
Thus under Poincaré duality the (transversal) intersection of closed ;f;:'fgi : ith

oriented submanifolds corresponds to the wedge product of forms. %

Remark.| The wedge product of two cohomology classes [a] and [f] is defined to be [a] A [f] :=
[a A 5]. This is a good definition as the wedge product of an exact and a closed form is always
exact. Note also that dim (S; N Sy) = k1 + k2 — n; indeed, there are n degrees of freedom and
(n — k1) + (n — ko) constraining equations. Thus [ns,] A [1s,] = [Ns,ns,] € H> " 7*2(M) passes

the test of counting dimensions.

Example. We illustrate the stated fact with an example from electrodynamics in R3. The energy
current density of the electromagnetic field is the Poynting form s = F' A H (traditionally called
the Poynting vector), where E and H are the 1-forms of the electric field resp. magnetic excitation.
In a static situation we may Poincaré-visualize the closed 1-forms E and H as closed 2-chains. The
Poynting form E A H then is Poincaré dual to the closed 1-chain which is obtained by intersecting
the 2-chains of £ and H. Thus the lines of the electromagnetic energy current follow the lines of

intersection of the surfaces of F and H. (OJ 7

=

The second property to be mentioned here is this.

Fact. Let S C N be a closed oriented submanifold with Poincaré dual [ng]. If f~(5) denotes the
pre-image of S under a mapping f: M — N, then

[f*ns] = [np-10s)]

i.e. under Poincaré duality the induced map on cohomology corresponds to the pre-image in

geometry.

1.3.7 Kinneth formula

Let us mention another useful property of de Rham cohomology which follows more or less directly

from the Mayer-Vietoris sequence [for the proof see Bott & Tul].
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Fact (Kunneth formula). If // and N are manifolds of finite type, the de Rham cohomology of
the direct product M x N is the tensor product of the de Rham cohomologies of the two factors:
H'(M x N)= @ H"(M)® H'(N).

pt+q=r

The same formula holds in the case of the de Rham cohomology with compact supports.

1.3.8 Orientation line bundle

In this lecture course the theme of vector bundles will play a prominent role. (Actually, we have
already been speaking about it, though not officially so). For present use with the introduction of

twisted differential forms, we give the basic definitions right here.

Definition. Let 7: E — M be a surjective map of manifolds whose fiber 77!(z) = E, is a real
vector space for every x € M. The map 7 is called a (smooth) real vector bundle of rank n if there

exists an open cover {U,} of M with fiber-preserving diffeomorphisms
¢o: El, =771 (Us) = Ua x R
such that ¢, : E, — R" is a linear bijection for each x € U, . The maps
Ou © gbgl : (UaNUg) xR = (U, NUg) xR, (x,v) = (2, gap(x)v),

are determined by so-called transition functions g.s : U, N Uz — GL(n,R). A vector bundle
is called flat if there exists a trivialization {(Us,,¢a)} such that all transition functions g,z are
constant. A section of the vector bundle 7 : E — M is a smooth map s : M — E with the
property that 7 o s is the identity map; thus s(z) € 77'(x) = E,. The space of smooth sections
of a vector bundle £ — M is denoted by I'(E) = I'(M, E). O

It is not possible in general to define an analog of the exterior derivative d on the sections of
a vector bundle. (What’s needed to differentiate sections is a so-called covariant derivative V.)
However, if the vector bundle is flat, then d does make sense, as follows.

To define d on differential forms w € Q(M, E) with values in a flat vector bundle E, one
fixes some basis {e!,...,e"} of R". By using the trivialization maps @, : E‘Ua — Uy x R
one introduces a basis of constant sections ¢!, = € (x) = ¢ (x,e’) for every U,. The exterior
derivative do of an FE-valued differential form o expressed on U, as cr{ U, = > 0; ® €l is then

defined by

d (i 0; ® eé) = i(dai) ® e,
i=1

i=1
We must check that this definition does not depend on the use of ¢, or ¢g on U, N Upg. Thus let
c=Y0®e =31 eé. The coefficient functions are related by

Tj(l‘) = Zcij O'Z(I) (ZE S Ua N Uﬁ) s

where the coefficients ¢;; are constants determined by

1_2: J
€, = cijeﬂ.
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(Since the transition functions of the flat vector bundle are constant by choice, so are the ¢;;.)

Now we can do our check:

d (Z T; ® eé) = Z(de) ® e% = Z(cij do;) ® eé
ij
= Z(dai) ®Zcije?3 = Zdai@)eg = d(Zai@)eg) :
i J

Thus we have d|y, = d|y, as required.

- Show that the definition of the exterior derivative d is independent of the choice of
(constant) trivialization {¢,}. O

By construction, the transition functions of a vector bundle satisfy the cocycle condition
903(2) ggy(x) = Ggay(x) on triple intersections U, N Uz N U, # 0. Conversely, a cocycle {gas}
with values gop : Uy, N Ug — GL(n,R) determines a rank-n real vector bundle.

Let now {U, , 1.} be an atlas of coordinate maps v, : U, — R" for a manifold M and take

2t U, Yoy R I—Z>

to be the local coordinate functions given by standard coordinates z!,...,z" for R®. Then a

top-dimensional form w € Q"(M) is expressed by

w:fad.%i/\.../\dl'g:fﬁdzé/\---/\dxg, fﬂZJagfa, JagzDet<gi?>,
B

on any non-empty intersection U, N Ug. Note that by the multiplicativity of the determinant, the
Jacobian J,g : U,NUg — R satisfies the cocycle condition J,5J5, = Joy and so does the function
sign(Jog) = Jas/|Japl- (The Jacobian J,z never vanishes on U, N Ug.)
_ The orientation line bundle of a manifold M is the rank-1 real vector bundle L — M
with transition functions g,z = sign(Jag) : U, N Uz — GL(1,R) (actually, Oy). O

Thus an element of L is specified by a number r € R ~ 7~ !(z) over a point € M. The number
r depends on the coordinate chart ¢, : U, — R used and changes sign when the orientation of
the coordinate basis is reversed. Note that L is a flat vector bundle.
- If a manifold M is orientable, then its orientation line bundle L is trivial, i.e. has a section
with no zeroes.
- Let M be orientable. Then by definition there exists a top form w € Q"(M) whose
local expressions w|y, = fodzl A -+ A dz" have coefficients f, : U, — R with no zeroes. Put
Sa := fa/|fal- The transition rule fz = J,5f, implies the transition rule sg = sign(J,z)sa , which
means that s, : U, — R is the local expression of a globally defined section s of L — M. Since
w has no zeroes, neither does s.
- Prove the reverse implication: if the orientation line bundle I — M has a section with
no zeroes, then M is orientable.
-The space of symmetric unitary matrices (say, of dimension n x n) is of some promi-

nence in theoretical physics. This space fails to be orientable for n > 2.
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1.3.9 Twisted differential forms

_A twisted differential form T on M is a form with values in the orientation line bundle
L of M. One writes 7 € Q(M, L). A twisted form of top degree is called a density. [J

The whole formalism of differential forms carries over to twisted forms. In particular, since
the orientation line bundle is a flat vector bundle, one has a canonical exterior derivative d :
QI(M,L) — QIY(M, L) and hence a twisted de Rham cohomology; this still exists with and
without compact supports, and is denoted by H? (M, L) and H*(M, L) respectively.

Twisted differential forms can be integrated. In the important case of a density, the-
(if it converges) exists for any manifold M, orientable or not. To give a few details, a density

w € Q"(M, L) by definition has the local expression
W}UQUB = fadzl N Ndal @ sq = fadzy A -+ ANday @ sg,
where f, = f3/|Jap| and s, = sign(J,s) s . This may be reorganized as

w‘UaﬂUﬁ = fa |dl‘i R /\dl‘gl = fﬂ |dg;[13/\ /\dxg|,

where the transition rule is
|day, A AN dal] = [Jag| |dag A A da.

The integral of a density w is defined as the iterated Riemann integral

W= Pofadrl - dz

where Y p, = 1 is a partition of unity (subordinate to the cover {U,}). This definition does not
require M to be oriented (or even orientable).

_ Important examples of twisted differential forms are furnished by the inhomogeneous
Maxwell equations, namely (Gauss): dD = p and (Ampére-Maxwell) dH = j+ D . The quantities
appearing in these equations are the electric charge density p € Q3(R3, L), the electric current
density j € Q%(R3, L), the electric excitation D € Q*(R? L) and the magnetic excitation H €
OYR3, L). Further examples are provided by the electromagnetic energy density %(E AND+BAH) €
O3(R3, L) and energy current density E A H € Q*(R3, L).

_ On an n-dimensional manifold M of finite type the pairings

/ . HYM)® H'(M,L) - R and / . HY(M) ® H™ (M, L) — R

by integration are non-degenerate.

- This is the optimal version of Poincaré duality, as it does not involve any orientation

for M. By the notion of Poincaré dual of a submanifold, it leads to the correct way of drawing

pictures of the electromagnetic field: $ @
/ E ;
D
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1.4 Application: d.c. electrical transport

We now embark on a substantial example illustrating all aspects of the theory developed so far:

we will review some fundamental aspects of_ using the model of an

electrical conductor as an n-dimensional manifold X (where n = 1,2, 3 in reality) with open ends.

1.4.1 Charge and current density

Finding the total amount of electric charge in a domain U C X is a counting exercise that does
not require U to be oriented or even orientable. Accordingly, in the continuum approximation one
models the electric charge density p on X as a twisted n-form, p € Q"(X, L). The electric charge
Q(U) in U C X is computed from p by integration: Q(U) = [;; p.

The electric current density, commonly denoted by j in physics, is the quantity that encodes
the information about the flow of the electric charges. The proper mathematical model for it is a
twisted (n — 1)-form, j € Q"7 1(X, L). By integrating j over a (n — 1)-dimensional submanifold S

in X, one obtains the electric current through S:

1(S) ::/Sj.

I(S) comes with a sign which depends on the choice of outer orientation of S (by which we mean

a choice of direction of passing through the hypersurface S).

/ |

If S is a boundary, say S = 90U, the law of conservation of electric charge says that I(S) =
—<2Q(U). The differential version of this law is dj = —p.

In a stationary situation, where p = 0, the electric current density j € Q" 1(X, L) is closed:
dj = 0. If we are not interested in the fine details of 7 but want only its period integrals, i.e.
integrals over closed hypersurfaces, then there is no loss in sending j to its twisted de Rham

cohomology class, [j] € H"}(X, L). The cohomology class I := [j] is called the (total) current.

_ For the conductor X shown above, the cohomology H?(X, L) is 3-dimensional. A
basis is given by the Poincaré duals of the 1-cycles v1, 72,73 .
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1.4.2 Current vector field

Let us now assume that X comes with a canonical volume density dvoly € Q™"(X, L). Then there

exists an isomorphism

I(TX) = Q" YX,L), v u(v)dvoly,

between vector fields, or sections of the tangent vector bundle I'(T'X), and twisted (n — 1)-forms.

The operator «(v) is the operator of contraction with the vector field v; for example,
1(v) B = 1(v) (Z B;jdz' A da:j> = Z (v'Byj da? — v By da)
i<j i<j
is the Lorentz force on a particle of (charge ¢ = —1 and) velocity v in a magnetic field B. To
give another example, let p be the charge density of a charged fluid with velocity field w. In that
case the electric current density is the contraction of u with p. For p = f|dzt A da? A da3| =

fdat A dx? A dx® @ r where r denotes the section of the orientation line bundle which assigns to

every point of R3 a right-handed Cartesian system {e;, s, 3}, this looks as follows:
j=u)p=u(u) (fde' Ndx* ANda® @)
=f (uldx2 A dx® — uda' A de® + uddat A de) 7. \3

Problem. Show that w = u3dz! A dz? @ r € Q?(R3, L) with a bump

3
function u® = u®(x1,z2) and integral (say, over the 12-plane) [w =1 J&

is Poincaré dual to the 3-axis with orientation arrow pointing in the

positive direction. [

In the present context, we may use the isomorphism ['(TX) — Q" }(X, L) to think of the
electric current density ;7 in terms of the vector field v which yields 7 upon contraction with
dvoly :

t(v)dvoly = 7.

v is called the vector field of the electric current, or current vector field for short.
Let us mention in passing that by the integral of the vector field v over an (n — 1)-dimensional

submanifold S C X one means |, gV = J s t(v) dvolx . The divergence of v is given by
div(v) dvoly = d¢(v)dvoly .
Thus only a volume density (in particular, no metric tensor!) is needed in order to define div.

1.4.3 Voltage

The electric field strength is a 1-form, E, while the magnetic field strength is a 2-form, B. As
part of Maxwell’s theory the field strengths obey Faraday’s law of induction: d E = —B. Thus
E is closed if B = 0. Let us then consider sending E to its cohomology class, E — [E]. In a
strictly static situation, it is a postulate of physics that the electric field has an electric potential:

E = —d®, so the de Rham cohomology class [E] € H'(X) is always trivial in that case.
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However, there exist two reasons why in a stationary situation [E] may still become nontrivial.
Firstly, it may happen that B = 0 inside the conductor filling the region X, but B # 0 somewhere
outside. In that case E restricted to X is closed, but E need not be exact. Secondly, and more
importantly, it is reasonable to assume (e.g., in the setting of mesoscopic physics) that E vanishes
outside some bounded region of space. The proper notion to use for E then is the de Rham
cohomology with compact supports, [E] € H}(X). In the latter sense [E] may be nonzero even in

a truly static situation. V := [E] is called the (static) voltage in physics.

From the force law for charged particles in an electromagnetic field, the electrical power (i.e.,

the rate of energy transfer from the field to the particles) is the integral

P:/E/\j.
X

In a stationary situation where both E and j are closed, the electrical power descends to a pairing

in cohomology:
PiHX) 9B (XD SR, (ELG) - [ EAS.
X
Poincaré duality says that this pairing is non-degenerate (for any X of finite type) or, in physics
language: for every voltage V' = [E] # 0 there is some current I = [j] # 0 so that the power
P(V,I) does not vanish, and the converse statement also holds.

Example. Let X be of the product form X =R x Y with Y compact, closed, simply connected,
and dimY = n — 1. Then by the Kiinneth formula,

H{(X)=H{R)® H(Y)=R®R =R,
and the voltage V = [E] € R is given by the single number [ E where the integral is along any
path connecting the two ends {—oco} x Y and {+o00} x Y of X. One also has H" (X, L) =R,
and the current I = [j] € R is the number I = [ j, where the integral now is over the cross

section {0} x Y or any (n — 1)-cycle of X homologous to it. In this situation, the pairing between

voltage and current by power is simply the product of the two numbers [ E and [ j.

1.4.4 Conductance as a map in cohomology

Suppose that the electric charges of a physical system without external forces are at rest (so that

j = 0). On imposing a driving force by means of an external electric field, one expects the system
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to respond with an electric current flow. For a sufficiently weak electric field the relation between
E and j is linear in general, and one then calls the linear operator o : E +— j the linear-response
electrical conductivity. In the stationary limit of interest to us, one attaches to ¢ the adjective

‘d.c.’” (standing for ‘directed current’ as opposed to ‘alternating current’, or ‘a.c.’).

Definition. The linear-response electrical conductivity is a linear mapping
o: QUX) = Q" YX, L), Ew— j=0(F)

(depending, in general, on physical parameters such as gate voltages, magnetic fields, etc.). In the

d.c. limit ¢ has the following properties:

e 0 takes rotationless electric fields to divergenceless electric current densities, i.e., restricts to
a linear mapping

: ZNX) = Z"Y(X,L) .

[

e The linear operator o possesses an integral kernel (with regularity properties not specified
here). By using the one-to-one correspondence between vector fields and twisted (n — 1)-
forms by v <> ¢(v) dvoly , one may view this kernel as a bi-vector field and express j = 7(E)

in components with respect to some basis as

HEV (@) =3 [ o) Byl dvols(y)

e The components of the bi-vector field of & obey the Onsager relation
O-ij(J:a Y3 B) = O-ji(ywr ) _B> :

In words: changing the sign of the magnetic field strength B (and, more generally, changing
the sign of all physical parameters which are odd w.r.t. time inversion) sends the bi-vector

field of o to its transpose.

The situation at hand involves two differential complexes: the de Rham complex of compactly
supported forms, (Q2.(X),d), and the twisted de Rham complex (2(X, L), d). Recall that a linear
mapping between differential complexes is called a chain map if it commutes with the differential

operator d. The electrical conductivity is not a chain map but does share the following property.

Proposition. Under the postulates above, the d.c. linear-response electrical conductivity de-
scends to a map H!(X) — H" (X, L) in cohomology.

Proof (sketch).| Given that o takes closed electric fields to closed electric current densities by
the first postulate, there is a well-defined induced map in cohomology if 7(B} (X)) € B" (X, L).
Thus, the statement to be proved is that if E = —d® with compactly supported ®, then the
twisted (n — 1)-form j = (FE) is exact. Although this statement holds true in the general setting
of a Riemannian manifold X with volume density dvoly , we will assume X to be of Euclidean

type and do the computation in Cartesian coordinates as follows.
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For an arbitrary test form n =Y n; dr’ € QL(X) consider the integral

/X 3(—d®) Ay =3 /X ( /X > ot (g;,y)a% B(y) dvolX(y)> i () dvoly (z)

We partially integrate the inner integral, by using the property of compact support for & (and

assuming sufficient regularity for the bi-vector field o):
-/ ;a%,y)a% v(y) dvolx(v) - [ a(y Z (@.9) dvol ).

Next we use the Onsager relation o (x,y) = 77%(y, x) where 7% denotes the conductivity tensor

of the time-reversed system. By interchanging the order of integration we then obtain

/Xa(—dcb)mz/ Zayj (/ 27 (w,@) mi(a) dvolx (e )> dvolx(y).

The inner integral on the right-hand side can be written as

/X Z Tji(y7 ZE) nz(x) dVOlX({L’) = ?(77) X

/XE(—dd))/\n:/X@d?(n).

Finally, we take 7 to be closed (but otherwise arbitrary). Then 7(n) is closed by our first postulate

Thus we arrive at

and the integral on the right-hand side vanishes. By Poincaré duality, i.e. the non-degeneracy of
the pairing H" (X, L) ® H}(X) — R by integration, it follows that (—d®) must be zero in
cohomology. Thus 7(—d®) is exact as claimed. [

Problem. Assuming X to be Euclidean (for simplicity), show that the conductivity tensor satisfies

32
= oxtoyI

o (z,y) =0.0

We have demonstrated that the d.c. linear-response conductivity o : Z}(X) — Z" (X, L)
descends to a mapping in cohomology. This map, taking voltages V = [E] € H}(X) to currents
I =[j] € H" (X, L), has a special name in physics.

Definition. The induced map,
G: H(X)— H"YX,L),

is called the d.c. linear-response electrical conductance. []

By Poincaré duality, one can reformulate the conductance as
G: H{(X) -1 HY(X)*~ H"Y(X,L),

where g, being a map between a vector space and its dual, has a canonical adjoint (or transpose),

g'. The Onsager relation restated at the cohomological level then says that



Thus in the absence of magnetic fields (and other parameters that break time-reversal symmetry)

the conductance g is symmetric; in terms of the power P([E],[j]) = [ E A j this means that
PV, I') = P(V,g(V')) = P(V',9(V)) = P(V',1).

When a magnetic field (or other agents breaking time-reversal symmetry) are present, the con-
ductance may have a skew-symmetric part. This part is called the non-dissipative (or Hall) part

of the conductance; it does not contribute to the dissipated power P(V’, g(V)) |V,:V .

Footnote.| For a linear map L: V — W, V = W, one has no way of telling in general whether
L is symmetric or not (unless V' is equipped with a non-degenerate quadratic form). However, for
W = V* one can speak about symmetry or skew-symmetric without using any extra structure:
one calls L symmetric if L(v)(v') = L(v")(v) and skew if L(v)(v') = —L(v")(v). An example of a
symmetric map L : V' — V* is the tensor of the moments of inertia of a rigid body (with respect

to some fixed point, say the center of mass) mapping angular velocities to angular momenta.

Example. In a quantum Hall (QH) insulator, i.e. a 2d electron gas exhibiting the quantum Hall
effect, the symmetric part of the conductance vanishes while the skew-symmetric part, the Hall
conductance, is quantized in (integer or fractional) units of the conductance quantum e?/h. To
illustrate how Poincaré duality helps to give a mathematical description of the situation, consider
a quantum Hall insulator X with three leads. The cohomology of the voltage then is H!(X) = R?,
and the same goes for the cohomology H'(X, L) of the current.

A basis of H!(X) is supplied by the Poincaré duals of the

cross sections S and S5 shown in the next picture.

A basis for H'(X, L) is provided by the

(Poincaré duals of the) 1-cycles 32 and 73 .

Y13

S, X

The current response of the QH insulator (in a quantum

Hall plateau regime with Hall conductivity o) is known to be Sy
Sy omyse, Serrogmiz, S30 0@z,
from experiments. Now the pairing by integration gives
P(S1,732) =0=P(S2,m3), P(Si,m3) =1, P(5,732)=-1,

which means that v;3 = S} and —v33 = S5 are the basis elements of H!(X)* which are dual to
the basis S; and Sy of H!(X). When expressed in such a basis, the current response takes the

skew-symmetric form characteristic of non-dissipative transport:
g(S1) = —og S5, g(S2) =+oy ST.

Problem. By using your understanding of quantum Hall physics, make a similar analysis of the

QH insulator with n leads.
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2 Vector bundles and characteristic classes

By a characteristic class one means a cohomology class which is intrinsically associated with a
vector bundle. Consider, for example, the two-sphere S?. The cohomology classes [B] € H*(S?) =
R are in one-to-one correspondence with total magnetic fluxes fs2 B. A priori there exist no
distinguished cohomology classes or magnetic fluxes in H?(S?). However, from the lecture course
on Advanced QM we know that the Dirac quantization condition singles out those cohomology
classes for which [, B € Z (in units of the flux quantum % /e). It turns out that the integrality of
these classes derives from the existence of a vector bundle (whose sections have an interpretation

as the wave functions of a charged particle in the field of a magnetic monopole) over S2.

2.1 Euler class for rank 2

In this subsection we will meet the simplest example of a characteristic class: the [Euler class
of a real vector bundle of rank 2, which happens to be the same as the first Chern class of a
complex vector bundle of rank 1. We will illustrate the Euler class by giving two examples: the
Dirac quantization condition mentioned above, and the Berry line bundle of adiabatic quantum
dynamics (popularly known by the phenomenon of “Berry phase”).

We begin with some basic material about vector bundles.

2.1.1 Reduction of structure group

Suppose we are given a rank-n vector bundle 7 : E — M with trivialization {(U,,¢4)} and
transition functions gag : Uy N U — GL(n,R). If {(Us, ¢o)} is another trivialization, then there
exist maps A, : U, — GL(n,R) such that ¢, = A\, gzNSa. The structure functions g,p for the new

trivialization are gos = A\, gas A . Indeed,
Jap = ¢a ¢§1 = Aa Q;oc Qg,?)\gl = A gag /\g1 .

Since the transition functions g,z satisfy the cocycle condition g,39s, = gay (on U,NUzNU,) so do

the new transition functions g,z . Two cocycles related by gns = Ao Gag /\El are called equivalent.

Fact. Two vector bundles are isomorphic if and only if their cocycles relative to some open cover

are equivalent. [

Definition. Given a vector bundle £ with cocycle {gas}, if it is possible to find an equivalent
cocycle with values in a subgroup H C GL(n,R), one says that the structure group of £ may be
reduced to H. A vector bundle is called orientable if its structure group may be reduced to the
group GL"(n,R) of linear transformations of R™ with positive determinant. If F is orientable,
a trivialization {(U,,¢a)} of E is called oriented if all transition functions g,z have positive
determinant. Two oriented trivializations {(U,, ¢o)} and {(Vs, 1)} are equivalent if for every
x € U,NVjp the linear mapping (¢, wﬁ’l)(a:) : R™ — R" has positive determinant. This equivalence
relation divides the oriented trivializations into two classes, each of which is called an orientation

class (or orientation for short) of E. [
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Remark. Orientability of F/ as a vector bundle is not the same as orientability of £ as a manifold.
However, for a tangent bundle £ = T'M, orientability of FE as a vector bundle is equivalent to
orientability of M as a manifold. [

A Riemannian structure on a vector bundle F is a symmetric bilinear form
(,), ExxE, - R,

which is positive definite and depends smoothly on the position x. Such a structure exists for any
rank-n vector bundle E; this follows from the local factorization 71 (U,) ~ U, x R" by a partition

of unity argument and the fact that R™ can be given a Euclidean structure.

Example. The tangent bundle £ = T'M of a Riemannian manifold carries a canonical Rieman-

nian structure given by the metric tensor of M.

Problem. Show that the structure group Gl(n,R) of a rank-n real vector bundle E can always

be reduced to O(n), and if E' is orientable, that it can be reduced to SO(n).

2.1.2 Euler class

Let 7 : £ — M be an oriented real vector bundle of rank 2. (‘Oriented’ here means that one
of the two orientation classes of the orientable vector bundle E has been singled out.) We fix
a Riemannian structure on F and choose an oriented trivialization {(Us,, ¢o)} by orthonormal

frames ¢, : 71 (U,) = U, X R?. The transition functions then are maps
Jap - Ua N Ug — SO(Q) .

Let df be the standard angular 1-form for SO(2). By pullback we get a closed 1-form 1,5 := g7; 5(df)
on each intersection U, N Usz. Due to the cocycle condition gng = gay g3 these 1-forms satisfy
Nag = Na~y + 15 o0 any triple intersection U, N Ug N U, . In particular, 7,5 = —nga -

Let now ) p, = 1 be a partition of unity subordinate to the cover {U,} and consider

1
= %;Pwma,

which is a 1-form on U, . On the intersection U, N Us we get
(s — &a) = Z Py (Mg = Tha) Z Py(Nay + My8) = Nap Z Py
v

and hence
77a
5,3 - 504 - ﬁ

Since 1,4 is closed, we have d§, = dég on U, N Ug. Therefore, the locally defined 2-forms
1
o 1= d&y = %;dpv/\nvm

piece together to a globally defined 2-form e € Z?(M). Note that e is a differential form on the

base space M, but its construction requires the existence of the total space E.
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The cohomology class [e] € H?(M) of the closed 2-form e is called the Fuler class of

the oriented rank-2 real vector bundle 7 : £ — M.

Starting from a complex line bundle, i.e., a vector bundle with fiber 771 (x) ~ C, one
gets an orientable rank-2 real vector bundle by using the isomorphism C ~ R? and forgetting the
complex structure of R?. In such a situation, the cohomology class [e] is also known as the (first)

Chern class of the complex line bundle.

In the case of a trivial vector bundle E, the Euler class [e] vanishes. Indeed, for
E ~ M x R? one may take all transition functions to be unity, so that 7,5 = 0 for all overlapping

domains U, N Ug. Thus the Euler class is a measure of the twisting of the vector bundle.

2.1.3 Example: Euler class of T*S?

Consider T%S?, the_ of the two-sphere. T*S? is orientable (because S? is), and we
take it to be oriented by the right-hand rule, which is to say that a right-handed system is formed
by the orientation of S? in conjunction with the normal pointing outward.

Let S? be covered by two open subsets U, = S?\ {s} and U, = S?\ {n} which are obtained by
removing the south resp. north pole (not a good cover). Starting from spherical polar coordinates
6 and ¢, it is convenient to introduce a complex coordinate function z for U, by z = tan(6/2) €.
In this coordinate the north pole is at z = 0 and the south pole at z = co. A complex coordinate
for U, is w = —cot(0/2) e™¢ = —z71; this is defined at the south pole (w = 0) and singular at
the north pole (w = c0).

To construct the Euler form e associated with T*S?, we need a Riemannian structure. For this
we regard S? as a Riemannian manifold with geometry given by the Fubini-Study metric, whose
local coordinate expression is

0% + sin® 0 de? — 4dz dz _ 4dw dw '
(T+[22)? (14 [w]?)?
Let us then define orthonormal basis forms 9%, 9¥* on U,, and 9%, ¥* on U, by

_ 2dz 97 2dz g 2dw @ 2dw
L+ [z L+ ]2

9 == 9=
L |wf?’ L+ Jw]?

Viewing T*S? as a complex line bundle, the transition functions now follow from

2d(~1/w) @

— v = 2i¢19w_
T+ w2 w ¢

Gns VY =107 =

To convert to the real setting we evaluate g, on the real orthonormal frame (9% + 9?)/+/2 and

(9% — %) //2i. The result of this computation is

o= (00 OO

As a check, note that g, is defined on U, N U, and that Det(g,s) = 1 > 0. By the prescription

of the previous section we now get 7,, = 2d¢ = —ns, and hence the Euler form
ns d d sn
e:dpn/\77 :d,on/\—(;s:—dps/\—qb:dps/\77 .
2m T s 2
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From this we see that the Euler class of the cotangent bundle 7*S? is
[e] = —(27) [sinfdf A do)].

In particular, we have [o, e = —2.
There exists a beautiful visualization of the Euler class by Poincaré duality. For this purpose,
let the partition of unity be chosen in the particular way shown in the next figure.

1
Fa

A\

=0 o=

Our Euler form e then consists of two bumps, each of integral —1. These may be visualized as the
craters of two volcanoes, one each at the two (north and south) poles. From the extreme of this
perspective, we may view the Euler class of T*S? as the Poincaré dual of the 0-chain consisting of
the two points at the poles, each of weight —1. (For E = T'S? the weights would be +1.)

We take this opportunity to communicate without proof the following fact. The Fuler number
(or Euler characteristic) of an orientable manifold M is defined as the alternating sum

dim M

X(M) =Y (=1)"dim H'(M).

q=0
Since we have defined the Euler class only for the case of rank 2, the student of these notes can
appreciate the following statement only for a 2-dimensional manifold M, although it holds actually

for a manifold M of any dimension.

Theorem. For an orientable compact manifold M the Euler characteristic equals the integral of

the Euler class [e] associated with the tangent bundle TM — M :

X(M):/Me.

Problem.| Verify this statement for the cases of M = S? and M = T?. [

Let us also mention that for the Euler class associated with a tangent bundle, there exists an
alternative construction from geometric data (not the main subject of this lecture course). Indeed,
let M be a Riemannian manifold with curvature tensor R, which is a 2-form with values in so(7'M).
Since the elements of the Lie algebra so(7,M) are skew-symmetric, there exists a natural notion
of Pfaffian of R, and one has [¢] = [Pf(R)]/vV27 M With this expression for the Euler class,
the theorem for the case of dim M = 2 is called the Gauss-Bonnet theorem (which is perhaps the
simplest example of an index theorem). In the general case of any dimension, one speaks of the

Gauss-Bonnet-Chern theorem.

2.1.4 Global angular form

Returning to the setting (cf. Section 2.1.2) of an oriented rank-2 real vector bundle 7 : £ — M,
let EY denote the complement of the zero section s € I'(E), s°(x) = 0. (Thus in E° the zero
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vector is missing from each fiber E, . Note that in the case of a non-trivial vector bundle £, the
bundle £° — M has no globally defined section, but this will be of no concern for what follows.)

Since E is oriented and admits a Riemannian structure, we can choose an oriented orthonormal
trivialization {(U,, ¢o)}. Fixing a standard basis {e;, es} of the Euclidean plane R? we get for
each subset U, an oriented orthonormal frame {e!,e2} by €' (z) := ¢ (x,¢;). Such a frame

defines polar coordinates 7, and 6, on E°
for E°

‘U in the usual way. (To get a local coordinate system

|Ua you must add coordinates z}, ..., 2™ for U, C M.) On U, N Uy the radial coordinates

ro and rg coincide, but the angular coordinates 6, and 6z differ by a rotation. In fact,
d(ga - d@ﬁ = 7'['*77@5 .

Now, recalling the relation 7,5 = 27({s — &,) we obtain

5,
2

ve _dbg
ﬂ-ga_ o +7T£5'

Hence these 1-forms, which are defined locally on EOIU ~ U, x (R?\ {0}), piece together to give
a globally defined 1-form on EP°.

Definition. The 1-form v € Q'(EY) with local expression

dé,,

Vo= gr T

on E°| is called the global angular form.

.

Remark. From the local definition one sees that the global angular form has exterior derivative
dy =r'e.

Thus, although the Euler form e fails (in general) to be exact as a form on M, it does become

exact when pulled back to E°, and the global angular form 1 is a potential for it.

2.2 Geometric structure from principal bundles

Going beyond issues of topology, we will now point out two things: (i) the global angular form 1)
on E° determines a so-called covariant deriwative (or connection) V on E and, (ii) the Euler form
e may be viewed as the curvature of that covariant derivative. We will first demonstrate this by
a straightforward computation in local coordinates. Afterwards, we will provide some framework

and perspective by describing the relevant constructions in differential geometry.

2.2.1 Covariant derivative and curvature

We begin with a few preparations (retaining the setting of Section 2.1.4). On overlapping domains

U, NUz we have two equivalent expressions for a section s € I'(E) :

2

@) = Y oila) eh@) = Y- mi(a) ch(a).

i=1 7j=1
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By definition, the transition function g,3 = U, N Ug — SOq is the mapping

Gap(x) - ZTj(l‘) e; ¢i§) er(x) efé(x) =s(z) = Z oi(7) € () Palz) Z oi(z)e;.

Fixing «, f we write g(x) = gag(x) for short and read off the relations
0i = ZgijTj, efé = Ze’;gij,
j i
where g;; are the matrix elements of the transition function g = gaz.
Let J € so0, be the rotation generator defined by Je; = e; and Jes = —e; . Its matrix elements

are Ji; = Joo = 0 and Jy; = 1 = —J;5. By using the data in the local expression v, of the global

angular form, we introduce a first-order differential operator V, on U, by

Va8 = <Z o, € ) = Zl (dai ®e., + 21, 0 ® Zk e’; Jkl-> . (2.5)

Lemma. On overlapping domains U, N Ug one has V, = Vj.
Proof. The differential of the coefficient o; = ) g;; 7; is

dO'Z' == Z (gij de + Tj ng]) .

To compute dg;; we adopt the viewpoint that the angle 8, — 03 of rotation between local frames
is (or pushes down to) a function on U, NUsz. By taking the derivative and then matrix elements

—05)J

of the formula g = g5 = el we obtain the expression

dgiy = (de®=07) = (007 (d0, — d05)T) = e D G i

]
We also need the relation ), . i€ K Tios = Zz, i elBJlj 7; , which results from applying ¢, ' o J to the
identity . e;0; = Z” e; gij 7; and using > . Ji; gij = >, gi Ji; - With all this information, the

statement is verified by the following computation:
Vas= Z <dT] X e, Gij + Tj Nap X e, Zl gil Jlj + 27‘(’501 0; @ Zk %sz>

Z‘?j

= Z <d7’j X 6% —+ 271'(55 — fa)Tj ® Zl elﬁJlj + 271'5& Tj & Z e%Jlj)
J

=Y (@ +2mgn 8 i) =Vss. O
J

The coincidence V, = Vjz means that there exists a globally defined differential operator V :
['(E) - T(T*M®FE). It is easy to see that this operator is compatible with the exterior derivative
d in the sense that V(fs) = df @ s+ f Vs for any differentiable function f on M.

Definition. If F is a vector bundle over a manifold M, a covariant derivative (or connection) on
E is a differential operator
V:I'(E)-»T(T"M ® E)
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which satisfies the Leibniz rule; i.e., if s € C*°(M) and s € I'(E) then
V(fs)=df @ s+ fVs.

- A covariant derivative on F always exists. (In our rank-2 case we constructed V from
the geometric data of the vector bundle and a choice of partition of unity; more precisely, from the
data of the global angular form v.) The space of covariant derivatives is an affine space modeled
on the vector space Q'(M,End(E)). In other words, if both V and V' are covariant derivatives
on E, then V— V' =w is a 1-form on M with values in End(£). O

If V is a covariant derivative and X € ['(T'M) a vector field, one gets a differential operator
Vx : T'(E) = I'(E) by contraction, i.e., if Vs = > w' ® s; then Vys = > w'(X) s; where w'(X)
is the function on M made by pairing the vector field X with the 1-form w®.

_ The curvature of V is the End(E)-valued 2-form on M defined by

FY(X,Y)=VxVy - VyVx — Vixy].

- [X,Y] = XY — YX is the commutator (or Lie bracket) of the two vector fields X,Y
viewed as first-order differential operators X : f + (d f)(X) on functions. Although FV(X,Y)
looks very much like a differential operator, it is in fact just a tensor field.

- Use the Leibniz rule for V to verify that FV(X,Y) is a section of End(E); i.e.,
FY(X,Y) |x is a linear transformation (or endomorphism) of the fiber E, . O

We now return to our example of a rank-2 real vector bundle £ — M with Euler form e and

global angular form 1. Define a tensor field J € End(F) by
Jeb=e2, Je2 =—e. (on E‘U ).

Thus J is the vector bundle analog of the rotation generator J € so,. Such a tensor field J is

sometimes called an almost complex structure of E.

- If V is the covariant derivative determined by the global angular form v, show that

the curvature of V is given by the Euler form e :
FV=e@2rg. O

Once the meaning of curvature is understood, the formula of the problem reinforces the interpre-

tation of the Euler class [¢] € H?(M) as a measure of the twisting of the vector bundle £ — M.

2.2.2 Associated vector bundle

Since our explicit construction of V in coordinates may appear ad hoc and unmotivated, we now
wish to offer some perspective. We therefore embark on a brief detour into differential geometry.
Apologies for the heavy-duty machinery introduced in the following subsection! (In fact, if you
have no prior familiarity with the subject, you may have to consult a text on differential geometry

to fully digest it. To protect you from getting overly worried: most of what comes afterwards will
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be independent of the material of Section 2.2.3.) The present investment will pay dividends in
Section 2.3 on the Dirac quantization condition, where the Euler form e and global angular form
1 will take the roles of a magnetic field B and magnetic vector potential A, respectively.

In working through the definitions of Section 2.2.3, the_ to keep in mind is this.
Given our oriented rank-2 real vector bundle 7 : EF — M with Riemannian structure (-,-), let
7w : P — M be the fiber bundle with fiber

7 Y(x) = SOR? E,),

i.e. an element p € 7~ !(z) is an orientation-preserving orthogonal transformation p : R? — E,
from the oriented Euclidean plane R? to the oriented fiber £, ~ R?. Notice that SO(R?, E,) is
in bijection with SO5 as a set, but this is not an isomorphism of groups! Note also that each fiber
7 1(z) of P carries a right SOy-action by composition:

p—p-g:=pog (g€ S0Oy).

Thus, as we shall learn presently, P is an example of a principal SO,-bundle.

E,
S I

L

Moreover, the existence of the principal bundle P offers another_on the vector

bundle E as follows. Given a vector v € E, and choosing some p € SO(R?, E,) we may express v

as the image v = pu of a vector u € R?. This expression is not unique. Indeed, for any g € SO,
we have v = pu = (p- g~ ')(gu). Thus the attempt to factor v into p and u comes with a price: to
achieve uniqueness, we need to identify the pair p,u with all pairs (p-¢~!)(gu) and think of the

vectors v as being in bijection with equivalence classes [p;u] :
P xs0, R22 [psul =[p-g " gy £>pu:v cE,.
Thus there is an isomorphism E, ~ SO(R? E,) x50, R? or, altogether,
E ~ P x40, R%.

One describes the situation by saying that the vector bundle E is associated to the principal
bundle P and the vector space R? (by the equivalence relation due to the joint SOs-action). One

calls E = P xg0, R? an associated vector bundle for short.

2.2.3 Connection and curvature from principal fiber bundle

_ A principal G-bundle P (for a group G) over M is a fiber bundle 7 : P — M
carrying a right G-action P x G — P which preserves the fibers of P and is free and transitive.
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_ ‘Free’ means that G acts without fixed points, while ‘transitive’ means that for
any fixed py € 7 !(x) one has py - G = 7 '(x). These two properties imply that 77!(x) ~ G as
sets (or topological spaces). Thus locally one has a factorization P‘Ua ~ U, x GG. Note, however,
that the fiber 7-1(z) is not a group; in particular, there is no canonical choice of neutral element.
This is evident from our example above, where we see clearly that there exists a priori no way of
composing elements of the fiber 771(z) = SO(R?, E,).

- A principal G-bundle P — M is trivial (P ~ M x G) iff there exists a global section.
_ A major physics motivation for the notion of principal fiber bundle comes from
gauge theory. In that setting, one identifies M with ordinary space (or space-time) and the fiber
G acquires the physical meaning of gauge group; for example, G = U; for electromagnetism, and

G = SUj; for the strong interaction.
_ Let P be a principal G-bundle for a connected Lie group G. Inside the tangent

space T, P there exists a distinguished subspace V), called the vertical subspace at p :

V, = {)?(p) | X e Lie(G)}, X(p) = %p o

A principal connection on P is a G-invariant Lie(G)-valued 1-form w on P with the property

VX € Lie(G), Vpe P: wp()A((p)):X, X(p) ev,.

_ The property of G-invariance of a principal connection w means that
Vpe P, Yo eT,P, Vge G: wy(v)=Ad(g) wpye(dRy(v)),

where Ad(g) : Lie(G) — Lie(G), X — ¢gXg~ ' is the adjoint action, and dR, is the differential
of the right G-action R,(p) = p-g¢. The mathematical raison d’etre for a principal connection is

that it determines a G-invariant splitting 7,P =V, & H, (direct sum) where
H, :=ker w, ={v € T,P | w,(v) =0} C T,P

is called the horizontal subspace at p.

_ In the gauge theory context, the principal connection w acquires the physical

meaning of a gauge field. In more precise terms the statement is this. If s: M DU — Pis a
local section of the G-bundle P — M, one defines a Lie(G)-valued 1-form A := s*w by pullback

along s. By definition, two different local sections s; and s, are related by

s9(z) = s1(x) g(x),

where g : U — G is called a gauge transformation. The corresponding Lie(G)-valued 1-forms

AU) = 55w then are related by
A® = g7ldg + g7 AWy,

This is exactly the transformation law for a (non-abelian) gauge field A as known in physics. Thus

from the present perspective, the freedom in choosing A comes from the freedom in choosing s.
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The principal connection w per se is the universal (or gauge-independent) object which arises by

‘considering all gauges at once’.

_ Let 7 : P — M be a principal G-bundle with principal connection w. Given a curve
v : [0,€] = M one defines the horizontal lift 7 : [0, €] — P with initial point py, 7(po) = 7(0), to
be the curve determined by solving the first-order differential equation (0 <t < ¢)

d _ o N
ww(%’y(t))—O, Toy=7v, 7(0)=p.

_ The differential equation amounts to saying that for all ¢ the tangent vector % ~(t)
of the lifted curve lies in the horizontal subspace Hy) = ker wy). By choosing a local section

s: U — P one can express ¥(t) by a mapping g : [0,¢] = G as

This ansatz takes care of the requirement 7 o5 = . The differential equation for the unknown

gauge transformation function g(t) then reads

g(t)g(t) ™"+ Ay (3(t) =0, A=s"w.

For a closed curve v : [0,1] — M, 7(0) = (1), the horizontal lift 7 : [0,1] — P will not be a
closed curve in general. The element g € G determined by 7(1) = 7(0) g is called the holonomy

(along ~y) of the principal connection w.

_ The celebrated Berry phase of quantum adiabatic dynamics is the holonomy of
the so-called Berry (principal) connection of a principal U;-bundle (see Section 2.4 below). The
Aharonov-Bohm effect is another well-known example of holonomy due, in that case, to a flat

connection on a non-simply connected domain.

_ In our special case of E = P xg0, R? (or, more generally, for any associated

vector bundle £ = P X V') the process of horizontal lifting of curves determines an isomorphism

T+ Ey0) — Eyq) (referred to as parallel transport along ) by
EW(O) S PV — f’y(t) v E Ew(t) g

Finally, the notion of parallel transport gives rise to a covariant derivative V on E as follows.

IfY e I(TM) is a vector field, ones defines a differential operator Vy : I'(E) — I'(E) by

(Vys)(x) := lim T s(v(1) — s(x)

t—0 t

I

where T; : E, — E, is parallel transport along a curve v in M with v(0) = z and ¥(0) = Y (z).
One then gets V : I'(E) — ['(T*M ® E) by leaving the vector field argument Y in Vy unspecified.

2.2.4 Covariant derivative from global angular form revisited

After this barrage of definitions, we return to our theme of Section 2.1.4: the covariant derivative
corresponding to the global angular form ¢ € Q'(E°) for an oriented real vector bundle E — M

of rank 2. We aim for a more conceptual understanding of the origin of formula (2.5).
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Notice that 1, = (27)~'df, + 7*&, depends only on the angular coordinate 6, (not the radial

coordinate r,) and is invariant under SOq-rotations of each fiber. Hence, by the isomorphism
P xso0, (R*\{0}) = E°,  [p;v]=[p-g s 90] = po,

the global angular form v on E° induces a principal connection w on the principal SO,-bundle
P introduced in Section 2.2.2. This goes as follows. In the first step we pull back v to a 1-form
¥ on P Xgo, (R?\ {0}) along the isomorphism above. In the second step, we re-interpret ¢ as a
principal connection w on P as follows: if v € T),P is a tangent vector at p € P, we choose some

curve v : (—¢,¢) — P with v(0) = p and 4(0) = v and fix some non-zero vector u € R*\ {0} to

define
~ d
wp(v) = VYipiul dat [V(t)ﬂ‘} =0 J,
where J € s05 is the generator determined by exp(27.J) = 1 (and the orientation class of E).

-Show that w is well-defined, i.e. does not depend on the choice of u and v. Show also

that w has the properties required of a principal connection. []

By the general principles outlined in Section 2.2.3 the principal connection w on P determines a

connection V on E. This, ultimately, is the rationale behind (2.5).

2.3 Application: Dirac monopole problem

We continue with a few words about a foundational theme of quantum mechanics: the_
_ (This will be brief; for a more expansive and leisurely account, see my lecture
notes on Advanced Quantum Mechanics.) It is an experimental finding that electric charge always
occurs as an integer multiple ¢. = ne (n € Z) of a fundamental charge quantum e. Why nature
has arranged for it to be that way is an open question of theoretical physics.

However, if magnetic monopoles exist, charge quantization can be understood by an argument
due to Dirac (1931), who showed that quantum mechanics is consistent if and only if the product

of any pair q., ¢, of electric and magnetic charges is an integer multiple of 27h :
Qe Gm € 2Th7Z .

This condition, known as the Dirac quantization condition, can be read in two directions. Given
a smallest magnetic charge p, it quantizes the electric charge according to ¢. € (2nh/p)Z.
Conversely, given an electric charge quantum e, magnetic charge is quantized by ¢, € (2wh/e)Z .

The plan of this subsection is to give some indication of the mathematics behind the Dirac
quantization condition. To begin, let us recall that in textbook versions of the Schrodinger quan-
tum mechanics of a charged particle moving in a magnetic field B , one is instructed to express B
as the curl of A (for some choice of gauge) and take the Hamiltonian to be H = (5 — e¢A)2/2m.
This _in the presence of magnetic monopoles. Indeed, the total magnetic flux through

a closed surface should be equal to the enclosed magnetic charge, but at the same it vanishes for
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for B = curl A by Stokes’ theorem. Thus the existence of magnetic monopoles is incompatible
with the existence of a magnetic vector potential A of the usual kind.

One therefore has to proceed in a_ The modern approach based on the fiber
bundle concept goes a follows. Suppose there are (very massive, and hence static) magnetic
monopoles at positions p,...,p, in R3. The configuration space M for a charged particle then

is defined as R? with these points removed:

M:]Rg\{pl,...,pm}.

The wave function of a particle with electric charge, say ¢., will be a section of some Hermitian
line bundle 7 : E — M. ‘Hermitian’ here means that the fiber F, ~ C carries a Hermitian
structure, i.e. for every x € M there exists (-, ), : E, x E, — C. (Note that owing to £, ~ C,
wave functions can still be viewed as being locally complex-valued, just like in textbook quantum
mechanics.) We assume that the structure group of F has been reduced to G = Uy .

The information about the magnetic field due to the static monopoles (as well as any moving
electric charges) is encoded in a principal connection 1-form w on a principal U;-bundle P — M.
This 1-form w determines on 2 ~ P xy, C a covariant derivative V, whose local expression is
V = d —ig.A/h for a choice of gauge potential A := (ig,,/27) s*w and magnetic charge g, .
Its curvature FY = V? = (g.gm/h) s*(dw) is proportional to the magnetic field-strength 2-form
B = dA. The physical meaning of the first-order differential operator (%/1)V is that of quantum
mechanical momentum of our particle with electric charge ¢.. From this perspective, the Dirac
quantization condition ¢ ¢,,/h € 7Z is simply a necessary and sufficient condition for the existence
of the Hermitian line bundle F — and hence of wave functions ¥ € I'( E); by the axioms of quantum
theory the latter are required to be globally defined and single-valued.

Let us look at the computational details for the special case of a_
located at the origin of our coordinate system. Thus M = R3\ {0}. We cover M by two open
subsets {U; ,U_} where U, (U-) is M with the negative (positive) z-axis removed. Then, using

the standard system 7,0, ¢ of spherical polar coordinates, consider the transition function
gi_=g=¢€%: U, NU_ - Uy,

which is defined everywhere on U, N U_ = R3\ {z-axis}. In the present setting, the principal

connection 1-form w on P has the local expressions
Wy, =idpy = (i/2)(1 = cosO)dg,  wl, =idy +(i/2)(1+ cos0)dg,

where 1)+ are local coordinates for the U;-fibers on U, . These expressions match because e/¥+ =
g+ e¥- and hence dip, = dip_ + d¢. If we make the choice of gauge dipy = 0 on U , the gauge

potential for a magnetic monopole of charge p is

A% = (ip/2m) s w = £ (u/47)(1 F cos ) do,
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resulting in the same magnetic field strength B = dA* = (u/4n) sinfdf A d¢ for both domains,
U, and U_. Note that the magnetic flux totals

s
%

through any (suitably oriented) closed surface 3 surrounding the monopole at the origin.
We turn to the description of_ or sections ¥ € I'(E). On U; NU_ we have

U=fe,=fe_ where fr=g, f =€?f and e_ =e g, =e;e?,
and the covariant derivative is expressed by

VU = (dfy — (i/2)(1 — cos0) f1 do) ey = (df— + (i/2)(1 + cos6) f_ do) e_ .

By writing this in the form VU = (df; —igAT/h)e; = (df- — igA~/h)e_ and comparing with

the expression for A* above, we infer the relation u/4m = h/2q or

qp=h,

which is the Dirac quantization condition at the elementary level of one electric charge quantum
g and one magnetic charge quantum p.
For the fundamental case of qu = h a pair of wave functions ¥ = ]”J(rl)eJr = fﬁl)e_ and

U@ = ff)eJr = fﬁQ)e_ (with minimal angular momentum) is given by

F = FO0) cos(8/2), S = fD) cos(8/2) e,
2= fO0) sin@/2)¢%, 12 = 1) sin(0/2).

We observe that U(!) has a nodal line emanating from the origin (where the magnetic monopole

is located) along the negative z-axis. Similarly, ¥(®) has a nodal line along the positive z-axis.

- Construct the Euler class [e] (actually, the first Chern class) of E and show that

/. g€ =1 for any surface S enclosing the magnetic monopole. []
A section is called transversal if it intersects the zero section transversally.

- The first Chern class of a Hermitian line bundle £ — M is Poincaré dual to the zero locus

of a transversal section.
-This is a special case of a more general
theorem stated and proved in Bott & Tu. [
B
S—& G L—

V=0

By Poincare duality, the nodal lines Q
of a wave function \J represent the
first Chern class associated with E.
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2.4 Application: Berry phase

Let there be a family of Hamiltonians H (z) depending on a set of parameters z = (z1,...,2,,) in

a parameter space M. Our object of interest is a system with parameters varying along a curve
v [0,1] = M, 7 7(7).

Let h := H o~ be the 1-parameter family of Hamiltonians along this curve. Consider then for

some large time parameter T' the time-dependent Schrodinger equation

%\D(t) = B(HT) V) (0<t<T),

We wish to communicate a certain geometric fact (namely, Berry’s phase) about the solutions
of this equation in the adiabatic limit 7" — oco. For that purpose, it is convenient to make the

substitutions ¢t = 77" and ¥ (t) = U(771) = Y1 (1), bringing the equation to the form

0 T
5 Ur(r) = —ig M(r) Ur(t)  (0<7<1).

In what follows we assume the spectrum of H(z) to be discrete for all parameter values x € M.
We denote the ground state energy of H(z) by Ey(z), the energy of the first excited state by F1(x),

and so on. We also assume that, along our curve v, energy eigenvalues do not cross:
Vre[0,1]:  Ey(y(1)) < Ex(y(7)) < ... < E,(y(7)) < ...,

and all multiplicities are equal to one. Thus, denoting by V,,(z) the eigenspace of H(z) with

eigenvalue E,(z), we have
Vre[0,1]: dimV,(y(r)) =1 (n=0,1,2,...).

This type of situation is governed by the Quantum Adiabatic Theorem:
Fact (Born & Fock, 1928). If ¥(0) € V,,(v(0)) then limp_,, ¥7(1) € V,(y(1)). O

Remark. The quantum adiabatic theorem was proved by Born and Fock under some weak
technical conditions on H(z) not recorded here. In words it says that a quantum Hamiltonian
system remains in its instantaneous energy eigenstate if a given perturbation is acting on it slowly

enough and there is a gap between the energy eigenvalue and the rest of the energy spectrum. [

Next, we take our curve in parameter space to be closed: (1) = 7(0). Then by the quantum
adiabatic theorem W(0) and limy_,o, Ur(1) lie in the same eigenspace V,,(7(0)) = V,(v(1)), and
it makes sense to compare phases. Removing the obvious dynamical phase (7'/h) fol E,(v(7))dr
one expects

lim e(Z/M o B ATy (1) = e w(0).

T—o00
You might have thought that the additional phase a ~ O(T°) would be zero. However, this
naive expectation is false, as was first explained to the physics community by M.V. Berry (1985).

To write an expression for «, which is called Berry’s geometric phase, one makes some choice of
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adiabatic eigenstates ¢, (1) € V,,(y(t)) along the curve . (It turns out to be impossible in general

to make a smooth choice z +— ¢,(x) for all z € M.) Doing so, the Berry phase is expressed as

o= %/01 dr <¢n(7), a% ¢n(7>> :

which is independent of the choice of ¢, (7) if « is viewed as an angle, i.e., as representing an
equivalence class [o] = [a + 27Z] € R/27Z. Indeed, if ¢, : 7 +— V,(y(7)) is another choice of
adiabatic eigenstates, then there exists ¢ : [0,1] — Uy such that ¢, (7) = (") ¢,,(7) and

1/01d7<¢3n(7),%&n(7)> —a+/015(7)d76a+2wZ.

1

Let us now werify Berry’s formula for a. If U(0) € V,(7(0)), then for some choice of family
¢n(7T) we make the ansatz
Ur(r) = efig"(T)(bn(T) + ...,

where the corrections (indicated by the dots) vanish in the adiabatic limit 7" — oco. By inserting

this ansatz into the Schrodinger equation, we obtain

e ie() (gb(T) On(T) + 1gbn(7)) +...= ig\I’T(T) = %h

- (M¥r(r) = 7 Eln(0) e () + ..,

and hence

p(r) +i(a(7), bulm)) = T Ealr() + ...

By integrating this equation and passing to the limit 7" — oo, it follows that

a= g (o =40 -1 [ B6@)ar) =1 [ (o). u0)ar,

T—o00

which is Berry’s formula.

We will now use the Berry phase tofillustrate various notions and constructions of Sections 2.1
and 2.2. First of all, fixing some value of the quantum number n, we remove from the parameter
space all points z where the energy level E,, () becomes degenerate with another level. (By the so-
called Wigner-von Neumann principle, such points typically form a submanifold of co-dimension
three.) We still denote the resulting parameter space by M. Since dimV,(z) = 1 for all z € M,
we have a complex line bundle 7 : E — M with fiber 77 '(z) = E, = V,,(z).

In each fiber E, there exists the circle of unit vectors:

Pri={¢ e Vulz) | (¢, 0) = 1}

The totality of these unit vectors form a principal Uy-bundle 7 : P — M with fiber 7'(z) = P, ~
U, . Its total space P is canonically equipped with a principal connection 1-form, called the Berry
connection. To describe it, let & : P — H be the tautological mapping which simply recalls what

the points of P are, namely vectors in the Hilbert space H of the quantum Hamiltonian system.
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By differentiating this mapping we get d® : T'P — H. The Hermitian scalar product of d® with

® is the Berry connection 1-form,
w:= (P,dd).
- Show that w has all the properties required of a principal connection. [

To link this up with Berry’s formula, let ¢,, : M — P, x — ¢, (x) be a local section and consider
the pullback A := i~1¢* w = i7", d¢,). The Berry phase along the closed curve ~ is the line

integral

o= fa=1 [ (o600 50000 ar.

By Stokes’ theorem, this can also be written as a surface integral over ¥ C M with 0% = v :

a(am:]{ A://dA.
% b
_on the Berry phase is offered by the procedure of using the principal

connection to lift the curve v : [0,1] — M to a horizontal curve 7 : [0,1] — P. By going back
to our verification of Berry’s formula, we see that a = (1) — ¢(0) arises as the solution of the

differential equation 5
~i() + (7)) 5 onl(7) ) =

This is nothing but the equation
d .

for the horizontal lift 7(7) = e (¢, (y(7)) of 7.
Thus the Berry phase can be interpreted as the
holonomy e~ = 5(1)/7(0) of the lifted curve.

As usual, w induces a covariant derivative V on E. Its curvature F := iV? represents the first
Chern class [F/27] € H*(M) associated with the vector bundle E. The class [F/27] is non-trivial
in the presence of level crossings (called diabolical points in some of the older literature), as these

make the vector bundle E twist.

- Consider a spin S = 1/2 particle with magnetic moment x & in a magnetic field B:

HB) = pB = (0, 9 5 [Gngtine
THETOEHT  Ginged  —cosh ) -7
cos 6
There exist two energy levels, g = —ur and 1 = +pr, which are non-degenerate for BeM:=

R3\ {0}. Fix either one of the two levels, say &, for concreteness. A local coordinate description
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of the mapping ® : P — H = C? for the corresponding principal bundle P — M of normalized

eigenvectors, is given by

oo (T e (Lot

The principal connection
w = (®,d®) = idip, —isin®(0/2) d¢ = idp_ + icos*(0/2) d¢

is seen to be exactly the same that we encountered in the context of the Dirac monopole problem
with fundamental charges (Section 2.3). In fact, the two problems are mathematically equivalent,

and one has (for the present example) the following precise correspondences:

Dirac monopole problem < Berry phase problem
position space parameter space
monopole level degeneracy
complex lines £, ~ C instantaneous eigenspaces
gauge connection Berry connection

Problem 1. Show that switching the two energy levels, g <+ €1, corresponds to reversing the

handedness of the magnetic monopole, R <> L.

Problem 2. For the case of arbitary spin S there exist 25+1 energy levels and hence 25+ 1 Berry
line bundles over M = R3\ {0}. Are all of these bundles and their Berry connections isomorphic

to some Dirac monopole bundle? If so, what are the corresponding monopole charges?

3 Supersymmetry and Morse Theory

In 1982, E. Witten pointed out that the de Rham complex (M) can be interpreted as the Hilbert
space of a supersymmetric quantum mechanics [see J. Diff. Geo. 17, p. 661] and that by deforming
the latter to a harmonic oscillator problem one can understand the so-called Morse inequalities,
a classical result in the topology of compact manifolds. The purpose of the present chapter is
to communicate this brilliant insight, which initiated a fruitful and lasting interaction between
topology and the physics of supersymmetry. Among its many variations and ramifications, an

outstanding result is the so-called heat kernel proof of the Atiyah-Singer index theorem.

3.1 Morse inequalities

We begin with a number of definitions. Let f be a differentiable function on a manifold M of
dimension n. A point x € M with the property (d f), = 0 is referred to as a critical point of f.
One calls such a point = non-degenerate if the Hessian Hess,(f) is non-degenerate as a quadratic
form. If all critical points of a function f are non-degenerate, then f is called a Morse function.
The indez, ind,.(f), of a non-degenerate critical point x of f is defined as the number of negative
eigenvalues of Hess,(f). If the index is zero (maximal) one has a local minimum (resp. maximum).

For an intermediate index, 0 < ind,(f) < n, the point z is a saddle point of f.
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One may want to know the number of critical points with index ¢ of a function f: M — R.
(Think, for example, of the Hamiltonian function of classical mechanics. Its critical points are the
local equilibria of the Hamiltonian dynamics.) By the following statement, known as the Morse

inequalities, this number is bounded below by the de Rham cohomology Q4(M).

Let M be compact, and assume that f € C*(M) is a Morse function. Then if m,

denotes the number of critical points of f with index ¢, one has
1. my > b, (¢g=0,1,...,n),
2.mg—mg1+...E£myg>by—b1+...E£by (¢g=0,1,...,n),

3. ZZ:O<_1>q Mg = ZZ:O(_l)q by ,

where b, = dim H4(M) is the ¢ Betti number.

Statements 1 and 2 are called the weak resp. strong form of the Morse inequalities.

Statement 3 says that the Euler characteristic x(M) = > /_;(—1)dim H?(M) can be computed

as an alternating sum of the number of critical points of a Morse function.

Use induction on ¢ to show that the strong form of the Morse inequalities implies the

weak form.

The de Rham cohomology of the two-sphere S? is by = b, = 1 and b; = 0. Thus a

Morse function on S? must have at least one minimum and one maximum, and there need not
be any saddle points. An example of such a function is the height function f = cosf. For the
two-torus T? = S' x S' one has by = by = 1 and b; = 2. In this case there must exist at least two

saddle points in addition to the obligatory minimum and maximum.

Think of a Morse function for T2. [J

Let us finish this introductory subsection by alerting the student to the following aspect. To
define the Hessian of a function f € C*(M) in general, you must choose a covariant derivative:
Hess(f) = V(grad f). (Indeed, if you try to define the Hessian as the matrix of second partial
derivatives, you discover that your definition depends on the choice of local coordinates.) However,
in the special case of a critical point this choice doesn’t matter. The reason is that any two

covariant derivatives V and V' differ only by an End(7'M)-valued 1-form, V' —V = w, and hence
(V(gradf) — V’(gradf))x = wx((gradf)(:r)) =0.

- Show that the index of a critical point is well-defined, i.e. does not depend on the

choice of local coordinates used to compute the Hessian as a matrix of partial derivatives.

3.2 Supersymmetric quantum mechanics

The Hilbert space, say V, of supersymmetric quantum mechanics comes with an orthogonal de-
composition
V=Vah
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into an ‘even’ subspace V) and an ‘odd’ subspace V. Such a decomposition is called a Zs-grading.
One sometimes refers to V and V) as the bosonic and fermionic subspaces respectively.
On V one is given a self-adjoint operator Q = Q' which is a linear mapping between the two
subspaces:
Q: Vo=V, and Q: Vi =V,
One says that @) is odd with respect to the Z,-grading and calls it a ‘fermionic charge’. The

Hamiltonian of the supersymmetric quantum mechanics is taken to be the square H = Q2. It is

a pair of linear operators
H: Vo=V, and H: Vi, — V.

The [spectrum of a supersymmetric Hamiltonian H = Q? has the following special properties.
Let ¢ € V; for j € {0,1} be an eigenvector: Hy = Ev. Then Qv € Vi_; is an eigenvector with
the same eigenvalue:

H(Qv) = Q(Hy) = E(Qv).
If ¢ # 0 and E # 0 then Qv is not the zero vector:

(QY, Q) = (¥, HyY) = E(¢, ) #0.

This means that ) : Vj — V] restricted and projected to the sector of excited states is a spectrum-
preserving isomorphism. On the other hand, by the same argument one has Qv = 0 for £ = 0.
Thus the boson-fermion correspondence between excited states breaks down for the ground state

sector. E

Vy

a supersymmetric spectrum

EFE=0 ——— 1L
Definition, The Witten index of a supersymmetric Hamiltonian H is
Iy (H) = dimker H|,, — dimker H|, .

Thus Iy (H) is the difference between the number of bosonic and fermionic ground states. [

An important property of the Witten index is that it does not change under continuous de-
formations of H. Indeed, although states may enter and leave the ground state sector £ = 0 as
some parameters in H are varied, they must do so as pairs of one bosonic and one fermionic state
each. Thus the Witten index is a kind of topological invariant.

The following formula expresses the Witten index as a supertrace:
Iy (H) = Try, eH — Try, e = STry e
where ¢ is any positive real number. In the limit of ¢ — 0o one recovers the definition of Iy, (H).
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- Let V = L*(R) ® C? be the Hilbert space of a particle with spin S = 1/2 in one

dimension, and take the Hamiltonian to be supersymmetric, H = Q?, with

B 0 O + f'(x) _ 9

where f is a differentiable function on R with enough growth at infinity so that [, e~*®dz < co.
- Compute the Witten index Iy (H) = STre * of this problem for ¢ — oo and ¢t — 0.

3.2.1 De Rham complex and supersymmetric quantum mechanics

Let M be a Riemannian manifold M of dimension n and consider its space of differential forms,

Q(M). The Riemannian structure of M determines a Hodge star operator,
*x: QF(M) — Q"M L),
by linear extension of the formula
* (dxi1 AAY dxi’“) = Zgiljl co gt 1(0;,) - - - 1(0;,) dvolyy,

where ¢¥ are the components of the metric tensor and dvoly = /g |dz! A -+ A dz"| with /g =
\/det(g;;) is the Riemannian volume density. The star operator in turn determines an L2-space

of differential forms by the scalar product

(o, B) = /Ma/\*ﬂ.

The Z-grading Q(M) = @y QF(M) is orthogonal with respect to this scalar product.
-The constitutive laws of Maxwell electrodynamics are D = g+ £ and B = pg* H. The
electromagnetic field energy is expressed as

1

—/(E/\D—i—B/\H)z O
R3

(D.D)  (B.B)

2 280 2#0

Next, define the co-derivative J : QF1(M) — QF(M) by
§=(—1Fxtdx .
For a compact manifold M this operator satisfies

(a,d@z/Ma/\*dﬁz/Mdﬁ/\*a:—/Mﬁ/\*éoz:—@a,B},

so —0 = d' is the adjoint of d. Note that §% = 0.

- By using the coordinate expression for the Hodge star operator, verify the following
formula for § : Q¥ (M) — QF(M):

0 Z Wigiy .. i dx™ Ndaxt A - A det o Z (0w)iy...iy dx™ A -+ Adz™  where
10<...<lk 11 <...<tp

(0w)is i = D Girgs - G 0; (Vgw-av),  whinde =N " gitghti gy o O
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To set up a supersymmetric quantum mechanics, we take V; (resp. V1) to be the space of square-
integrable differential forms of even (resp. odd) degree, and let V = V@V, and Q := d—0 = d+d'.

The supersymmetric Hamiltonian is
H=0Q*=(d—0)*=—(dd+dd) = -/,

where A = dd + d§ is called the Laplacian on differential forms.
- Show that by the isomorphism Z(dz") = > ¢“9; sending 1-forms to vector fields, one

has the following correspondences for the case of M = R3:

A‘QO(RS) = dd = div o grad,
A‘Ql(Rg) =T ' (gradodiv — curlocurl) o T .
3.3 Hodge theorem
Let M be a Riemannian manifold with Laplacian A = dd + do.
_A harmonic differential form w € Q(M) is a form in the kernel of the Laplacian:

Aw = 0.

We denote the space of harmonic k-forms on M by Harmg(M).
- A harmonic differential form w is both exact and co-exact:

dw=0=dw.

- From Aw = 0 one has

0= (w,—Aw) = (dw, dw) + (dw, dw) ,

and the statement follows because (-, -) is positive semi-definite.

_ Let M be a compact n-dimensional Riemannian manifold. Then H*(M)

is in bijection with Harmy (M), i.e., every closed k-form w € QF(M) is cohomologous to one and

only one harmonic k-form on M.

-The operator —A is elliptic and by the compactness of M its set of eigenvalues is discrete.
Because different eigenspaces are orthogonal to each other, every k-form w has a unique orthogonal
decomposition w = w' + Aw” where w’ is harmonic. Introducing two operators H : w — W’

(harmonic projection) and G : w +— w” (Green operator of the Laplacian) we write
w=Hw+ AGw.

Now the exterior derivative d commutes with the Laplacian. (Indeed, dA = déd = Ad.)
Therefore, d commutes with the harmonic projection H and also with AG = GA = 1d — H.
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Moreover, it follows that d commutes with the Green operator G. From this we infer that a closed

form differs from its harmonic projection only by an exact form:
w=Hw+ (6d+ dd)Gw = Hw + d(§Gw),

which has the consequence that [w] = [Hw].
To show that Hw is the unique harmonic form representing the cohomology class [w], one
observes that if an exact form a = df is harmonic, then « is the zero form. Indeed, since a

harmonic form is co-closed,

(@, @) = (dB,a) = —(B,6a) 2= a=0.
Corollary. For a compact manifold M the number of linearly independent harmonic ¢-forms
equals the ¢ Betti number b,(M) = dim H?(M). Owing to by(M) = 1 for a connected manifold,
it follows that the solution space of Laplace’s equation for functions, A f = 0, is one-dimensional.

(The solution space consists of the constant functions.)

Remark. The compactness of M is crucial in order for Hodge’s Theorem to hold. Indeed, in the
case of, say, M = R? ~ C, one has by = 1 but there is a very large supply of harmonic functions.

(The real or imaginary part of any analytic function z — f(z) is harmonic.)

3.4 Weak form of the Morse inequalities

Let M be a compact n-dimensional manifold. Fixing some Morse function f € C*(M), consider

the deformed Cartan derivative
dy:=c¥doe?l =d+se(df) (s € R),

where e(a) denotes the operation of exterior multiplication: e(a)w := a A w. This operator still

satisfies

d? = (e_“”fdoe“”f)2 =e d*oe =0.

Thus one may consider the cohomology of the deformed de Rham complex Q(M) with differential

operator dj :

bi(s) := dim (Q*(M) Nkerd,) — dim (Q*(M) Nimd,) .

Since M is assumed to be compact, the function f and its derivatives are bounded. By a standard
argument of operator analysis it then follows that the by (s) are continuous functions of s. This
means that the by(s) are in fact independent of s, as the only way for a integer-valued function to
change is to make a jump. Thus in particular by(s) = bx(0).

The idea of the following is to analyze the situation in the limit where the deformation param-

eter s is sent to infinity.
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3.4.1 Witten Laplacian

Now fix a Riemannian structure on M (and thus a co-derivative §) and introduce the deformed

co-derivative

8 = e §oe™).

The deformed de Rham operator d, — d, is still self-adjoint, and its square
Hs = (ds - 55)2 = _(55 ds + ds 55) )

is a supersymmetric Hamiltonian commonly referred to as Witten’s Laplacian.
By the same argument that was used in the proof of the Hodge Theorem, the dimension of

the zero-energy eigenspace of H, in QF(M) is equal to the Betti number by(s) :

br(s) = dim ker H

QF (M)

Thus our attention now turns to the ground states of Hy. As we shall see, their number is

relatively easy to compute in the limit of s — oo.

Problem. Recalling the L?-scalar product (a, ) = [,, @ A% determined by the Riemannian
structure of M, show that the operator of exterior multiplication (d f) : Q*(M) — QF1(M) is
adjoint to the operator of contraction t(grad f) : Q* (M) — QF(M). O

By using the result of the problem we have
s =edloe™ = (d,)T = (d+ S&(df))Jr = —0+ su(gradf),
and hence
He=(—06+su(gradf))(d+se(df)) + (d+se(df))(—0+su(gradf)).

By a relation known as the canonical anti-commutation relations [for fermion creation operators

c} = £(d2?) and annihilation operators ¢; = ¢(9;)] one has

e(d f) (grad f) + u(gradf) e(d f) = (d f)(gradf) = |d f* =Y ¢7(0:f) (0, ).
Thus the expression for H, can be reorganized as
Ho ==+ 5°d f1? + 5(Loraar + Llay).
where Lx is the so-called Lie derivative in the direction of the vector field X :
Lx =uX)od+dou(X).

Note also that L], = —c(df)od —5oe(df).

Problem. If you have some background in Riemannian geometry, you may find it a rewarding

exercise to verify the following statements about the 1-form sector:
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1. On 1-forms one has the relation Lgaqaf = Vgads + Hess(f) where Hess(f) = V(gradf) and

V is the Levi-Civita covariant derivative for the Riemannian manifold M.
2. The Weitzenbock formula for the Laplacian A = dd + dd on 1-forms states that
—~/A = V'V +Ric,

where Ric € T'(End(T*M)) is the Ricci curvature, and VI : T'(T*M @ T*M) — T(T*M) is
the adjoint of V : I'(T*M) — I'(T*M @ T*M). Similarly, the Witten Laplacian on 1-forms

can be expressed as

Ho = e Vioe ™IV oe® + Ric + 2sHess(f) .

3. It follows from Weitzenbock’s formula that the de Rham cohomology H'(M) is trivial for

any manifold which admits a Riemannian structure with positive Ricci curvature.

3.4.2 Deformation to a harmonic-oscillator problem

What makes Witten’s idea of deformation (d — d;) so useful is the observation that the eigenvalue
problem for H, reduces to a harmonic-oscillator problem for s — oco. In that limit, the potential
term s?|d f|? grows beyond all bounds everywhere on M with the exception of the set of critical
points of f, where d f = 0. As a consequence, the zero-energy eigenfunctions become localized at
the critical points, and one can do the analysis by expanding around their local data.

For the following, fix a point p € M, (d f), = 0, in the critical set of f. In a neighborhood of

p let the metric tensor be expanded in a system of Riemann normal coordinates {z',..., 2"} as
Git = 0q + é Z Rirji(p) el + ..

where R;x;i(p) are the covariant components of the Riemann curvature tensor evaluated at p, and

z'(p) = ... = 2"(p) = 0. (Note that in a normal coordinate system, the Christoffel symbols of

the connection vanish at the point p.)

Problem. Verify the given expansion of g;; by computing from it the Riemannian curvature

R(0;,0;) 0 = (Va, Vo, = V5, Vy,) 0. O

Now consider the Taylor expansion of f around the critical point p :

1 O°f »
— - vt e e .
f=1fw+5 2= Gwiow (p) 'z’ +
By an orthogonal rotation of the coordinates we may assume the Hessian to be of diagonal form:
0% f

The Lie derivative and its adjoint expand as

Loraar = (0'f) 1) d+ d o (8 f) () = Z a;e(da’) u(d) + ...,
Lhay = —(0:f)e(da’) 6 — 50 (0:f)e(da’) = = > a;u(d;) e(da’) + ... .

%
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By scaling the coordinates as z* = y;//s this gives the following expansion for the Witten Lapla-

cian:

Ho=sd (- g + 20+ o), (0000 ) + OWS).

We see that in leading approximation, the problem separates into n one-dimensional problems,

each with Hamiltonian sh where

2

h=—2
Oy?

+ a®y? + a[e(dy), t(0y)].

It is easy to write down the ground state of the harmonic oscillator Hamiltonian A on 2(R). For
a > 0 the ground state ¢ is found in the functions, ¥ = e~%’/2_ On the other hand, for a < 0 the

ground state is found in the 1-forms, ¢ = etav’/ 2dy.
Problem. Verify that in both cases the ground state energy is zero. UJ
The leading-order approximation to the ground state wave function of H, (localized at p) is now
obtained by multiplying together all of the n ground state wave functions for the one-dimensional
problems with Hamiltonians of the type of h above. Since every negative eigenvalue a; of Hess,(f)
makes for a coordinate differential dy; in the ground state, the product wave function is a differen-
tial form with degree k equal to the index of p. Thus, every critical point p of index k contributes
a (perturbative) zero-energy ground state of H,_,., in the space of k-forms, Q*(M).

On putting together the full chain of arguments,

br = b(0) = b(s) = lim dim ker H ,

S—00 Qk(M)

it might now appear that b, would have to be equal to the number my, of of critical points of index
k. Such a conclusion, however, is premature and in fact false in general because the neglected
terms in H, may cause some of the perturbative ground states to acquire a non-zero energy.
Nevertheless, the s — oo perturbative analysis of H, does show irrefutably that if there are
to be by, linearly independent ground states in Q2*(M), then there cannot be less than by critical

points of index k. Thus a safe conclusion is that
bkgmk (I{JIO,...,H),
which establishes the weak form of the Morse inequalities.

3.5 Strong form of the Morse inequalities

We have yet to understand in quantitative terms how the number my, of perturbative ground states
is reduced to the number by of true ground states. To that end, the previous calculation needs to
be improved. For a first idea, one might try to use perturbation theory to compute corrections
in the small parameter 1/s. Alas, this doesn’t lead to anything: the corrections turn out to be
identically zero to all orders (!) of the perturbation expansion in 1/s. (The reason for this can be

traced back to the supersymmetry of the problem.)
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Notwithstanding the absence of perturbative corrections, there must exist some corrections
that remove my — by of the perturbative ground states from the zero-energy sector. The lift

in energy is expected to depend on s like e™*

, which is not analytic in 1/s at s = oo and hence
invisible in perturbation theory. Corrections of this kind are indeed caused by processes of quantum
tunneling between the perturbative ground states. Pursuing this line of reasoning, our task would
seem to become that of computing the ground-state energy splittings due to tunneling processes.

While that task can be accomplished in principle by using semiclassical methods (namely the
WKB approximation or itsfield-theory analog, the so-called instanton method), Witten proposed
an even better idea, which is this: just like one uses Hodge theory for s = 0 to pass from the de
Rham cohomology groups to the ground states of H = —/A\, we can now use the ideas of Hodge
theory in the limit of s — oo to revert from the ground states of Hy, = —/\; to the cohomology
groups of a certain differential complex, X. This new line of attack has several advantages. For
one, the differential complex X that emerges for s — oo is quite simple; in fact, its vector spaces
X* are finite-dimensional — they are spanned by the perturbative ground states. For another,
the cohomology side computes quantized numbers (namely, dimensions) instead of exponentially
small energy splittings. Hence there is no need to compute with total precision; an approximate

calculation will suffice if it only captures the leading behavior for s — oo.

Thus Witten’s strategy is tolreduce|the deformed de Rham complex
o QR (M) 2 QMY (M) —
to a finite-dimensional complex in the limit of s — oo, say
o XP S xRy

The task then is to construct the differential operator ¢ which corresponds to ds in this limit.
We now proceed in|three steps. First, we show that the very existence of a finite-dimensional
complex X with differential operator ¢ already implies the strong form of the Morse inequalities
with m; = dim X*. Second, we work through the simple example of the circle M = S' to get
a feeling for the differential operator . Third, we recount Witten’s sketch of the semiclassical

construction of ¢ in the general case.

3.5.1 Strong Morse inequalities for a differential complex

Suppose that we are given a differential complex
o XP S xRy

of vector spaces X* (k > 0) of finite dimension m;, = dim X* with differential operator ¢ (not to

be confused with the § = —d' of earlier) and cohomology

dim ((X* Nkerd) / (X* Nimd)) =: by .
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- For all £ > 0 one has the inequality

Mg — M1+ ...+ (—1)km0 >b, — b1+ ...+ (—1)kb0.

- To simplify the notation, we write X* N kerd = kerd and X* Nimd = imd whenever the
degree k is clear from the context. Now let ¢ := dim(X* Nimd) for k¥ > 1 and ¢y := 0. Then

my = ¢ + by + Cpq1.
Indeed, we may decompose X* as a direct sum,
X* ~ kers @ (X*/ kerd) ~ imé @ (kerd /imd) @ (X*/ kers),

and, since 6 : X¥/kerd — X*"! Nimd is an isomorphism, the claimed formula follows by taking

dimensions on both sides. The situation is depicted in the following diagram.

Next we take differences:
My — Mp—1 = Chy1 + bp — bp—1 — Cr—1,
and by iteration we obtain
My — Mp_1 + ...+ (=1)"mg = cppr +bp — b1 + ... + (=1)Fby .
The claimed inequality now follows because ¢;1 is a non-negative number.

3.5.2 The example of M = S!

Consider the-M = S! with angular coordinate 6 € [0,27) and let f : S' — R be a Morse
function with n minima py,...,p, and n maxima ¢, ...,q,. We may assume that these critical

points are ordered by
0<0(p1) <O(qr) <...<0(pn) <0(qn) < 2.

The perturbative ground state spaces (of Hs = —/A\;) due to them are
1/}(;01') — e—sf”(m)(9—9(171'))2/27

Xl o~ span {Qp(q’) }izl - ¢(q’) = e+5f”(‘h') (G_G(Qi))z/zdg .
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The ‘~’ signs remind us that the left-hand sides emerge in the limit of s — oo while the right-hand
sides are for very large but finite s.

Now fix some minimum p; for 1 < ¢ < n. We wish to compute the quantum tunneling matrix
elements between the corresponding ground state wave function ¥??) and the 1-form ground states
associated with the neighboring maxima, 1)(%-1) and (%), To do so, one makes the WKB ansatz

Ywks = Ae™*" and solves the Hamilton-Jacobi equation

—|sdW|* +s*|df|*=FE
for the unknown function W on the interval between ¢;_; and ¢;. The zero-energy solution (£ = 0)
satisfying the condition ¢Ywks(p;) = P (p;) = 1 is

(z) _ —S S i
V@KB =€ frefles) X[qiflylh'] :

As usual, the WKB approximation procedure needs to be terminated at the neighboring critical
points, where the Hamilton-Jacobi equation becomes singular. To deal with these singular points
of the WKB approximation, we have cut off wWKB by a smooth regularization of the characteristic

function for the interval [¢_1, ¢;]. Doing the same for ¢(%), say, we get

\(il\zfli)(B = etof=sf (@) Xlpipit1] do .

An improved approximation for the vector spaces X° and X! is obtained by taking them to be
the span of these WKB-ground states instead of the original perturbative ground states.

We are now ready to compute the quantum tunneling matrix elements we need. First, consider

< gft\lflKB‘ ds WKB> = /Sl e+8fisf(qi)X[Pi,pi+ﬂ ds e~ s/ +s i) Xlgi-1, ]

_ e—sf(‘]i)+8f(pi) /S1 Xlpi, pis1] dX[qifthi].

Contributions to the integral come only from the close vicinity of the point ¢; € [p;, pi+1], where

X[pipie1) = 1 and the value of x(4,_, 4 drops from 1 to 0. Hence

< WKB| ds 8\7KB> — — o s(fla)=f(pi))

In a similar manner one finds

< @) d, $%B>:+e s(f(ai-1)=f 1))

Due to the vanishing overlap of the characteristic functions for distinct indices ¢, it is clear that
there are non-zero matrix elements beyond those given.

Notice that our WKB wave functions do not quite have the correct L?-norm. However, this
slight error won’t make any difference for our goal of computing the cohomology of the reduced

differential complex emerging for s — co. Changing the normalization we now set

|pi> = e+8f(pi)w\(/€iIlB - e_Sf X[qi—hqz'} and

|Q7»> = e_Sf(qi)w\(/gfiI)( - e X[Pz,PLJrl] da
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Then our calculation shows that d, : Q°(S') — Q!(S') restricts to the vector spaces

X% =span{|p;)}ic1..n and X' =span{|g)}iz1. .»

as the differential operator § : X° — X! given by

Olpi) = —la) +1gi1) (i=2,....n),  dlp1) =—|q) +qn)-

It is easy to compute the cohomology of . Its kernel is one-dimensional, being spanned by

Z pi) = e Z Xlgi-1, ai] (90 = qn),
i=1 i=1

the symmetric linear combination of all the (properly normalized) bump functions concentrated

at the minima of f. If the x’s are taken to be a partition of unity, i.e. Y X[g,_,,q] = 1, then this

linear combination is simply e~*/. By recalling the expression H, = —A, = dld, of the Witten

Laplacian on functions, we immediately see that H,e™/ = 0. Thus the WKB approximation

has done the curious trick of producing the exact result for the ground state! (It is a well-known
hallmark of supersymmetric Hamiltonians that a semiclassical approximation actually gives the
exact answer when the right question is asked.)

Turning to the image of § in X' ~ R", we see that this has codimension one. The missing
direction is spanned by the symmetric linear combination

n

Z ‘Q’L> = e+8f Z X[pi,pi+1] de (pn+1 = pl)

i=1 i=1
If > Xipi.pisa] = 1, this is the exact ground state of H, = d,df in Q'(M). Notice that, of course,
these results for the cohomology of § are in agreement with by(S') = b1(S*) = 1.

Problem. Carry out a similar WKB calculation for M = S? with Morse function f given in terms

of a complex stereographic coordinate z = tan(6/2) ¢ by

1— |w|? S Hz+1 2mik/3
f:TW’ wzz ) Zk:\/ﬁe (k:17273>’ 2 = 0.

(Notice that f has the symmetry of a tetrahedron.)

3.5.3 Witten’s narrative

We finish the story with a brief account of the outcome of Witten’s analysis for the case of a
general compact manifold M. The method he primarily invokes is instanton calculus for a (0+1)-

dimensional supersymmetric field theory with Euclidean (i.e., imaginary-time) action functional

1 0 0? 0
+ Rzgkl¢ Iyt + ”aqj; agj + s <a¢i6f¢j uaq{k>w¢]>
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where the summation convention is assumed. By the procedure of canonical quantization, this
classical action functional yields the quantum Hamiltonian H, = —A,. The bosonic fields ¢’ arise
from a choice of local coordinates ' on M via pull back ¢ = z* o ¢ by the bosonic field mapping
¢ : R — M. The fermionic fields ¢ correspond to the coordinate differentials dz’. The T, are
the Christoffel symbols expressing the Levi-Civita connection of the Riemannian manifold M in
the system of coordinates ’. The Riemann curvature tensor is expressed by its components R; ;.
The last term of the actional functional arises by pull back of the Hessian tensor of f,

Of — Tk of
ozt 0xJ Y Ok

Hess(f) = V(d f) = < ) da' @ da’.

Based on instanton calculus for this supersymmetic field theory (augmented by some considerations
involving the WKB method), Witten arrives at the following [preseription for constructing the
differential complex (X, 0).

With each critical point p of the Morse function f one associates a vector |p), and one sets

X* = span{[p)}p: ind, (f) =k -

The differential operator § : X* — X**1 is expressed by

Slp) = la)n(q.p),

where the sum runs over the critical points g of index k+1, and the coefficients n(q, p) are integers.
They are computed as follows.

For each critical point p let V,, denote the negative eigenspace of the Hessian of f at p. This
vector space V), is oriented by the choice of a state vector |p), i.e. by a choice of ordering for the
product of coordinate differentials in the differential form |p).

For definiteness, let now p be a critical point of index k. If ¢ is any critical point of index k+1,

one is to use the Riemannian geometry of M to solve the gradient flow equation

V() = —(gradf)(v(2))

or in coordinates,
| af
4 ij 2J
== 0
for a path v : R — M of steepest descent beginning at v(—o0) = ¢ and ending at v(400) = p.

Let v € V, be the initial direction of the path v and define ‘7q to be the orthogonal complement
of vin V,:

V, =V, ®Ro.
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The given orientation of V, induces an orientation of ‘N/q by the canonical process of taking the
inner product with v # 0.

Now the geometric data associated with the steepest descent path v connecting ¢ with p deter-
mines an isomorphism 7 between ‘N/q and V. The definition of 7 needs perhaps some explanation.
For simplicity, assume the situation of a generic Morse function f, where the k lowest eigenvalues
of the transverse part of the Hessian V(d f) are separated from the rest of the spectrum by a finite
gap all along 7. The eigenvectors associated with eigenvalues then span a rank-k vector bundle,
say V, over . As a sub-bundle of the tangent bundle T'M, this vector bundle is equipped with a
connection in the obvious manner (by restriction of the Levi-Civitd connection of TM). Thus we
have an operation of parallel transport in V. Since V connects \N/q with V), , this operation results
in an isomorphism 7 : 17q — V.

If 7 is orientation preserving one sets n., = +1, otherwise n, = —1. If there is more than one

path ~ of steepest descent between ¢ and p, then one takes the sum over them:
)= Y
g

This concludes the description of §. While it may not be clear from it that 62 = 0, this property
is in fact inherited by 0 from its parent d, .

3.6 Escape over a barrier: Kramers’ formula

We now apply the formalism developed in this chapter to a problem of non-equilibrium statistical
physics, namely that of calculating the rate of escape over an energy barrier by thermal activation
of a statistical population. An explicit expression for the escape rate in the limit of a high barrier
or low temperature is provided by Kramers’ formula. In the sequel, we will derive it by using
supersymmetry and the Witten Laplacian.

For simplicity we consider the situation in one space dimension. We assume that the population
dynamics is overdamped and governed by a Fokker-Planck equation with a diffusion term and a
drift term. Denoting the space coordinate by = we write the Fokker-Planck equation for the time

evolution of the population density P(x,t)dx as

OP 0P 0
o Da_ 5oz

(W'P).

Here D is the diffusion constant, and [ is given by a so-called fluctuation-dissipation relation:
B = D/kgT with temperature 7. The function x — W(z) is a potential energy function for
the stochastic dynamics. We assume W to have three extrema: a metastable minimum at xg,

a maximum (the peak of the ‘barrier’) at z;, and a global minimum at xs. The graph of W is

sketched below. W (x)

_X L
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In such a situation, any initial distribution P(x,0) dx is sure to converge to the following equilib-

rium distribution function:

t—o00

lim P(z,t) = Py(z) xx e WV@/ksT / Po(x)dxr =1,
R

whose population is concentrated near the absolute minimum x,.

We now ask how long it takes for the population to reach this equilibrium state. More precisely,
let the population be initially localized at the metastable minimum xzy. The question then is: how
long does it take for the population to escape over the energy barrier peaking at x?

This question has a simple explicit answer for low temperatures, kg1 < W (x1) — W (zo) and
kgT < W (zg) —W(xs). The answer for the escape rate in this limit is given by Kramers’ formula
(Kramers, 1940):

L VW) vt wianyiat
T 27TkBT .

This result and its generalizations to higher dimension (see, e.g., arXiv.org/pdf/1106.5799.pdf)

have been applied to numerous problems of non-equilibrium statistical physics. An early applica-
tion was the calculation of fission rates of atomic nuclei heated by neutron capture.

In the following we present a rather straightforward derivation of Kramers’ formula by using
the supersymmetry of the Witten Laplacian which is associated with the generator of the Fokker-
Planck dynamics. The first step is to convert the Fokker-Planck equation into a Schrodinger-like

equation in imaginary time by substituting
P, ) = \/Poa(e) (2, 1).

The resulting imaginary-time Schrodinger equation for the ‘wave function’ ¢ reads

o
ot

o W N[0 W
_p(_-<L 9
o < Fra 2kBT) (ax * 2kBT> ’

which we recognize as the bosonic part of a supersymmetric Laplacian of Witten type. Note that

= —Hot

with ‘Hamiltonian’

the imaginary-time Schrodinger dynamics does not conserve the quantum probability [, [¢(z,t)[*dx

but rather the integral [, \/Pa(2) ¥ (2, t)dx = [; P(x,t)dz = 1.

As usual, the Schrodinger equation can be solved formally in terms of the eigenvalues 0 = wy <

wy; < we < ... and the orthonormal system of eigenfunctions g, Y1, ¥, ... of Hy :

(1) = v/ Puo() + an e (|3 (-, 0)).
Here (¢,|4(+,0)) = [ ¥n(x)(x,0) dz, and @Do(x) = Poo(a:) is the normalized ground state wave
function with elgenvalue wo - Notice that (1o|i(-,0)) = [5 P( dr = 1.

Now, based on our experience with the Witten Laplaman, we antlcipate that the eigenfunction

1 comes from a perturbative ground state by the inclusion of ‘quantum tunneling’ corrections.

61



Thus we expect the corresponding eigenvalue w; to be exponentially small (for small temperatures
T) and separated by a large gap from all higher eigenvalues. If so, then for times ¢ > 1/wy the

distribution function reduces to a sum of just two terms,

@/}(Zt,t) =V POO(J:) + e_wltald)l(x)v a; = <¢1|¢(70)>

The first summand is the ground state corresponding to the Fokker-Planck equilibrium. The
second one is contributed by the first excited state 11, which decays at the very slow rate of
1/7 = wy. This rate is the desired rate 1/7 for escape over the barrier.

Hence our second step is to_wl. This is done by using the
WKB-improved perturbation theory described in Section 3.5.2. The difference is that, this time,
we aren’t after topological invariants and we will have to be a little more accurate to arrive at the

correct form of Kramers’ result for the escape rate. We introduce the following notation:
HO/D — d;—‘dT, dT — e*W/QkBTd e+W/2kBT’ d;_' — e+W/2kBTdT efW/QkBT’ Hl/D — de;_‘ )
The (negative of the) Witten Laplacian of the present situation is
H="Ho+H, =DQ*  Q=dy+d.

We now use supersymmetry in a powerful way: instead of calculating the eigenvalue w; of Hy
directly, we do something equivalent but simpler: we calculate the corresponding eigenvalue, F,
of the fermionic charge Q). Kramers’ escape rate will then be given by 1/7 = w; = DE?.

We begin by writing down the (WKB-improved) perturbative ground states associated with

the extrema xq, x1, s :

¢(mo) = ¢ o~ (W=W(20))/2ksT

W”(xo) 1/4
Xeemls €0 (%kBT)

(1) _ .. o+ (W-W(21))/2kpT d _ W (21
P ce X[wo,z0) AT, €1 (—27T T ,

W () \ Y
(w2) _ ~(W-W(x2))/2kT _ (A2
P coe Xfe1,400) » €2 ( kT ) .

These are normalized in such a way that (1)(@*)[)(@)) ~ 1 approximately for small 7. Note that
the overlaps (1)(@)[1)(@)) for k # [ are negligibly small.
Next, following the blueprint of degenerate perturbation theory, we compute the transition

matrix elements:

WE1QI) = (Y ]dr|y™) = () |dp|y ™)

= /01 eJr(W—W(:m))/2lme‘»TX1 dr co e—(W—W(xo))/Qk;BTXO
cico e~ (W (@) =W(x0))/2kpT / Y1dxo = —crcg e~ W@)-W(e)/2ksT
and similarly,
(B QUU) = (]dr|pe)) = (0| ah o) = gy e Wl W a)/280T,

62



All other matrix elements vanish on simple grounds of degree. Thus the matrix of ) with respect

to the three perturbative ground states ¢(#0) ¢)(#1) 4)(#2) has the form

0 (el 0
(@) | dep|p (@) 0 (@) |dop|p(@2))
0 (YEDNdp |y e) 0

It is an easy exercise in linear algebra to compute the eigenvalues and eigenvectors of this 3 x 3

matrix. First of all, we have an eigenvalue zero with (unnormalized) eigenvector

Pgs = =) [T dp|p =0y 4 p2) [ (D) d o (72
_ 61—1 e—(W—W(:c1))/2kBT (X(—oo,xl) +X(x1,+oo)) - /Poo(x)-

As expected, this is the ground state wave function corresponding to the equilibrium distribution

function P, by the substitution P = /P, ¥. The two excited states are

YE. = (df £ E)p) = @) (@0l |y @) 4 @) (@)l @) £ Fp@)
E = \/’<¢(I1)’dT|¢(xo)>‘2 + |(@)|dr|pe)|*,

Assuming the inequality kgl < W (z) — W (z2), the expression for £ simplifies to
E = [(@@))dr[p™)| = cicoe” W)= Wro)/2ksT,

It is now readily seen that the square of this, 1/7 = w; = DE?, is indeed equal to Kramers’

expression for the escape rate.

- Can you predict the rate of escape over two one-dimensional barriers in sequence?

A A/
\V

3.7 Brascamp-Lieb inequality T

I

Let us finish this chapter by mentioning another use of the Witten Laplacian, this time in the

realm of equilibrium statistical physics. Consider the Boltzmann-Gibbs distribution

Z_le_H(x)/kBTle‘

for N real degrees of freedom x1,...,zy. The expectation value of an observable f is defined by

1
fav — E - f(ZL') e—H(ﬂC)/kBTde.

We are interested in the fluctuations of f as given by its variance:

var(f) = %/RN (f(z)— fav)Qe_H(z)/kBTle'.

The goal is to derive a useful_for var(f).
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As before, we set up a (fictitious) quantum mechanics with ground state wave function

1
— h(x) H(x)/2kgT 2 N 2h(z) JN
r)=¢€ = —==¢€ s r)d"x = e d™x = 1,
wO( ) /_Z Nw()( ) /N

which allows us to view var(f) as a ground state expectation value:
var(f) = (ol (f = fav)*[t00) -

Note that (o|(f — fav)|[®0) = fav — fav = 0. Thus (f — fay)|tho) is orthogonal to the ground state.
Now 1y may be viewed as the ground state (in the space of functions, or 0-forms) of a Witten
Laplacian

—Ny=did, +dydl, dy=eT"det

Since (f — fav)|to) is orthogonal to the kernel of —A, we can write

(f fav)|w0> = ( )(_A )_l(f - fav)|77b0>
= d}(—2n) 7y (f = fa) o) = dl(—20) 7 (d f) o),

which results in the following expression for the variance:

var(f) = (vl lerad £)(=00) (@D} = [ a¥oePulgrad f)(=a) et f
Next we observe that

eth(—py)te™h = (- eth Ay o e_h)_l = (dghd + ddgh)f1
— (de + ddT + L(grad Qh,) od+do L(grad Qh))il = ( — A+ Lgrad2h)

-1
By using the relations Lx = Vyx + (VX) and —A = VIV (in Euclidean space) we then obtain
Ty e = (VTV + Vgradon + Hess(2h))71 = (thVTe_th + Hes.s(?h))f1
This yields the identity
var(f) = /RN d¥ze M (grad f) (e Vie "V + Hess(Qh))fld f.

Now the operator e"VTe 'V is self-adjoint w.r.t. (f|g) = [ f(z e 2@ N g and positive.
If Hess(2h) > 0, then we may drop that operator in the denominator to arrive at the so-called

Brascamp-Lieb inequality:

i,j=1

var(f) < /]RN dNz e (grad f)(Hess(2h))71df = (Z(&f) (Hess(?h))lij(ﬁjf)> :

Remark. This inequality can be used, for example, to prove exponential decay of the correlation
functions for a (lattice) scalar field ¢ with energy function H = (¢, —A¢) + V(¢), where A is the
(lattice) Laplacian and V(¢) = > V(¢,) a convex interaction potential.
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Com?-lu vector buudle Wit '1 woberuivuic atvucture

Krowas

(T2=-1 ~ di(E) aven).

Sam watr 4 §roup of cI.uahrui ouic ahructust .

For awiniueal ftab’tcd:iduf Lt Eko =C= AFMC{ e, Qz} ; TQ.l =e, ; TQZZ -2,
Uu,i{'ura fuuforwation:  Ue, = % QPuP“ = o .
Tuvoriauce ’rqfl =¢) , Tey=-¢; of t truahm‘m: Akucture M guires

u,, = E" , u,, = —En . Hewee U € SU) (I‘.’chualla/ USP(Z) )

Mewo. The duvariaue §rovp nf 0 c.ou.flu vector Apace CV with Herwition sbucture 41 U(N).
Th He prosenc nf o odditinual m(/ciunh.rm'am‘t Abuetine (Tz = +1/-1 )
Hin Aecowes OWN) / USp (M), (Tt Laber case N musst ke cven. )
Here USI—.\(N)ZZ UN) n SF(NfC) where Hu Co-.uf.bzx Aamtatlcﬁt&rou? SF(N/C)

i d...{leud 04 He duvariouce §ovp e(ﬁ Hae c.o-u'a-ux abew fom (uw) <’fu,\.r> (r.f below) .
Fu- Koue - Mele hf&e&&icd duvoriout .

Aa fumedioke COus Lqmiuce of Hu quateruisuic Ateucture af E & Hot Chend clodses vouisk.
A a et E is tivial 0s a Ccm‘:lu veckor Duudle : Haee exints a a!.etmﬂ Fivializating or
JLotat bosia of seckions €y, .. ¢ . T oturwords,

Ep= spang { 4400, ., g0 ],
(Frow dure on, g€ 2N dewotes Hue scuwber of valewa frouds . )
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Question: Dows Huse exist 0 T—iuvariont aﬂ.afm.l '{thn/ v

Te;(R) = ¢ . (k)
4 q+1 4 3‘: 1/ - 1/2 .

TQ"H_‘,(ﬁ] = - Qi(_h)

Tt tunu out Hat Hu cwswer caw be ﬁ"d orwo. Tu Ha {nrmr/Qo.Hu Case Oue 404 tHeot
Ha 1uuhmiwit veckor bruudte E-> M 4 hivial /Mgu_t.ivml,

(’_Fu.—) Kawe- Mele dave givee o criterisu to decide betweew Hu tun Cased a4 -f—nlw-u..

Given o cheoice Df glotal f?ro.u I'O.U ’,Q,'l oue FOM Ha h—dtfmdlu{' muafix of overlaps
mé‘(“ = <’Tad(k), ec(-h)> .

‘I,f Ha Fra.m wert ’l'—duvarim{'/ Huuw Hos mokiv would Ae -iuh_?wal(ut u{— £ aud

U'au.nl H Ha Aamf)hcﬁc wuit (

A
- ll. -\c —_ L .
.-11 ). Thowa W waodures Ha dis lt‘:cm%_{?o'f AMVOR duace

-1

Now {or Qg T- iuwvariant mowantum R =Ry =-R, Hu Oveilop usakix Wk, = © s sk
Wi = (T, Top == Te, 4> = TRy
The dtvrwinant sf o sbed wakix o.F diwatusion q€ 2N s Ha Aquar of & ?o(qubuu'al

(L‘mo'dmtu of degra 1/2] in Ha st rmnds of 0. The Laker ia calied o Ploffion of w0

0 w
Tl\.t Lam,s‘l' lxa.mPlM are ’P{ (—l:d”_ 61) = C*)I:. ; n"'"'a
?a W Wiy Wy
Pe [ 9n 0 Wy Wy = Wy Wy — W Wy + W Wy,
]f gy iy 0 G 13 Way ¥ Wy W

TRy —Wyy —Gyy 0
A(3f2)

Tu guuaral, ore hos i PE@) €ae,n--mne, = (q/z)!_1 (% O A e,) .
Note Hot Ha defiuitinn of the Plaffian of w(k) +equirs o choien of orieutatine for E .

We wse He exishuee of o glabot froue b moke a wuiforw choiee for all T- inveriaut amsnuta R,
siwuttoucouly. Thw we howe Pf(wk) for at k =-k, .

Auey frow He T-duvarioat mousuta &, fhe Overlop aokic 63 (R) 4 waitery A0 b deteruivant
Det (0(0) 41 a wuitary muwber.  Councet Ha fou 4, by Ha tdgu of o aquare. Suma

"'Dd(m(o,o'l) =+ 1/ cluF«'u Hae Aqaro.re avot ,':D(’r(oo(h‘t) fra CO'h*leil'& arouud {'MAE‘MM Coutowr f—oruu.al

lrd Hae 4 ukdu. Thia dtf{m i Farﬁcuhr ‘(Dﬂ (co(koﬂ for Ha Faur T- Auvoricut wrwenta 'hu .
The Fu-Kaue-Mele fuvoriaut Huw 4 a product of {ow Fac{'an:

Fan =Tl 8 =TT [P 0)/ i), eock of wlick ia £ 1.
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Altemotive {omuuﬁm (f'ohm'u& b or%iul chavacterizabion {ra kau—lu-h).
fix a alo!ro.l Hrivielizakion c') : E— Mx(? (tbk: E.— C") .
A GLbL frawe s o) = () (j=12,..,9).

Daual {'rumc. : 31(4’.)} 31("); e, 31(5.) .
Put £2,= 30 A F W A - AT 1W) and awauge for T2, =0, (roe 7°0Q, =2 ,).
uMua “\-l H‘!l‘lulhm Atﬂﬁ-ﬁr Prﬂdud: ow CND Eﬂl/ (!o_-r;.'u.g_ Hr\l. A'Z.Qu—dnd—wwdh'c ’cuug-r
12> {Tew), e,(u))(u TR AW,

it
= z {Teyw), 6 h)> SR AW

it

=1 Et (T, Tey ), TH (W ATH(W).
4

(A

T folen that T oo, = @, , by Ha selobion obore cud Ho Qu.{-i-awdhrita o{l T.

Fact, The AM—AdmuAHc Filinear %om Wy {»or k=R, =-k, i wou- daguarrate (orﬁa‘n?hch'c).
1udu.d, Auce 'rE“o: &, , af @, Wue dt.amra,h. Hure woutd be o outadiehion with Hwe Mn—dtqmtrua_
of a Herwitiou Acalar product <‘, ‘>€" reabickd o By .

Recal Ha definition of Hu Plofian Pf(w) = pl) by pe Ly = (q:m o,

Fock, The Couplex-valued function p: M—> € satifiu p®) = pEh).

1
P . PO Q=T (pw Q) = o 1 (o) = o, ok = pewn

Twro diwassiowt. The Ploffiou p(R) way have 2erves auay frow the - duvariout wowwntn

Ro=(0,0), (x,0), (0,x) (m,x). As 2erous of a C-volusd fuuehion of two variabtes

R=(ky, ), Husd o guaricall isotated . Dar 4o plR) = plk) thty vecur as pain of

oppowite chirality iu T-oppusite Locations. Tndeed, if plh,) = 0 & 0w dsctated 2un aud

+ 9 are (Lreat) polor Coordinates Coutred at &k, , Haw in Uneor opprodimation mear &,

ou has p = Are” + Bra e ittt (Al > [B] (cnudcukiie cliratit )

or |Al < |B] (cloekuria chirality ) oud Hh aituation at Hu eoujugate zen —k, U revend

(For |Al = B Hu zaro is wot iselated.) Zerou oy be ereated /auihitated (ot & # k,)

as pairs of opprite chirality. Altggeltar Huis mutaws that Ha sustber of 2em pain (R, ,-R,)

i 0w duvariont wheu foken woduto 2. % 9 11 Kowe—kiete topategical iuvoriout

(0,0) (x,0)  Couub Hu awwuber oF zerd pain acod 2.
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Muuu‘ua of the zervus. Ju view of TE.= E_, aud Hu dtf-‘nil-im of Hu Pfoffion »P(h) Q Awple 2Zero
p(R,) = 0 mweaus Hat Hure exish a Block vechr ve By Auck that Tv e B, Liv duba

orﬂtoﬂmu! cauPbuut u.f Eb.,';"' CN. Thia Phn.umaum i Coled

Three dimensions. Now the 2erves of He Pofion p(R) &u“ﬁm“é foru vortex Qives (e, liva withh o
Alude of circulotion ). A b—e{lon} HA& must ovrid Hu T- duvariout wewenta . 'Bﬂ Hie duvune {—u-uch‘m Huorew
{—ur Hu suootle funchinn P: M— C, Hu vortex liuu o{ zerou wust Lbe clred . Oue duh..dmm Letwean

two Acenarios {»or Huia antr{'a to Ae stolized .

(4) A vortex Liue moﬁln lmed dw bo He T;u-iard:'cit} of

Ha Brilewu torws M =12 (a.h.a. weok dmvariant ) .

(44) Closure of Hu vorkex Live aw.ad,bt rtolized 1u woy i
Huat would At Frw.ﬁrh Lven 0k a A':»L.UL M=8* b : ::.;;:Z _______

(a.h.q, Ahm& wmvarout ).

Jufo. There exist f—urHur characterizatinn of Hu ()M suvariout wsivg tg., th wotion of Tbma curvature
(ou "hatf’ of M) aud He Chanc-Sincous foru.

Excursion ow PT.  Differentiol forun Fauaforu by pulbeck. .

For um{ahf P= I:mrif& (A‘:mu. nFleeh'm) : B =E;00dxt (chc’cn'c \ﬂi-!nl AIN-L-&H:) > P*(E) = E (-x) (-dx)).
Hewe E;00 > —E;(-x) ("potarvector’). Coupare Hia with the hrawsforuation bebavior of Ha moguatic fiutd
Ateugh B P'e) = P'(B‘im dindxd ), Tu Hia cose our gebs B{j(x) — + 1?;1-}-(_;) (" axial vector' ).
Tor auoker exowple , cowider Hu eleckic excitation D, a spac—huited two—fonu D = [ Dy dindxi, OH(E,)].
Here He trawmforuation Law D> PH(D) yietds D{j(x) — 'D{j(_*)'

Tiue seversal, The electomaguetic gauge fied i o bua—twisted 1-Jone A= [ A de? Or®)]. Tt folows Hhat
biwe reveral A > 1%(A) trosforus Ha comprumh aa Aj(x, ) > +A (x,-t) A (x,8) > = A (x,-b).
Exercae, Clack Huat Huis coufonus wite what gow ke about clechomoguetic tuory.

Magueto-elachric coupling. Tht eleckic curent s a apaa-tuistd 3-fore = [ Jpur dePrdernded, OK(E,)] . T
He futd-maker dubackion An] is @ Apac biut- fuisrd —fora (or - duuity) and [ An] ia dnvorisnt uudar
P oud 7. The aaue gru for 4 tlackounguebic ackion fumctioal [ £ax%. Ou Hu ober bausd, H smetrio-fros b
[#r% = [EanAlt Lreaks ot P oowd T. Nowhulus, anch o buric hos been argued to Lo proet (with o
quastized aefficient) fu b Row-curgy ffrctive fiotd Huogy deseription of Hu Fu kaue Mele topolegical iwsulater (3D).

Fur ing: Wik .
Har ceading effect s



6. Basic notious o{ 'mel—ul:& *Hmora

® Howeoworpliss = bijeckinn betwean tun topologicol apaces -
Oue Aays Hhat X ia b Y if Hure ecish a howeomorphivn 4 : X > Y.
Exawples: @ d-dimewsisuol cube ia howeomorphic to o d-dimewsionnal &al,

Ha fnu.uhr& of a d-diwewsional cube is meorrkic b a (d-1)- diwensional APLI.I'L.

® Howotopy: b maps fi: X—=> Y (j=0,1) betueen topological apacss
are 40id +o be (to oue auotler) a{ Hure exish o Coutinuows wap
F:Xx[o1] =Y auck Hat F(-0) = §,() aud F(- 1) = ().
F iscald a howotopy (Couuc{iua fo with £,). Howobopy defives ou equivalewee
relotinn breburen wops. The mtﬁ.&mmum clesser are caled Lowﬂ-of;a, lasacs .
The apacs of howeotopy Qossus of maps frowm X o Y is dewoted &y [X,Y].

o Howa’copa_ u]m'mhua: two bfo%&icnﬂ Apates X amd Y are caid 4o be
(4o one ouuotur) if Hure exists two Coubinuwows wapa F:X—=Yad G:Y—=X

sucle that GoF: XK —>X  (F26:Y—>Y) s the ideutity swap ou X (V).

Pewark . Ho«m.owonPhic {ofotud,icoﬂ Apaus s Lomoi:op&_ uruivaﬂzu’c , Gut Hu couvene
does mot hotd. Thus &omo{-n‘:a O_tr.l.ivahuu, i o weoker mohiow Hiou kowtomorf\hm.

Foct. If twe +0f=o(0diu! Apacss XY are Lwohpa eqmivalud aud M Oy oHur

1

hpul&dimﬂ_ apoce Hau oue hos afﬁs‘n.c{-im [M,X] — [M,Y].
Examf)h_ ‘R"\{O} MLowa-l—nPa, twivuhu‘t‘ to S,

L thorw.a{n'm cetact. Lot X dea Aufnl:u.a 0{ Y.

X 44 called a of Y if Hure exish a Left iuvene <c_j:‘]’—>)(
{'arfh{udwmmaf i: XY Aucl;{'ko.ta ukmo{-orlch{hidxu{ﬂa_mn? om Y.

Remark . Tt folow iuu.djghl&_ Hhat -if X a0 deformation setact of T, Huu
X s hcuohpa G_Tuivuhu'l' bT.

E)(amfh. Cowsider Hu fw.ud-uml Flm R\{0} with steudard fn(ar Coordinates +,9 .

Lat at(‘}ﬂ):((1_t)f+{/e) Than 3,_ Mat 1(!’9 = (1 B) a.mu a

w.\{n}/
Left dnvene -{»or i Sle Rz\{o . Thws S “a th?omwhm retact of Rl\{ﬁ .
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Motivation ({'rou Pha«‘.u aﬂolim{-im given carlier) .

Recal Hhat trouslotion- iuvariout free- formion grownd ateba (eg. Majorana chain, QSHE )

are modalid 04 Couplex vecr bundts E—> M (aesmally it sows additinal sbucture ).
We kave a(’.n.ada Lorued what it wenis for auck veckor buudles o Le isoworphic. Equivalewce elasies

nf i.amr?l-.-‘r. vector brundles are colied Momrf.luu cfleses .

Let now E I M Le a rank-n  K-vector Suudle (K= R, @) whick 44 o aubvector Guudte :
Ec Mxk" Thm E Aos auw albernative ducri‘:{-im 04 O mop

Ve M — Gl—“(k“), xH—> E . =n'0 .
Aiu-[)h‘ua Heis clucn'f;{-im we auoy declare Hiat two veckr buwdls E aud E' are equivalent
i Ha C&rrupmd-'u&mfm are »fww&m':ic: /'-'-EN A"E" Thus we mow hove Huro mohowa of
en'm‘vabm {-or vector buudles : Hu owe e -!ra .i.amarr)l-& , Qud auottus ow given @r& hm.o-l-ora.
The Po.rl-u'un.{’ Apoce of komahrra& lasses ia dewoted J:a, [M, Grn(kh)] , Hoot oF Mewor'o&.&uu
clossu la Vut:(M), This +aires Ha 1m'l-im e* what 4 He relodion betwern He two Mficwﬁm

Ackha was o{r Vu.t:(M) vernwd [MfGrﬂ(k”)],

Exawple. Vec’rf‘(g) =2, (Hiviol buudte aud Mbkrics bundte)

whertas [S‘,Gr,('a”)] = { 2, for N33,
2 f—or N=2.

We e Haat in teis instomce Hu twd Achiwes ogree fur Q.o.rdz N (ora @.arae, wwmlber
of 'conduckion banda' ) Lut differ -Fur awal N. This turus out b be repruatative o{r

Hw atmﬁ Adtuation :

Thaoww (k). Vet ) > [ G @] if 2(N-n)> diu M,
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b.1. How&hpa Gt‘DuPA .
Let X e o topolagicst apacs withe @ diskinguistud prit x, € X (Hhe ). Let 1*=[o1]*
dewote Hu d-dimusional umit be and Lt BI& Lre itn (d-1)- dineewsional "J'OMAQI*& (t'\?‘l).
Da.{l. Tor 421 dehine I‘[(X,xo) as Ha st of Lwrhra lassu aF cowhinuou wapa {; 1‘—} X with Ha

Pru?t.rl‘a -F(b) = X, {-on- akl bG)i{ For d=0 take T[o(x,x,) to be Hu adt of Cownacted c.o'u-f:mtub of X.
Rewark . IJ(X x,) = [ X]r* (lthPﬁu{’ proferving wapa (S‘, b)—> (X x,) ) .
Gw-naf» atructuse. Lot {',a : 1"*—) X L—LMLQTJA nfmw!'ua Ha Lmohpécﬂwu [f];[a] € Id(x,xo) .

Defive Hu Pndud' efl«mﬁp& clossu [”' [3] o Ha Lmohp&cﬁm (4] uf Ha wap h:12—> X

A
Jouly A, . )= fQ2ty by, ) for OCHC2, b
{(2{,-1;1,..._,@) for 12€ < 1.

-

Yls
o W 1
Oue cou show Hiat Hain Pmduc{’ waku Ause {n Hiat 4t drus wot dLFMul ou tue choices maode .

The existenee of & well- defined product tunu ]l'd(xfx,) b a group . The sautol liwaut i Ha

4

1‘““"*"1‘6 clas of Hu eowstout wop [¢)=x , omd M duvene of Ho Leowotopy class [f] ,,f o
Juaral awap | ia obtoired by trverving Hu fint Coordinote, de. [F17'=[F] win 1,4, .t = J0-4, 4, t).
T, (X;x.) i called Hy fvuudnmu‘hl group o[»- e {‘o?a(oaicaﬁ Apac X.
Ramark . There ia wo woy :r.f' dtfiul'ua kmohpa_&roupat witeout "th"“"& a boae print. However | Ha clsice
0{ bose Prl'ut' bunu out to bt umisuportaut as ‘I[d(x,x,,) = 'Jtd(Xfx‘) (umehm of &rou.«lm).
Fact{. The group T[l()(,x,) s Alrtlion (= commutative) -f-m d32.
1dea o[» Prnrof (f-or d=12):
a 1] a —
190-00 = ([a[e]1 = C2P = (2 = R = o)y = -t

¥, f %

Rawark. Tl fvmdmm{-ml §roup (a=1) m&h wou-Abdliau. A stoudard tmuu?-& For Hia s
Ha plave X = R\ (Au®) with two Aol :

()

The fundowmtntal goup T (X X, o’fv Hoia exawple i He fru.&r'oup aLMmhcl (la [x] aund [ ].
(Free bere smenus Huat Hure exik 4o relatious otur Heow Hu necassary couclaton uf [u]- [u] = 1.
This <u tum weows Hat Hu proswt fwdmwh! group 4 'txfhmla wou-Abelion" . )

L.qﬂﬂ. The " Aleliowizabion" of Hue f-mt.lmmh! group of X da t deRMawm ‘kma(.o&a grovp |—|1 (M, 2)
°f 1-choius with oiuh.dtr eotf[—-‘u'twfs, Tn He lKO-wfh. above : ‘H‘.l (Rz\ (AU%)I Z) =ZxZ.
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Fock 2. ‘],f (X;xo): (G’l) iA&aﬂJu.P (G UKHKRMICMMM),
Huw 0, (G, @) is Abeliau.

Proof.  Givua bwo waps §:[01] = G witke L0 =L =e (j=12)
cousider the product map c[>: [01]*— G,
(1) = f() L6
Ty waop 4; dnturpolats betuenn fof, aud {if; oud Hrus fumubu (Y
LmnhP&, Aoy by ‘@ = f(2tG-9) f(269)  0ste
: fot-s e @0 ) {(s+2t-n0-5)  Yas k<,

feo= frfa , %= b

Exa.r.u')h.., LY (U(u)) = 2 ,
m (sow) = 2, (ns3)
¢ (USP(Zn)) =0 for USpaw = U@n) n Splaw, ©).

Exercise. Model SO() as a - ball (of rodiua ) with °1°th b-&molara Fh’uﬁ ideutified
aud vtrifa, He Atcond stotewant {—ur n=>3.

foct3, Let QX denoke Hu space of Coops in X baued at x,. Take (QX) = (fer=x,)
(crutaut Loup) {m Hu s print of Hu topologicad Apace X, Tha for 422 ow has
m(X) = @, (QX).
Proof. Re-iwterpret £: 14— X, fQIY) =%, o
fei =X, JOrY = (@) &y f(y, .0 = FGo b, 8).
The Corrupondovc {—»f ia brjective aud duduas e cQaiwed bijuckion 4 !uwa{'b‘:a.
Pewark . Frow 1 (2X) = m, (X) it folow that Hu fundawental group of o Loop space in Abeliau
Exercise.  Argue Hat QX has Ho abuchue of o group.

Fack . (XY, (o40) = m(%,%,) x (Y, 40).

Proof A\ exercise.
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0. 2. Relakive H'owo‘{'opa GI"DuPA .
Motivohion : buwr cowrlu veckor Lrund tes (.Fru. H\A?La,ua s{ l-oroleaucnl issdators ) Carty additiono abucture !

blF\'li‘l‘im. Lt X 4e a hPoua;uﬂ Apace with subspace X'€ X aud bose print X, € x'.
Lt DY dewoke the (ctned) d-disk | oud Lt 3D'= &' ( K aphare of diwrusion d—1)
wite bode 1:)01'14{- beS*' Cowsider oA f .Fruw\ (D‘/S‘_L b) dutbo (X;x;’%)/
i wopa f: D= X with f(Sl_U < X' and f(b) =%y, The act o{ Lmol-o?a Losu
oF Auch mops 44 dewoted lra . Note 71, (X, %,,%,) = T, (X x,).

Tufo. As quom, one com defive 0w Hu set T, (X X' %) a famclm.{ (4n Ha predsut case for d>2)
which tuau Ha get b o grovp , He of H..L?o.ir X'e X, Thi 81'”1:
i Altion for d23. The quickest oy b audentud Hue facks & b switeh to tha

Cute Picture: :[“ —_ ]_)J
I‘ 1&—' I‘_‘I - S‘-'
d J — b

[.o'ua exact Atquence of 1'.( relotive) ""‘“_‘“hfa- groups :
= (X = m(x) LN m(x,x’) i) (X)) — -
where 1, {Mduunllra iwcQusinn 1 : (X;x,) = (X, %) ;
Ju wduad ba Al wsinun & (X, ’(o;'o) = (Xf )(:xa) 5
oud 3 [f1 = [f] T € m, ().
S&-i

Note: all wops i, 4,9 are grovp meor‘sw (e L&ua 04 7, (X, X)x,) 44 a §roup, {_Q.For dal)/
H"“"‘F‘" Howir imog e aud kerels (duvene iwage °F Hu austal (lenunt) Ore groups Exactaneds of He
ALTutlu‘.l. bere meos Hat He kendd af a wop ( lLTMnl to He 1‘un<jg. o‘ e preview map 1w Ha Auluu.u..

Reloted case. A Fi!nr Guudte (4u short) 41 a Alort exoact Atquena fo ES B where oo T,

Tor a vechr apaa t owe hoa a victr bundle |, {mr o grup T oo priucipal Fter buvdte. (or Juuraly
in o fibration Hu disewsion of Ha fiber amoy Vary Lrut ol fiben suuet be hwstopy equivalent.)

For o fiber bundte ¥ <> E > B (or e o fibration) Hare xich o et auoloy of Hhe Loug exact avquence above

i i
o = () = m,(E) iﬁ' TI’,I(E:) i) T, () — -

Exercise . Lu-okuf H defriuition o{ thae Mur.l-iua aop 2 {-or Ha fmuut Atuation .
Exmwph. Toke for E Hu Qa-tu?l.u SH&FJ; mmifnld E= VR(CN) = u(l\])/ W(N-w).
Th lewants ariee fruu uuu'hra NxN auatkics ‘ba CMCLll'na Ho ost N-n coluwn.
The uuil—ura group Uy =F is iucluded 4uto V, (c™) nlra Flnuua ih amotice 4u Ha
Lit vppr nxn dteck. UG Hue ack ou V, (cY) l:a Tiglt multiplicoind
aud ow hos a Friuu't)uﬂ f-‘bu— budle U =V, (CY) Lop= L{(N)/ W(N-n) * U(n) = Gru((u) i
The SH&M Wauifold 4a umkt& coubroctible (weoming Heat ih Low—diwensional Aowotopy groups Ore kivied).
The Uma exact Arquence {"‘n-!uﬂ&vu Mowvrfhm Lo (Grn(([“)) 3:n- Tl'*_I(U(h)).
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7. Morse Tluory & oo ‘Pen'odfcct-7

PART 0: Some explanation of the words iu the titte . Mohivation. Pockgroud .

(4) Morse Theory (dweﬁo‘:td iw 1930 — 1965, Morst, Dok, Swate, Miluor .. )

Oue outcomt of horst‘l’kaory are the Morse nequalitics
for a compact manifotd M with Mone function , the number my(f) of eritical poiuts of f
with <ndex g 1s wo Qess thaw +the Bt number b.|(l~|).
o Fruitful new «Prrra-[ 57 E. Wiken (1982) in 'Su?;rs-,mmqfv aund HontThory".
Witew's TOEA:  de Rhow Comfﬂnx QM = supersywwetric quantum wechauics

& ﬂlt]cormo&ion o a horwmouic- o3cillator prohhw, .

See, ey, laHpJ/NUu- -Ht-‘:. uni-Roeln.de /2irn /b"rOPoQoa7 ~Fur 'Plnrsicisfsn (1’1’ $6— %) .

(ii) Dot Peri odici‘l'7 Theortm

'"Modarn rPraoFs ovailabLe (t#."Dm,S)/. Bot's oﬁ&maQ aﬂ,roadm (1958) wsts Morse Hu.or7.

COI:.E{QXCCLSL
Z = 7, (U) = TH(W/Uxl,) = T5(U) = T (Wn/Upnxly,) =

0 = T{l(uz,,/uﬂ“u,) = T[I(uZn) = ﬁ3(u4n/u2nxuln) = .n-q.(uq.n) =

Teol case,
Z = 7,(0/0x0) = T,(UW0) = T,(sp/u) = T,(S)
= T (p/5px3p) = T (WSp) = T,(0/w) = T,(0) = 7 (0/0x0)

Z = 1,(Wo0) = T (Sp/W) = T,(S) = T (Sp/SpxSp) =
= T (Wsp) = T,(0/u) = T,(0) = T,(0/0x0) = Ty(U/0)

and 0 aom such chacus of identities (3—%011 T:Qﬁodiciiﬁy )

> 2008 : euter the «Pk?sics of {vfgﬁtaicﬁﬁ Awsulotors awnd SUT:arcondud'nrs

(CQussi-Ficab‘oa o.F aeﬁ:d )cru—‘Fﬂnuiou &mum’. states with Symmth‘ies )
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Periodic Table of topological insulators/superconductors

from Hasan & Kane, Rev. Mod. Phys. (2011):

Symmetry d
AZ © = I1 1 2 3 4 5 6 7 8
A 0 0 0 0O |\Z| 0 Z 0 Z 0
AllIf o 0 1|12Z 0 Z 0 Z 0 Z 0 Quantum Hall Effect
Al 1 0 0 0O 0 0 Z 0 Zo Zo Z
BDI| 1 1 1| Z 0 0 0 Z 0 Zo Zo He-3 (B phase)
D 0 1 0 Zol 7Z 0 0 0 Z 0 Zo
DII| —1 1 1 | Z: Zo |Z) O 0 0 Z 0O QSHI: HgTe
AIT| -1 a| 7 ;
AH I 0 0 0 |Z2| Zo Z 0 0 0 Z Majorana
ClI| -1 -1 1|1 Z 0 Zo Zo Z 0 0 O
C 0o -1 0 0 Z 0 Zo Zo Z 0 O Bi, Se;
ClI 1 —1 1 0 0 Z 0 Zo Zo 7Z O
TABLE 1 Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997)
_Diod,om& wop :
1d 24 3d

Mﬂéomaa chain — T inet spindess SAaFueou.r!ud-ol" — A {—olao(odiqmﬂ insulator

Kitaev chain R P+iP wPltrcondurior —_— 3‘”& 'E’—lest

“TODAY ( hAoclesfaoal) . amain ideas behind C,oupiu Dot Ptﬁodicii'? .
CoP {Oﬂous ‘FFNM. +he combiuation o.F two  sub-sresults :
1 (wW= 7, (UW/uxw),

2. Ttdﬂ(u/u*u‘ = T[=l+1(u) .

Both con be derived b7 ust‘u& More Huory/ -Foﬂouina Dok (1155)- ’R‘?“ﬁmy 51?“»“4'“ ,

- kOIMDt'D':y f:{Pl)
out shows that tha Uaifar7 group -Fu.ruisku a ao-ocl awmxiua{-iou to tae Qo—np spac

o{ o Grassauaunion : _Q(Wu:u) = U/ oud view versa .

Comment. Tht first identity  say 4u tu forw of  T0,(U) = T0, (U,/Ug_x U)

can also be obtained frow th QOu& exact komotap7 sequance of @ fiver I:»uvul!l/
Up = U/ U e = U/ U U,

whose total space (Stiefel manifotd) is weokly cowtractible.

/s
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HERE: "+4o0ls (m {—ocus on asPU'.f‘s that an comPu{-ah‘omll), Fomrful\

PARG 1. A basic tale of Cu Complexes

Call d&cow‘:.u-si%iou .

(cbesed ) D= {xe®| ct), ID"=S"" (nt)-aplace.
An @ a space Lmu&uwﬁdc bo imt (DY) (01:“ n-disk ),
—Dqﬁui{im. A

of a topological Apac X ia o collechon {Q“}uei

of s ¢ue X auck Hat X = U e, (dijrut umind). The of Hu
xXe

el decowprition X":= L] e,
din(e,) <n

ExamPlu .

1

- O
-

o

l

A&u“allu/ltlun"rl\ln
RP? = S/2 = quud,

itiom. A Howdor X Wi Ld o X= U ) led
Definiti aﬂfAPu.u ml-kufl it coll duenupasitio “i ia coled a

if for ok n-cel o Hure wivh a wop @, D' — X Auwde that
1. The sesbiction @y : wmt(D") = ¢ s a howeoworphiow ;
2. The dwage of ¢p: ID" —> X i coutoiued e X",
T Hare ore dufinitely many s, oue priu Hu additional requiresents of

{'nr ock cell @ Hue ddrure € nbenweh mla Fuih{a mauﬁﬂ{u cells .

;o subet ASX O lnd iff AnT ia cloed furua.raull Q.

Ruworks, ¢ = (Fe (o") ('(u.rl. Ha deorﬁ rroPlﬂa s weeded ).
X" (l‘l =0,1,2,.. ) ia aﬁwaa.s clrved (4un {'ac_f, X" 44 a QW QouaPhx),

Exercise : fiud a (W complex {vor Si T"/ ‘R’P", kfoiu Lokte,
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PART 1 (cotinued ).

DQF TonﬂoaicnﬂAF&u X/ At Y. Amgtc{—iu weap  p: X =Y induwms
ow Y : CCYon = P"(C)CXon.

Exauupla: Fh‘»\u‘lbal Aundte P X— X/6 (ak.a. {'olao{oaa)
e.g., X=R\{0}, 6=2300), X/6 =R,. X
Note: idewtificahion amap F:X—>Y Qmowch o Hu Acuue o4 p
M&r«i\mﬂuu rlotion Xq o~ X, & P(x,) ~ P(Xi)'
We wow hightight tuo opurabinu that il ke of ause beow. X/~w _ Y

1. Collafma o subnpace .

Ln} AC x Lre QAML‘;FM 0{ Hu fvruﬂoaccaﬂ APO.M. X . Than oue dt#m
X/A = X/~ where Ha e_c'u,imhm closses are A aud {x} fqt— all Pa-t'u.{'s x € X\A.

Exawple: Swspucsion SM. Lat X = M=[01] aud define the equivalens reation ~ ow X
{'olmn{-or 4h Wv&hmcﬂwu Mmhpaw Ao= M*‘{O}, A1= Mx{1} aud {x} f—or
ol privts xe X oubide of AUA;. Than SM:= X/w. Tua ratur aloppy wototion

Hoir <a Aowetiman wribw a4 SM := Mx[0,1] / (M={o})u(M={1}).

A= M-{1}
‘ M![oﬂ N @
A,= M-{o}

2. Ataching ot apacs o ouobar by a wop.  For two topological apacse X, Y
wud o dod anpaa A Y bt Hare dea mop f: A — X,
Counider b disjeint amion X UY aud defive X LY == (XI-IY)/N where He
equivalance closu e {3} ]‘or 4eT\A, {x} {-or x e X\ {(A), {a,f(&)} for ﬁ'GA'

Exampu: n.ﬂaahua a 2—cell, Y: ’Dz A =93D* = s\ XLIY

Amﬂﬁ

Note. Fora CW couptix X with n-shatetou X" (n=0,1,2,...) 4 space X" is obbaiad from
H&L Prtculmade Rla &“ﬂc&.llua al HnL n—cells .

Exercios. 1 m(8") = 0 (hiviol group) for 4 ¢d < n.  Hint: S.":{P} L, D" with {(D) =p.
2. (X = :rr.l(XLl*Du) ({:BD" —)X) f—ord<h—1.
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PART 2. Morse 'Tklor& - fwudmw{-l.l Hheoreny

Maniftd M, fuschion f: M — R, M*:= {xeM|feo<al.
Amauf Awmooth aud proper.

Thw 1. 1{ { hos wo critical voluu in Ha imberval [a, b] Hau
is houeotpy equivalint o M® (infact, a deforuatin sekact of M),
Thw 2. Let xe M Le a mon-dageuerate  eritical print of f of imdex n.
U xods ba M& eritical print i {" [{(x)-s, {(x)a,g] , Huu
MF s dowotopy equivataat to MFO™ witk au n-cel abacked.

The Proof wiu Hue Mone lemwa 1 im Acwe uuﬁhhrﬁnol n 011 a m—dt&mmtt
caitical Pﬂuf’ X with imdax pn Hare wish a chast {x',...,x.} aunch Hat

{:{(x)—x: = Kp o Xag e+ Xy otds on UL

Foct. For Ouy wm.d.Fr&l Mf Hure exist fmchm (s0-calted ) with
wo itﬁmrai:!. erikical Fmiah aud with mo two crikical veluu Hu Aowe .
Co'rollar&. Evua mmfotd ia a CW Crmlahx with owe n-cll f"'“ each critical Pu'imt
(Ofa Mone fmd-\m) of audex n .
Exwp'.z : L-torwa .

f = height fwwh'cu

Critical porints
with critical valuu ¢ = {'(xl)

C1>¢{>¢>¢

a<0 <A<y G <a<ef c<a<e, G,<a
[+ §
M @ f 3 w @ [4ee alrove]
disk inder Quus - hl Au. e 2-torua
u‘f,lg %b &m{L hmdag

iu.mwl-ofa

uimmﬂud to: (akack 0-cal) (akach 1-cel) (akach 1-cal) @ (akach 2-cel) @
H.OH\JL% O Q

Exercisu. 1. Cowstruct a CW co-u‘;bx {-nr o Ricmow Aurfn.m af Juaus 2.
2. Cowsbruct a CW complex for SM (givwn that of M ).

Tubo. A miore or Leas dmaanediote Cowdequence re Hu (in wmk{onu):
Tt sumber of critical prints n{» ndex n (of a Mene fu,«d-im for a compact wauifotd M )
i aaver L Moo di H' (M) (Hu. W Btk auaber o{l H) .
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PART 3. Dot ’Po_r[oditit7 Thaorem (sketch of QOuuP[ux Case ).

(Said to be oue oF Ha wost .Surrrisiué} theorews 4n i’or:oﬁod?)

o

Sedting . Rivwmanuion mujfoﬂcl X (me[::o.ct, Conuected ).

X
v = (P, 9 k) L\ouol:o?a ass h oc curves in X a‘b‘l‘uiué 13 to 9-
XY= spact of minimal a,wo!tsu‘cs of type v.
/
Thia ('EJOH’). 'H X is a S,mmd‘ric spact then s0 45 )(v‘ \ﬁ} X

[Su. He Appmdix (Leton) f?vr Hummiua o{ "Aauwui-ﬁc APm".]
Remark. The most {utu-uh‘u& situation occurs when P,q ar auﬁpwla! tv cack ot

Example 4. X= 8 v=(p,-p,): X'= S

n-1

Ex&wPﬂtl. N
Let G ={F e Bd(@)| ¥'=-3, ¥--1}

Subsr_\m X = { }éco(h\ | diwm Eﬂ»(}) = h& = Grn(ﬂlzn) ~ uln/unxun .
Lot v = (31/—31) ) with say, &= i50 ],

d=glinel) d
CLAiM: XY =~ U, . me 0{', U, < XY

Let C,(n) = % deC| Jd+dd=20 }

Tor Je GO comsider y(4) = QTVDA 3 ¢ TDII | T 4

Froperties of 2 @ y(0)= 3, and y(N=-3 | from (33)'=-
@) Y@ =-3 | from ™ 33
(@) Y s minimal geodisie in X.
3 € G0 is a pair of Diwear trawsforwations  E_(3) $ E.Q).
}1=—1 A VE-ut }*z—} A=

Hewnce Gy = U, (as sets) .

Exercise. For X = C) ond v= (31,-32,- m\7) with, say  J, =igel, find X",
Hint. Extend the coustruction of before .
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( sketch cout'd )
.Q,VX = space o{ all (Pieuwr‘sg differentioble ) curves of type v = (‘P/‘ii'l‘)‘
Tahe the Qouﬂik fetu €0) as a Morse {uuc{-fm (ﬂchmhll?f Morse— Pott {uml—a‘ou) for Q,X.
'157 &wera!iaia& ta procedus for cousi’rucl:iaé_ a CW complex frnw- a More fuuction ,
Dok shows that X' 4s a '&ml' &'a'-;roxima-l-iou to QX
Qs oo dudex- 0 eritical monifold of € Hu space X' of miwimal goodesics Captures tha
L\ouo{:n':y {'-”:t a} Q,X ap to correctious (wl\ick tahe Hu -Forw\ oF cells atoched to XY )
due o positive- index critical wanifolds (COusth‘Ul L7 nou- minimol &lahsits) :
QX = xudu.
where  dim e 3 lv] := smallest nou-zero  4ndex af a%wusic, [Hu dndex oF a e{udzs.‘c

furus out to be the (ProPul’ counted) number of P_Coai“&“h poiuts Aw its {u-h.n‘or]_

EX&MP.&. X = 51/ v = (Pf_P); XV: qf

Tha (1, ott) = TG(X") = TL(QX) for Ocd < i-1 .

Rewark . T[d(.Q_vX) = TIA(QX) =T[d+1 (X)

APPR{m{ion (Coudtused modter le?s-'cs).

TPecal: a f’o‘aolo&iwl insullator in S-’wwd'?7 class A ( um symwtl-h, A Cjﬂ.ﬂl‘a,j_ is caustwul) s

woduled 57 o rank-n Cow?lox Ve clor (sub)bwdlt E -E) M , 1—;1({0; Elt sFau:( or volenet stotes
ot mowmwtntuw

;"cﬁussihiu&" wop M — Gt;‘("[”) hHER .

/

im d dimensious and {'or M= Sﬂl/ Such obiv_d:s o th.ci]ct‘u\ b? ']Td (Grh(ﬂ:”)).

Putineut eousLguLnces (o{ Polt's resulls -fur hmoi-n',a aroufmJ: {or d4< 2n,

1 7, (U,) = T,(u, /ux U for d < Zn+1 (computed by ok, 195, susiug bua ackena oultind abwve ),

Z. Tl’m(uN/'U“% Ugop) = T (W) for d < 2(N-n) (frow T, (V@) =0 for d < 2(N-0) and
frow Ha Long txoat howotapy aequence for b fitar buadle U=V, (@) — U /U XU, ).

3. Periodicity Theorew : TT, (U/ W) = To,, (U/wer) , allso TG (U) = To,, (U) .

b T (W) = 2 (4=2: QHE) | T, (W) = 0 (symuetry class AL,

Tlﬂi(U/uxu) =0 (no QHE) T[a“(U) = £ d=1: Su—SckmF{fu-Hﬂ&o.r woM)
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qulo. Tha fou.u above wos ou Ha uuufhx V- Aequenc of- Pot.  Siwitar (1f wore wmyolyed ) tl.l-auuud’! detenuine
Hae (otable) Lxmai-ora groups f—or Ha Apwwcric Apatss Hie real Bok V=AU The Laker Avquence W Listed
i Part 0 of Huse motu. Here it ia agaiw :

0/u > U/SP DS.P/SPxSF > SP > SP/L[:JWO > O/OXO > 0>0/u -
The wotnbion mwams that -i{ X i nua o{ {-L&Aamw.d'ﬁcﬂ:m {um.ﬂak’ How Huo vt owe 4w Ha Lt
ariiu o Hu APo.u_X” fora suitalte cloia o:f v. Tor uwh/ X= 0/11 N X = WSP_
Tok's 'nu.onm/l.aaA Hoot TrdH(X) = T[d (XU) f—or 0('5{( |V|—1- B& ihﬂﬁm’ Ha.MﬁuLdA He Atalle

Lmo{-op& groupa of e AMQAFQM iu iha.AuruLm iu traws n{ Howir fmimmuhl groupa. The Lofter are :

T[AO/UJ = 0, TH(U/SP) = 2, TT'(SP/SPuSP) = 0, Th(Sf)J = 0,
m(sp/w =0, mU/0)=2, m(0/0x0)=2,, m(0)=2,.

A reant rLd«.u aFPUmHm.
ﬁachsrouw.d Aumiwmetaly N Ntﬁle'bmn:h
Turo-baud Hawitbouion (3D): H(R) = ho®+) + 2 hi®o, .

D!&wemca (Vanu Araud 'l'nu.tha coruduction fraud ) oeeun ful'
4\1(#.*) =h,(R) =h,(R)= 0 A (amn‘cmla) modal gfriuh Ry .
Suck uwodal fmiuh ase hrcﬁeaicall _ T:rn'hd-ul amd ca.ra am orientabion (Lnuhlmm, Leuu'ldtd@' Po-iuh):

H(R) = Hiko + 2 % (kch) () Rk + o aud g et )Nka)(h,)) £,

Planoweua : ef.um'l maaurhc e_ﬂ-'u{—, Terwi oru in Hae an.u. Drilowin Zae .

Now &afu“"‘r Kee, Tu (PlypeRev. B, 2015) Cousidar Amimetols with Agumuatry PT velase
P 4a Apoce rfleckion ('Pl =+ 1) owd T 44 Huwe revenal (Acrnmn‘ua Lﬂfm{-mﬂa b +1 b} Hae
0smmuption Hhat Hu (eckrou apin 4s couserved ). Dot Powd T duvert Hu womentuu R
denc Ha Tar'odud: PT Qoves He mowewbuu mvariont (R aa +k).

P’T—Admm‘ha wemes that He Dloch Howittouiaw H(R) o{— a trowslodiou- invariaut Aﬂah.u Aod-baf—\'u
() H® =PT-H®K)-(P1)™".
The amﬁ—mihrd operatr PT aquaru fo +1, 20 ‘F"" Qg R Hare exists @ PT fixed (or reat) Dlock bowia,
Tn anch a bosin Hae smotrix a{ He Liveor oPemh:r H(R) is +al Aguwtric due ® (%),
T'M.H.f—ort_/ Hae vector bumdle E L M (Mu'dn! Lrews nuovul) 0{ valewee Loud atatu 44 o ol vectr fhw&h/
- . - ~ ml , . 1. ’ N ~
Eh— Pl(k) = R'c R, 1t hos an alhm&-lwtduu'?hm s 0 wop AIrE; M= Gr ® =0 /O .\<0N_‘l
Two diwewsions (M =T2), Due to W,(O/OXO) = 1 Here exiat wapa *E M>e'— O /0 xO
(1 {num:lma B'=037) which are mot -ﬁ.mo{-o‘:«c o Hu trivial mop. The obstruckion o hm"hﬂ} ia ‘(rawi foucluua
Mmdulun{a in 2 encloed ba . Itis d.wmeula Plnuf— Cike aud (awtk 'P’[—Aawuha_) fbfouaaeala thdul.
Turee diwewsion (M =T3). H‘tﬂ., Adwilar no-lmfu& Leods o h)fou&lmla ?ruhehcl Qiwe Aivﬁulnriﬂu (:khla( Livea")

due to 1':1(0/0!0) =2
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Atguclix
Literoture .

(D\.q})DH/ TL..L S'l‘&'nlt kowafb“:? Dt: Hu QQ&SS‘[‘Q&Q él‘oui)s , Alﬂk. MG_HL. ?’0 (115‘” 3‘3 —33?-,
d. Mituer, Mome {'lu_cr? ( Priucetoun Uuiuersit7 Press | |‘|EC‘>) .
‘D\.'D)oﬂ-f The Pn.riodic,i{-7 Hax orune -[mr the cQassical groups ouwd sowe QPPIECa{‘ious

Adv. Mot 4 (1970) 353-ui .

S1muabic space. On o Ritwanuion mauifold M ow has {lor- Qvery poiut peM

aw operation o, of ondm‘c iwversion (Hu Ricwawwion amlo& of + Euchdtm—&umeTF7
optration of refQection at a Pm&) in some aeighborhood of p. M ds called a

roall7 Symutric space i{: Foraﬂ P Ha A is Qu {,so.w.d-r-/ (ow its dowaiu eF thmih‘au\,
M s called o qlobally symumetric spoce if Hhae lomQQ7 defined dsometry o, extends for alt P
to an sometry g i M= M.

The Dok "Ptn‘aclicif; Theorew amobkas a stotewent about the komo%am Jrups oF
%erall7 symwatric spaces of "elassical *7?'3 — these are the spaces wentiowed du

PART 0.
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