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1.3 Poincaré duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Integration of forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Poincaré lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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1 De Rham Theory

1.1 Differential complexes

Definition. A direct sum of vector spaces C =
⊕

q∈ZC
q indexed by the integers (or a subset

thereof) is called a differential complex if it is equipped with a linear mapping (actually, a collection

of linear mappings),

. . . −→ Cq−1 d−→ Cq d−→ Cq+1 −→ . . .

such that d2 = 0. The linear operator d is called the differential operator of the complex C.

One says that the elements of Zq(C) := (ker d) ∩ Cq are closed, while those of Bq(C) :=

(im d) ∩ Cq are exact. [In certain contexts, the elements of Zq(C) are also referred as q-co-cycles,

those of Bq(C) as q-co-boundaries.]

The cohomology of C is the direct sum of vector spaces H(C) =
⊕

q∈ZH
q(C) defined by

Hq(C) = Zq(C)/Bq(C).

An exact sequence in this context is a differential complex (C, d) with vanishing cohomology, i.e.,

with the property that Zq(C) = Bq(C) for all q .

Reminder. A group action X × G → X, (x, g) 7→ xg on a topological space X induces an

equivalence relation

x ∼ x′ ⇔ ∃ g ∈ G : x′ = xg

on X. Such a relation ∼ organizes the elements of X into equivalence classes, which we write as

[x] = [xg]. The space of equivalence classes [x] is denoted by X/G and referred to as the quotient

of X by G. (It is a topological space by the so-called quotient topology.)

These general notions define what is meant by the quotient space Hq(C) = Zq(C)/Bq(C).

Indeed, the vector space Zq(C) of closed elements is acted upon by the vector space Bq(C) of

exact elements (viewed as an abelian group), with the group action simply being the operation

of vector addition. The equivalence class [z] ∈ Hq(C) of a closed element z ∈ Zq(C) is called a

cohomology class. By definition, [z] is the set of all closed elements z′ ∈ Zq(C) which differ from

z by an exact element, i.e., z′ = z + b for some b = dβ ∈ Bq(C). Note that by the law of addition

[z] + [z′] := [z + z′] ,

the quotient of two vector spaces is still a vector space.

1.1.1 Example: Ω(R3)

An example of a differential complex known to every physicist is the following. Let C0, C1, C2, C3

be the spaces of differentiable functions, vector fields, axial vector fields, and pseudoscalar func-

tions, respectively, each with domain of definition R3. We set Cq = 0 for q < 0 and q > 3.

Then C =
⊕

q∈ZC
q is a differential complex [and essentially the same thing as what is denoted

conventionally by Ω(R3)] with differential operator

0 −→ C0 grad−→ C1 curl−→ C2 div−→ C3 −→ 0 (1.1)
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because curl ◦ grad = 0 and div ◦ curl = 0. In this example one has the following cohomology:

1. H0 = R because the only functions on R3 with vanishing gradient are the constant functions,

2. H1 = 0 because every rotationless vector field in R3 is a gradient,

3. H2 = 0 because every divergenceless axial vector field on R3 is a curl,

4. H3 = 0 because every pseudoscalar function is the divergence of an axial vector field.

This cohomology gets more interesting when R3 is replaced by some domain U ⊂ R3. For

example, if U consists of n connected components, then H0 = Rn because we get to choose a

constant value for our function on each connected component of U separately.

Let x, y, z be the coordinate functions associated with a Cartesian basis ex, ey, ez of R3. If

U = R3 \ z-axis, then H1 = R. In fact, every rotationless vector field on R3 \ z-axis is, modulo

gradients, some multiple of

v =
xey − yex
x2 + y2

.

If we remove from R3 a single point, say the origin: U = R3 \ {o}, then the second cohomology

becomes non-trivial, H2 = R, with generator

v =
xex + yey + zez√
x2 + y2 + z2

3

(viewed as an axial vector field). In other words, every divergenceless vector field on R3 \ {o} is
some multiple of v modulo curls.

Remark. If it worries you that you can’t verify the claims made above, please be patient. It is

the very purpose of the present chapter to develop the mathematical tools needed to compute this

type of cohomology (which is called the de Rham cohomology).

1.1.2 Example: Ωc(R3)

Recycling the previous example, let us change the rules of the game slightly and require that all

our differentiable functions and vector fields on R3 are compactly supported, i.e., vanish outside a

finite and closed domain. The zeroth cohomology then becomes trivial, H0 = 0. Indeed, there

exists no compactly supported constant function on R3 other than the zero function.

The first and second cohomologies remain trivial (H1 = H2 = 0). However, the third coho-

mology H3 = Z3/B3 now is non-trivial. In fact, Z3 ≡ C3 [since the last map of the differential

complex (1.1) is the zero map] and B3 with compact supports is strictly smaller than Z3. To verify

the last fact, note that the integral of a compactly supported function f = div v ∈ B3 vanishes:∫∫∫
fdxdydz =

∫∫
v · d2n = 0 ,

by Gauss’ theorem. On the other hand, there certainly exist compactly supported C∞ functions

f ∈ Z3 with non-zero integral.
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Problem. Show that two compactly supported functions f and g differ by a divergence (f − g =
div u) if and only if they have the same integral,

∫
R3 f dxdydz =

∫
R3 g dxdydz. �

By using the solution of the problem, one immediately sees that H3 = R.

Remark. Let us make the following observation: in the case at hand, the cohomology Hq with

compact supports is the same as the cohomology H3−q without compact supports. This is no

accident but reflects a principle known as Poincaré duality. We will meet the general statement

of Poincaré duality later in the chapter.

1.1.3 Example: homology of a tetrahedron

The next class of example is of a combinatorial nature (and belongs to the realm of what’s called

homology). For simplicity let us consider the concrete situation of (the surface of) a tetrahedron.

We associate with it a differential complex as follows.

A tetrahedron consists of four 0-cells (these are the vertices, or corners, or sites of the tetra-

hedron), six 1-cells (the edges, or links), and four 2-cells (the faces). Formal linear combinations

of q-cells with real coefficients are called q-chains. They can be added and multiplied by scalars

and thus form a vector space. The vector space of q-chains is denoted by Cq .

We now assign (in an arbitrary way) a sense of direction to each 1-cell and a sense of circulation

to each 2-cell, see the figure below.

Then we have a boundary operator ∂ : Cq → Cq−1 which is defined in the following natural way.

The boundary of a 0-chain always vanishes by decree. The boundary of a 1-cell is the 0-chain

made from the end point with coefficient +1 and the starting point with coefficient −1. (This

already defines ∂ : C1 → C0 by linear extension.) The boundary of a 2-cell S of the tetrahedron

is the 1-chain ∂S = ±ℓi1 ± ℓi2 ± ℓi3 made from the three 1-cells ℓi1 , ℓi2 , ℓi3 in its boundary, where

the coefficient of ℓi in ∂S is +1 (−1) if the sense of direction of ℓi agrees (disagrees) with the sense

of circulation of S. (Again, this already defines the boundary operator ∂ : C2 → C1 .)

Problem. Show that this definition of boundary operator ∂ : Cq → Cq−1 satisfies ∂2 = 0. �

Thus our boundary operator ∂ has the property ∂2 = 0 of a differential operator. There is, however,

a slight difference: ∂ lowers the degree q whereas the definition above wants the differential
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operator to increase the degree. This can be repaired by letting C−q := Cq for q = 0, 1, 2 (and of

course, Cq = 0 for q < −2 and q > 0). Alternatively, one may dualize the situation by defining

Cq := C∗
q (dual vector space) and taking the differential operator d : Cq → Cq+1 to be the

so-called co-boundary operator, i.e., the transpose of ∂.

Problem. Compute the (co)homology H(C) of the differential complex C = C−2 ⊕ C−1 ⊕ C0 of

the tetrahedron with differential operator d = ∂.

1.1.4 Example: de Rham complex on Rn

Let x1, x2, . . . , xn be the standard linear coordinates of Rn. By Ω we denote the exterior algebra

(or Grassmann algebra) over R generated by the differentials dx1, dx2, . . . , dxn with relations

dxi dxj = −dxj dxi .

(Note that dxidxi = 0.) Ω is graded by Ω =
⊕n

q=0Ω
q where the vector space Ωq has the basis

dxi1 dxi2 · · · dxiq (i1 < i2 < . . . < iq).

Note dimΩq =
(
n
q

)
and dimΩ = 2n. The C∞ differential forms are the elements of

Ω(Rn) := C∞(Rn)
⊗

R
Ω .

The algebra Ω(Rn) inherits from Ω a grading Ω(Rn) =
⊕n

q=0Ω
q(Rn) by

Ωq(Rn) := C∞(Rn)
⊗

R
Ωq.

The elements of Ωq(Rn) are called C∞ differential forms of degree q, or q-forms for short. Thus a

q-form is a sum of terms each of which is the product of a C∞ function with an element of Ωq.

There exists a differential operator called the exterior derivative,

d : Ωq(Rn)→ Ωq+1(Rn),

which is defined as follows. If f ∈ Ω0(Rn) ≡ C∞(Rn) then df is simply the differential:

df =
∑
i

∂f

∂xi
dxi .

If ω ∈ Ωq(Rn) then

dω = d
∑

ωi1 ... iq dxi1 · · · dxiq =
∑

dωi1 ... iq dxi1 · · · dxiq .

Problem. Show that d is an anti-derivation, i.e.,

d(ξ η) = (dξ) η + (−1)deg(ξ)ξ dη.

Problem. Show that d2 = 0. �

The complex Ω(Rn) together with the differential operator d is called the de Rham complex on

Rn. The kernel of d are the closed forms, the image of d the exact forms.
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Definition. The q-th de Rham cohomology of Rn is the vector space

Hq
dR(R

n) = {closed q-forms on Rn}/{exact q-forms on Rn}.

Remark. All of the above makes sense for any open domain U ⊂ Rn. Thus in the same vein we

have Ωq(U) and Hq
dR(U).

1.1.5 Snake lemma

Let A, B be a pair of differential complexes, with differential operators dA : Aq → Aq+1, d2A = 0,

and dB : Bq → Bq+1, d2B = 0. A degree-preserving linear mapping f : A → B is called a chain

map if it commutes with the differential operators of A and B:

dB f = f dA .

Fact. The map f : A→ B descends to a map in cohomology:

f∗ : H
q(A)→ Hq(B) .

Indeed, being a chain map f maps ker dA into ker dB , and im dA into im dB , so we can define the

image under f of a cohomology class a+ d(Aq−1) ≡ [a] ∈ Hq(A) by

f∗([a]) := f(a) + d(Bq−1) ≡ [f(a)]. �

Example/Problem. Let ϕ : M → N be a differentiable map between two manifolds. Then

there is a map ϕ∗ : Ω(N) → Ω(M) called the pullback by ϕ . Look up the precise definition of

pullback, and show that pullback is a chain map. �
Next comes a quick reminder of something basic from linear algebra. We recall that a differential

complex with vanishing cohomology is called an exact sequence. An exact sequence of three vector

spaces A, B, C,

0 −→ A
f−→ B

g−→ C −→ 0 , (1.2)

is called a short exact sequence. In this case the following properties are immediate:

ker f = 0 , im f = ker g , im g = C .

Thus f is injective, g is surjective, and g ◦ f = 0 . It follows that the induced mapping

B/f(A)→ C , b+ im f 7→ g(b) ,

is an isomorphism.

Next, consider a short exact sequence (1.2) of differential complexes A, B, C, with the addi-
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tional property that the operators f and g are chain maps:

. . . −→ Aq−1 dA−→ Aq
dA−→ Aq+1 −→ . . .

. . . −→ Bq−1 dB−→ Bq dB−→ Bq+1 −→ . . .

. . . −→ Cq−1 dC−→ Cq dC−→ Cq+1 −→ . . .

Then, as we already know, the maps f : A→ B and g : B → C descend to maps in cohomology:

f∗ : H
q(A)→ Hq(B) , g∗ : H

q(B)→ Hq(C).

What is less obvious is that one also has a canonical mapping

d∗ : H
q(C)→ Hq+1(A).

This map d∗ is defined as follows. [We now drop the subscript from dA , dB , and dC . Which of

these differential operators is meant will always be clear from the context.] Let c ∈ Cq. Then,

since g : Bq → Cq is surjective there exists some b ∈ Bq such that g(b) = c . If c is closed (i.e.,

c ∈ ker d) then

g(db) = d g(b) = dc = 0 ,

and owing to ker g = im f there exists some a ∈ Aq+1 such that f(a) = db . This element a is

closed since f is injective and

f(da) = d f(a) = d2b = 0 .

Thus for [c] ∈ Hq(C) we tentatively make the assignment [c]
d∗7→ [a] ∈ Hq+1(A).

To see that this defines an operator d∗ : H
q(C)→ Hq+1(A) as desired, we must check that the

result [a] does not depend on the choices made. Hence let c be replaced by another representative

c+ dγ of [c] ∈ Hq(C). Because g is surjective in degree q − 1, there exists β ∈ Bq−1 such that

c+ dγ = c+ d g(β) = g(b+ dβ).

Thus b gets replaced by b + dβ, which is a substitution that leaves db unchanged. Now, what

happens if we replace b by b+ b1 with ker g ∋ b1 = f(a1)? In this case we get

d(b+ b1) = f(a) + d f(α1) = f(a+ dα1) ,

which again yields an unchanged result [a+dα1] = [a] in cohomology. Thus our map d∗ : H
q(C)→

Hq+1(A) is indeed well-defined.

Problem (‘snake lemma’). Prove the exactness of the long sequence

. . .
g∗−→ Hq−1(C)

d∗−→ Hq(A)
f∗−→ Hq(B)

g∗−→ Hq(C)
d∗−→ Hq+1(A)

f∗−→ . . . �
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1.2 Mayer-Vietoris sequence

In Section 1.1.4 we introduced the de Rham complex of Rn. Its differential operator, the exterior

derivative d, has the important property of being independent of the chosen coordinate system.

This property allows one to define the de Rham complex Ω(M) for any differentiable manifoldM .

To that end, one covers the manifold M by an atlas {Uα} of open subsets (or domains) Uα each of

which is diffeomorphic to Rn (for n = dimM). A differential form ω on M then is a collection of

forms ωU for U in the atlas of M such that ωUα

∣∣
Uα∩Uβ

= ωUβ

∣∣
Uα∩Uβ

for every non-zero intersection

Uα ∩ Uβ . On each domain Uα one defines the exterior derivative as before (Section 1.1.4). By

the coordinate-independence of the exterior derivative, these pieces of exterior derivative piece

together to give a globally defined exterior derivative d : Ωq(M) → Ωq+1(M). The de Rham

cohomology Hq(M) is still the quotient of the closed q-forms on M by the exact q-forms.

The Mayer-Vietoris sequence is a powerful tool, which will let us understand a number of facts

about Hq(M). To introduce it, letM = U ∪V with two open domains U and V , and let U ∩V ̸= ∅
be their intersection. Defining the inclusion maps

i : U →M, j : V →M, k : U ∩ V → U, l : U ∩ V → V,

we claim that these give rise to a short exact sequence by the corresponding pullbacks:

0 −→ Ω(M)
(i∗, j∗)−→ Ω(U)⊕ Ω(V )

k∗−l∗−→ Ω(U ∩ V ) −→ 0 . (1.3)

Thus in the first non-trivial map of the sequence a differential form ω ∈ Ω(M) is sent to its pair

of restrictions (ωU , ωV ) to U and V . In the second map one sends a pair (α, β) ∈ Ω(U)⊕Ω(V ) to

the difference α− β.
It is clear that (i∗, j∗) is injective, and its image equals the kernel of k∗ − l∗. To prove the

exactness of the sequence, it remains to show that k∗− l∗ is surjective. So, let ω ∈ Ω(U ∩ V ). We

need to find α ∈ Ω(U) and β ∈ Ω(V ) such that α − β agrees with ω on the intersection U ∩ V .

For this purpose let ρU + ρV = 1 be a partition of unity by smooth functions such that

supp ρU ⊂ U , supp ρV ⊂ V.

Then α := ρV ω is a form on U , β := −ρU ω is a form on V , and α − β = ρV ω + ρU ω = ω, as

desired. Thus the map k∗ − l∗ is indeed surjective.

Since the Mayer-Vietoris sequence (1.3) is exact, and the maps (i∗, j∗) and k∗ − l∗ (being

pullbacks by inclusion maps) are chain maps, we get a long exact sequence (also called the Mayer-
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Vietoris sequence)

. . . −→ Hq(M)
(i∗, j∗)−→ Hq(U)⊕Hq(V )

k∗−l∗−→ Hq(U ∩ V )
d∗−→ Hq+1(M) −→ . . .

by the snake lemma of Section 1.1.5. Let us recall the definition of the operator d∗ in the present

context. Given a cohomology class [ω] ∈ Hq(U ∩ V ) we pick a representative ω and a pre-image

(ρV ω,−ρU ω) under the surjective map k∗ − l∗. We then apply the exterior derivative, resulting

in

d (ρV ω,−ρU ω) = (dρV ∧ ω,−dρU ∧ ω) ∈ Hq+1(U)⊕Hq+1(V ),

since dω = 0 . Now owing to ρU +ρV = 1 we have dρU = −dρV , and therefore dρV ∧ω = −dρU ∧ω
makes sense as a form on M = U ∩ V . One thus defines d∗ : H

q(U ∩ V )→ Hq+1(M) by

d∗[ω] := [dρV ∧ ω] = [−dρU ∧ ω].

Note that the support of d∗[ω] is contained in U ∩ V .

Problem. Why is d∗[ω] independent of the choice of partition of unity?

1.2.1 Example

As a simple application of the Mayer-Vietoris long exact sequence, we now use it to compute the

de Rham cohomology of the circle S1. To do so, we cover S1 by two open domains U and V as

shown in the next figure.

We then have the following long exact sequence:

H1(S1) −→ H1(U)⊕H1(V ) −→ H1(U ∩ V ) −→ 0

0 −→ H0(S1) −→ H0(U)⊕H0(V ) −→ H0(U ∩ V )

We now recall that dimH0(M) counts the number of connected components ofM . HenceH0(U) =

H0(V ) = R and H0(U ∩ V ) = R2. Moreover, we have H1(U) = H1(V ) = H1(U ∩ V ) = 0, since

every 1-form in one dimension is exact. Thus our long exact sequence reads more explicitly like

this:
H1(S1) −→ 0 −→ 0

0 −→ R −→ R⊕ R −→ R⊕ R

We have that d∗ : H0(U ∩ V ) → H1(S1) is surjective and that the image of the difference map

k∗ − l∗ is one-dimensional. By using im(k∗ − l∗) = ker d∗ it follows that

H1(S1) = im d∗
∣∣
H0(U∩V )

= H0(U ∩ V )/ker d∗ = R2/R = R .
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1.2.2 Compact supports

The Mayer-Vietoris sequence has an analog in the setting of differential forms with compact

supports. Turning to this case, we first observe that the story has to be run in a somewhat

different way as the pullback of a compactly supported form need not be compactly supported in

general (unless the maps used for pullback are proper). In fact, the good notion to use here turns

out to be that of ‘push forward’.

Let M = U ∪ V with U , V open as before, and consider the sequence of maps

0←− Ωc(M)
i∗+j∗←− Ωc(U)⊕ Ωc(V )

(k∗,−l∗)←− Ωc(U ∩ V )←− 0 , (1.4)

where the arrows now run from the right to the left and, for example, i∗ : Ωc(U) → Ωc(M) is

the mapping which extends a compactly supported form on U by zero to a form (still compactly

supported) on M . The same goes for the other maps.

The short sequence (1.4) is still exact, and this time the exactness of the sequence is easy to see

at every step. In particular, the last step is simpler than before. Indeed, for ω ∈ Ωc(M) consider

the pair of forms (ρU ω, ρV ω). Both of them are compactly supported, and their sum equals ω.

We thus see that the map Ωc(M)
i∗+j∗←− Ωc(U)⊕ Ωc(V ) is surjective.

The maps i∗+j∗ and (k∗,−l∗) commute with the exterior derivative and hence are chain maps.

Therefore, by the general principle of Section 1.1.5 we obtain another long exact sequence:

. . .←− Hq+1
c (U ∩ V )

d∗←− Hq
c (M)

i∗+j∗←− Hq
c (U)⊕Hq

c (V )
(k∗,−l∗)←− Hq

c (U ∩ V )←− . . .

which is called the Mayer-Vietoris sequence for compact supports. (Please be warned that, in

order to avoid an overload of notation, we here refrain from inventing new symbols to denote the

induced maps in cohomology.)

Let us again look briefly at how the operator d∗ works in the present setting. We choose

some partition of unity, ρU + ρV = 1, as before. For ω ∈ Ωq
c(M) we then form (ρU ω, ρV ω) ∈

Ωq
c(U)⊕ Ωq

c(V ) and take the exterior derivative,

d (ρU ω, ρV ω) = (dρU ∧ ω, dρV ∧ ω).

The operator d∗ : H
q
c (M)→ Hq+1

c (U ∩ V ) is then defined by

d∗[ω] := [dρU ∧ ω] = [−dρV ∧ ω].

1.2.3 Example

As another simple application, let us recompute the de Rham cohomology of the circle, S1, by

using the long Mayer-Vietoris sequence with compact supports:

0 ←− H1
c (S

1) ←− H1
c (U)⊕H1

c (V ) ←− H1
c (U ∩ V )

H0
c (S

1) ←− H0
c (U)⊕H0

c (V ) ←− H0
c (U ∩ V ) ←− 0 .
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We have H0
c (U) = 0 (recall that on an open U set there exist no compactly supported functions

that have zero differential but aren’t zero) and H1
c (U) = R (because the total integral of a 1-form

in one dimension is an obstruction to that 1-form being the differential of a compactly supported

function). By filling in these cohomologies we obtain

0 ←− H1
c (S

1)
i∗+j∗←− R⊕ R (k∗,−l∗)←− R⊕ R

H0
c (S

1) ←− 0 ←− 0 .

To compute H1
c (S

1) we observe that the map i∗ + j∗ : H1
c (U) ⊕ H1

c (V ) → H1
c (S

1) is surjective.

Thus

H1
c (S

1) = im (i∗ + j∗) = (H1
c (U)⊕H1

c (V ))/ker (i∗ + j∗).

Now ker (i∗ + j∗) is one-dimensional, being generated by ([α], [β]) ∈ H1
c (U) ⊕ H1

c (V ) subject to∫
U
α+

∫
V
β = 0 . Hence

H1
c (S

1) = (R⊕ R)/R = R .

Turning to H0
c (S

1) we observe that d∗ : H
0
c (S

1)→ H1
c (U ∩ V ) is injective. Therefore

H0
c (S

1) ≃ im d∗ = ker (k∗,−l∗) ,

by the exactness of the sequence. The kernel of (k∗,−l∗) has dimension one; it is generated

by forms on U ∩ V whose total integral vanishes while the integral over either one of the two

components of U ∩ V is non-zero. We thus conclude that H0
c (S

1) = R.
In summary, it makes no difference for de Rham cohomology of S1 whether we require compact

supports or not:

H0(S1) = H0
c (S

1) = R , H1(S1) = H1
c (S

1) = R .

This is no accident. In fact, one has Hq
c (M) ≡ Hq(M) (for all q) whenever M is compact.

1.3 Poincaré duality

PD will be seen to be a fundamental result with many applications.

1.3.1 Integration of forms

It would not be appropriate here to give a tutorial in exterior calculus and integration of differential

forms. [A good reference is the classical mechanics book of Arnold.] We will just look at a few

cases to communicate to the unknowing reader that integration of differential forms is a very

natural and easy process.

Let E ∈ Ω1(Rn) be a 1-form. Its integral along a (differentiable) curve γ : [0, 1]→ Rn is∫
γ

E :=

∫ 1

0

Eγ(t)(γ
′(t)) dt .

where γ′(t) = d
dt
γ(t). This definition is coordinate-independent and, in fact, invariant under

reparametrization of the curve. If x1, x2, . . . , xn are the standard coordinates of Rn (actually, any
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coordinate system will do for present purposes) and E =
∑
Ei dxi , then the coordinate expression

for the line integral
∫
γ
E is ∫

γ

E =
n∑
i=1

∫ 1

0

Ei(γ(t)) γ
′(t)i dt .

We turn to the case of a 2-form B ∈ Ω2(Rn). To integrate it, we need a parametrized surface,

say σ : [0, 1]2 → Rn. The integral of B over σ is∫
σ

B :=

∫ 1

0

∫ 1

0

Bσ(s,t)

(
∂

∂s
σ(s, t),

∂

∂t
σ(s, t)

)
ds dt .

In coordinates we have B =
∑

i<j Bij dxi dxj and the integral is expressed by∫
σ

B =
n∑

i,j=1

∫ 1

0

∫ 1

0

Bij

(
σ(s, t)

) (
∂s σ(s, t)

)
i

(
∂t σ(s, t)

)
j
ds dt ,

where the convention Bij = −Bj i is assumed.

It should be clear how this continues to higher degree.

1.3.2 Poincaré lemma

The Poincaré lemma says that the de Rham cohomology of Rn is trivial except in degree zero:

Hq(Rn) =

{
R q = 0 ,
0 else .

When the condition of compact support is imposed, the non-trivial cohomology moves to the top

degree:

Hq
c (Rn) =

{
R q = n ,
0 else .

Let us indicate how the first statement is proved. For this we fix any reference point of Rn,

say the origin o, and for q ≥ 1 define an operator K : Ωq(Rn)→ Ωq−1(Rn), ω 7→ Kω, by

(Kω)p(v2, . . . , vq) =

∫ 1

0

ωo+t(p−o)(p− o, v2, . . . , vq) tq−1dt .

Problem. Show that (dK +Kd)ω = ω. �

From the identity stated in the problem one immediately concludes that every closed form (dω = 0)

of degree q ≥ 1 in Rn is exact: ω = (dK +Kd)ω = d(Kω).

1.3.3 The statement of Poincaré duality

We begin with a few definitions. Let {Uα} be an atlas for an n-dimensional manifoldM . One calls

{Uα} a good cover ofM if all non-empty finite intersections Uα1 ∩Uα2 ∩ . . .∩Uαq are diffeomorphic

to Rn.

Example. Recall that in Section 1.2.1 we used two open intervals U , V to cover the circle S1.

This cover is not good, as the intersection U ∩ V consists of two connected components and thus

is diffeomorphic to two copies of R, not just one. However, it is easy to produce a good cover by
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using three domains U , V , and W . Indeed, we can arrange for each of U ∩ V , V ∩W and W ∩ U
to be connected, with empty intersection U ∩ V ∩W = ∅. �

Problem. What’s the minimal cardinality of a good cover for the sphere S2 ? �

It is a fact that every manifold has a good cover. A manifold is said to be of finite type if it has

a good cover of finite cardinality. (For example, every compact manifold is of finite type.)

A manifold M is called orientable if there exists a top-degree form ω ∈ Ωn(M) (n = dimM)

which is everywhere non-zero.

Theorem (Poincaré duality). For every orientable n-dimensional manifold M of finite type

one has an isomorphism

Hq(M) ≃
(
Hn−q
c (M)

)∗
.

The proof of Poincaré duality will be discussed in a later section.

Here we continue with a reformulation. For this we recall from linear algebra that if a vector

space V is equipped with a non-degenerate bilinear form Q : V ⊗V → R , then the linear mapping

Q̃ : V → V ∗ by v 7→ Q(v, ·) is an isomorphism. The converse is also true. Similarly, the existence

of a non-degenerate pairing P : V ⊗W → R between two vector spaces V and W is equivalent

to the existence of an isomorphism P̃ : V → W ∗, v 7→ P (v, ·).
By applying this general principle to our situation, we see that Poincaré duality amounts to

the existence of a non-degenerate pairing Hq(M) ⊗ Hn−q
c (M) → R . This pairing is given by

integration: ∫
: Hq(M)⊗Hn−q

c (M)→ R , [α]⊗ [β] 7→
∫
M

α ∧ β .

Let us spend a few words verifying that this pairing is well-defined. First of all, since the second

factor β is compactly supported by decree, the integral
∫
M
α ∧ β always converges, regardless of

whetherM is compact or not. Second, the integral does not depend on the choice of representative

for either cohomology class. Indeed, if α1 and α2 are two representative of the same class [α], then

α1 = α2 + dη and ∫
M

α1 ∧ β −
∫
M

α2 ∧ β =

∫
M

dη ∧ β =

∫
M

d (η ∧ β) = 0 ,

by dβ = 0 and Stokes’ theorem.

Remark. Stokes’ theorem is the statement
∫
M
dω =

∫
∂M

ω . �

Thus Poincaré duality can be restated as follows.

Theorem (Poincaré duality). For every orientable manifold M of finite type the pairing

Hq(M)⊗Hn−q
c (M)→ R (n = dimM)

by integration is non-degenerate.

1.3.4 The Poincaré dual of a submanifold

For a manifoldM of dimension n, let S ⊂M be an oriented submanifold of dimension k. (Oriented

means that there exists an everywhere non-vanishing k-form on S and one has fixed such a form.)
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Also, let S be closed as a submanifold of M and denote by ι : S → M the inclusion. If ω is any

compactly supported k-form on M , then the integral
∫
S
ι∗ω converges. What’s more, integration

along S descends to a linear functional on [ω] ∈ Hk
c (M) by Stokes’ theorem. Thus we may regard

S as defining an element of
(
Hk
c (M)

)∗
. By Poincaré duality

(
Hk
c (M)

)∗ ≃ Hn−k(M) it follows

that there exists a unique cohomology class, say [ηS], in H
n−k(M) such that∫

S

ι∗ω =

∫
M

ω ∧ ηS

holds for every [ω] ∈ Hk
c (M). This form ηS (or rather its cohomology class [ηS]) is called the

closed Poincaré dual of S. By the same token, one speaks of the closed Poincaré dual of a k-chain

on M . (A k-chain on M is a linear combination of k-dimensional oriented submanifolds, actually

k-cells, of M . In the present context all k-cells are required to be closed.)

Example 1. Let M = R3 \{p} and consider the 1-chain D̃ = (Q/N)
∑N

i=1 γi consisting of N rays

γi each of which extends from the point p to infinity and carries ‘electric flux’ Q/N . Note that

each such ray γi is closed as a submanifold of R3 \ {p} (albeit not as a submanifold of R3).

Problem. Show that the Poincaré dual of the 1-chain D̃ is the (cohomology class [D] ∈ H2(R3 \
{p}) of the) closed 2-form D = Qτp where τp = sin θp dθp∧dϕp is the solid-angle 2-form (expressed

in spherical polar coordinates θp , ϕp) centered at p. �

Remark. From the physics viewpoint, the closed 2-form D = Qτp should be interpreted as the

electric excitation of a point charge Q at the position p . The benefit from Poincaré duality is that

we may visualize this (perhaps somewhat abstract) electric-excitation 2-form D by the electric

flux lines of the closed 1-chain D̃. Of course, from the cohomological viewpoint it doesn’t matter

how we arrange the N rays; e.g., we might put them all on top of each other and consider a single

ray from p to infinity. This flexibility stems from the fact that in cohomology one requires the

equality
∫
D̃
ω =

∫
M
ω∧D to hold only for closed test forms ω (so the ‘test’ isn’t very precise). On

the other hand, in physics one might want such an equality to hold for all test forms ω. While

that’s too much to ask for, if we arrange the rays in a way guided by spherical symmetry then we

do get a very good approximation
∫
D̃
ω ≈

∫
M
ω ∧D by choosing N to be sufficiently large.
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Example 2. Let M = R3 \ a for some axis a, and consider the 2-chain H̃ = (I/N)
∑N

i=1 Si of a

circular arrangement of N half planes Si emanating from a and carrying ‘magnetic voltage’ I/N .

Problem. Show that the Poincaré dual of H̃ is the closed 1-form H = I dϑa where ϑa is the

angular coordinate of a cylindrical coordinate system centered around a .

Remark. Again, in cohomology we could just use a single half-plane S and the Poincaré dual

would still be dϑa . However, as physicists we prefer the circular arrangement (with a large number

N of half planes) because then
∫
H̃
ω =

∫
M
ω ∧H is not only true for closed test forms ω, but also

holds approximately for non-closed ω. More concretely, our 2-chain H̃ is a good approximation

for the magnetic excitation 1-form H due to a stationary electric current I flowing along a . �

There exists a second notion of Poincaré dual, which is to be distinguished from the one above.

Let now ι : S → M be a compact submanifold (with dimS = k ≤ n = dimM as before). By

the compactness of S the integral
∫
S
ι∗ω makes sense for any k-form ω, no matter whether it has

compact support or not. Integration along S again descends to a linear functional on [ω] ∈ Hk(M)

by Stokes’ theorem, and by Poincaré duality there is a unique cohomology class [η′S] in H
n−k
c (M)

such that ∫
S

ι∗ω =

∫
M

ω ∧ η′S for all [ω] ∈ Hk(M) .

This cohomology class [η′S] ∈ Hn−k
c (M) is called the compact Poincaré dual of S.

Example 3. Let Rn be equipped with the Euclidean distance function d(x, y) = |x − y| (that’s
just for our convenience), and consider some point p ∈ Rn. The compact Poincaré dual of p is

represented by a bump form ρ of mass one, say

ρ = fp,ϵ dx1 dx2 · · · dxn , fp,ϵ(x) =

{
cϵ e

−(ϵ2−|x−p|2)−1 |x− p| < ϵ,
0 |x− p| ≥ ϵ,

where cϵ is a normalization constant ensuring that
∫
ρ = 1.

Remark. We have chosen a bump form which peaks at the point p . It should be emphasized that

the whereabouts of the bump form don’t matter at all in cohomology (as long as ρ is compactly

supported and has mass one). Indeed, our Poincaré duality equation here reads f(p) ≡
∫
p
f =∫

Rn f ρ and since f ∈ H0(Rn) is a constant function, the equality holds if
∫
ρ = 1. Nevertheless,

the choice of bump form localized at p is optimal in the sense that it achieves approximate equality
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even for the (non-cohomological) case of non-constant f . For example, we might regard ρ as the

smooth charge density which results from ‘smearing’ a point charge at p .

Example 4. Let M ⊂ R3 be a spherical shell

M = {p ∈ R3 | R1 < r(p) < R2} ,

where r is the Euclidean distance from the origin, and take S ⊂ M to be a sphere of radius

R , R1 < R < R2 . The compact Poincaré dual [η′S] ∈ H1
c (M) then is the cohomology class of

η′S = f(r) dr where f(r) is any function with compact support in M and integral
∫ R2

R1
f(r) dr = 1.

Speaking in physical terms, we may think of the radial electric field strength 1-form E = V f(r)dr

as the compact Poincaré dual of the 2-chain Ẽ := V · S with electrical voltage V across S.

Example 5. Let M ⊂ R3 be a solid torus (or donut), described in cylindrical coordinates ρ, ϑ, z

by

M :=
{
p ∈ R3 | (ρ(p)−R1)

2 + z(p)2 < R2
2

}
,

and take γ ∈M to be the loop (or closed curve) which is the solution set of the equations ρ = R1 ,

z = 0 . The compact Poincaré dual of γ is (the cohomology class of) a compactly supported closed

2-form η′γ = f(z, ρ) dz ∧ dρ which integrates to unity along any cross section of the donut. We

may think of B ∝ η′S as the magnetic field strength 2-form due to an electric current circulating

around the surface of the donut M .

1.3.5 Proof of Poincaré duality

The following lemma will be key to the proof of Poincaré duality.

Lemma (‘Five Lemma’). Let there be two exact sequences and five linear maps α, β, γ, δ, ε such

that the following diagram commutes:

. . . −→ A
f1−→ B

f2−→ C
f3−→ D

f4−→ E −→ . . .

. . . −→ A′ f ′1−→ B′ f ′2−→ C ′ f ′3−→ D′ f ′4−→ E ′ −→ . . .

Then if the maps α, β, δ, ε are isomorphisms, so is the map γ.

Proof. By the commutativity of the diagram, the map β sends im f1 into im f ′
1 , and the map γ

sends im f2 into im f ′
2 , and so on. Because β is an isomorphism it follows that γ : im f2 → im f ′

2

is surjective, and because α is an isomorphism, the same goes for β : im f1 → im f ′
1 . Now the

latter map must also be injective, or else β : B → B′ would not be an isomorphism. Hence, im f1

is in bijection with im f ′
1 and we have

ker f ′
2 = im f ′

1 ≃ im f1 = ker f2 ,
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by the exactness of both sequences. Owing to the rank-nullity theorem we obtain

dim im f ′
2 = dimB′ − dimker f ′

2 = dimB − dimker f2 = dim im f2 ,

where dimB = dimB′ was used. Therefore, since γ : im f2 → im f ′
2 is surjective, it must actually

be bijective. This concludes the first part of the proof.

The second part of the proof begins with the observation that, again by the commutativity of

the diagram, the map γ sends ker f3 into ker f ′
3 . Thus γ pushes down to a map

γ̃ : C/ker f3 → C ′/ker f ′
3 .

Because δ is an isomorphism it follows that γ̃ is injective. We will now prove that γ̃ is actually

bijective, by showing that C/ker f3 and C ′/ker f ′
3 have the same dimension.

By rank-nullity, dim C/ker f3 = dim C ′/ker f ′
3 is equivalent to the statement that im f3 and

im f ′
3 have the same dimension. The latter is true because im f3 = ker f4 and im f ′

3 = ker f ′
4 by the

exactness of the two sequences. Indeed, since δ and ε are isomorphisms, the kernels of the maps

f4 and f ′
4 have the same dimension. Thus γ̃ is in fact bijective.

Altogether then, we have two isomorphisms

γ : im f2 → im f ′
2 , γ̃ : C/im f2 → C ′/im f ′

2 ,

where for the second one we used that im f2 = ker f3 and im f ′
2 = ker f ′

3. Since C decomposes as

C ≃ im f2 ⊕ (C/im f2) (and similar for C ′) it follows that γ : C → C ′ is an isomorphism. �
For open sets U , V as before, we now pair the two Mayer-Vietoris sequences (with and without

compact supports) to form the diagram

Hq−1(U ∩ V ) → Hq(U ∪ V ) → Hq(U)⊕Hq(V ) → Hq(U ∩ V )

Hn−q+1
c (U ∩ V ) ← Hn−q

c (U ∪ V ) ← Hn−q
c (U)⊕Hn−q

c (V ) ← Hn−q
c (U ∩ V )

R R R R

Lemma. The diagram above is (sign-)commutative.

Proof. Let us first show the commutativity of the middle square,

Hq(U ∪ V )
(i∗, j∗)−→ Hq(U)⊕Hq(V )

Hn−q
c (U ∪ V )

i∗+j∗←− Hn−q
c (U)⊕Hn−q

c (V )

R R .

Thus let [ω] ∈ Hq(U ∪ V ) and ([α], [β]) ∈ Hn−q
c (U) ⊕ Hn−q

c (V ). Computing the pairing for the

left row we have

[ω]⊗ (i∗ + j∗)([α], [β]) 7→
∫
U∪V

ω ∧ (i∗α + j∗β) ,
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and computing it for the right row

(i∗, j∗)([ω])⊗ ([α], [β]) 7→
∫
U

i∗ω ∧ α +

∫
V

j∗ω ∧ β .

The two pairings give the same value because i∗i∗ is the identity map and hence, e.g.,∫
U

i∗ω ∧ α =

∫
U

i∗(ω ∧ i∗α) =
∫
i(U)

ω ∧ i∗α =

∫
U∪V

ω ∧ i∗α ,

where the last equality holds because i∗α vanishes outside of U . The right square is very similar.

We turn to the left square:

Hq−1(U ∩ V )
d∗−→ Hq(U ∪ V )

Hn−q+1
c (U ∩ V )

d∗←− Hn−q
c (U ∪ V )

R R .

Now let [ξ] ∈ Hq−1(U ∩ V ) and [η] ∈ Hn−q
c (U ∪ V ). We recall that d∗[ξ] = [dρV ∧ ξ] = [−dρU ∧ ξ]

(note the change of notation d∗) and d∗[η] = [dρU ∧ η] = [−dρV ∧ η]. The pairing on the left is

[ξ]⊗ d∗[η] 7→
∫
U∩V

ξ ∧ dρU ∧ η ,

that on the right is

d∗[ξ]⊗ [η] 7→
∫
U∪V

(−dρU) ∧ ξ ∧ η = (−1)q
∫
U∪V

ξ ∧ dρU ∧ η .

Because the support of dρU is localized in U ∩ V these agree but for a difference in sign. �

Remark. We can remove the sign difference, e.g., by redefining d∗ → (−1)qd∗. Since the inversion
of the sign of an operator changes neither its kernel nor its image, the Mayer-Vietoris sequence

remains the same. �
Returning to our pair of Mayer-Vietoris sequences, we reverse the arrows in the second row to

present the diagram in the following fashion:

Hq−1(U ∩ V ) → Hq(U ∪ V ) → Hq(U)⊕Hq(V ) → Hq(U ∩ V )

Hn−q+1
c (U ∩ V )∗ → Hn−q

c (U ∪ V )∗ → Hn−q
c (U)∗ ⊕Hn−q

c (V )∗ → Hn−q
c (U ∩ V )∗

The proof of Poincaré duality now proceeds by induction on the cardinality of a good cover. First

of all, in the case of M = Rn Poincaré duality Hq(Rn) ≃ Hn−q
c (Rn)∗ holds as a result of the

Poincaré lemma. Indeed, the only non-trivial cohomologies are H0(Rn) = R = Hn
c (Rn) and the

pairing H0(Rn)⊗Hn
c (Rn)→ R by f ⊗ ρ 7→

∫
fρ is obviously non-degenerate.

Next suppose that Poincaré duality holds for any manifold having a good cover with at most

p open sets, and consider a manifold that has a good cover {U0, . . . , Up} with p + 1 open sets.

Now (U0 ∪ . . . ∪ Up−1) ∩ Up has a good cover with p open sets, namely (U0 ∩ Up , . . . , Up−1 ∩ Up).
By hypothesis, Poincaré duality holds for Up , for U0 ∪ . . . ∪ Up−1 , and for (U0 ∪ . . . ∪ Up−1) ∩ Up .
By applying the Five Lemma to the commutative diagram above, it then follows that Poincaré

duality also holds for U0 ∪ . . . ∪ Uq−1 ∪ Up . This induction argument proves Poincaré duality for

any orientable manifold that has a finite good cover.

19



1.3.6 Two properties of the Poincaré dual

Let us mention two geometric properties of Poincaré duality. For one thing, let S1 ⊂ M and

S2 ⊂ M be two closed oriented submanifolds of dimension k1 and k2 respectively, and denote by

[ηS1 ] ∈ Hn−k1(M) and [ηS2 ] ∈ Hn−k2(M) their Poincaré duals. The following statement gives a

geometric interpretation of the operation of exterior multiplication (or wedge product).

Fact. If S1 and S2 intersect each other transversally, then

[ηS1∩S2 ] = [ηS1 ] ∧ [ηS2 ] .

Thus under Poincaré duality the (transversal) intersection of closed

oriented submanifolds corresponds to the wedge product of forms.

Remark. The wedge product of two cohomology classes [α] and [β] is defined to be [α] ∧ [β] :=

[α ∧ β]. This is a good definition as the wedge product of an exact and a closed form is always

exact. Note also that dim (S1 ∩ S2) = k1 + k2 − n ; indeed, there are n degrees of freedom and

(n − k1) + (n − k2) constraining equations. Thus [ηS1 ] ∧ [ηS2 ] = [ηS1∩S2 ] ∈ H2n−k1−k2(M) passes

the test of counting dimensions.

Example. We illustrate the stated fact with an example from electrodynamics in R3. The energy

current density of the electromagnetic field is the Poynting form s = E ∧H (traditionally called

the Poynting vector), where E and H are the 1-forms of the electric field resp. magnetic excitation.

In a static situation we may Poincaré-visualize the closed 1-forms E and H as closed 2-chains. The

Poynting form E ∧H then is Poincaré dual to the closed 1-chain which is obtained by intersecting

the 2-chains of E and H. Thus the lines of the electromagnetic energy current follow the lines of

intersection of the surfaces of E and H. �

The second property to be mentioned here is this.

Fact. Let S ⊂ N be a closed oriented submanifold with Poincaré dual [ηS]. If f
−1(S) denotes the

pre-image of S under a mapping f : M → N , then

[f ∗ηS] = [ηf−1(S)] ,

i.e. under Poincaré duality the induced map on cohomology corresponds to the pre-image in

geometry.

1.3.7 Künneth formula

Let us mention another useful property of de Rham cohomology which follows more or less directly

from the Mayer-Vietoris sequence [for the proof see Bott & Tu].
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Fact (Künneth formula). IfM and N are manifolds of finite type, the de Rham cohomology of

the direct product M ×N is the tensor product of the de Rham cohomologies of the two factors:

Hr(M ×N) =
⊕
p+q=r

Hp(M)⊗Hq(N) .

The same formula holds in the case of the de Rham cohomology with compact supports.

1.3.8 Orientation line bundle

In this lecture course the theme of vector bundles will play a prominent role. (Actually, we have

already been speaking about it, though not officially so). For present use with the introduction of

twisted differential forms, we give the basic definitions right here.

Definition. Let π : E → M be a surjective map of manifolds whose fiber π−1(x) ≡ Ex is a real

vector space for every x ∈M . The map π is called a (smooth) real vector bundle of rank n if there

exists an open cover {Uα} of M with fiber-preserving diffeomorphisms

ϕα : E
∣∣
Uα

= π−1(Uα)→ Uα × Rn

such that ϕα : Ex → Rn is a linear bijection for each x ∈ Uα . The maps

ϕα ◦ ϕ−1
β : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn, (x, v) 7→ (x, gα,β(x)v) ,

are determined by so-called transition functions gαβ : Uα ∩ Uβ → GL(n,R). A vector bundle

is called flat if there exists a trivialization {(Uα, ϕα)} such that all transition functions gαβ are

constant. A section of the vector bundle π : E → M is a smooth map s : M → E with the

property that π ◦ s is the identity map; thus s(x) ∈ π−1(x) = Ex . The space of smooth sections

of a vector bundle E →M is denoted by Γ(E) ≡ Γ(M,E). �
It is not possible in general to define an analog of the exterior derivative d on the sections of

a vector bundle. (What’s needed to differentiate sections is a so-called covariant derivative ∇.)
However, if the vector bundle is flat, then d does make sense, as follows.

To define d on differential forms ω ∈ Ω(M,E) with values in a flat vector bundle E, one

fixes some basis {e1, . . . , en} of Rn. By using the trivialization maps ϕα : E
∣∣
Uα
→ Uα × Rn

one introduces a basis of constant sections eiα = eiα(x) = ϕ−1
α (x, ei) for every Uα . The exterior

derivative dσ of an E-valued differential form σ expressed on Uα as s
∣∣
Uα

=
∑
σi ⊗ eiα is then

defined by

d

(
n∑
i=1

σi ⊗ eiα

)
:=

n∑
i=1

(dσi)⊗ eiα .

We must check that this definition does not depend on the use of ϕα or ϕβ on Uα ∩ Uβ. Thus let
σ =

∑
σi ⊗ eiα =

∑
τj ⊗ ejβ. The coefficient functions are related by

τj(x) =
∑

cij σi(x) (x ∈ Uα ∩ Uβ) ,

where the coefficients cij are constants determined by

eiα =
∑

cij e
j
β .
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(Since the transition functions of the flat vector bundle are constant by choice, so are the cij .)

Now we can do our check:

d
(∑

τj ⊗ ejβ
)
=
∑

(dτj)⊗ ejβ =
∑
i,j

(cij dσi)⊗ ejβ

=
∑
i

(dσi)⊗
∑
j

cij e
j
β =

∑
dσi ⊗ eiα = d

(∑
σi ⊗ eiα

)
.

Thus we have d|Uα = d|Uβ
as required.

Problem. Show that the definition of the exterior derivative d is independent of the choice of

(constant) trivialization {ϕα}. �
By construction, the transition functions of a vector bundle satisfy the cocycle condition

gαβ(x) gβγ(x) = gαγ(x) on triple intersections Uα ∩ Uβ ∩ Uγ ̸= ∅. Conversely, a cocycle {gαβ}
with values gαβ : Uα ∩ Uβ → GL(n,R) determines a rank-n real vector bundle.

Let now {Uα , ψα} be an atlas of coordinate maps ψα : Uα → Rn for a manifold M and take

xiα : Uα
ψα−→ Rn xi−→ R

to be the local coordinate functions given by standard coordinates x1, . . . , xn for Rn. Then a

top-dimensional form ω ∈ Ωn(M) is expressed by

ω = fα dx
1
α ∧ · · · ∧ dxnα = fβ dx

1
β ∧ · · · ∧ dxnβ , fβ = Jαβ fα , Jαβ = Det

(
∂xiα
∂xjβ

)
,

on any non-empty intersection Uα ∩Uβ. Note that by the multiplicativity of the determinant, the

Jacobian Jαβ : Uα∩Uβ → R satisfies the cocycle condition JαβJβγ = Jαγ and so does the function

sign(Jαβ) = Jαβ/|Jαβ|. (The Jacobian Jαβ never vanishes on Uα ∩ Uβ.)

Definition. The orientation line bundle of a manifoldM is the rank-1 real vector bundle L→M

with transition functions gαβ = sign(Jαβ) : Uα ∩ Uβ → GL(1,R) (actually, O1). �
Thus an element of L is specified by a number r ∈ R ≃ π−1(x) over a point x ∈M . The number

r depends on the coordinate chart ϕα : Uα → R used and changes sign when the orientation of

the coordinate basis is reversed. Note that L is a flat vector bundle.

Fact. If a manifold M is orientable, then its orientation line bundle L is trivial, i.e. has a section

with no zeroes.

Proof. Let M be orientable. Then by definition there exists a top form ω ∈ Ωn(M) whose

local expressions ω|Uα = fα dx
1
α ∧ · · · ∧ dxnα have coefficients fα : Uα → R with no zeroes. Put

sα := fα/|fα|. The transition rule fβ = Jαβfα implies the transition rule sβ = sign(Jαβ)sα , which

means that sα : Uα → R is the local expression of a globally defined section s of L → M . Since

ω has no zeroes, neither does s.

Problem. Prove the reverse implication: if the orientation line bundle L→M has a section with

no zeroes, then M is orientable.

Example. The space of symmetric unitary matrices (say, of dimension n× n) is of some promi-

nence in theoretical physics. This space fails to be orientable for n ≥ 2.
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1.3.9 Twisted differential forms

Definition. A twisted differential form τ onM is a form with values in the orientation line bundle

L of M . One writes τ ∈ Ω(M,L). A twisted form of top degree is called a density. �
The whole formalism of differential forms carries over to twisted forms. In particular, since

the orientation line bundle is a flat vector bundle, one has a canonical exterior derivative d :

Ωq(M,L) → Ωq+1(M,L) and hence a twisted de Rham cohomology; this still exists with and

without compact supports, and is denoted by H•
c (M,L) and H•(M,L) respectively.

Twisted differential forms can be integrated. In the important case of a density, the integral

(if it converges) exists for any manifold M , orientable or not. To give a few details, a density

ω ∈ Ωn(M,L) by definition has the local expression

ω
∣∣
U∩ Uβ

= fα dx
1
α ∧ · · · ∧ dxnα ⊗ sα = fβ dx

1
β ∧ · · · ∧ dxnβ ⊗ sβ ,

where fα = fβ/|Jαβ| and sα = sign(Jαβ) sβ . This may be reorganized as

ω
∣∣
Uα∩Uβ

= fα |dx1α ∧ · · · ∧ dxnα| = fβ |dx1β ∧ · · · ∧ dxnβ| ,

where the transition rule is

|dx1α ∧ · · · ∧ dxnα| = |Jαβ| |dx1β ∧ · · · ∧ dxnβ| .

The integral of a density ω is defined as the iterated Riemann integral∫
M

ω :=
∑
α

∫
Uα

ραfαdx
1
α · · · dxnα ,

where
∑
ρα = 1 is a partition of unity (subordinate to the cover {Uα}). This definition does not

require M to be oriented (or even orientable).

Examples. Important examples of twisted differential forms are furnished by the inhomogeneous

Maxwell equations, namely (Gauss): dD = ρ and (Ampére-Maxwell) dH = j+ Ḋ . The quantities

appearing in these equations are the electric charge density ρ ∈ Ω3(R3, L), the electric current

density j ∈ Ω2(R3, L), the electric excitation D ∈ Ω2(R3, L) and the magnetic excitation H ∈
Ω1(R3, L). Further examples are provided by the electromagnetic energy density 1

2
(E∧D+B∧H) ∈

Ω3(R3, L) and energy current density E ∧H ∈ Ω2(R3, L).

Theorem (Poincaré duality). On an n-dimensional manifold M of finite type the pairings∫
: Hq(M)⊗Hn−q

c (M,L)→ R and

∫
: Hq

c (M)⊗Hn−q(M,L)→ R

by integration are non-degenerate.

Remark. This is the optimal version of Poincaré duality, as it does not involve any orientation

for M . By the notion of Poincaré dual of a submanifold, it leads to the correct way of drawing

pictures of the electromagnetic field:
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1.4 Application: d.c. electrical transport

We now embark on a substantial example illustrating all aspects of the theory developed so far:

we will review some fundamental aspects of electrical transport theory, using the model of an

electrical conductor as an n-dimensional manifold X (where n = 1, 2, 3 in reality) with open ends.

1.4.1 Charge and current density

Finding the total amount of electric charge in a domain U ⊂ X is a counting exercise that does

not require U to be oriented or even orientable. Accordingly, in the continuum approximation one

models the electric charge density ρ on X as a twisted n-form, ρ ∈ Ωn(X,L). The electric charge

Q(U) in U ⊂ X is computed from ρ by integration: Q(U) =
∫
U
ρ .

The electric current density, commonly denoted by j in physics, is the quantity that encodes

the information about the flow of the electric charges. The proper mathematical model for it is a

twisted (n− 1)-form, j ∈ Ωn−1(X,L). By integrating j over a (n− 1)-dimensional submanifold S

in X, one obtains the electric current through S:

I(S) :=

∫
S

j .

I(S) comes with a sign which depends on the choice of outer orientation of S (by which we mean

a choice of direction of passing through the hypersurface S).

If S is a boundary, say S = ∂U , the law of conservation of electric charge says that I(S) =

− d
dt
Q(U). The differential version of this law is d j = −ρ̇ .
In a stationary situation, where ρ̇ = 0 , the electric current density j ∈ Ωn−1(X,L) is closed:

d j = 0 . If we are not interested in the fine details of j but want only its period integrals, i.e.

integrals over closed hypersurfaces, then there is no loss in sending j to its twisted de Rham

cohomology class, [j] ∈ Hn−1(X,L). The cohomology class I := [j] is called the (total) current.

Example. For the conductor X shown above, the cohomology H2(X,L) is 3-dimensional. A

basis is given by the Poincaré duals of the 1-cycles γ1, γ2, γ3 .
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1.4.2 Current vector field

Let us now assume that X comes with a canonical volume density dvolX ∈ Ωn(X,L). Then there

exists an isomorphism

Γ(TX)→ Ωn−1(X,L) , v 7→ ι(v) dvolX ,

between vector fields, or sections of the tangent vector bundle Γ(TX), and twisted (n− 1)-forms.

The operator ι(v) is the operator of contraction with the vector field v; for example,

ι(v)B = ι(v)

(∑
i<j

Bij dx
i ∧ dxj

)
=
∑
i<j

(
viBij dx

j − vjBij dx
i
)

is the Lorentz force on a particle of (charge q = −1 and) velocity v in a magnetic field B. To

give another example, let ρ be the charge density of a charged fluid with velocity field u. In that

case the electric current density is the contraction of u with ρ . For ρ = f |dx1 ∧ dx2 ∧ dx3| =
f dx1 ∧ dx2 ∧ dx3 ⊗ r where r denotes the section of the orientation line bundle which assigns to

every point of R3 a right-handed Cartesian system {e1, e2, e3}, this looks as follows:

j = ι(u)ρ = ι(u)
(
f dx1 ∧ dx2 ∧ dx3 ⊗ r

)
= f

(
u1dx2 ∧ dx3 − u2dx1 ∧ dx3 + u3dx1 ∧ dx2

)
⊗ r .

Problem. Show that ω = u3dx1 ∧ dx2 ⊗ r ∈ Ω2(R3, L) with a bump

function u3 = u3(x1, x2) and integral (say, over the 12-plane)
∫
ω = 1

is Poincaré dual to the 3-axis with orientation arrow pointing in the

positive direction. �
In the present context, we may use the isomorphism Γ(TX) → Ωn−1(X,L) to think of the

electric current density j in terms of the vector field v which yields j upon contraction with

dvolX :

ι(v) dvolX = j .

v is called the vector field of the electric current, or current vector field for short.

Let us mention in passing that by the integral of the vector field v over an (n− 1)-dimensional

submanifold S ⊂ X one means
∫
S
v :=

∫
S
ι(v) dvolX . The divergence of v is given by

div(v) dvolX = d ι(v) dvolX .

Thus only a volume density (in particular, no metric tensor!) is needed in order to define div.

1.4.3 Voltage

The electric field strength is a 1-form, E, while the magnetic field strength is a 2-form, B. As

part of Maxwell’s theory the field strengths obey Faraday’s law of induction: dE = −Ḃ. Thus

E is closed if Ḃ = 0. Let us then consider sending E to its cohomology class, E 7→ [E]. In a

strictly static situation, it is a postulate of physics that the electric field has an electric potential:

E = −dΦ, so the de Rham cohomology class [E] ∈ H1(X) is always trivial in that case.
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However, there exist two reasons why in a stationary situation [E] may still become nontrivial.

Firstly, it may happen that Ḃ = 0 inside the conductor filling the region X, but Ḃ ̸= 0 somewhere

outside. In that case E restricted to X is closed, but E need not be exact. Secondly, and more

importantly, it is reasonable to assume (e.g., in the setting of mesoscopic physics) that E vanishes

outside some bounded region of space. The proper notion to use for E then is the de Rham

cohomology with compact supports, [E] ∈ H1
c (X). In the latter sense [E] may be nonzero even in

a truly static situation. V := [E] is called the (static) voltage in physics.

From the force law for charged particles in an electromagnetic field, the electrical power (i.e.,

the rate of energy transfer from the field to the particles) is the integral

P =

∫
X

E ∧ j .

In a stationary situation where both E and j are closed, the electrical power descends to a pairing

in cohomology:

P : H1
c (X)⊗Hn−1(X,L)→ R , ([E], [j]) 7→

∫
X

E ∧ j .

Poincaré duality says that this pairing is non-degenerate (for any X of finite type) or, in physics

language: for every voltage V = [E] ̸= 0 there is some current I = [j] ̸= 0 so that the power

P (V, I) does not vanish, and the converse statement also holds.

Example. Let X be of the product form X = R× Y with Y compact, closed, simply connected,

and dimY = n− 1. Then by the Künneth formula,

H1
c (X) = H1

c (R)⊗H0
c (Y ) = R⊗ R = R ,

and the voltage V = [E] ∈ R is given by the single number
∫
E where the integral is along any

path connecting the two ends {−∞} × Y and {+∞} × Y of X. One also has Hn−1(X,L) = R ,

and the current I = [j] ∈ R is the number I =
∫
j , where the integral now is over the cross

section {0}×Y or any (n− 1)-cycle of X homologous to it. In this situation, the pairing between

voltage and current by power is simply the product of the two numbers
∫
E and

∫
j .

1.4.4 Conductance as a map in cohomology

Suppose that the electric charges of a physical system without external forces are at rest (so that

j = 0). On imposing a driving force by means of an external electric field, one expects the system
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to respond with an electric current flow. For a sufficiently weak electric field the relation between

E and j is linear in general, and one then calls the linear operator σ̂ : E 7→ j the linear-response

electrical conductivity. In the stationary limit of interest to us, one attaches to σ̂ the adjective

‘d.c.’ (standing for ‘directed current’ as opposed to ‘alternating current’, or ‘a.c.’).

Definition. The linear-response electrical conductivity is a linear mapping

σ̂ : Ω1
c(X)→ Ωn−1(X,L) , E 7→ j = σ̂(E)

(depending, in general, on physical parameters such as gate voltages, magnetic fields, etc.). In the

d.c. limit σ̂ has the following properties:

• σ̂ takes rotationless electric fields to divergenceless electric current densities, i.e., restricts to

a linear mapping

σ̂ : Z1
c (X)→ Zn−1(X,L) .

• The linear operator σ̂ possesses an integral kernel (with regularity properties not specified

here). By using the one-to-one correspondence between vector fields and twisted (n − 1)-

forms by v ↔ ι(v) dvolX , one may view this kernel as a bi-vector field and express j = σ̂(E)

in components with respect to some basis as

σ̂(E)i(x) =
∑
j

∫
X

σij(x, y)Ej(y) dvolX(y) .

• The components of the bi-vector field of σ̂ obey the Onsager relation

σij(x, y;B) = σj i(y, x ;−B) .

In words: changing the sign of the magnetic field strength B (and, more generally, changing

the sign of all physical parameters which are odd w.r.t. time inversion) sends the bi-vector

field of σ̂ to its transpose.

The situation at hand involves two differential complexes: the de Rham complex of compactly

supported forms, (Ωc(X), d), and the twisted de Rham complex (Ω(X,L), d). Recall that a linear

mapping between differential complexes is called a chain map if it commutes with the differential

operator d . The electrical conductivity is not a chain map but does share the following property.

Proposition. Under the postulates above, the d.c. linear-response electrical conductivity de-

scends to a map H1
c (X)→ Hn−1(X,L) in cohomology.

Proof (sketch). Given that σ̂ takes closed electric fields to closed electric current densities by

the first postulate, there is a well-defined induced map in cohomology if σ̂(B1
c (X)) ⊂ Bn−1(X,L).

Thus, the statement to be proved is that if E = −dΦ with compactly supported Φ, then the

twisted (n− 1)-form j = σ̂(E) is exact. Although this statement holds true in the general setting

of a Riemannian manifold X with volume density dvolX , we will assume X to be of Euclidean

type and do the computation in Cartesian coordinates as follows.
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For an arbitrary test form η =
∑
ηi dx

i ∈ Ω1
c(X) consider the integral∫

X

σ̂(−dΦ) ∧ η = −
∑
i

∫
X

(∫
X

∑
j

σij(x, y)
∂

∂yj
Φ(y) dvolX(y)

)
ηi(x) dvolX(x) .

We partially integrate the inner integral, by using the property of compact support for Φ (and

assuming sufficient regularity for the bi-vector field σij):

−
∫
X

∑
j

σij(x, y)
∂

∂yj
Φ(y) dvolX(y) =

∫
X

Φ(y)
∑
j

∂

∂yj
σij(x, y) dvolX(y) .

Next we use the Onsager relation σij(x, y) = τ j i(y, x) where τ ij denotes the conductivity tensor

of the time-reversed system. By interchanging the order of integration we then obtain∫
X

σ̂(−dΦ) ∧ η =

∫
X

Φ(y)
∑
j

∂

∂yj

(∫
X

∑
i

τ j i(y, x) ηi(x) dvolX(x)

)
dvolX(y) .

The inner integral on the right-hand side can be written as∫
X

∑
i

τ j i(y, x) ηi(x) dvolX(x) = τ̂(η) .

Thus we arrive at ∫
X

σ̂(−dΦ) ∧ η =

∫
X

Φ d τ̂(η) .

Finally, we take η to be closed (but otherwise arbitrary). Then τ̂(η) is closed by our first postulate

and the integral on the right-hand side vanishes. By Poincaré duality, i.e. the non-degeneracy of

the pairing Hn−1(X,L) ⊗ H1
c (X) → R by integration, it follows that σ̂(−dΦ) must be zero in

cohomology. Thus σ̂(−dΦ) is exact as claimed. �

Problem. AssumingX to be Euclidean (for simplicity), show that the conductivity tensor satisfies∑
i,j

∂2

∂xi∂yj
σij(x, y) = 0 . �

We have demonstrated that the d.c. linear-response conductivity σ̂ : Z1
c (X) → Zn−1(X,L)

descends to a mapping in cohomology. This map, taking voltages V = [E] ∈ H1
c (X) to currents

I = [j] ∈ Hn−1(X,L), has a special name in physics.

Definition. The induced map,

G : H1
c (X)→ Hn−1(X,L) ,

is called the d.c. linear-response electrical conductance. �
By Poincaré duality, one can reformulate the conductance as

G : H1
c (X)

g−→ H1
c (X)∗ ≃ Hn−1(X,L) ,

where g, being a map between a vector space and its dual, has a canonical adjoint (or transpose),

gT . The Onsager relation restated at the cohomological level then says that

gT
∣∣
B
= g
∣∣
−B .
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Thus in the absence of magnetic fields (and other parameters that break time-reversal symmetry)

the conductance g is symmetric; in terms of the power P ([E], [j]) =
∫
E ∧ j this means that

P (V, I ′) = P (V, g(V ′)) = P (V ′, g(V )) = P (V ′, I) .

When a magnetic field (or other agents breaking time-reversal symmetry) are present, the con-

ductance may have a skew-symmetric part. This part is called the non-dissipative (or Hall) part

of the conductance; it does not contribute to the dissipated power P (V ′, g(V ))
∣∣
V ′=V

.

Footnote. For a linear map L : V → W , V = W , one has no way of telling in general whether

L is symmetric or not (unless V is equipped with a non-degenerate quadratic form). However, for

W = V ∗ one can speak about symmetry or skew-symmetric without using any extra structure:

one calls L symmetric if L(v)(v′) = L(v′)(v) and skew if L(v)(v′) = −L(v′)(v). An example of a

symmetric map L : V → V ∗ is the tensor of the moments of inertia of a rigid body (with respect

to some fixed point, say the center of mass) mapping angular velocities to angular momenta.

Example. In a quantum Hall (QH) insulator, i.e. a 2d electron gas exhibiting the quantum Hall

effect, the symmetric part of the conductance vanishes while the skew-symmetric part, the Hall

conductance, is quantized in (integer or fractional) units of the conductance quantum e2/h. To

illustrate how Poincaré duality helps to give a mathematical description of the situation, consider

a quantum Hall insulator X with three leads. The cohomology of the voltage then is H1
c (X) = R2,

and the same goes for the cohomology H1(X,L) of the current.

A basis of H1
c (X) is supplied by the Poincaré duals of the

cross sections S1 and S2 shown in the next picture.

A basis for H1(X,L) is provided by the

(Poincaré duals of the) 1-cycles γ32 and γ13 .

The current response of the QH insulator (in a quantum

Hall plateau regime with Hall conductivity σH) is known to be

S1 7→ σH γ32 , S2 7→ σH γ13 , S3 7→ σH γ12 ,

from experiments. Now the pairing by integration gives

P (S1, γ32) = 0 = P (S2, γ13) , P (S1, γ13) = 1 , P (S2, γ32) = −1 ,

which means that γ13 ≡ S∗
1 and −γ32 = S∗

2 are the basis elements of H1
c (X)∗ which are dual to

the basis S1 and S2 of H1
c (X). When expressed in such a basis, the current response takes the

skew-symmetric form characteristic of non-dissipative transport:

g(S1) = −σH S∗
2 , g(S2) = +σH S

∗
1 .

Problem. By using your understanding of quantum Hall physics, make a similar analysis of the

QH insulator with n leads.
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2 Vector bundles and characteristic classes

By a characteristic class one means a cohomology class which is intrinsically associated with a

vector bundle. Consider, for example, the two-sphere S2. The cohomology classes [B] ∈ H2(S2) =

R are in one-to-one correspondence with total magnetic fluxes
∫
S2
B. A priori there exist no

distinguished cohomology classes or magnetic fluxes in H2(S2). However, from the lecture course

on Advanced QM we know that the Dirac quantization condition singles out those cohomology

classes for which
∫
S2
B ∈ Z (in units of the flux quantum h/e). It turns out that the integrality of

these classes derives from the existence of a vector bundle (whose sections have an interpretation

as the wave functions of a charged particle in the field of a magnetic monopole) over S2.

2.1 Euler class for rank 2

In this subsection we will meet the simplest example of a characteristic class: the Euler class

of a real vector bundle of rank 2, which happens to be the same as the first Chern class of a

complex vector bundle of rank 1. We will illustrate the Euler class by giving two examples: the

Dirac quantization condition mentioned above, and the Berry line bundle of adiabatic quantum

dynamics (popularly known by the phenomenon of “Berry phase”).

We begin with some basic material about vector bundles.

2.1.1 Reduction of structure group

Suppose we are given a rank-n vector bundle π : E → M with trivialization {(Uα, ϕα)} and

transition functions gαβ : Uα ∩ Uβ → GL(n,R). If {(Uα, ϕ̃α)} is another trivialization, then there

exist maps λα : Uα → GL(n,R) such that ϕα = λα ϕ̃α. The structure functions g̃αβ for the new

trivialization are g̃αβ = λ−1
α gαβ λβ . Indeed,

gαβ = ϕα ϕ
−1
β = λα ϕ̃α ϕ̃

−1
β λ−1

β = λα g̃αβ λ
−1
β .

Since the transition functions gαβ satisfy the cocycle condition gαβgβγ = gαγ (on Uα∩Uβ∩Uγ) so do
the new transition functions g̃αβ . Two cocycles related by gαβ = λα g̃αβ λ

−1
β are called equivalent.

Fact. Two vector bundles are isomorphic if and only if their cocycles relative to some open cover

are equivalent. �

Definition. Given a vector bundle E with cocycle {gαβ}, if it is possible to find an equivalent

cocycle with values in a subgroup H ⊂ GL(n,R), one says that the structure group of E may be

reduced to H. A vector bundle is called orientable if its structure group may be reduced to the

group GL+(n,R) of linear transformations of Rn with positive determinant. If E is orientable,

a trivialization {(Uα, ϕα)} of E is called oriented if all transition functions gαβ have positive

determinant. Two oriented trivializations {(Uα, ϕα)} and {(Vβ, ψβ)} are equivalent if for every

x ∈ Uα∩Vβ the linear mapping (ϕα ψ
−1
β )(x) : Rn → Rn has positive determinant. This equivalence

relation divides the oriented trivializations into two classes, each of which is called an orientation

class (or orientation for short) of E. �
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Remark. Orientability of E as a vector bundle is not the same as orientability of E as a manifold.

However, for a tangent bundle E = TM , orientability of E as a vector bundle is equivalent to

orientability of M as a manifold. �
A Riemannian structure on a vector bundle E is a symmetric bilinear form

⟨·, ·⟩x : Ex × Ex → R ,

which is positive definite and depends smoothly on the position x. Such a structure exists for any

rank-n vector bundle E; this follows from the local factorization π−1(Uα) ≃ Uα×Rn by a partition

of unity argument and the fact that Rn can be given a Euclidean structure.

Example. The tangent bundle E = TM of a Riemannian manifold carries a canonical Rieman-

nian structure given by the metric tensor of M .

Problem. Show that the structure group Gl(n,R) of a rank-n real vector bundle E can always

be reduced to O(n), and if E is orientable, that it can be reduced to SO(n).

2.1.2 Euler class

Let π : E → M be an oriented real vector bundle of rank 2. (‘Oriented’ here means that one

of the two orientation classes of the orientable vector bundle E has been singled out.) We fix

a Riemannian structure on E and choose an oriented trivialization {(Uα, ϕα)} by orthonormal

frames ϕα : π−1(Uα)→ Uα × R2 . The transition functions then are maps

gαβ : Uα ∩ Uβ → SO(2) .

Let dθ be the standard angular 1-form for SO(2). By pullback we get a closed 1-form ηαβ := g∗αβ(dθ)

on each intersection Uα ∩ Uβ . Due to the cocycle condition gαβ = gαγ gγβ these 1-forms satisfy

ηαβ = ηαγ + ηγβ on any triple intersection Uα ∩ Uβ ∩ Uγ . In particular, ηαβ = −ηβα .
Let now

∑
ργ = 1 be a partition of unity subordinate to the cover {Uγ} and consider

ξα =
1

2π

∑
γ

ργ ηγα ,

which is a 1-form on Uα . On the intersection Uα ∩ Uβ we get

2π(ξβ − ξα) =
∑
γ

ργ(ηγβ − ηγα) =
∑
γ

ργ(ηαγ + ηγβ) = ηαβ
∑

ργ ,

and hence

ξβ − ξα =
ηαβ
2π

.

Since ηαβ is closed, we have dξα = dξβ on Uα ∩ Uβ . Therefore, the locally defined 2-forms

eα := dξα =
1

2π

∑
γ

dργ ∧ ηγα ,

piece together to a globally defined 2-form e ∈ Z2(M). Note that e is a differential form on the

base space M , but its construction requires the existence of the total space E.
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Definition. The cohomology class [e] ∈ H2(M) of the closed 2-form e is called the Euler class of

the oriented rank-2 real vector bundle π : E →M .

Remark 1. Starting from a complex line bundle, i.e., a vector bundle with fiber π−1(x) ≃ C, one
gets an orientable rank-2 real vector bundle by using the isomorphism C ≃ R2 and forgetting the

complex structure of R2. In such a situation, the cohomology class [e] is also known as the (first)

Chern class of the complex line bundle.

Remark 2. In the case of a trivial vector bundle E, the Euler class [e] vanishes. Indeed, for

E ≃M ×R2 one may take all transition functions to be unity, so that ηαβ = 0 for all overlapping

domains Uα ∩ Uβ . Thus the Euler class is a measure of the twisting of the vector bundle.

2.1.3 Example: Euler class of T ∗S2

Consider T ∗S2, the cotangent bundle of the two-sphere. T ∗S2 is orientable (because S2 is), and we

take it to be oriented by the right-hand rule, which is to say that a right-handed system is formed

by the orientation of S2 in conjunction with the normal pointing outward.

Let S2 be covered by two open subsets Un = S2 \ {s} and Us = S2 \ {n} which are obtained by

removing the south resp. north pole (not a good cover). Starting from spherical polar coordinates

θ and ϕ , it is convenient to introduce a complex coordinate function z for Un by z = tan(θ/2) eiϕ.

In this coordinate the north pole is at z = 0 and the south pole at z =∞. A complex coordinate

for Us is w = − cot(θ/2) e−iϕ = −z−1; this is defined at the south pole (w = 0) and singular at

the north pole (w =∞).

To construct the Euler form e associated with T ∗S2, we need a Riemannian structure. For this

we regard S2 as a Riemannian manifold with geometry given by the Fubini-Study metric, whose

local coordinate expression is

dθ2 + sin2 θ dϕ2 =
4dz dz̄

(1 + |z|2)2
=

4dw dw̄

(1 + |w|2)2
.

Let us then define orthonormal basis forms ϑz, ϑz̄ on Un and ϑw, ϑw̄ on Uw by

ϑz =
2dz

1 + |z|2
, ϑz̄ =

2dz̄

1 + |z|2
, ϑw =

2dw

1 + |w|2
, ϑw̄ =

2dw̄

1 + |w|2
.

Viewing T ∗S2 as a complex line bundle, the transition functions now follow from

gns ϑ
w = ϑz =

2d (−1/w)
1 + |w|−2

=
w̄

w
ϑw = e2iϕ ϑw.

To convert to the real setting we evaluate gns on the real orthonormal frame (ϑw + ϑw̄)/
√
2 and

(ϑw − ϑw̄)/
√
2i. The result of this computation is

gns =

(
cos(2ϕ) sin(2ϕ)
− sin(2ϕ) cos(2ϕ)

)
.

As a check, note that gns is defined on Un ∩ Us and that Det(gns) = 1 > 0 . By the prescription

of the previous section we now get ηns = 2dϕ = −ηsn and hence the Euler form

e = dρn ∧
ηns
2π

= dρn ∧
dϕ

π
= −dρs ∧

dϕ

π
= dρs ∧

ηsn
2π

.
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From this we see that the Euler class of the cotangent bundle T ∗S2 is

[e] = −(2π)−1[ sin θ dθ ∧ dϕ ] .

In particular, we have
∫
S2
e = −2.

There exists a beautiful visualization of the Euler class by Poincaré duality. For this purpose,

let the partition of unity be chosen in the particular way shown in the next figure.

Our Euler form e then consists of two bumps, each of integral −1. These may be visualized as the

craters of two volcanoes, one each at the two (north and south) poles. From the extreme of this

perspective, we may view the Euler class of T ∗S2 as the Poincaré dual of the 0-chain consisting of

the two points at the poles, each of weight −1. (For E = TS2 the weights would be +1.)

We take this opportunity to communicate without proof the following fact. The Euler number

(or Euler characteristic) of an orientable manifold M is defined as the alternating sum

χ(M) =
dimM∑
q=0

(−1)q dimHq(M) .

Since we have defined the Euler class only for the case of rank 2, the student of these notes can

appreciate the following statement only for a 2-dimensional manifoldM , although it holds actually

for a manifold M of any dimension.

Theorem. For an orientable compact manifold M the Euler characteristic equals the integral of

the Euler class [e] associated with the tangent bundle TM →M :

χ(M) =

∫
M

e .

Problem. Verify this statement for the cases of M = S2 and M = T2. �

Let us also mention that for the Euler class associated with a tangent bundle, there exists an

alternative construction from geometric data (not the main subject of this lecture course). Indeed,

letM be a Riemannian manifold with curvature tensor R, which is a 2-form with values in so(TM).

Since the elements of the Lie algebra so(TxM) are skew-symmetric, there exists a natural notion

of Pfaffian of R, and one has [e] = [Pf(R)]/
√
2π

dimM
. With this expression for the Euler class,

the theorem for the case of dimM = 2 is called the Gauss-Bonnet theorem (which is perhaps the

simplest example of an index theorem). In the general case of any dimension, one speaks of the

Gauss-Bonnet-Chern theorem.

2.1.4 Global angular form

Returning to the setting (cf. Section 2.1.2) of an oriented rank-2 real vector bundle π : E → M ,

let E0 denote the complement of the zero section s0 ∈ Γ(E), s0(x) = 0. (Thus in E0 the zero
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vector is missing from each fiber Ex . Note that in the case of a non-trivial vector bundle E, the

bundle E0 →M has no globally defined section, but this will be of no concern for what follows.)

Since E is oriented and admits a Riemannian structure, we can choose an oriented orthonormal

trivialization {(Uα, ϕα)}. Fixing a standard basis {e1, e2} of the Euclidean plane R2, we get for

each subset Uα an oriented orthonormal frame {e1α, e2α} by eiα(x) := ϕ−1
α (x, ei). Such a frame

defines polar coordinates rα and θα on E0
∣∣
Uα

in the usual way. (To get a local coordinate system

for E0
∣∣
Uα

you must add coordinates x1α, . . . , x
m
α for Uα ⊂ M .) On Uα ∩ Uβ the radial coordinates

rα and rβ coincide, but the angular coordinates θα and θβ differ by a rotation. In fact,

dθα − dθβ = π∗ηαβ .

Now, recalling the relation ηαβ = 2π(ξβ − ξα) we obtain

dθα
2π

+ π∗ξα =
dθβ
2π

+ π∗ξβ .

Hence these 1-forms, which are defined locally on E0
∣∣
Uα
≃ Uα × (R2 \ {0}), piece together to give

a globally defined 1-form on E0.

Definition. The 1-form ψ ∈ Ω1(E0) with local expression

ψα =
dθα
2π

+ π∗ξα

on E0
∣∣
Uα

is called the global angular form.

Remark. From the local definition one sees that the global angular form has exterior derivative

dψ = π∗e .

Thus, although the Euler form e fails (in general) to be exact as a form on M , it does become

exact when pulled back to E0, and the global angular form ψ is a potential for it.

2.2 Geometric structure from principal bundles

Going beyond issues of topology, we will now point out two things: (i) the global angular form ψ

on E0 determines a so-called covariant derivative (or connection) ∇ on E and, (ii) the Euler form

e may be viewed as the curvature of that covariant derivative. We will first demonstrate this by

a straightforward computation in local coordinates. Afterwards, we will provide some framework

and perspective by describing the relevant constructions in differential geometry.

2.2.1 Covariant derivative and curvature

We begin with a few preparations (retaining the setting of Section 2.1.4). On overlapping domains

Uα ∩ Uβ we have two equivalent expressions for a section s ∈ Γ(E) :

s(x) =
2∑
i=1

σi(x) e
i
α(x) =

2∑
j=1

τj(x) e
j
β(x) .
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By definition, the transition function gαβ = Uα ∩ Uβ → SO2 is the mapping

gαβ(x) :
∑

τj(x) ej
ϕ−1
β (x)
−→

∑
τj(x) e

j
β(x) = s(x) =

∑
σi(x) e

i
α(x)

ϕα(x)−→
∑

σi(x) ei .

Fixing α, β we write g(x) ≡ gαβ(x) for short and read off the relations

σi =
∑
j

gij τj , ejβ =
∑
i

eiα gij ,

where gij are the matrix elements of the transition function g ≡ gαβ .

Let J ∈ so2 be the rotation generator defined by Je1 = e2 and Je2 = −e1 . Its matrix elements

are J11 = J22 = 0 and J21 = 1 = −J12 . By using the data in the local expression ψα of the global

angular form, we introduce a first-order differential operator ∇α on Uα by

∇αs = ∇α

(∑
σi e

i
α

)
:=
∑

i

(
dσi ⊗ eiα + 2πξα σi ⊗

∑
k
ekα Jki

)
. (2.5)

Lemma. On overlapping domains Uα ∩ Uβ one has ∇α = ∇β .

Proof. The differential of the coefficient σi =
∑
gij τj is

dσi =
∑

(gij dτj + τj dgij) .

To compute dgij we adopt the viewpoint that the angle θα − θβ of rotation between local frames

is (or pushes down to) a function on Uα ∩Uβ . By taking the derivative and then matrix elements

of the formula g ≡ gαβ = e(θα−θβ)J we obtain the expression

dgij =
(
d e(θα−θβ)J

)
ij
=
(
e(θα−θβ)J(dθα − dθβ)J

)
ij
= ηαβ

∑
l
gil Jlj .

We also need the relation
∑

k,i e
k
αJki σi =

∑
l,j e

l
βJlj τj , which results from applying ϕ−1

α ◦ J to the

identity
∑

i ei σi =
∑

i,j ei gij τj and using
∑

i Jki gij =
∑

l gkl Jlj . With all this information, the

statement is verified by the following computation:

∇α s =
∑
i,j

(
dτj ⊗ eiα gij + τj ηαβ ⊗ eiα

∑
l
gil Jlj + 2πξα σi ⊗

∑
k
ekαJki

)
=
∑
j

(
dτj ⊗ ejβ + 2π(ξβ − ξα)τj ⊗

∑
l
elβJlj + 2πξα τj ⊗

∑
elβJlj

)
=
∑
j

(
dτj ⊗ ejβ + 2πξβ τj ⊗

∑
l
elβJlj

)
= ∇β s . �

The coincidence ∇α = ∇β means that there exists a globally defined differential operator ∇ :

Γ(E)→ Γ(T ∗M⊗E). It is easy to see that this operator is compatible with the exterior derivative

d in the sense that ∇(fs) = df ⊗ s+ f ∇s for any differentiable function f on M .

Definition. If E is a vector bundle over a manifold M , a covariant derivative (or connection) on

E is a differential operator

∇ : Γ(E)→ Γ(T ∗M ⊗ E)
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which satisfies the Leibniz rule; i.e., if s ∈ C∞(M) and s ∈ Γ(E) then

∇(fs) = df ⊗ s+ f ∇s .

Remark. A covariant derivative on E always exists. (In our rank-2 case we constructed ∇ from

the geometric data of the vector bundle and a choice of partition of unity; more precisely, from the

data of the global angular form ψ.) The space of covariant derivatives is an affine space modeled

on the vector space Ω1(M,End(E)). In other words, if both ∇ and ∇′ are covariant derivatives

on E, then ∇−∇′ = ω is a 1-form on M with values in End(E). �
If ∇ is a covariant derivative and X ∈ Γ(TM) a vector field, one gets a differential operator

∇X : Γ(E)→ Γ(E) by contraction, i.e., if ∇s =
∑
ωi ⊗ si then ∇Xs =

∑
ωi(X) si where ω

i(X)

is the function on M made by pairing the vector field X with the 1-form ωi .

Definition. The curvature of ∇ is the End(E)-valued 2-form on M defined by

F∇(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] .

Remark. [X,Y ] = XY − Y X is the commutator (or Lie bracket) of the two vector fields X, Y

viewed as first-order differential operators X : f 7→ (d f)(X) on functions. Although F∇(X,Y )

looks very much like a differential operator, it is in fact just a tensor field.

Problem. Use the Leibniz rule for ∇ to verify that F∇(X,Y ) is a section of End(E); i.e.,

F∇(X, Y )
∣∣
x
is a linear transformation (or endomorphism) of the fiber Ex . �

We now return to our example of a rank-2 real vector bundle E → M with Euler form e and

global angular form ψ. Define a tensor field J ∈ End(E) by

J e1α = e2α , J e2α = −e1α (on E
∣∣
Uα
).

Thus J is the vector bundle analog of the rotation generator J ∈ so2 . Such a tensor field J is

sometimes called an almost complex structure of E.

Problem. If ∇ is the covariant derivative determined by the global angular form ψ, show that

the curvature of ∇ is given by the Euler form e :

F∇ = e⊗ 2πJ . �

Once the meaning of curvature is understood, the formula of the problem reinforces the interpre-

tation of the Euler class [e] ∈ H2(M) as a measure of the twisting of the vector bundle E →M .

2.2.2 Associated vector bundle

Since our explicit construction of ∇ in coordinates may appear ad hoc and unmotivated, we now

wish to offer some perspective. We therefore embark on a brief detour into differential geometry.

Apologies for the heavy-duty machinery introduced in the following subsection! (In fact, if you

have no prior familiarity with the subject, you may have to consult a text on differential geometry

to fully digest it. To protect you from getting overly worried: most of what comes afterwards will
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be independent of the material of Section 2.2.3.) The present investment will pay dividends in

Section 2.3 on the Dirac quantization condition, where the Euler form e and global angular form

ψ will take the roles of a magnetic field B and magnetic vector potential A, respectively.

In working through the definitions of Section 2.2.3, the prime example to keep in mind is this.

Given our oriented rank-2 real vector bundle π : E → M with Riemannian structure ⟨·, ·⟩, let
π̃ : P →M be the fiber bundle with fiber

π̃−1(x) = SO(R2, Ex) ,

i.e. an element p ∈ π̃−1(x) is an orientation-preserving orthogonal transformation p : R2 → Ex

from the oriented Euclidean plane R2 to the oriented fiber Ex ≃ R2 . Notice that SO(R2, Ex) is

in bijection with SO2 as a set, but this is not an isomorphism of groups! Note also that each fiber

π̃−1(x) of P carries a right SO2-action by composition:

p 7→ p · g := p ◦ g (g ∈ SO2).

Thus, as we shall learn presently, P is an example of a principal SO2-bundle.

Moreover, the existence of the principal bundle P offers another vantage point on the vector

bundle E as follows. Given a vector v ∈ Ex and choosing some p ∈ SO(R2, Ex) we may express v

as the image v = p u of a vector u ∈ R2. This expression is not unique. Indeed, for any g ∈ SO2

we have v = p u = (p · g−1)(gu). Thus the attempt to factor v into p and u comes with a price: to

achieve uniqueness, we need to identify the pair p, u with all pairs (p · g−1)(gu) and think of the

vectors v as being in bijection with equivalence classes [p ;u] :

P ×SO2 R2 ∋ [p ;u] ≡ [p · g−1; g u]
1:1−→ p u = v ∈ Ex .

Thus there is an isomorphism Ex ≃ SO(R2, Ex)×SO2 R2 or, altogether,

E ≃ P ×SO2 R2 .

One describes the situation by saying that the vector bundle E is associated to the principal

bundle P and the vector space R2 (by the equivalence relation due to the joint SO2-action). One

calls E = P ×SO2 R2 an associated vector bundle for short.

2.2.3 Connection and curvature from principal fiber bundle

Definition 1. A principal G-bundle P (for a group G) over M is a fiber bundle π̃ : P → M

carrying a right G-action P ×G→ P which preserves the fibers of P and is free and transitive.
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Remark 1a. ‘Free’ means that G acts without fixed points, while ‘transitive’ means that for

any fixed p0 ∈ π̃−1(x) one has p0 · G = π̃−1(x). These two properties imply that π̃−1(x) ≃ G as

sets (or topological spaces). Thus locally one has a factorization P
∣∣
Uα
≃ Uα ×G. Note, however,

that the fiber π̃−1(x) is not a group; in particular, there is no canonical choice of neutral element.

This is evident from our example above, where we see clearly that there exists a priori no way of

composing elements of the fiber π̃−1(x) = SO(R2, Ex).

Fact. A principal G-bundle P →M is trivial (P ≃M ×G) iff there exists a global section.

Remark 1b. A major physics motivation for the notion of principal fiber bundle comes from

gauge theory. In that setting, one identifies M with ordinary space (or space-time) and the fiber

G acquires the physical meaning of gauge group; for example, G = U1 for electromagnetism, and

G = SU3 for the strong interaction.

Definition 2. Let P be a principal G-bundle for a connected Lie group G. Inside the tangent

space TpP there exists a distinguished subspace Vp called the vertical subspace at p :

Vp :=
{
X̂(p) | X ∈ Lie(G)

}
, X̂(p) :=

d

dt
p · etX

∣∣∣
t=0

.

A principal connection on P is a G-invariant Lie(G)-valued 1-form ω on P with the property

∀X ∈ Lie(G) , ∀p ∈ P : ωp(X̂(p)) = X , X̂(p) ∈ Vp .

Remark 2a. The property of G-invariance of a principal connection ω means that

∀p ∈ P, ∀v ∈ TpP, ∀g ∈ G : ωp(v) = Ad(g) ωp·g(dRg(v)),

where Ad(g) : Lie(G) → Lie(G), X 7→ gXg−1 is the adjoint action, and dRg is the differential

of the right G-action Rg(p) ≡ p · g. The mathematical raison d’etre for a principal connection is

that it determines a G-invariant splitting TpP = Vp ⊕Hp (direct sum) where

Hp := ker ωp = {v ∈ TpP | ωp(v) = 0} ⊂ TpP

is called the horizontal subspace at p .

Remark 2b. In the gauge theory context, the principal connection ω acquires the physical

meaning of a gauge field. In more precise terms the statement is this. If s : M ⊃ U → P is a

local section of the G-bundle P → M , one defines a Lie(G)-valued 1-form A := s∗ω by pullback

along s. By definition, two different local sections s1 and s2 are related by

s2(x) = s1(x) g(x) ,

where g : U → G is called a gauge transformation . The corresponding Lie(G)-valued 1-forms

A(j) = s∗j ω then are related by

A(2) = g−1dg + g−1A(1)g.

This is exactly the transformation law for a (non-abelian) gauge field A as known in physics. Thus

from the present perspective, the freedom in choosing A comes from the freedom in choosing s.
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The principal connection ω per se is the universal (or gauge-independent) object which arises by

‘considering all gauges at once’.

Definition 3. Let π̃ : P →M be a principalG-bundle with principal connection ω. Given a curve

γ : [0, ϵ]→M one defines the horizontal lift γ̃ : [0, ϵ]→ P with initial point p0 , π̃(p0) = γ(0), to

be the curve determined by solving the first-order differential equation (0 ≤ t ≤ ϵ)

ωγ̃(t)

(
d

dt
γ̃(t)

)
= 0 , π̃ ◦ γ̃ = γ , γ̃(0) = p0 .

Remark 3a. The differential equation amounts to saying that for all t the tangent vector d
dt
γ̃(t)

of the lifted curve lies in the horizontal subspace Hγ̃(t) = ker ωγ̃(t). By choosing a local section

s : U → P one can express γ̃(t) by a mapping g : [0, ϵ]→ G as

γ̃(t) = s(γ(t)) g(t).

This ansatz takes care of the requirement π̃ ◦ γ̃ = γ. The differential equation for the unknown

gauge transformation function g(t) then reads

ġ(t) g(t)−1 + Aγ(t)(γ̇(t)) = 0 , A = s∗ω .

For a closed curve γ : [0, 1] → M , γ(0) = γ(1), the horizontal lift γ̃ : [0, 1] → P will not be a

closed curve in general. The element g ∈ G determined by γ̃(1) = γ̃(0) g is called the holonomy

(along γ) of the principal connection ω.

Remark 3b. The celebrated Berry phase of quantum adiabatic dynamics is the holonomy of

the so-called Berry (principal) connection of a principal U1-bundle (see Section 2.4 below). The

Aharonov-Bohm effect is another well-known example of holonomy due, in that case, to a flat

connection on a non-simply connected domain.

Definition 4. In our special case of E = P ×SO2 R2 (or, more generally, for any associated

vector bundle E = P ×G V ) the process of horizontal lifting of curves determines an isomorphism

Tt : Eγ(0) → Eγ(t) (referred to as parallel transport along γ) by

Eγ(0) ∋ p0 v 7→ γ̃(t) v ∈ Eγ(t) . �

Finally, the notion of parallel transport gives rise to a covariant derivative ∇ on E as follows.

If Y ∈ Γ(TM) is a vector field, ones defines a differential operator ∇Y : Γ(E)→ Γ(E) by

(∇Y s)(x) := lim
t→0

T −1
t s(γ(t))− s(x)

t
,

where Tt : Ex → Eγ(t) is parallel transport along a curve γ in M with γ(0) = x and γ̇(0) = Y (x).

One then gets ∇ : Γ(E)→ Γ(T ∗M⊗E) by leaving the vector field argument Y in ∇Y unspecified.

2.2.4 Covariant derivative from global angular form revisited

After this barrage of definitions, we return to our theme of Section 2.1.4: the covariant derivative

corresponding to the global angular form ψ ∈ Ω1(E0) for an oriented real vector bundle E → M

of rank 2. We aim for a more conceptual understanding of the origin of formula (2.5).
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Notice that ψα = (2π)−1dθα + π∗ξα depends only on the angular coordinate θα (not the radial

coordinate rα) and is invariant under SO2-rotations of each fiber. Hence, by the isomorphism

P ×SO2

(
R2 \ {0}

) ∼−→ E0, [p ; v] ≡ [p · g−1; gv] 7→ p v,

the global angular form ψ on E0 induces a principal connection ω on the principal SO2-bundle

P introduced in Section 2.2.2. This goes as follows. In the first step we pull back ψ to a 1-form

ψ̃ on P ×SO2 (R2 \ {0}) along the isomorphism above. In the second step, we re-interpret ψ̃ as a

principal connection ω on P as follows: if v ∈ TpP is a tangent vector at p ∈ P , we choose some

curve γ : (−ϵ, ϵ) → P with γ(0) = p and γ̇(0) = v and fix some non-zero vector u ∈ R2 \ {0} to
define

ωp(v) := ψ̃ [p ;u]

(
d

dt

[
γ(t);u

]∣∣∣
t=0

)
J,

where J ∈ so2 is the generator determined by exp(2πJ) = 1 (and the orientation class of E).

Problem. Show that ω is well-defined, i.e. does not depend on the choice of u and γ. Show also

that ω has the properties required of a principal connection. �

By the general principles outlined in Section 2.2.3 the principal connection ω on P determines a

connection ∇ on E. This, ultimately, is the rationale behind (2.5).

2.3 Application: Dirac monopole problem

We continue with a few words about a foundational theme of quantum mechanics: the quantization

of electric charge. (This will be brief; for a more expansive and leisurely account, see my lecture

notes on Advanced Quantum Mechanics.) It is an experimental finding that electric charge always

occurs as an integer multiple qe = ne (n ∈ Z) of a fundamental charge quantum e . Why nature

has arranged for it to be that way is an open question of theoretical physics.

However, if magnetic monopoles exist, charge quantization can be understood by an argument

due to Dirac (1931), who showed that quantum mechanics is consistent if and only if the product

of any pair qe , qm of electric and magnetic charges is an integer multiple of 2π~ :

qe qm ∈ 2π~Z .

This condition, known as the Dirac quantization condition, can be read in two directions. Given

a smallest magnetic charge µ , it quantizes the electric charge according to qe ∈ (2π~/µ)Z .

Conversely, given an electric charge quantum e , magnetic charge is quantized by qm ∈ (2π~/e)Z .

The plan of this subsection is to give some indication of the mathematics behind the Dirac

quantization condition. To begin, let us recall that in textbook versions of the Schrödinger quan-

tum mechanics of a charged particle moving in a magnetic field B⃗, one is instructed to express B⃗

as the curl of A⃗ (for some choice of gauge) and take the Hamiltonian to be H = (p⃗ − eA⃗)2/2m.

This recipe fails in the presence of magnetic monopoles. Indeed, the total magnetic flux through

a closed surface should be equal to the enclosed magnetic charge, but at the same it vanishes for

40



for B⃗ = curl A⃗ by Stokes’ theorem. Thus the existence of magnetic monopoles is incompatible

with the existence of a magnetic vector potential A⃗ of the usual kind.

One therefore has to proceed in a different fashion. The modern approach based on the fiber

bundle concept goes a follows. Suppose there are (very massive, and hence static) magnetic

monopoles at positions p1, . . . , pm in R3. The configuration space M for a charged particle then

is defined as R3 with these points removed:

M = R3 \ {p1, . . . , pm} .

The wave function of a particle with electric charge, say qe, will be a section of some Hermitian

line bundle π : E → M . ‘Hermitian’ here means that the fiber Ex ≃ C carries a Hermitian

structure, i.e. for every x ∈ M there exists ⟨·, ·⟩x : Ex × Ex → C. (Note that owing to Ex ≃ C ,

wave functions can still be viewed as being locally complex-valued, just like in textbook quantum

mechanics.) We assume that the structure group of E has been reduced to G = U1 .

The information about the magnetic field due to the static monopoles (as well as any moving

electric charges) is encoded in a principal connection 1-form ω on a principal U1-bundle P →M .

This 1-form ω determines on E ≃ P ×U1 C a covariant derivative ∇, whose local expression is

∇ = d − iqeA/~ for a choice of gauge potential A := (iqm/2π) s
∗ω and magnetic charge qm .

Its curvature F∇ ≡ ∇2 = (qeqm/h) s
∗(dω) is proportional to the magnetic field-strength 2-form

B = dA. The physical meaning of the first-order differential operator (~/i)∇ is that of quantum

mechanical momentum of our particle with electric charge qe . From this perspective, the Dirac

quantization condition qe qm/h ∈ Z is simply a necessary and sufficient condition for the existence

of the Hermitian line bundle E – and hence of wave functions Ψ ∈ Γ(E); by the axioms of quantum

theory the latter are required to be globally defined and single-valued.

Let us look at the computational details for the special case of a single magnetic monopole

located at the origin of our coordinate system. Thus M = R3 \ {0}. We cover M by two open

subsets {U+ , U−} where U+ (U−) is M with the negative (positive) z-axis removed. Then, using

the standard system r, θ, ϕ of spherical polar coordinates, consider the transition function

g+− ≡ g = eiϕ : U+ ∩ U− → U1 ,

which is defined everywhere on U+ ∩ U− = R3 \ {z-axis}. In the present setting, the principal

connection 1-form ω on P has the local expressions

ω
∣∣
U+

= idψ+ − (i/2)(1− cos θ)dϕ , ω
∣∣
U−

= idψ− + (i/2)(1 + cos θ)dϕ ,

where ψ± are local coordinates for the U1-fibers on U± . These expressions match because eiψ+ =

g+− eiψ− and hence dψ+ = dψ− + dϕ. If we make the choice of gauge dψ± = 0 on U± , the gauge

potential for a magnetic monopole of charge µ is

A± = (iµ/2π) s∗± ω = ±(µ/4π)(1∓ cos θ) dϕ ,
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resulting in the same magnetic field strength B = dA± = (µ/4π) sin θ dθ ∧ dϕ for both domains,

U+ and U− . Note that the magnetic flux totals∫
Σ

B = µ

through any (suitably oriented) closed surface Σ surrounding the monopole at the origin.

We turn to the description of wave functions or sections Ψ ∈ Γ(E). On U+ ∩ U− we have

Ψ = f+ e+ = f− e− where f+ = g+−f− = eiϕf− and e− = e+ g+− = e+ eiϕ ,

and the covariant derivative is expressed by

∇Ψ =
(
df+ − (i/2)(1− cos θ)f+ dϕ

)
e+ =

(
df− + (i/2)(1 + cos θ)f− dϕ

)
e− .

By writing this in the form ∇Ψ =
(
df+ − iqA+/~) e+ =

(
df− − iqA−/~) e− and comparing with

the expression for A± above, we infer the relation µ/4π = ~/2q or

qµ = h ,

which is the Dirac quantization condition at the elementary level of one electric charge quantum

q and one magnetic charge quantum µ.

For the fundamental case of qµ = h a pair of wave functions Ψ(1) = f
(1)
+ e+ = f

(1)
− e− and

Ψ(2) = f
(2)
+ e+ = f

(2)
− e− (with minimal angular momentum) is given by

f
(1)
+ = f (1)(r) cos(θ/2), f

(1)
− = f (1)(r) cos(θ/2) e−iϕ,

f
(2)
+ = f (2)(r) sin(θ/2) eiϕ, f

(2)
− = f (2)(r) sin(θ/2) .

We observe that Ψ(1) has a nodal line emanating from the origin (where the magnetic monopole

is located) along the negative z-axis. Similarly, Ψ(2) has a nodal line along the positive z-axis.

Problem. Construct the Euler class [e] (actually, the first Chern class) of E and show that∫
S
e = 1 for any surface S enclosing the magnetic monopole. �

A section is called transversal if it intersects the zero section transversally.

Fact. The first Chern class of a Hermitian line bundle E →M is Poincaré dual to the zero locus

of a transversal section.

Remark. This is a special case of a more general

theorem stated and proved in Bott & Tu. �
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2.4 Application: Berry phase

Let there be a family of Hamiltonians H(x) depending on a set of parameters x = (x1, . . . , xm) in

a parameter space M . Our object of interest is a system with parameters varying along a curve

γ : [0, 1]→M, τ 7→ γ(τ) .

Let h := H ◦ γ be the 1-parameter family of Hamiltonians along this curve. Consider then for

some large time parameter T the time-dependent Schrödinger equation

∂

∂t
Ψ(t) = − i

~
h(t/T )Ψ(t) (0 ≤ t ≤ T ).

We wish to communicate a certain geometric fact (namely, Berry’s phase) about the solutions

of this equation in the adiabatic limit T → ∞. For that purpose, it is convenient to make the

substitutions t = τT and Ψ(t) = Ψ(τT ) ≡ ΨT (τ), bringing the equation to the form

∂

∂τ
ΨT (τ) = −i

T

~
h(τ)ΨT (t) (0 ≤ τ ≤ 1).

In what follows we assume the spectrum of H(x) to be discrete for all parameter values x ∈M .

We denote the ground state energy of H(x) by E0(x), the energy of the first excited state by E1(x),

and so on. We also assume that, along our curve γ, energy eigenvalues do not cross:

∀τ ∈ [0, 1] : E0(γ(τ)) < E1(γ(τ)) < . . . < En(γ(τ)) < . . . ,

and all multiplicities are equal to one. Thus, denoting by Vn(x) the eigenspace of H(x) with

eigenvalue En(x), we have

∀τ ∈ [0, 1] : dimVn(γ(τ)) = 1 (n = 0, 1, 2, . . .).

This type of situation is governed by the Quantum Adiabatic Theorem:

Fact (Born & Fock, 1928). If Ψ(0) ∈ Vn(γ(0)) then limT→∞ ΨT (1) ∈ Vn(γ(1)). �

Remark. The quantum adiabatic theorem was proved by Born and Fock under some weak

technical conditions on H(x) not recorded here. In words it says that a quantum Hamiltonian

system remains in its instantaneous energy eigenstate if a given perturbation is acting on it slowly

enough and there is a gap between the energy eigenvalue and the rest of the energy spectrum. �

Next, we take our curve in parameter space to be closed: γ(1) = γ(0). Then by the quantum

adiabatic theorem Ψ(0) and limT→∞ ΨT (1) lie in the same eigenspace Vn(γ(0)) = Vn(γ(1)), and

it makes sense to compare phases. Removing the obvious dynamical phase (T/~)
∫ 1

0
En(γ(τ)) dτ

one expects

lim
T→∞

e(iT/~)
∫ 1
0 En(γ(τ)) dτΨT (1) = e−iαΨ(0) .

You might have thought that the additional phase α ∼ O(T 0) would be zero. However, this

naive expectation is false, as was first explained to the physics community by M.V. Berry (1985).

To write an expression for α, which is called Berry’s geometric phase, one makes some choice of
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adiabatic eigenstates ϕn(τ) ∈ Vn(γ(t)) along the curve γ. (It turns out to be impossible in general

to make a smooth choice x 7→ ϕn(x) for all x ∈M .) Doing so, the Berry phase is expressed as

α =
1

i

∫ 1

0

dτ

⟨
ϕn(τ),

∂

∂τ
ϕn(τ)

⟩
,

which is independent of the choice of ϕn(τ) if α is viewed as an angle, i.e., as representing an

equivalence class [α] = [α + 2πZ] ∈ R/2πZ. Indeed, if ϕ̃n : τ 7→ Vn(γ(τ)) is another choice of

adiabatic eigenstates, then there exists eiβ : [0, 1]→ U1 such that ϕ̃n(τ) = eiβ(τ) ϕn(τ) and

1

i

∫ 1

0

dτ

⟨
ϕ̃n(τ),

∂

∂τ
ϕ̃n(τ)

⟩
= α +

∫ 1

0

β̇(τ) dτ ∈ α + 2πZ.

Let us now verify Berry’s formula for α. If Ψ(0) ∈ Vn(γ(0)), then for some choice of family

ϕn(τ) we make the ansatz

ΨT (τ) = e−iφ(τ)ϕn(τ) + . . . ,

where the corrections (indicated by the dots) vanish in the adiabatic limit T →∞. By inserting

this ansatz into the Schrödinger equation, we obtain

e−iφ(τ)
(
φ̇(τ)ϕn(τ) + iϕ̇n(τ)

)
+ . . . = i

∂

∂τ
ΨT (τ) =

T

~
h(τ)ΨT (τ) =

T

~
En(γ(τ)) e

−iφ(τ)ϕn(τ) + . . . ,

and hence

φ̇(τ) + i
⟨
ϕn(τ), ϕ̇n(τ)

⟩
=
T

~
En(γ(τ)) + . . . .

By integrating this equation and passing to the limit T →∞, it follows that

α = lim
T→∞

(
φ(1)− φ(0)− T

~

∫ 1

0

En(γ(τ)) dτ

)
=

1

i

∫ 1

0

⟨
ϕn(τ), ϕ̇n(τ)

⟩
dτ ,

which is Berry’s formula.

We will now use the Berry phase to illustrate various notions and constructions of Sections 2.1

and 2.2. First of all, fixing some value of the quantum number n, we remove from the parameter

space all points x where the energy level En(x) becomes degenerate with another level. (By the so-

called Wigner-von Neumann principle, such points typically form a submanifold of co-dimension

three.) We still denote the resulting parameter space by M . Since dimVn(x) = 1 for all x ∈ M ,

we have a complex line bundle π : E →M with fiber π−1(x) = Ex ≡ Vn(x).

In each fiber Ex there exists the circle of unit vectors:

Px := {ϕ ∈ Vn(x) | ⟨ϕ, ϕ⟩ = 1}.

The totality of these unit vectors form a principal U1-bundle π̃ : P →M with fiber π̃−1(x) = Px ≃
U1 . Its total space P is canonically equipped with a principal connection 1-form, called the Berry

connection. To describe it, let Φ : P → H be the tautological mapping which simply recalls what

the points of P are, namely vectors in the Hilbert space H of the quantum Hamiltonian system.

44



By differentiating this mapping we get dΦ : TP → H. The Hermitian scalar product of dΦ with

Φ is the Berry connection 1-form,

ω := ⟨Φ, dΦ⟩ .

Problem. Show that ω has all the properties required of a principal connection. �

To link this up with Berry’s formula, let ϕn : M → P , x 7→ ϕn(x) be a local section and consider

the pullback A := i−1ϕ∗
n ω = i−1⟨ϕn, dϕn⟩. The Berry phase along the closed curve γ is the line

integral

α(γ) =

∮
γ

A =
1

i

∫ 1

0

⟨
ϕn(γ(τ)),

∂

∂τ
ϕn(γ(τ))

⟩
dτ .

By Stokes’ theorem, this can also be written as a surface integral over Σ ⊂M with ∂Σ = γ :

α(∂Σ) =

∮
∂Σ

A =

∫∫
Σ

dA .

Another perspective on the Berry phase is offered by the procedure of using the principal

connection to lift the curve γ : [0, 1] → M to a horizontal curve γ̃ : [0, 1] → P . By going back

to our verification of Berry’s formula, we see that α = φ(1) − φ(0) arises as the solution of the

differential equation

−i φ̇(τ) +
⟨
ϕn(γ(τ)),

∂

∂τ
ϕn(γ(τ))

⟩
= 0.

This is nothing but the equation

ωγ̃(τ)

(
d

dτ
γ̃(τ)

)
= 0

for the horizontal lift γ̃(τ) = e−iφ(τ)ϕn(γ(τ)) of γ.

Thus the Berry phase can be interpreted as the

holonomy e−iα = γ̃(1)/γ̃(0) of the lifted curve.

As usual, ω induces a covariant derivative ∇ on E. Its curvature F := i∇2 represents the first

Chern class [F/2π] ∈ H2(M) associated with the vector bundle E. The class [F/2π] is non-trivial

in the presence of level crossings (called diabolical points in some of the older literature), as these

make the vector bundle E twist.

Example. Consider a spin S = 1/2 particle with magnetic moment µ σ⃗ in a magnetic field B⃗ :

H(B⃗) = µB⃗ · σ⃗ = µ r

(
cos θ sin θ e−iϕ

sin θ eiϕ − cos θ

)
, B⃗ = r

sin θ cosϕ
sin θ sinϕ

cos θ

 .

There exist two energy levels, ε0 = −µ r and ε1 = +µ r, which are non-degenerate for B⃗ ∈ M :=

R3 \ {⃗0}. Fix either one of the two levels, say ε0 for concreteness. A local coordinate description
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of the mapping Φ : P → H = C2 for the corresponding principal bundle P → M of normalized

eigenvectors, is given by

Φ = eiψ+

(
sin(θ/2) e−iϕ

− cos(θ/2)

)
= eiψ−

(
sin(θ/2)

− cos(θ/2) eiϕ

)
.

The principal connection

ω = ⟨Φ, dΦ⟩ = idψ+ − i sin2(θ/2) dϕ = idψ− + i cos2(θ/2) dϕ

is seen to be exactly the same that we encountered in the context of the Dirac monopole problem

with fundamental charges (Section 2.3). In fact, the two problems are mathematically equivalent,

and one has (for the present example) the following precise correspondences:

Dirac monopole problem ↔ Berry phase problem
position space parameter space
monopole level degeneracy

complex lines Ex ≃ C instantaneous eigenspaces
gauge connection Berry connection

Problem 1. Show that switching the two energy levels, ε0 ↔ ε1 , corresponds to reversing the

handedness of the magnetic monopole, R↔ L.

Problem 2. For the case of arbitary spin S there exist 2S+1 energy levels and hence 2S+1 Berry

line bundles over M = R3 \ {0}. Are all of these bundles and their Berry connections isomorphic

to some Dirac monopole bundle? If so, what are the corresponding monopole charges?

3 Supersymmetry and Morse Theory

In 1982, E. Witten pointed out that the de Rham complex Ω(M) can be interpreted as the Hilbert

space of a supersymmetric quantum mechanics [see J. Diff. Geo. 17, p. 661] and that by deforming

the latter to a harmonic oscillator problem one can understand the so-called Morse inequalities,

a classical result in the topology of compact manifolds. The purpose of the present chapter is

to communicate this brilliant insight, which initiated a fruitful and lasting interaction between

topology and the physics of supersymmetry. Among its many variations and ramifications, an

outstanding result is the so-called heat kernel proof of the Atiyah-Singer index theorem.

3.1 Morse inequalities

We begin with a number of definitions. Let f be a differentiable function on a manifold M of

dimension n. A point x ∈ M with the property (d f)x = 0 is referred to as a critical point of f .

One calls such a point x non-degenerate if the Hessian Hessx(f) is non-degenerate as a quadratic

form. If all critical points of a function f are non-degenerate, then f is called a Morse function.

The index, indx(f), of a non-degenerate critical point x of f is defined as the number of negative

eigenvalues of Hessx(f). If the index is zero (maximal) one has a local minimum (resp. maximum).

For an intermediate index, 0 < indx(f) < n, the point x is a saddle point of f .
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One may want to know the number of critical points with index q of a function f : M → R.
(Think, for example, of the Hamiltonian function of classical mechanics. Its critical points are the

local equilibria of the Hamiltonian dynamics.) By the following statement, known as the Morse

inequalities, this number is bounded below by the de Rham cohomology Ωq(M).

Theorem. Let M be compact, and assume that f ∈ C∞(M) is a Morse function. Then if mq

denotes the number of critical points of f with index q , one has

1. mq ≥ bq (q = 0, 1, . . . , n),

2. mq −mq−1 + . . .±m0 ≥ bq − bq−1 + . . .± b0 (q = 0, 1, . . . , n),

3.
∑n

q=0(−1)qmq =
∑n

q=0(−1)q bq ,

where bq ≡ dimHq(M) is the qth Betti number.

Remark. Statements 1 and 2 are called the weak resp. strong form of the Morse inequalities.

Statement 3 says that the Euler characteristic χ(M) =
∑n

q=0(−1)qdimHq(M) can be computed

as an alternating sum of the number of critical points of a Morse function.

Problem. Use induction on q to show that the strong form of the Morse inequalities implies the

weak form.

Example. The de Rham cohomology of the two-sphere S2 is b0 = b2 = 1 and b1 = 0. Thus a

Morse function on S2 must have at least one minimum and one maximum, and there need not

be any saddle points. An example of such a function is the height function f = cos θ. For the

two-torus T2 = S1 × S1 one has b0 = b2 = 1 and b1 = 2. In this case there must exist at least two

saddle points in addition to the obligatory minimum and maximum.

Problem. Think of a Morse function for T2. �

Let us finish this introductory subsection by alerting the student to the following aspect. To

define the Hessian of a function f ∈ C∞(M) in general, you must choose a covariant derivative:

Hess(f) = ∇(grad f). (Indeed, if you try to define the Hessian as the matrix of second partial

derivatives, you discover that your definition depends on the choice of local coordinates.) However,

in the special case of a critical point this choice doesn’t matter. The reason is that any two

covariant derivatives ∇ and ∇′ differ only by an End(TM)-valued 1-form, ∇′−∇ = ω, and hence(
∇(gradf)−∇′(gradf)

)
x
= ωx

(
(gradf)(x)

)
= 0 .

Problem. Show that the index of a critical point is well-defined, i.e. does not depend on the

choice of local coordinates used to compute the Hessian as a matrix of partial derivatives.

3.2 Supersymmetric quantum mechanics

The Hilbert space, say V , of supersymmetric quantum mechanics comes with an orthogonal de-

composition

V = V0 ⊕ V1
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into an ‘even’ subspace V0 and an ‘odd’ subspace V1 . Such a decomposition is called a Z2-grading.

One sometimes refers to V0 and V1 as the bosonic and fermionic subspaces respectively.

On V one is given a self-adjoint operator Q = Q† which is a linear mapping between the two

subspaces:

Q : V0 → V1 and Q : V1 → V0 .

One says that Q is odd with respect to the Z2-grading and calls it a ‘fermionic charge’. The

Hamiltonian of the supersymmetric quantum mechanics is taken to be the square H = Q2. It is

a pair of linear operators

H : V0 → V0 and H : V1 → V1 .

The spectrum of a supersymmetric Hamiltonian H = Q2 has the following special properties.

Let ψ ∈ Vj for j ∈ {0, 1} be an eigenvector: Hψ = Eψ. Then Qψ ∈ V1−j is an eigenvector with

the same eigenvalue:

H(Qψ) = Q(Hψ) = E (Qψ).

If ψ ̸= 0 and E ̸= 0 then Qψ is not the zero vector:

⟨Qψ,Qψ⟩ = ⟨ψ,Hψ⟩ = E ⟨ψ, ψ⟩ ̸= 0 .

This means that Q : V0 → V1 restricted and projected to the sector of excited states is a spectrum-

preserving isomorphism. On the other hand, by the same argument one has Qψ = 0 for E = 0.

Thus the boson-fermion correspondence between excited states breaks down for the ground state

sector.

Definition. The Witten index of a supersymmetric Hamiltonian H is

IW (H) := dimkerH
∣∣
V0
− dimkerH

∣∣
V1
.

Thus IW (H) is the difference between the number of bosonic and fermionic ground states. �
An important property of the Witten index is that it does not change under continuous de-

formations of H. Indeed, although states may enter and leave the ground state sector E = 0 as

some parameters in H are varied, they must do so as pairs of one bosonic and one fermionic state

each. Thus the Witten index is a kind of topological invariant.

The following formula expresses the Witten index as a supertrace:

IW (H) = TrV0 e
−tH − TrV1 e

−tH =: STrV e−tH ,

where t is any positive real number. In the limit of t→∞ one recovers the definition of IW (H).
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Example. Let V = L2(R) ⊗ C2 be the Hilbert space of a particle with spin S = 1/2 in one

dimension, and take the Hamiltonian to be supersymmetric, H = Q2, with

Q =

(
0 ∂x + f ′(x)

−∂x + f ′(x) 0

)
, ∂x ≡

∂

∂x
,

where f is a differentiable function on R with enough growth at infinity so that
∫
R e

−2f(x)dx <∞.

Problem. Compute the Witten index IW (H) = STr e−tH of this problem for t→∞ and t→ 0.

3.2.1 De Rham complex and supersymmetric quantum mechanics

Let M be a Riemannian manifold M of dimension n and consider its space of differential forms,

Ω(M). The Riemannian structure of M determines a Hodge star operator,

⋆ : Ωk(M)→ Ωn−k(M,L),

by linear extension of the formula

⋆
(
dxi1 ∧ . . . ∧ dxik

)
=
∑

gi1j1 · · · gikjk ι(∂jk) · · · ι(∂j1) dvolM ,

where gij are the components of the metric tensor and dvolM =
√
g |dx1 ∧ · · · ∧ dxn| with √g ≡√

det(gij) is the Riemannian volume density. The star operator in turn determines an L2-space

of differential forms by the scalar product

⟨α, β⟩ :=
∫
M

α ∧ ⋆β.

The Z-grading Ω(M) = ⊕k≥0 Ω
k(M) is orthogonal with respect to this scalar product.

Remark. The constitutive laws of Maxwell electrodynamics are D = ε0 ⋆E and B = µ0 ⋆H. The

electromagnetic field energy is expressed as

1

2

∫
R3

(E ∧D +B ∧H) =
⟨D,D⟩
2ε0

+
⟨B,B⟩
2µ0

. �

Next, define the co-derivative δ : Ωk+1(M)→ Ωk(M) by

δ = (−1)k ⋆−1 d ⋆ .

For a compact manifold M this operator satisfies

⟨α, dβ⟩ =
∫
M

α ∧ ⋆dβ =

∫
M

dβ ∧ ⋆α = −
∫
M

β ∧ ⋆δα = −⟨δα, β⟩ ,

so −δ ≡ d† is the adjoint of d . Note that δ2 = 0.

Problem. By using the coordinate expression for the Hodge star operator, verify the following

formula for δ : Ωk+1(M)→ Ωk(M):

δ :
∑

i0<...<ik

ωi0i1... ik dx
i0 ∧ dxi1 ∧ · · · ∧ dxik 7→

∑
i1<...<ik

(δω)i1... ik dx
i1 ∧ · · · ∧ dxik where

(δω)i1...ik =
∑

gi1j1 · · · gikjk
1
√
g
∂j
(√

g ωjj1...jk
)
, ωjj1...jk =

∑
gjlgj1l1 · · · gjklkωll1... lk . �
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To set up a supersymmetric quantum mechanics, we take V0 (resp. V1) to be the space of square-

integrable differential forms of even (resp. odd) degree, and let V = V0⊕V1 and Q := d−δ = d+d†.

The supersymmetric Hamiltonian is

H = Q2 = (d− δ)2 = −(δd+ dδ) ≡ −△ ,

where △ ≡ δd+ dδ is called the Laplacian on differential forms.

Problem. Show that by the isomorphism I(dxi) =
∑
gij∂j sending 1-forms to vector fields, one

has the following correspondences for the case of M = R3:

△
∣∣
Ω0(R3)

= δd = div ◦ grad ,

△
∣∣
Ω1(R3)

= I−1 (grad ◦ div − curl ◦ curl) ◦ I .

3.3 Hodge theorem

Let M be a Riemannian manifold with Laplacian △ = δd+ dδ.

Definition. A harmonic differential form ω ∈ Ω(M) is a form in the kernel of the Laplacian:

△ω = 0.

We denote the space of harmonic k-forms on M by Harmk(M).

Fact. A harmonic differential form ω is both exact and co-exact:

dω = 0 = δω .

Proof. From △ω = 0 one has

0 = ⟨ω,−△ω⟩ = ⟨dω, dω⟩+ ⟨δω, δω⟩ ,

and the statement follows because ⟨·, ·⟩ is positive semi-definite.

Theorem (Hodge). Let M be a compact n-dimensional Riemannian manifold. Then Hk(M)

is in bijection with Harmk(M), i.e., every closed k-form ω ∈ Ωk(M) is cohomologous to one and

only one harmonic k-form on M .

Proof. The operator −△ is elliptic and by the compactness ofM its set of eigenvalues is discrete.

Because different eigenspaces are orthogonal to each other, every k-form ω has a unique orthogonal

decomposition ω = ω′ + △ω′′ where ω′ is harmonic. Introducing two operators H : ω 7→ ω′

(harmonic projection) and G : ω 7→ ω′′ (Green operator of the Laplacian) we write

ω = Hω +△Gω .

Now the exterior derivative d commutes with the Laplacian. (Indeed, d△ = dδd = △d.)
Therefore, d commutes with the harmonic projection H and also with ∆G = G∆ = Id − H.
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Moreover, it follows that d commutes with the Green operator G. From this we infer that a closed

form differs from its harmonic projection only by an exact form:

ω = Hω + (δd+ dδ)Gω = Hω + d(δGω),

which has the consequence that [ω] = [Hω].

To show that Hω is the unique harmonic form representing the cohomology class [ω], one

observes that if an exact form α = dβ is harmonic, then α is the zero form. Indeed, since a

harmonic form is co-closed,

⟨α, α⟩ = ⟨dβ, α⟩ = −⟨β, δα⟩ δα=0
=⇒ α = 0 .

Corollary. For a compact manifold M the number of linearly independent harmonic q-forms

equals the qth Betti number bq(M) = dimHq(M). Owing to b0(M) = 1 for a connected manifold,

it follows that the solution space of Laplace’s equation for functions, △f = 0, is one-dimensional.

(The solution space consists of the constant functions.)

Remark. The compactness of M is crucial in order for Hodge’s Theorem to hold. Indeed, in the

case of, say, M = R2 ≃ C, one has b0 = 1 but there is a very large supply of harmonic functions.

(The real or imaginary part of any analytic function z 7→ f(z) is harmonic.)

3.4 Weak form of the Morse inequalities

Let M be a compact n-dimensional manifold. Fixing some Morse function f ∈ C∞(M), consider

the deformed Cartan derivative

ds := e−sfd ◦ esf = d+ s ε(d f) (s ∈ R) ,

where ε(α) denotes the operation of exterior multiplication: ε(α)ω := α ∧ ω . This operator still

satisfies

d2s =
(
e−sfd ◦ esf

)2
= e−sfd2 ◦ esf = 0 .

Thus one may consider the cohomology of the deformed de Rham complex Ω(M) with differential

operator ds :

bk(s) := dim
(
Ωk(M) ∩ ker ds

)
− dim

(
Ωk(M) ∩ im ds

)
.

SinceM is assumed to be compact, the function f and its derivatives are bounded. By a standard

argument of operator analysis it then follows that the bk(s) are continuous functions of s. This

means that the bk(s) are in fact independent of s, as the only way for a integer-valued function to

change is to make a jump. Thus in particular bk(s) = bk(0).

The idea of the following is to analyze the situation in the limit where the deformation param-

eter s is sent to infinity.
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3.4.1 Witten Laplacian

Now fix a Riemannian structure on M (and thus a co-derivative δ) and introduce the deformed

co-derivative

δs := esfδ ◦ e−sf .

The deformed de Rham operator ds − δs is still self-adjoint, and its square

Hs := (ds − δs)2 = −(δs ds + ds δs) ,

is a supersymmetric Hamiltonian commonly referred to as Witten’s Laplacian.

By the same argument that was used in the proof of the Hodge Theorem, the dimension of

the zero-energy eigenspace of Hs in Ωk(M) is equal to the Betti number bk(s) :

bk(s) = dimkerHs

∣∣∣
Ωk(M)

.

Thus our attention now turns to the ground states of Hs . As we shall see, their number is

relatively easy to compute in the limit of s→∞.

Problem. Recalling the L2-scalar product ⟨α, β⟩ =
∫
M
α ∧ ⋆β determined by the Riemannian

structure of M , show that the operator of exterior multiplication ε(d f) : Ωk(M) → Ωk+1(M) is

adjoint to the operator of contraction ι(grad f) : Ωk+1(M)→ Ωk(M). �

By using the result of the problem we have

−δs = esfd† ◦ e−sf = (ds)
† =

(
d+ s ε(d f)

)†
= −δ + s ι(gradf) ,

and hence

Hs =
(
− δ + s ι(gradf)

)(
d+ s ε(d f)

)
+
(
d+ s ε(d f)

)(
− δ + s ι(gradf)

)
.

By a relation known as the canonical anti-commutation relations [for fermion creation operators

c†j ≡ ε(dxj) and annihilation operators cj ≡ ι(∂j)] one has

ε(d f) ι(gradf) + ι(gradf) ε(d f) = (d f)(gradf) = |d f |2 =
∑

gij(∂if)(∂jf) .

Thus the expression for Hs can be reorganized as

Hs = −△+ s2|d f |2 + s
(
Lgradf + L†

gradf

)
,

where LX is the so-called Lie derivative in the direction of the vector field X :

LX = ι(X) ◦ d+ d ◦ ι(X).

Note also that L†
gradf = − ε(d f) ◦ δ − δ ◦ ε(d f).

Problem. If you have some background in Riemannian geometry, you may find it a rewarding

exercise to verify the following statements about the 1-form sector:
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1. On 1-forms one has the relation Lgradf = ∇gradf + Hess(f) where Hess(f) = ∇(gradf) and
∇ is the Levi-Civitá covariant derivative for the Riemannian manifold M .

2. The Weitzenböck formula for the Laplacian △ = δd+ dδ on 1-forms states that

−△ = ∇†∇+Ric ,

where Ric ∈ Γ(End(T ∗M)) is the Ricci curvature, and ∇† : Γ(T ∗M ⊗ T ∗M)→ Γ(T ∗M) is

the adjoint of ∇ : Γ(T ∗M)→ Γ(T ∗M ⊗ T ∗M). Similarly, the Witten Laplacian on 1-forms

can be expressed as

Hs = esf∇† ◦ e−2sf∇ ◦ esf +Ric + 2sHess(f) .

3. It follows from Weitzenböck’s formula that the de Rham cohomology H1(M) is trivial for

any manifold which admits a Riemannian structure with positive Ricci curvature.

3.4.2 Deformation to a harmonic-oscillator problem

What makes Witten’s idea of deformation (d→ ds) so useful is the observation that the eigenvalue

problem for Hs reduces to a harmonic-oscillator problem for s→∞. In that limit, the potential

term s2|d f |2 grows beyond all bounds everywhere on M with the exception of the set of critical

points of f , where d f = 0. As a consequence, the zero-energy eigenfunctions become localized at

the critical points, and one can do the analysis by expanding around their local data.

For the following, fix a point p ∈ M , (d f)p = 0, in the critical set of f . In a neighborhood of

p let the metric tensor be expanded in a system of Riemann normal coordinates {x1, . . . , xn} as

gil = δil +
1

3

∑
Rikjl(p) x

kxj + . . . ,

where Rikjl(p) are the covariant components of the Riemann curvature tensor evaluated at p , and

x1(p) = . . . = xn(p) = 0. (Note that in a normal coordinate system, the Christoffel symbols of

the connection vanish at the point p.)

Problem. Verify the given expansion of gij by computing from it the Riemannian curvature

R(∂i, ∂j) ∂l = (∇∂i∇∂j −∇∂j∇∂i) ∂l . �

Now consider the Taylor expansion of f around the critical point p :

f = f(p) +
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(p) xixj + . . . .

By an orthogonal rotation of the coordinates we may assume the Hessian to be of diagonal form:

∂2f

∂xi∂xj
(p) = ai δij .

The Lie derivative and its adjoint expand as

Lgradf = (∂if) ι(∂i) d+ d ◦ (∂if) ι(∂i) =
∑
i

ai ε(dx
i) ι(∂i) + . . . ,

L†
gradf = −(∂if) ε(dx

i) δ − δ ◦ (∂if) ε(dxi) = −
∑
i

ai ι(∂i) ε(dx
i) + . . . .
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By scaling the coordinates as xi = yi/
√
s this gives the following expansion for the Witten Lapla-

cian:

Hs = s
n∑
i=1

(
− ∂2

∂yi∂yi
+ a2i y

2
i + ai [ε(dyi), ι(∂/∂yi)]

)
+O(

√
s) .

We see that in leading approximation, the problem separates into n one-dimensional problems,

each with Hamiltonian sh where

h = − ∂2

∂y2
+ a2y2 + a [ε(dy), ι(∂y)].

It is easy to write down the ground state of the harmonic oscillator Hamiltonian h on Ω(R). For
a > 0 the ground state ψ is found in the functions, ψ = e−ay

2/2. On the other hand, for a < 0 the

ground state is found in the 1-forms, ψ = e+ay
2/2dy.

Problem. Verify that in both cases the ground state energy is zero. �

The leading-order approximation to the ground state wave function of Hs (localized at p) is now

obtained by multiplying together all of the n ground state wave functions for the one-dimensional

problems with Hamiltonians of the type of h above. Since every negative eigenvalue ai of Hessp(f)

makes for a coordinate differential dyi in the ground state, the product wave function is a differen-

tial form with degree k equal to the index of p. Thus, every critical point p of index k contributes

a (perturbative) zero-energy ground state of Hs→∞ in the space of k-forms, Ωk(M).

On putting together the full chain of arguments,

bk ≡ bk(0) = bk(s) = lim
s→∞

dimkerHs

∣∣∣
Ωk(M)

,

it might now appear that bk would have to be equal to the number mk of of critical points of index

k. Such a conclusion, however, is premature and in fact false in general because the neglected

terms in Hs may cause some of the perturbative ground states to acquire a non-zero energy.

Nevertheless, the s → ∞ perturbative analysis of Hs does show irrefutably that if there are

to be bk linearly independent ground states in Ωk(M), then there cannot be less than bk critical

points of index k. Thus a safe conclusion is that

bk ≤ mk (k = 0, . . . , n),

which establishes the weak form of the Morse inequalities.

3.5 Strong form of the Morse inequalities

We have yet to understand in quantitative terms how the numbermk of perturbative ground states

is reduced to the number bk of true ground states. To that end, the previous calculation needs to

be improved. For a first idea, one might try to use perturbation theory to compute corrections

in the small parameter 1/s. Alas, this doesn’t lead to anything: the corrections turn out to be

identically zero to all orders (!) of the perturbation expansion in 1/s. (The reason for this can be

traced back to the supersymmetry of the problem.)
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Notwithstanding the absence of perturbative corrections, there must exist some corrections

that remove mk − bk of the perturbative ground states from the zero-energy sector. The lift

in energy is expected to depend on s like e−s, which is not analytic in 1/s at s = ∞ and hence

invisible in perturbation theory. Corrections of this kind are indeed caused by processes of quantum

tunneling between the perturbative ground states. Pursuing this line of reasoning, our task would

seem to become that of computing the ground-state energy splittings due to tunneling processes.

While that task can be accomplished in principle by using semiclassical methods (namely the

WKB approximation or it field-theory analog, the so-called instanton method), Witten proposed

an even better idea, which is this: just like one uses Hodge theory for s = 0 to pass from the de

Rham cohomology groups to the ground states of H = −△, we can now use the ideas of Hodge

theory in the limit of s → ∞ to revert from the ground states of Hs = −△s to the cohomology

groups of a certain differential complex, X. This new line of attack has several advantages. For

one, the differential complex X that emerges for s→∞ is quite simple; in fact, its vector spaces

Xk are finite-dimensional – they are spanned by the perturbative ground states. For another,

the cohomology side computes quantized numbers (namely, dimensions) instead of exponentially

small energy splittings. Hence there is no need to compute with total precision; an approximate

calculation will suffice if it only captures the leading behavior for s→∞.

Thus Witten’s strategy is to reduce the deformed de Rham complex

. . . −→ Ωk(M)
ds−→ Ωk+1(M) −→ . . .

to a finite-dimensional complex in the limit of s→∞, say

. . . −→ Xk δ−→ Xk+1 −→ . . . .

The task then is to construct the differential operator δ which corresponds to ds in this limit.

We now proceed in three steps. First, we show that the very existence of a finite-dimensional

complex X with differential operator δ already implies the strong form of the Morse inequalities

with mk ≡ dimXk. Second, we work through the simple example of the circle M = S1 to get

a feeling for the differential operator δ. Third, we recount Witten’s sketch of the semiclassical

construction of δ in the general case.

3.5.1 Strong Morse inequalities for a differential complex

Suppose that we are given a differential complex

. . . −→ Xk δ−→ Xk+1 −→ . . .

of vector spaces Xk (k ≥ 0) of finite dimension mk = dimXk with differential operator δ (not to

be confused with the δ = −d† of earlier) and cohomology

dim
(
(Xk ∩ kerδ) / (Xk ∩ imδ)

)
=: bk .
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Lemma. For all k ≥ 0 one has the inequality

mk −mk−1 + . . .+ (−1)km0 ≥ bk − bk−1 + . . .+ (−1)kb0.

Proof. To simplify the notation, we write Xk ∩ kerδ ≡ kerδ and Xk ∩ imδ ≡ imδ whenever the

degree k is clear from the context. Now let ck := dim(Xk ∩ imδ) for k ≥ 1 and c0 := 0. Then

mk = ck + bk + ck+1.

Indeed, we may decompose Xk as a direct sum,

Xk ≃ kerδ ⊕ (Xk/ kerδ) ≃ imδ ⊕ (kerδ / imδ)⊕ (Xk/ kerδ),

and, since δ : Xk/kerδ → Xk+1 ∩ imδ is an isomorphism, the claimed formula follows by taking

dimensions on both sides. The situation is depicted in the following diagram.

Next we take differences:

mk −mk−1 = ck+1 + bk − bk−1 − ck−1,

and by iteration we obtain

mk −mk−1 + . . .+ (−1)km0 = ck+1 + bk − bk−1 + . . .+ (−1)kb0 .

The claimed inequality now follows because ck+1 is a non-negative number.

3.5.2 The example of M = S1

Consider the circle M = S1 with angular coordinate θ ∈ [0, 2π) and let f : S1 → R be a Morse

function with n minima p1, . . . , pn and n maxima q1, . . . , qn. We may assume that these critical

points are ordered by

0 ≤ θ(p1) < θ(q1) < . . . < θ(pn) < θ(qn) < 2π.

The perturbative ground state spaces (of Hs = −△s) due to them are

X0 ≃ span
{
ψ(pi)

}
i=1,...,n

, ψ(pi) = e−sf
′′(pi) (θ−θ(pi))2/2,

X1 ≃ span
{
ψ(qi)

}
i=1,...,n

, ψ(qi) = e+sf
′′(qi) (θ−θ(qi))2/2dθ .
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The ‘≃’ signs remind us that the left-hand sides emerge in the limit of s→∞ while the right-hand

sides are for very large but finite s.

Now fix some minimum pi for 1 < i < n. We wish to compute the quantum tunneling matrix

elements between the corresponding ground state wave function ψ(pi) and the 1-form ground states

associated with the neighboring maxima, ψ(qi−1) and ψ(qi). To do so, one makes the WKB ansatz

ψWKB = A e−sW and solves the Hamilton-Jacobi equation

−|s dW |2 + s2|d f |2 = E

for the unknown functionW on the interval between qi−1 and qi. The zero-energy solution (E = 0)

satisfying the condition ψWKB(pi) = ψ(pi)(pi) = 1 is

ψ
(pi)
WKB = e−sf+sf(pi) χ[qi−1, qi] .

As usual, the WKB approximation procedure needs to be terminated at the neighboring critical

points, where the Hamilton-Jacobi equation becomes singular. To deal with these singular points

of the WKB approximation, we have cut off ψ
(pi)
WKB by a smooth regularization of the characteristic

function for the interval [qi−1, qi]. Doing the same for ψ(qi), say, we get

ψ
(qi)
WKB = e+sf−sf(qi) χ[pi,pi+1] dθ .

An improved approximation for the vector spaces X0 and X1 is obtained by taking them to be

the span of these WKB-ground states instead of the original perturbative ground states.

We are now ready to compute the quantum tunneling matrix elements we need. First, consider⟨
ψ

(qi)
WKB

∣∣ ds ψ(pi)
WKB

⟩
=

∫
S1
e+sf−sf(qi)χ[pi,pi+1] ds e

−sf+sf(pi) χ[qi−1, qi]

= e−sf(qi)+sf(pi)
∫
S1
χ[pi, pi+1] dχ[qi−1, qi].

Contributions to the integral come only from the close vicinity of the point qi ∈ [pi, pi+1], where

χ[pi,pi+1] ≡ 1 and the value of χ[qi−1, qi] drops from 1 to 0. Hence⟨
ψ

(qi)
WKB

∣∣ ds ψ(pi)
WKB

⟩
= − e−s(f(qi)−f(pi)).

In a similar manner one finds⟨
ψ

(qi−1)
WKB

∣∣ ds ψ(pi)
WKB

⟩
= +e−s(f(qi−1)−f(pi)).

Due to the vanishing overlap of the characteristic functions for distinct indices i, it is clear that

there are non-zero matrix elements beyond those given.

Notice that our WKB wave functions do not quite have the correct L2-norm. However, this

slight error won’t make any difference for our goal of computing the cohomology of the reduced

differential complex emerging for s→∞. Changing the normalization we now set

|pi⟩ ≡ e+sf(pi)ψ
(pi)
WKB = e−sf χ[qi−1, qi] and

|qi⟩ ≡ e−sf(qi)ψ
(qi)
WKB = e+sf χ[pi, pi+1] dθ.
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Then our calculation shows that ds : Ω0(S1)→ Ω1(S1) restricts to the vector spaces

X0 = span{|pi⟩}i=1,...,n and X1 = span{|qi⟩}i=1,...,n

as the differential operator δ : X0 → X1 given by

δ |pi⟩ = −|qi⟩+ |qi−1⟩ (i = 2, . . . , n), δ |p1⟩ = −|q1⟩+ |qn⟩.

It is easy to compute the cohomology of δ. Its kernel is one-dimensional, being spanned by

n∑
i=1

|pi⟩ = e−sf
n∑
i=1

χ[qi−1, qi] (q0 ≡ qn),

the symmetric linear combination of all the (properly normalized) bump functions concentrated

at the minima of f . If the χ’s are taken to be a partition of unity, i.e.
∑
χ[qi−1, qi] ≡ 1, then this

linear combination is simply e−sf . By recalling the expression Hs = −△s = d†sds of the Witten

Laplacian on functions, we immediately see that Hs e
−sf = 0. Thus the WKB approximation

has done the curious trick of producing the exact result for the ground state! (It is a well-known

hallmark of supersymmetric Hamiltonians that a semiclassical approximation actually gives the

exact answer when the right question is asked.)

Turning to the image of δ in X1 ≃ Rn, we see that this has codimension one. The missing

direction is spanned by the symmetric linear combination

n∑
i=1

|qi⟩ = e+sf
n∑
i=1

χ[pi, pi+1] dθ (pn+1 ≡ p1).

If
∑
χ[pi, pi+1] = 1, this is the exact ground state of Hs = dsd

†
s in Ω1(M). Notice that, of course,

these results for the cohomology of δ are in agreement with b0(S
1) = b1(S

1) = 1.

Problem. Carry out a similar WKB calculation forM = S2 with Morse function f given in terms

of a complex stereographic coordinate z = tan(θ/2) eiϕ by

f =
1− |w|2

1 + |w|2
, w =

3∑
k=0

z̄kz + 1

z − zk
, zk =

√
2 e2πik/3 (k = 1, 2, 3), z0 = 0.

(Notice that f has the symmetry of a tetrahedron.)

3.5.3 Witten’s narrative

We finish the story with a brief account of the outcome of Witten’s analysis for the case of a

general compact manifoldM . The method he primarily invokes is instanton calculus for a (0+1)-

dimensional supersymmetric field theory with Euclidean (i.e., imaginary-time) action functional

SE =
1

2

∫
dt

(
gij
dϕi

dt

dϕj

dt
+ gij ψ̄

i
(dψj
dt

+ Γjkl
dϕl

dt
ψk
)

+
1

4
Rijkl ψ̄

iψkψ̄jψl + s2gij
∂f

∂ϕi
∂f

∂ϕj
+ s

( ∂2f

∂ϕi ∂ϕj
− Γkij

∂f

∂ϕk

)
ψ̄iψj

)
,
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where the summation convention is assumed. By the procedure of canonical quantization, this

classical action functional yields the quantum Hamiltonian Hs = −△s. The bosonic fields ϕ
i arise

from a choice of local coordinates xi on M via pull back ϕi = xi ◦ ϕ by the bosonic field mapping

ϕ : R → M . The fermionic fields ψi correspond to the coordinate differentials dxi. The Γjkl are

the Christoffel symbols expressing the Levi-Civitá connection of the Riemannian manifold M in

the system of coordinates xi. The Riemann curvature tensor is expressed by its components Rijkl.

The last term of the actional functional arises by pull back of the Hessian tensor of f ,

Hess(f) = ∇(d f) =
(

∂2f

∂xi ∂xj
− Γkij

∂f

∂xk

)
dxi ⊗ dxj.

Based on instanton calculus for this supersymmetic field theory (augmented by some considerations

involving the WKB method), Witten arrives at the following prescription for constructing the

differential complex (X, δ).

With each critical point p of the Morse function f one associates a vector |p⟩, and one sets

Xk = span{|p⟩}p : indp(f)= k .

The differential operator δ : Xk → Xk+1 is expressed by

δ |p⟩ =
∑
|q⟩n(q, p),

where the sum runs over the critical points q of index k+1, and the coefficients n(q, p) are integers.

They are computed as follows.

For each critical point p let Vp denote the negative eigenspace of the Hessian of f at p. This

vector space Vp is oriented by the choice of a state vector |p⟩, i.e. by a choice of ordering for the

product of coordinate differentials in the differential form |p⟩.
For definiteness, let now p be a critical point of index k. If q is any critical point of index k+1,

one is to use the Riemannian geometry of M to solve the gradient flow equation

γ̇(t) = −(gradf)(γ(t))

or in coordinates,

ẋi = −
∑

gij
∂f

∂xj
,

for a path γ : R→M of steepest descent beginning at γ(−∞) = q and ending at γ(+∞) = p.

Let v ∈ Vq be the initial direction of the path γ and define Ṽq to be the orthogonal complement

of v in Vq :

Vq = Ṽq ⊕ Rv.
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The given orientation of Vq induces an orientation of Ṽq by the canonical process of taking the

inner product with v ̸= 0.

Now the geometric data associated with the steepest descent path γ connecting q with p deter-

mines an isomorphism τ between Ṽq and Vp . The definition of τ needs perhaps some explanation.

For simplicity, assume the situation of a generic Morse function f , where the k lowest eigenvalues

of the transverse part of the Hessian ∇(d f) are separated from the rest of the spectrum by a finite

gap all along γ. The eigenvectors associated with eigenvalues then span a rank-k vector bundle,

say V , over γ. As a sub-bundle of the tangent bundle TM , this vector bundle is equipped with a

connection in the obvious manner (by restriction of the Levi-Civitá connection of TM). Thus we

have an operation of parallel transport in V. Since V connects Ṽq with Vp , this operation results

in an isomorphism τ : Ṽq → Vp.

If τ is orientation preserving one sets nγ = +1, otherwise nγ = −1. If there is more than one

path γ of steepest descent between q and p, then one takes the sum over them:

n(q, p) :=
∑
γ

nγ.

This concludes the description of δ. While it may not be clear from it that δ2 = 0, this property

is in fact inherited by δ from its parent ds .

3.6 Escape over a barrier: Kramers’ formula

We now apply the formalism developed in this chapter to a problem of non-equilibrium statistical

physics, namely that of calculating the rate of escape over an energy barrier by thermal activation

of a statistical population. An explicit expression for the escape rate in the limit of a high barrier

or low temperature is provided by Kramers’ formula. In the sequel, we will derive it by using

supersymmetry and the Witten Laplacian.

For simplicity we consider the situation in one space dimension. We assume that the population

dynamics is overdamped and governed by a Fokker-Planck equation with a diffusion term and a

drift term. Denoting the space coordinate by x we write the Fokker-Planck equation for the time

evolution of the population density P (x, t) dx as

∂P

∂t
= D

∂2P

∂x2
+ β

∂

∂x

(
W ′P

)
.

Here D is the diffusion constant, and β is given by a so-called fluctuation-dissipation relation:

β = D/kBT with temperature T . The function x 7→ W (x) is a potential energy function for

the stochastic dynamics. We assume W to have three extrema: a metastable minimum at x0,

a maximum (the peak of the ‘barrier’) at x1, and a global minimum at x2. The graph of W is

sketched below.
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In such a situation, any initial distribution P (x, 0) dx is sure to converge to the following equilib-

rium distribution function:

lim
t→∞

P (x, t) = P∞(x) ∝ e−W (x)/kBT ,

∫
R
P∞(x) dx = 1 ,

whose population is concentrated near the absolute minimum x2.

We now ask how long it takes for the population to reach this equilibrium state. More precisely,

let the population be initially localized at the metastable minimum x0. The question then is: how

long does it take for the population to escape over the energy barrier peaking at x1?

This question has a simple explicit answer for low temperatures, kBT ≪ W (x1)−W (x0) and

kBT ≪W (x0)−W (x2). The answer for the escape rate in this limit is given by Kramers’ formula

(Kramers, 1940):

1

τ
= D

√
−W ′′(x1)W ′′(x0)

2πkBT
e−(W (x1)−W (x0))/kBT .

This result and its generalizations to higher dimension (see, e.g., arXiv.org/pdf/1106.5799.pdf)

have been applied to numerous problems of non-equilibrium statistical physics. An early applica-

tion was the calculation of fission rates of atomic nuclei heated by neutron capture.

In the following we present a rather straightforward derivation of Kramers’ formula by using

the supersymmetry of the Witten Laplacian which is associated with the generator of the Fokker-

Planck dynamics. The first step is to convert the Fokker-Planck equation into a Schrödinger-like

equation in imaginary time by substituting

P (x, t) =
√
P∞(x)ψ(x, t).

The resulting imaginary-time Schrödinger equation for the ‘wave function’ ψ reads

∂ψ

∂t
= −H0ψ

with ‘Hamiltonian’

H0 = D

(
− ∂

∂x
+

W ′

2kBT

)(
∂

∂x
+

W ′

2kBT

)
,

which we recognize as the bosonic part of a supersymmetric Laplacian of Witten type. Note that

the imaginary-time Schrödinger dynamics does not conserve the quantum probability
∫
R |ψ(x, t)|

2dx

but rather the integral
∫
R

√
P∞(x)ψ(x, t)dx =

∫
R P (x, t)dx = 1.

As usual, the Schrödinger equation can be solved formally in terms of the eigenvalues 0 = ω0 <

ω1 < ω2 ≤ . . . and the orthonormal system of eigenfunctions ψ0, ψ1, ψ2, . . . of H0 :

ψ(x, t) =
√
P∞(x) +

∞∑
n=1

ψn(x) e
−ωnt⟨ψn|ψ(·, 0)⟩.

Here ⟨ψn|ψ(·, 0)⟩ =
∫
R ψn(x)ψ(x, 0) dx, and ψ0(x) ≡

√
P∞(x) is the normalized ground state wave

function with eigenvalue ω0 . Notice that ⟨ψ0|ψ(·, 0)⟩ =
∫
R P (x, 0) dx = 1.

Now, based on our experience with the Witten Laplacian, we anticipate that the eigenfunction

ψ1 comes from a perturbative ground state by the inclusion of ‘quantum tunneling’ corrections.
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Thus we expect the corresponding eigenvalue ω1 to be exponentially small (for small temperatures

T ) and separated by a large gap from all higher eigenvalues. If so, then for times t ≫ 1/ω2 the

distribution function reduces to a sum of just two terms,

ψ(x, t) =
√
P∞(x) + e−ω1ta1ψ1(x), a1 = ⟨ψ1|ψ(·, 0)⟩.

The first summand is the ground state corresponding to the Fokker-Planck equilibrium. The

second one is contributed by the first excited state ψ1, which decays at the very slow rate of

1/τ = ω1. This rate is the desired rate 1/τ for escape over the barrier.

Hence our second step is to calculate the relevant frequency ω1 . This is done by using the

WKB-improved perturbation theory described in Section 3.5.2. The difference is that, this time,

we aren’t after topological invariants and we will have to be a little more accurate to arrive at the

correct form of Kramers’ result for the escape rate. We introduce the following notation:

H0/D = d†TdT , dT = e−W/2kBTd e+W/2kBT , d†T = e+W/2kBTd† e−W/2kBT , H1/D = dTd
†
T .

The (negative of the) Witten Laplacian of the present situation is

H = H0 +H1 = DQ2, Q = dT + d†T .

We now use supersymmetry in a powerful way: instead of calculating the eigenvalue ω1 of H0

directly, we do something equivalent but simpler: we calculate the corresponding eigenvalue, E,

of the fermionic charge Q. Kramers’ escape rate will then be given by 1/τ = ω1 = DE2.

We begin by writing down the (WKB-improved) perturbative ground states associated with

the extrema x0, x1, x2 :

ψ(x0) = c0 e
−(W−W (x0))/2kBTχ(−∞, x1] , c0 =

(
W ′′(x0)

2πkBT

)1/4

ψ(x1) = c1 e
+(W−W (x1))/2kBTχ[x0, x2] dx , c1 =

(
−W ′′(x1)

2πkBT

)1/4

,

ψ(x2) = c2 e
−(W−W (x2))/2kBTχ[x1,+∞) , c2 =

(
W ′′(x2)

2πkBT

)1/4

.

These are normalized in such a way that ⟨ψ(xk)|ψ(xk)⟩ ≈ 1 approximately for small T . Note that

the overlaps ⟨ψ(xk)|ψ(xl)⟩ for k ̸= l are negligibly small.

Next, following the blueprint of degenerate perturbation theory, we compute the transition

matrix elements:

⟨ψ(x1)|Q|ψ(x0)⟩ = ⟨ψ(x1)|dT |ψ(x0)⟩ = ⟨ψ(x0)|d†T |ψ
(x1)⟩

=

∫
c1 e

+(W−W (x1))/2kBTχ1 dT c0 e
−(W−W (x0))/2kBTχ0

= c1c0 e
−(W (x1)−W (x0))/2kBT

∫
χ1 dχ0 = −c1c0 e−(W (x1)−W (x0))/2kBT ,

and similarly,

⟨ψ(x2)|Q|ψ(x0)⟩ = ⟨ψ(x2)|dT |ψ(x0)⟩ = ⟨ψ(x0)|d†T |ψ
(x2)⟩ = +c1c2 e

−(W (x1)−W (x2))/2kBT .
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All other matrix elements vanish on simple grounds of degree. Thus the matrix of Q with respect

to the three perturbative ground states ψ(x0), ψ(x1), ψ(x2) has the form 0 ⟨ψ(x0)|d†T |ψ(x1)⟩ 0
⟨ψ(x1)|dT |ψ(x0)⟩ 0 ⟨ψ(x1)|dT |ψ(x2)⟩

0 ⟨ψ(x2)|d†T |ψ(x1)⟩ 0

 .

It is an easy exercise in linear algebra to compute the eigenvalues and eigenvectors of this 3 × 3

matrix. First of all, we have an eigenvalue zero with (unnormalized) eigenvector

ψg.s. = −ψ(x0)/⟨ψ(x1)|dT |ψ(x0)⟩+ ψ(x2)/⟨ψ(x1)|dT |ψ(x2)⟩

= c−1
1 e−(W−W (x1))/2kBT

(
χ(−∞, x1) + χ(x1,+∞)

)
∝
√
P∞(x).

As expected, this is the ground state wave function corresponding to the equilibrium distribution

function P∞ by the substitution P =
√
P∞ ψ. The two excited states are

ψ±
exc. = (d†T ± E)ψ

(x1) = ψ(x0) ⟨ψ(x0)|d†T |ψ
(x1)⟩+ ψ(x2) ⟨ψ(x2)|d†T |ψ

(x1)⟩ ± Eψ(x1) ,

E =

√∣∣⟨ψ(x1)|dT |ψ(x0)⟩
∣∣2 + ∣∣⟨ψ(x1)|dT |ψ(x2)⟩

∣∣2.
Assuming the inequality kBT ≪W (x0)−W (x2), the expression for E simplifies to

E =
∣∣⟨ψ(x1)|dT |ψ(x0)⟩

∣∣ = c1c0 e
−(W (x1)−W (x0))/2kBT .

It is now readily seen that the square of this, 1/τ = ω1 = DE2, is indeed equal to Kramers’

expression for the escape rate.

Problem. Can you predict the rate of escape over two one-dimensional barriers in sequence?

3.7 Brascamp-Lieb inequality

Let us finish this chapter by mentioning another use of the Witten Laplacian, this time in the

realm of equilibrium statistical physics. Consider the Boltzmann-Gibbs distribution

Z−1e−H(x)/kBTdNx

for N real degrees of freedom x1, . . . , xN . The expectation value of an observable f is defined by

fav =
1

Z

∫
RN

f(x) e−H(x)/kBTdNx.

We are interested in the fluctuations of f as given by its variance:

var(f) =
1

Z

∫
RN

(
f(x)− fav

)2
e−H(x)/kBTdNx.

The goal is to derive a useful upper bound for var(f).
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As before, we set up a (fictitious) quantum mechanics with ground state wave function

ψ0(x) ≡ e−h(x) =
1√
Z

e−H(x)/2kBT ,

∫
RN

ψ0(x)
2dNx =

∫
RN

e−2h(x)dNx = 1,

which allows us to view var(f) as a ground state expectation value:

var(f) =
⟨
ψ0|(f − fav)2|ψ0

⟩
.

Note that ⟨ψ0|(f − fav)|ψ0⟩ = fav− fav = 0. Thus (f − fav)|ψ0⟩ is orthogonal to the ground state.

Now ψ0 may be viewed as the ground state (in the space of functions, or 0-forms) of a Witten

Laplacian

−△h = d†hdh + dhd
†
h , dh = e−hd e+h.

Since (f − fav)|ψ0⟩ is orthogonal to the kernel of −△h, we can write

(f − fav)|ψ0⟩ = (−△h) (−△h)
−1(f − fav)|ψ0⟩

= d†h(−△h)
−1dh(f − fav)|ψ0⟩ = d†h(−△h)

−1(d f)|ψ0⟩,

which results in the following expression for the variance:

var(f) =
⟨
ψ0| ι(grad f)(−△h)

−1(d f)|ψ0

⟩
=

∫
RN

dNx e−hι(grad f)(−△h)
−1e−hd f .

Next we observe that

e+h(−△h)
−1e−h =

(
− e+h△h ◦ e−h

)−1
=
(
d†2hd+ d d†2h

)−1

=
(
d†d+ dd† + ι(grad 2h) ◦ d+ d ◦ ι(grad 2h)

)−1
=
(
−△+ Lgrad 2h

)−1
.

By using the relations LX = ∇X + (∇X) and −△ = ∇†∇ (in Euclidean space) we then obtain

e+h(−△h)
−1e−h =

(
∇†∇+∇grad 2h +Hess(2h)

)−1
=
(
e2h∇†e−2h∇+Hess(2h)

)−1
.

This yields the identity

var(f) =

∫
RN

dNx e−2hι(grad f)
(
e2h∇†e−2h∇+Hess(2h)

)−1
d f.

Now the operator e2h∇†e−2h∇ is self-adjoint w.r.t. ⟨f | g⟩ =
∫
f(x) g(x) e−2h(x)dNx and positive.

If Hess(2h) > 0, then we may drop that operator in the denominator to arrive at the so-called

Brascamp-Lieb inequality :

var(f) ≤
∫
RN

dNx e−2hι(grad f)
(
Hess(2h)

)−1
d f =

(
N∑

i,j=1

(∂if)
(
Hess(2h)

)−1

ij
(∂jf)

)
av

.

Remark. This inequality can be used, for example, to prove exponential decay of the correlation

functions for a (lattice) scalar field ϕ with energy function H = (ϕ,−△ϕ) + V (ϕ), where △ is the

(lattice) Laplacian and V (ϕ) =
∑

x V (ϕx) a convex interaction potential.
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