
4 Networks

In this chapter we develop some parts of discrete exterior calculus, introducing the laws of elec-

trostatics, Kirchhoff’s rules and certain types of networks along the way.

4.1 Chains on 1-complexes

The basic objects in discrete exterior calculus are (differential) k-complexes. For the moment we

look only at the simple case of 1-complexes (k-complexes with k > 1 will be introduced later).

These are made up of vertices (or 0-cells) connected by oriented edges (or 1-cells, or links).

Example. In the following example of a 1-complex K, there are 3 vertices A,B,C and 4 oriented

edges α, β, γ, δ:

C

B

δ

γ β
α

A

Orientation of an edge means a sense of direction (determined pictorially by an arrow).

Chains. In discrete exterior calculus, the vertices of a complexK are regarded as the basis vectors

of a real vector space C0(K). Thus the elements c of C0(K) are linear combinations of vertices

Ai with real coefficients ci: c =
∑

i ciAi . Such formal sums are called 0-chains. Similarly, the

oriented edges of K are regarded as the basis vectors of a real vector space C1(K). Its elements are

formal sums
∑

j rj αj of oriented edges αj with real coefficients rj, and they are called 1-chains.

Boundary operator. Every 1-complex K comes with a linear operator

∂ : C1(K)→ C0(K), (4.1)

called the boundary operator of K. The boundary of an oriented edge is defined to be the end

point of the edge minus the starting point. By linearity, this defines ∂ on all of C1(K).

Example. Recall the complex K shown above. There we have

∂α = B − A,

∂(α + β) = ∂α + ∂β = (B − A) + (C −B) = C − A,

∂(α + β + γ) = 0,

∂(α + β − γ) = −2∂γ = 2C − 2A.

Notice that, if ∂α = B−A (as in the example), then ∂(−α) = A−B by the linearity of ∂. Thus,

in going from α to −α the starting point A and end point B switch roles, and we should think of

−α as being the same edge as α but with the orientation (i.e. the sense of direction) reversed.
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Kirchhoff’s first rule. Let I be the electrical current flow in an electrical circuit K, and let us

consider I as a 1-chain on K, viewing K as a 1-complex (by assigning orientations to the wires of

the circuit). In formulas:

I =
∑
j

Ij γj , (4.2)

where γj are the (oriented) wires of the circuit K, and the real coefficient Ij is the current flowing

along γj . (Ij > 0 means that the current is flowing in the direction of the chosen orientation

of γj, whereas Ij < 0 means that the current flows the opposite way.) If the current flow is

stationary (i.e. both the current density and the charge density are constant in time), then the

law of electrical current conservation applies and is succinctly expressed by Kirchhoff’s first rule:

∂I = 0 . (4.3)

Example. Consider again the complex K of the previous example. The current in that case is a

sum of 4 terms:

I = Iαα + Iββ + Iγγ + Iδδ.

Computing its boundary we obtain

∂I = Iα∂α + Iβ∂β + Iγ∂γ + Iδ∂δ

= Iα(B − A) + Iβ(C −B) + Iγ(A− C) + Iδ(C − A)

= (−Iα + Iγ − Iδ)A+ (Iα − Iβ)B + (Iβ − Iγ + Iδ)C .

Because of the linear independence of the “vectors” A,B,C – recall that they furnish a basis of

the vector space C0(K) by postulate – setting ∂I = 0 is equivalent to setting the coefficients of

each of A,B,C to zero:

∂I = 0 ⇐⇒ −Iα + Iγ − Iδ = 0 , Iα − Iβ = 0 , Iβ − Iγ + Iδ = 0 .

The equation Iα = Iβ obviously means that there is as much current flowing into the node B as

there is current flowing out of it. The other two equations mean the same thing for the nodes A,C.

This is just the statement of current conservation: for every node N in a circuit with stationary

current flow (and no charges piling up at the nodes) the current flowing into N exactly balances

the current flowing out of N .

4.2 Cochains and coboundary operator

Recall from linear algebra that every vector space V comes with a dual vector space V ∗. The

elements of V ∗ are linear functions f : V → R. By this token, given the vector space C0(K)

we have the dual vector space of linear functions f : C0(K) → R. The latter is conventionally
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denoted by C0(K) ≡ C0(K)∗, and its elements are called 0-cochains. If c is a 0-chain of K and f

is a 0-cochain of K, we write

⟨f, c⟩ (4.4)

for the value of f on c. By linearity, a 0-cochain f is completely determined by its values on the

0-cells (the vertices) Ai of K. Such values are alternatively written as⟨
f, Ai

⟩
≡ f(Ai). (4.5)

We also refer to the (non-degenerate) linear mapping C0(K) × C0(K) → R by (f, c) 7→ ⟨f, c⟩ as
the pairing between 0-cochains and 0-chains.

Electric energy. The electric scalar potential (also called the electrostatic potential in the present

context) Φ assigns to every node Ai of an electric circuit K a real number Φ(Ai), namely the value

of the potential at that point. The function Φ can be viewed (and this is a view we will often

take) as a 0-cochain on K regarded as a 1-complex. The value of Φ on an arbitrary 0-chain is⟨
Φ,

∑
i
ciAi

⟩
=

∑
i

ciΦ(Ai). (4.6)

While it may seem odd to the novice that we view the electrostatic potential as a function not

just on points but on arbitrary 0-chains, this point of view is often quite useful. One application

of this viewpoint is the following. Let ρ =
∑

i ρiAi (a 0-chain) be the electric charge density of the

circuit K – here we assume that all charges sit on nodes and the amount of charge on the circuit

node Ai is ρi . Then the pairing between Φ and ρ is (twice) the electrostatic energy of the circuit:⟨
Φ, ρ

⟩
=

∑
i

ρiΦ(Ai). (4.7)

1-cochains. Just as C0(K) is associated with its dual, C0(K), the vector space of 1-chains C1(K)

is associated with its dual vector space, C1(K). The elements of C1(K) are called 1-cochains.

The pairing between a 1-cochain ω and a 1-chain c is still denoted by ⟨ω, c⟩, and for the value of

ω on a 1-cell γj we still use the alternative notation

⟨ω, γj⟩ ≡ ω(γj). (4.8)

Electrical power. To every edge (or link) γj of an electric circuit K we associate the voltage

V (γj) along γj . We can view this association as a function V : γj 7→ V (γj) ∈ R, which linearly

extends to a function V : C1(K) → R. Thus V is a 1-cochain, V ∈ C1(K) = C1(K)∗. In a

resistive network (see Section 4.4 below) with current I =
∑

j Ij γj the pairing of V with I,

⟨V, I⟩ =
∑
j

Ij V (γj), (4.9)

has a clear physical meaning: it is the power dissipated by the network.
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Canonical adjoint. We now recall another general principle from linear algebra: given a linear

mapping L from a vector space V into a vector space W , there exists a canonically defined linear

mapping Lt : W ∗ → V ∗ called the canonical adjoint of L. It is defined by⟨
Ltω, c

⟩
=

⟨
ω, Lc

⟩
(ω ∈ W ∗, c ∈ V ). (4.10)

The canonical adjoint is sometimes called the “transpose”: if one introduces bases v1, v2, . . . of V

and w1, w2, . . . of W and expands Lvi =
∑

j wjLj i , then the matrix of Lt w.r.t. the dual bases of

W ∗ and V ∗ is the transpose of the matrix of L: (Lt)ij = Lj i.

Coboundary operator. Application of this general principle to the boundary operator

∂ : C1(K)→ C0(K) (4.11)

yields a linear operator (the canonical adjoint or transpose of ∂)

d : C0(K)→ C1(K), (4.12)

which is called the coboundary operator. The boundary operator ∂ is a very intuitive object, but

what is the intuition for the coboundary operator d? We will see that d is the discrete variant of

a differential operator (hence the notation d). First we give a concrete example illustrating d.

Example. Consider once again the complex K of the example given in Section 4.1. The matrix

of ∂ w.r.t. the (ordered) bases A,B,C of C0(K) and α, β, γ, δ of C1(K) is−1 0 1 −1
1 −1 0 0
0 1 −1 1

 .

Since d is the canonical adjoint of ∂, its matrix w.r.t. the corresponding dual bases is obtained by

transposition: 
−1 1 0
0 −1 1
1 0 −1
−1 0 1

 .

If A∗, B∗, C∗ and α∗, β∗, γ∗, δ∗ are the dual bases of C0(K) and C1(K), this means that

dA∗ = −α∗ + γ∗ − δ∗,

dB∗ = α∗ − β∗,

dC∗ = β∗ − γ∗ + δ∗,

since dA∗
i =

∑
j α

∗
j dj i .

Rule for d. Here comes the general rule for the linear operator d. (Of course, by linearity it

suffices to specify d on some basis of C0(K).) We adopt the convention of denoting dual bases

with an asterisk. Let then p be any vertex of K. To compute dp∗ we look for the oriented edges
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of K that have p as a boundary point. Let αi1 , . . . , αim (βj1 , . . . , βjn) be the oriented edges that

end (resp. begin) on p. Then

dp∗ = α∗
i1
+ α∗

i2
+ . . .+ α∗

im − β∗
j1
− β∗

j2
− . . .− β∗

jn . (4.13)

d as a differential. Why did we say that the coboundary operator d resembles a differential

operator? Consider d on a network of linear structure:

23α
3A2A... ...

12α
1A

and compare dA∗
2 = α∗

12 − α∗
23 with the derivative of a smeared δ-function:
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The similarity should be clear.

Voltage as a coboundary. We will put the coboundary operator to many good uses in the

sequel. A first application is as follows. Consider, once again, the complex of the example in

Section 4.1. Expressing the potential Φ in the basis of characteristic functions A∗, B∗, C∗ we have

Φ = Φ(A)A∗ + Φ(B)B∗ + Φ(C)C∗. (4.14)

We then compute the coboundary of Φ:

dΦ = Φ(A) dA∗ + Φ(B) dB∗ + Φ(C) dC∗

= Φ(A)(γ∗ − α∗ − δ∗) + Φ(B)(α∗ − β∗) + Φ(C)(δ∗ + β∗ − γ∗)

=
(
Φ(B)− Φ(A)

)
α∗ +

(
Φ(C)− Φ(B)

)
β∗ +

(
Φ(A)− Φ(C)

)
γ∗ +

(
Φ(C)− Φ(A)

)
δ∗.

By the definition of Φ, the potential difference Φ(B) − Φ(A) is the negative of the voltage along

α: V (α) = Φ(A)− Φ(B). Similarly, V (β) = Φ(B)− Φ(C), and so on. Thus we see that

V = − dΦ. (4.15)

This corresponds to the equation E⃗ = −gradΦ of vector calculus.

4.3 2-complexes: d◦d = 0

The complexes K under consideration so far were built from vertices and edges only. Now we

add another element to the setup: oriented faces (or 2-cells). Beside the vector spaces C0(K) and
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C1(K), we then have the vector space of 2-chains, C2(K). The boundary operator ∂ : C1(K)→
C0(K) naturally extends to a sequence of linear operators

C2(K)
∂−→ C1(K)

∂−→ C0(K). (4.16)

Example. The following 2-complex is obtained by still taking the 1-complex of the example in

Section 4.1 and sewing in two oriented faces, denoted by “red” and “blue”:

γ
β

α

δ

red

blue

B

C

A

K

The boundaries of the two oriented faces of K are

∂(red) = α + β + γ, ∂(blue) = −γ − δ.

Notice that the boundary of each of the two boundaries is zero:

(∂ ◦ ∂)(red) = ∂(α + β + γ) = B − A+ C −B + A− C = 0,

(∂ ◦ ∂)(blue) = ∂(−γ − δ) = C − A+ A− C = 0.

This property is not particular to the special 2-complex under consideration, but will always be

true for any “reasonable” complex (think about it, and you’ll see that it’s true!). Hence the

following definition is rather natural.

Definition. A k-complex (for k ∈ N) is a sequence of vector spaces C0(K), . . . , Ck(K) connected

by linear operators (the boundary operator),

0
∂←− C0(K)

∂←− C1(K)
∂←− · · · ∂←− Ck−1(K)

∂←− Ck(K), (4.17)

such that ∂ ◦ ∂ = 0. �

Now, given a k-complex (of chains) we immediately get another k-complex (of cochains) by

dualization:

C0(K)
d−→ C1(K)

d−→ · · · d−→ Ck−1(K)
d−→ Ck(K)

d−→ 0. (4.18)

Indeed, from ∂ ◦ ∂ = 0 we deduce that⟨
ddω, c

⟩
=

⟨
dω, ∂c

⟩
=

⟨
ω, ∂∂c

⟩
=

⟨
ω, 0

⟩
= 0 (4.19)

for any ω ∈ Ck(K) and c ∈ Ck+2(K), so the coboundary operator d satisfies

d ◦ d = 0. (4.20)
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Kirchhoff’s second rule. Consider some 2-complex and recall the electrostatic law V = −dΦ;
in words: the voltage is (minus) the coboundary of the potential. Applying d to both sides of this

equation and using d ◦ d = 0 we get

dV = 0 (Kirchhoff’s second rule). (4.21)

What does this mean? The equation dV = 0 is equivalent to
⟨
dV, c

⟩
being zero for every 2-chain

c. But
⟨
dV, c

⟩
=

⟨
V, ∂c

⟩
, so

dV = 0 ⇐⇒ ∀c ∈ C2(K) :
⟨
V, ∂c

⟩
= 0. (4.22)

Any 1-chain ∂c consists of boundary loops, so the statement dV = 0 is equivalent to saying that

the voltage V vanishes along any such loop. For example, the boundary of the red face in the

example on the previous page is α + β + γ, and Kirchhoff’s second rule states that⟨
V, ∂(red)

⟩
= V (α) + V (β) + V (γ) = 0.

Exercise. Show from the definition of the coboundary operator by
⟨
dω, c

⟩
=

⟨
ω, ∂c

⟩
that d :

C1(K)→ C2(K) is computed by the following rule. Let γ1, γ2, . . . be the oriented edges of K and

denote the element dual to γj by γ∗
j , as before. To compute the coboundary dγ∗

j we look for the

(oriented) faces that contain γj in their boundary. Then dγ∗
j is the sum (with signs) of the duals

of these faces, where the plus/minus sign is used if the orientations agree/disagree.

Example. For the 2-complex K from the beginning of this subsection we have

dα∗ = red∗, dβ∗ = red∗, dγ∗ = red∗ − blue∗, dδ∗ = −blue∗.

4.4 Resistive networks

Let K be some 2-complex with a number N1 of 1-cells γ1, γ2, . . . , γN1 . Place resistors with re-

sistances Ri on N1 − 1 of these, and on the residual 1-cell place a current source (i.e. a battery,

say with voltage Vbatt). What you get in this way is called a resistive network. We assume that

the resistors and the battery are connected by perfectly conducting wires via the 0-cells of K

(the nodes of the resistive network). The situation is illustrated in the next diagram, showing a

2-complex on the left-hand side and a corresponding resistive network on the right-hand side.

Now let the resistive network be in a stationary state. This means that everything is constant

in time (except for the state of the battery, which is gradually getting discharged), and there is a

certain time-independent electrical current flowing in each 1-cell γj of K, i.e. in each resistor of

the network. These (local) currents Ij determine a 1-chain

I =

N1∑
j=1

Ij γj (4.23)

called the (global) current. Assuming the resistances Rj and the battery voltage Vbatt to be given,

our goal will be to compute the Ij and hence I.
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resistive network
2−complex K
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α
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There exists 3 sets of linear relations, which altogether determine the global current I. The

first set is given by Kirchhoff’s first rule: ∂I = 0. As was explained earlier, it expresses the law

of current conservation at the nodes. The second set relates the currents Ij to the voltages Vj by

Ohm’s law: Vj = RjIj . Viewing the resistances as a mapping R : C1(K) → C1(K), we write

Ohm’s law in the succinct global form V = RI. The third set of relations is given by Kirchhoff’s

second rule, dV = 0. Its meaning, as we saw, is that the voltage about any boundary loop of the

network vanishes. In summary, the equations of a stationary resistive network are

dV = 0, V = RI, ∂I = 0. (4.24)

In the absence of a driving term, the solution of these equations is the trivial one, I = 0 = V .

The solution becomes nontrivial if we take one of the voltages, say Vj = V (γj), to be exter-

nally prescribed, by forcing Vj = Vbatt . Of course, if we then insisted on prescribing the ratio

Vbatt/Ibatt = Vj/Ij = Rj, the system would be overdetermined. To allow a solution to exist, we

have to treat the current Ibatt drawn from the battery as one of the unknowns of the problem.

Solution strategies. We distinguish between two basic strategies for solving the equations of a

resistive network:

1. Node potential method:

(i) Solve dV = 0 by making an ansatz for the potentials at the nodes: V = −dΦ.

(ii) Express the current by the potential: I = −R−1dΦ.

(iii) Determine the unknowns in Φ from the equation 0 = ∂I = −∂R−1dΦ.

2. Mesh current method:

(i) Solve ∂I = 0 by setting I = ∂H, with H an unknown 2-chain.

(ii) Express V by H via Ohm’s law: V = R∂H.

(iii) Determine H from the equation 0 = dV = dR∂H.
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We are not going to enter into an explanation as to whether/why these two methods always work

(this is done at length in the textbook by Bamberg & Sternberg: A Course in Mathematics for

Students of Physics, volume 2, Cambridge University Press, 1990). Instead, we content ourselves

by illustrating them at the above example.

Node potential method. The first remark to make here is that the electrostatic potential Φ

never is uniquely determined: if Φ solves V = − dΦ for a given V , then so does Φ + const. We

fix this arbitrariness by setting (any) one of the node potentials to zero. For the network at hand

(which is the example network given at the beginning of this subsection) we choose Φ(B) = 0.

Since Vbatt = V (α) = Φ(B)− Φ(C), we then have

Φ = Φ(A)A∗ − VbattC
∗ + Φ(D)D∗

with unknowns Φ(A) and Φ(D). Application of the coboundary operator gives the voltage:

−V = dΦ = Φ(A)(−β∗ − γ∗ − δ∗)− Vbatt(α
∗ + β∗ + φ∗) + Φ(D)(δ∗ + ε∗ − φ∗).

The 1-cochain V so obtained automatically satisfies Kirchhoff’s second rule.

Next we use Ohm’s law to express the current by the unknowns:

I = R−1V = Ibattα +R−1
β

(
Vbatt + Φ(A)

)
β +R−1

γ Φ(A) γ

+R−1
δ

(
Φ(A)− Φ(D)

)
δ −R−1

ε Φ(D) ε+R−1
φ

(
Vbatt + Φ(D)

)
φ.

Finally, we take the boundary of the current I, and organize the answer by nodes:

∂I =
(
−R−1

β

(
Vbatt + Φ(A)

)
−R−1

γ Φ(A)−R−1
δ

(
Φ(A)− Φ(D)

))
A

+
(
− Ibatt +R−1

γ Φ(A) +R−1
ε Φ(D)

)
B

+
(
Ibatt +R−1

β

(
Vbatt + Φ(A)

)
+R−1

φ

(
Vbatt + Φ(D)

))
C

+
(
R−1

δ

(
Φ(A)− Φ(D)

)
−R−1

ε Φ(D)−R−1
φ (Vbatt + Φ(D)

))
D.

It would now appear that the system is overdetermined, as there are 4 equations to satisfy with

3 unknowns, namely Φ(A), Φ(D) and Ibatt. Fortunately all of the equations are not independent:

if Kirchhoff’s first rule is satisfied at all nodes but one, then it is automatically satisfied also at

the last node. To see why this always holds true, let f ∈ C0(K) be some constant function,

f(A1) = f(A2) = . . . = f(AN0). Evaluating such a function on the 0-chain ∂I we are guaranteed

to get zero:
⟨
f, ∂I

⟩
=

⟨
df, I

⟩
= 0, as the coboundary of any constant function vanishes (recall

that d “differentiates”). [Another characterization of the situation is to say that the boundary

operator ∂ : C1(K) → C0(K) of a connected network fails to be surjective by dim coker ∂ = 1.]

Thus
⟨
f, ∂I

⟩
= 0 or, equivalently,

∑
i(∂I)i = 0. And, indeed, if we add up the coefficients of the

nodes A,B,C,D in our example, we do get identically zero. Therefore, we may delete (any) one

of these coefficients, and solve the remaining 3 linear equations from ∂I = 0 for the 3 unknowns

Φ(A), Φ(D), and Ibatt.
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Mesh current method. The resistive network under consideration has three 2-cells, which we

chose to denote by red, blue, and green. Thus, the vector space C2(K) is 3-dimensional and the

most general ansatz for H reads

H = Hred · red +Hblue · blue +Hgreen · green

with unknowns Hred, Hblue, and Hgreen. An expression for the current I results on forming the

boundary of H,

I = ∂H = Hred(γ − δ + ε) +Hblue(−β + δ + φ) +Hgreen(α− ε− φ).

From this we get the voltage 1-cochain V by using Ohm’s law:

V = R∂H = Vbatt α
∗ −Rβ Hblue β

∗ +Rγ Hred γ
∗ +Rδ (−Hred +Hblue) δ

∗

+Rε (Hred −Hgreen) ε
∗ +Rφ (Hblue −Hgreen)φ

∗.

Here we isolated the battery 1-cell α and set the coefficient of the dual element α∗ to Vbatt, in

keeping with the setup specified at the outset.

In the next step we compute the coboundary of V :

dV =
(
Rγ Hred −Rδ (−Hred −Hblue) +Rε (Hred −Hgreen)

)
red∗

+
(
Rβ Hblue +Rδ (−Hred +Hblue) +Rφ (Hblue −Hgreen)

)
blue∗

+
(
Vbatt −Rε (Hred −Hgreen)−Rφ (Hblue −Hgreen)

)
green∗.

Imposing Kirchhoff’s second rule, dV = 0, we then obtain 3 equations for the 3 unknowns Hred,

Hblue, and Hgreen. These equations can be arranged in matrix form as follows:Rγ +Rδ +Rε −Rδ −Rε

−Rδ Rβ +Rδ +Rφ −Rφ

−Rε −Rφ Rε +Rφ

 Hred

Hblue

Hgreen

 =

 0
0

−Vbatt

 ,

which is a linear system of the type Ax = b. The solution x = A−1b always exists here, since the

symmetric matrix A formed from the resistances is positive and hence invertible.

Let us end with a word on the physical meaning of the 2-chain H =
∑

k HkΣk. Ultimately,

we will recognize H (from Ampere’s law) as the magnetic excitation (or, rather, as the 2-chain

model thereof), but for now we will simply say this: Hk can be viewed as the partial current (or

mesh current) circulating around the kth face. In our example, this is clear from the relations

Iα = Hgreen, Iβ = −Hblue, Iγ = Hred, Iδ = Hblue −Hred, Iφ = Hblue −Hgreen, Iε = Hred −Hgreen.

D
greenH

A

C

B
redH

blueH
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4.5 Capacitive networks

In the previous section we took a 2-complex K and placed resistors on its 1-cells to form a resistive

network. Now we do the same thing using capacitors instead of resistors. Thus, let there be some

2-complex with 1-cells γj (j = 1, . . . , N1). On each of these we put a capacitor, denoting the

capacitance on the jth 1-cell by Cj . The capacitors are connected to each other via the nodes of

K. An example of such a capacitive network is shown in the next figure. We will use this example

for illustrative purposes below.

2−complex K

A B D

E

βα

δ γ
red

Cδ Cγ

capacitive network
Cα Cα

Initial state. To get started, let the network be in a neutral state. This means that we took

care to discharge all the capacitor plates (in case they had been charged earlier) and there are no

superfluous charges on the nodes either. Starting from this neutral situation we then prepare the

network in a specific charged state by transferring charges (usually, electrons) between the nodes

of the network by using, say, a battery. After that process there is a nonzero amount of charge on

each node, although the total charge (summed over all nodes) still vanishes since all we did was to

instigate internal charge transfer. To do the book keeping, we assemble all the information about

the node charges into a 0-chain ρ =
∑N0

i=1 ρiAi, with ρi being the charge transferred onto node Ai .

The vanishing of the total charge – referred to as global charge neutrality – implies
⟨
f, ρ⟩ = 0 for

any f ∈ C0(K) with constant values on the nodes.

Stationary state. The extra charges placed on the nodes will not stay there, as such a con-

figuration would not be energetically favorable. Rather, the positive and negative charges forced

upon the nodes will seek to recombine so as to restore the original state of local charge neutrality

(the state of minimal electric energy). They are prevented from doing so by the insulating layer

between the two plates of each capacitor. Thus the node charges move to the capacitors and

accumulate on the capacitor plates. After a brief transient period of charge redistribution the

capacitive network will have settled down in a stationary state, which is the energetically lowest

configuration accessible in the presence of the constraints posed by the experimental setup.

Capacitor charges and voltages. The capacitors are now charged – each of them by some

pair of charges (Qj,−Qj) on opposite plates. Our goal is to compute these capacitor charges Qj,

given the capacitances Cj and the data about the charge transfer between nodes, ρ. For that

purpose it is convenient (and also natural) to assemble the information about the charge state

of the capacitors into a 1-chain: Q =
∑N1

j=1Qj γj . Now by the definition of what is meant by a

capacitor with capacitance Cj , the charge Qj on the jth capacitor is accompanied by a voltage

Vj = Qj/Cj between the plates of that capacitor. All these voltages determine a voltage 1-cochain
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V =
∑

j Vj γ
∗
j . This concludes our discussion of basic definitions and setup, and we can now turn

to formulating the algebraic problem to be solved.

Network equations. The equilibrium state of the capacitive network is determined by three

sets of equations:

−∂Q = ρ, Q = CV, dV = 0. (4.25)

The last set is familiar: it is Kirchhoff’s second rule, stating that the sum of the voltages around

any boundary loop of the capacitive network vanishes. The middle set encodes the information

about the capacitances of the network. We define C : C1(K)→ C1(K) to be the linear operator

with the property Cγ∗
j = Cjγj (j = 1, . . . , N1). The “global” equation Q = CV then succinctly

summarizes all the local relations Qj = CjVj .

The first set, −∂Q = ρ, expresses the fact that all capacitor charges stem from node charges.

The minus sign in the equation invites some explanation. What enters here is a sign convention

for making the assignment of a pair (Qj,−Qj) to a pair of capacitor plates. The convention is

that as we follow along the directed 1-cell γj , the first capacitor plate we encounter carries charge

Qj , and the second one charge −Qj . To illustrate, consider the node B of our example:

−Q

−Q

ρ

δ

α
+Qα α B

δ

B

β+Q β

β
δ

−Q
.

+Q

Charge conservation means that ρB = −Qα +Qβ +Qδ , and this equals −(∂Q)B because

−Qα +Qβ +Qδ = −Qα(∂α)B −Qβ(∂β)B −Qδ(∂δ)B

= −
(
∂(Qαα+Qββ +Qγγ +Qδδ)

)
B
= −(∂Q)B.

Given a set of node charges ρ, how do we solve the equations of a capacitive network for Q

and V ? As with resistive networks, there exist (at least) two major strategies. The first of these

proceeds by reduction to Poisson’s equation and will now be described in some detail.

Poisson’s equation. Just as in the node potential method of Section 4.4, we start by solving

dV = 0 through the introduction of a potential: V = −dΦ, thereby obtaining an expression for

the capacitor charges as Q = CV = −CdΦ. Inserting this expression into −∂Q = ρ , we get an

equation solely for the unknown potential:

∂ CdΦ = ρ . (4.26)

The operator on the left-hand side,

△ := −∂ Cd, (4.27)
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is called the Laplace operator of the capacitive network. Using it, we can write the equation for

Φ in the concise form of Poisson’s equation:

−△Φ = ρ. (4.28)

What can we say about the existence and uniqueness of solutions to Poisson’s equation? To

give some sort of answer, we need a few basic facts about the Laplace operator△. First of all, note

that △ = −∂ Cd is a linear mapping from the vector space W = C0(K) into the dual vector space

W ∗ = C0(K). It therefore makes sense to ask whether △ is symmetric. Indeed, the canonical

adjoint of any linear operator L : W → W ∗ is still a linear operator Lt : W → W ∗, and one may

compare L with Lt. The operator L is called symmetric if L = Lt.

Symmetry of △. The Laplace operator

△ = −∂ CdΦ : C0(K)→ C0(K) (4.29)

of a capacitive network is symmetric: △ = △t.

Proof. Consider first the capacitance operator C : C1(K) → C1(K). If U =
∑

j Uj γ
∗
j and

V =
∑

j Vj γ
∗
j are any two 1-cochains, we have

⟨
U, CV

⟩
=

N1∑
j=1

Cj Uj Vj =
⟨
V, CU

⟩
. (4.30)

Thus C is symmetric. Now let f and Φ be any two functions (or 0-cochains) on K. The proposed

statement then follows from a one-line computation using the fact that the coboundary operator

d is canonically adjoint to the boundary operator ∂:⟨
f,△Φ

⟩
= −

⟨
df, CdΦ

⟩
= −

⟨
dΦ, Cdf

⟩
=

⟨
Φ,△f

⟩
. � (4.31)

Kernel and cokernel of △. In order for the solution of Poisson’s equation −△Φ = ρ to exist and

be unique, the Laplace operator would have to be bijective. Unfortunately, △ : C0(K)→ C0(K)

is neither injective nor surjective. Indeed, the coboundary operator d annihilates the constants, so

△ = −∂ Cd has a nonvanishing kernel; and any boundary in C0(K) is annihilated by the constant

functions (⟨f, ∂Q⟩ = 0 if df = 0), so △ also has a nonvanishing cokernel.

If the networkK is connected, as we shall suppose henceforth, the constant functions f ∈ C0(K)

are the only functions annihilated by d. If all capacitances are nonzero and positive, the same

holds true for △. The kernel of △ is then one-dimensional:

dim ker△ = 1, (4.32)

and to improve the situation concerning the existence and uniqueness of solutions of Poisson’s

equation, we may proceed as follows. Let Z0(K) denote the one-dimensional vector space of

constant functions f ∈ C0(K), and B0(K) the vector space of boundaries in C0(K)

Z0(K) = {f ∈ C0(K) | df = 0}, B0(K) = {c ∈ C0(K) | ∃γ ∈ C1(K) : c = ∂γ}. (4.33)
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Given Z0(K) we may pass to the quotient C0(K)
/
Z0(K), the vector space of 0-cochains modulo

the constants. [More formally, C0(K)
/
Z0(K) is the vector space of equivalence classes [f ] given

by the equivalence relation f1 ∼ f2 ⇔ f1 − f2 = const.] The space C0(K)
/
Z0(K) can be viewed

as being dual to B0(K). Indeed, if ∂Q ∈ B0(K), then
⟨
f, ∂Q

⟩
=

⟨
f + const, ∂Q

⟩
, so the value of

an equivalence class [f ] ∈ C0(K)
/
Z0(K) on ∂Q is well-defined, and [f ] lies in the dual of B0(K).

Conversely, any linear function on B0(K) is easily seen to correspond to a unique element of

C0(K)
/
Z0(K). Moreover, the pairing between C0(K)

/
Z0(K) and B0(K) by ([f ], ∂Q) 7→

⟨
df,Q

⟩
is non-degenerate. A particular consequence of all this is that the two spaces have the same

dimension:

dimB0(K) = dimC0(K)
/
Z0(K). (4.34)

Consider now the Laplace operator [△] obtained from △ : C0(K)→ C0(K) by restriction:

[△] : C0(K)
/
Z0(K)→ B0(K), (4.35)

which is well-defined since △ annihilates Z0(K). By construction, the restricted operator [△] has

zero-dimensional kernel and hence is injective. The operator [△] is still symmetric – this follows

by essentially the same argument as for △. As a result, injectivity of [△] also implies surjectivity

of this operator, so [△] is a bijection and possesses an inverse [△]−1. Thus the restricted Poisson

equation has a unique solution:

−[△][Φ] = ρ ⇐⇒ [Φ] = −[△]−1ρ . (4.36)

Physically speaking, two aspects are of importance here. For one, Poisson’s equation −△Φ = ρ has

a solution if and only if ρ is a boundary, i.e. if the total charge on the capacitive network vanishes.

[The condition ρ ∈ B0(K) is equivalent to
∑

i ρi = 0.] Thus it was by no means accidental that

ρ was constructed by internal charge transfer starting from a neutral network: this setup was to

ensure global charge neutrality, ρ ∈ B0(K), which in turn guarantees the existence of a solution

of the network equations.

The second aspect of importance is that the solution spaces of −△Φ = ρ are always of the

affine form Φ0+Z0(K). Thus solutions come as one-parameter families (parameterized by Z0(K)),

and to make the solution unique we should mod out the constants Z0(K). An alternative recipe

is to pick some node, say N , and remove the indeterminacy by setting Φ(N) ≡ 0.

Weyl’s method of orthogonal projection. After this discussion of the solution strategy via

Poisson’s equation, we briefly touch on a second strategy, which will be seen to have some similarity

with the mesh current method for resistive networks:

(i) Pick any set of capacitor charges Q0 ∈ C1(K) that satisfy −∂Q0 = ρ. (Such a set exists if

ρ ∈ B0(K), and is usually easy to find.)

(ii) Make the most general ansatz for Q:

Q = Q0 +Q1 ,
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where the 1-chain Q1 is subject to the condition ∂Q1 = 0 (to preserve −∂Q = −∂Q0 = ρ).

(iii) To satisfy Kirchhoff’s second rule dV = 0, choose Q1 in such a way that V = C−1Q =

C−1(Q0 +Q1) becomes a coboundary: V = −dΦ.

The last step – known as Weyl’s method of orthogonal projection – deserves some explanation.

Let the vector space of closed chains (or cycles) in C1(K) be denoted by Z1(K), and the vector

space of coboundaries in C1(K) by B1(K):

Z1(K) = {c ∈ C1(K) | ∂c = 0}, B1(K) = {ω ∈ C1(K) | ∃f ∈ C0(K) : ω = df}. (4.37)

B1(K) is the annihilator space of Z1(K): a coboundary df ∈ B1(K) gives zero on every 1-cycle

c ∈ Z1(K) and (by general principles of linear algebra) every annihilator of Z1(K) must be of that

form. To establish the mathematical basis of Weyl’s method, consider the inner product (· | ·)C on

C1(K) defined by

(U |V )C :=
⟨
U, CV

⟩
. (4.38)

This is a positive symmetric bilinear form, by the symmetry and positivity of C.
Given B1(K) ⊂ C1(K), we can ask: what is the orthogonal complement of B1(K) with respect

to this inner product? The orthogonal complement certainly contains the vector space C−1Z1(K),

for the inner product of df ∈ B1(K) with C−1γ ∈ C−1Z1(K) always vanishes:

(df | C−1γ)C = ⟨df, γ⟩ = ⟨f, ∂γ⟩ = ⟨f, 0⟩ = 0. (4.39)

Because B1(K) is the annihilator space of Z1(K), the dimensions of this pair must add up to that

of C1(K), and since C : C1(K)→ C1(K) is an isomorphism, we infer that

dimB1(K) + dim C−1Z1(K) = dimC1(K). (4.40)

Thus the dimensions match and we conclude that C−1Z1(K) is precisely the orthogonal comple-

ment of B1(K) with respect to the inner product (· | ·)C:

C1(K) = B1(K)⊕ C−1Z1(K). (4.41)

Having established this orthogonal decomposition, we take π to be the orthogonal projector

π : C1(K)→ B1(K). Then, if V0 = C−1Q0 (and −∂Q0 = ρ), Weyl’s method of solution is to put

V := π(V0). (4.42)

Indeed, V ∈ B1(K) by construction, so Kirchhoff’s second rule (dV = 0) is satisfied. Moreover,

since

V − V0 = −(1− π)(V0) ∈ C−1Z1(K), (4.43)

we have V = V0 + C−1Q1 = C−1(Q0 +Q1) with Q1 ∈ Z1(K). Thus −∂Q = −∂(Q0 +Q1) = ρ still

holds, and Weyl’s answer V = π(V0) solves the equations of the capacitive network. Because the

solution for the voltage (as opposed to the potential) is unique, it is the solution of the problem.
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4.5.1 Math tutorial: quotient of vector spaces

Given a vector space V (over K = R, or K = C) let there be a subvector space U ⊂ V . By

definition, the quotient space V/U is the set of equivalence classes [v] = [v+U ] (for v ∈ V ) defined

by the equivalence relation

v1 ∼ v2 ⇐⇒ v1 − v2 ∈ U. (4.44)

Any element v0 ∈ V such that [v0] = [v] is called a representative of the equivalence class [v] ∈ V/U .

The quotient space V/U is another vector space (still over K). The operations of addition and

scalar multiplication on V/U are defined by

[v] + [v′] = [v + v′], λ · [v] = [λ · v]. (4.45)

One easily verifies that these definitions are independent of the choices of representative. The

vector space dimension of V/U is

dimV/U = dimV − dimU. (4.46)

Example & exercise. Let V = R3 (with K = R), and let U = R · u ⊂ V where u ∈ R3,

u ̸= 0. Then the quotient vector space V/U is two-dimensional. It can be visualized as the space

of straight lines in R3 which are parallel to the line U = R · u. Such a space of straight lines

has the structure of a vector space because straight lines can be added and multiplied by scalars.

How?

4.5.2 Math tutorial: annihilator space

Let V be a vector space (still over K = R, or K = C), and let V ∗ be its dual vector space. By the

definition of V ∗ we have the canonical pairing V ∗ ⊗ V → K by evaluation f ⊗ v 7→ f(v). Now let

U ⊂ V be a subvector space. Then the annihilator space U⊥ ⊂ V ∗ is defined to be

U⊥ = {f ∈ V ∗ | ∀u ∈ U : f(u) = 0}. (4.47)

Thus U⊥ consists of the linear functions f ∈ V ∗ that annihilate every vector u ∈ U . The

dimensions of U and U⊥ are related by

dimU⊥ = dimV − dimU. (4.48)

Indeed, U⊥ is canonically paired with V/U .

Remark & exercise. Given the ambient vector space V (and its dual V ∗), the correspondence

U ↔ U⊥ is a one-to-one correspondence between subvector spaces. Thus when dealing with, say

a linear form f ∈ V ∗, we have the option of visualizing it via (K · f)⊥ (actually, as an element in

V/(K ·f)⊥ dual to f). This is the fundamental idea behind our scheme of “visualization” of forms

which was introduced in the Lecture Course on Mathematical Methods (winter term 14/15). Can

you fill in the details of how this goes?
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4.6 Boundary-value problems

In this section we continue our study of capacitive networks. What we have investigated so far

were isolated networks. We assumed the distribution of node charges ρ ∈ B0(K) to be known and

held fixed, and we viewed the electric potential Φ (and the derived capacitor voltages V = −dΦ
and capacitor charges Q = CV ) as the unknowns of the problem.

A different though related type of question arises if we connect some of the nodes to the

external world, thereby enabling charge flow into or out of the capacitive network. Such a change

in the physical setup results in a reshuffle between the knowns and unknowns of the mathematical

formulation of the problem. There will still be nodes where the charge is given and the potential is

to be determined. However, there will now be some other nodes – those connected to the external

world – where what we prescribe is the potential, and what we seek is the charge.

Basic setting. As before, we are given some complex K with capacitances assigned to its 1-cells,

and what we are looking for are solutions of Poisson’s equation −△Φ = ρ with network Laplacian

△ = −∂ Cd. The new feature is a split of the set of nodes into two subsets: interior (i) nodes, and

boundary (b) nodes. Mathematically, this means that we are given vector space decompositions

C0(K) = C i
0(K)⊕ C b

0 (K) and C 0(K) = C 0,i(K)⊕ C 0,b(K) (direct sums).

For example, in the network used for illustration in the previous section, we could take the

interior nodes to be B and D, spanning the vector space C i
0(K). The remaining two nodes, A and

E, would then be boundary nodes, spanning the vector space Cb
0 (K).

. .

.

. D

C
C

E

A

C α
B

C β

δ

γ

Problem posed. The general question we can ask in such a setting is this: given ρ(i) ∈ C i
0(K)

(charges in the interior) and Φ(b) ∈ C 0,b(K) (prescribed potential on the boundary), what is the

potential in the interior, Φ(i) ∈ C 0,i(K), and the charge distribution on the boundary, ρ(b) ∈
C b

0 (K)? In other words, given ρ(i) and Φ(b), we are to find Φ(i) and ρ(b) from the condition that

Φ = Φ(i) + Φ(b) and ρ = ρ(i) + ρ(b) satisfy Poisson’s equation −△Φ = ρ. By linearity, this general

problem decomposes into two complementary subproblems:

(i) In a Poisson problem, one specifies some charge distribution ρ(i) in the interior, while setting

Φ(b) ≡ 0 on the boundary nodes.

(ii) In a Dirichlet problem, the prescribed data is the boundary potential Φ(b), while the interior

is free of charges: ρ(i) ≡ 0.
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In both cases the unknowns to be determined are the potential in the interior, Φ(i), and the

boundary charges, ρ(b).

A standard tool in the construction of solutions for both types of boundary-value problem

is the Green’s function, which we are now going to define. For that purpose, let △int be the

restriction of the Laplacian △ to the interior of the network:

−△int : C 0,i(K)
d−→ C1(K)

C−→ C1(K)
∂−→ C i

0(K). (4.49)

Note that this is not just the Laplacian of the network truncated to its interior part, as the

intermediate spaces C1(K) and C1(K) are the full spaces of 1-cochains resp. 1-chains of K.

Green’s function. If K is a complex with a decomposition C0(K) = C i
0(K) ⊕ C b

0 (K) into an

interior and a boundary part, the Green’s function G for K is a function on pairs of nodes

A,B 7→ G(A,B) ∈ R, (4.50)

with the properties

(i) (−△intG)(•, p) = 1 ·p for every interior node p (and△int acts on G(•, p) viewed as a function

of its first argument with p being a parameter);

(ii) G(A,B) = 0 if at least one of A,B is a boundary node.

Existence and uniqueness. The Green’s function G exists and is unique provided that the

capacitance operator C : C1(K) → C1(K) is positive and dimC b
0 (K) ≥ 1 (i.e. there must be

at least one boundary node). In the proof one first shows that △int : C 0,i(K) → C i
0(K) is an

isomorphism under the specified conditions. The existence and uniqueness of the Green’s function

G then follows because G is essentially the inverse of −△int. We add the trivial remark that G

depends on the choice of boundary: if we change the decomposition C0(K) = C i
0(K) ⊕ C b

0 (K),

then the Green’s function changes.

Interpretation. From the definition of the Green’s function we see that Φ ≡ G(•, p) solves the
Poisson problem with interior charge distribution ρ(i) = 1 · p. Thus, G(A, p) is to be interpreted

as the value of the electric potential at the node A that results on placing a unit charge on the

interior node p when all boundary nodes are grounded.

Exercise. The Green’s function is symmetric: G(A,B) = G(B,A).

Example. Consider the capacitive network displayed at the beginning of the section. A quick

computation shows its restricted Laplacian to be

−△int = (Cα + Cβ + Cδ)B ⊗B − Cβ(B ⊗D +D ⊗B) + (Cβ + Cγ)D ⊗D. (4.51)

The tensor product notation simply means that A⊗B : C 0 → C0 is the mapping Φ 7→ A ·Φ(B)

(evaluation on the second factor). We see that △int is symmetric, as expected on general grounds.
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By definition, the Green’s function (restricted to the interior) is given by inverse of the matrix of

−△int: (
G(B,B) G(B,D)
G(D,B) G(D,D)

)
=

(
Cα + Cβ + Cδ −Cβ

−Cβ Cβ + Cγ

)−1

. � (4.52)

Solution of Poisson problem. Since G(•, p) solves the Poisson problem with data ρ(i) = 1 · p ,
it is clear by linearity that the solution for the potential of the general Poisson problem with data

ρ(i) =
∑

ρ
(i)
p · p is

Φ =
∑

interior

G(•, p) ρ(i)p . (4.53)

Poisson kernel. To find the corresponding boundary charge distribution ρ(b) we simply apply

the (full) Laplacian to the potential and evaluate Poisson’s equation on the boundary. Restricting

the 0-chain (△G)(•, p) to the boundary and expanding it as

(△G)(•, p)(b) =
∑

boundary

R ·KR(p) (4.54)

with real coefficients KR(p), we obtain

ρ
(b)
R = −

∑
interior

KR(p) ρ
(i)
p . (4.55)

The coefficients KR(p) organize into what is called the Poisson kernel of the complex K. The

Poisson kernel obviously has the following physical meaning: KR(p) is the influence charge that

accumulates on the boundary node R if a negative unit charge is placed at the interior node p and

the boundary is grounded.

Green reciprocity. We turn to describing the solution of the Dirichlet problem in terms of the

Green’s function and the Poisson kernel. To that end, we need to develop some further theoretical

background. Recall that the network Laplacian is symmetric: △ = △t. Thus if Φ,Φ′ (not a

derivative) is any pair of potentials, we have⟨
Φ′,△Φ

⟩
=

⟨
Φ,△Φ′⟩. (4.56)

Now let ρ = −△Φ and ρ′ = −△Φ′ be any two solutions of Poisson’s equation. Then the symmetry

of △ entails ⟨
Φ′, ρ

⟩
=

⟨
Φ, ρ′

⟩
. (4.57)

This identity is referred to as Green’s reciprocity theorem. (Note that no reference is made here

to a choice of boundary for K.) With ρ = −∂Q and ρ′ = −∂Q ′ a related statement is⟨
V ′, Q

⟩
=

⟨
V,Q ′⟩. (4.58)

Solution of Dirichlet problem. Green’s reciprocity theorem opens a quick path to the solution

of Dirichlet-type problems as follows. We decompose both sides of Eq. (4.57) into an interior and

a boundary contribution:∑
interior

Φ′(A) ρA +
∑

boundary

Φ′(B) ρB =
∑

interior

Φ(A) ρ′A +
∑

boundary

Φ(B) ρ′B . (4.59)
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Next, let Φ, ρ be the solution of a Dirichlet problem and Φ′, ρ′ the solution of a Poisson problem.

Both terms on the left-hand side of Eq. (4.59) then vanish; the first one does so by ρ(i) = 0 (Dirichlet

problem), and the second one by Φ′(b) = 0 (Poisson problem). If we now take the Poisson data

to be ρ′A = δA, p , then by inserting the known solution ρ′R = −KR(p) for the boundary charges of

the Poisson problem, we deduce

Φ(i)(p) =
∑

boundary

Φ(b)(R)KR(p) . (4.60)

Summary. We see that the Poisson kernel plays a double role in the theory. On one hand,

in a Poisson problem it determines the boundary charges in terms of the interior charges. In a

Dirichlet problem, on the other hand, it expresses the potential in the interior by the potential on

the boundary. As we have shown, this double role is a consequence of Green’s reciprocity theorem.

In conclusion, we have:

Poisson problem: ρ
(b)
R = −

∑
interior

KR(p) ρ
(i)
p .

Dirichlet problem: Φ(i)(p) = +
∑

boundary

Φ(b)(R)KR(p).

Of course, given the solution for the potential we can easily compute the boundary charges of a

Dirichlet problem from ρ = −△Φ.

Example. To illustrate, consider an arrangement of three concentric conducting spheres (in

relative isolation) with radii rA < rB < rC . Place a charge ρB on the middle sphere and connect

the inner and outer sphere to the ground (this is a Poisson-type problem). We then ask: what are

the influence charges ρA and ρC on the two grounded spheres? This question has a quick answer

using Green reciprocity. Before disclosing it, let us construct the answer from the full formalism.

We map the system of three concentric spheres to a capacitive network with three nodes

A,B,C. The nodes of the network are arranged in sequence, with a 1-cell α connecting A and

B, and a 1-cell γ connecting B and C. From elementary considerations, the capacitances to be

assigned to these 1-cells are Cα = 4πε0(r
−1
A − r−1

B )−1 and Cγ = 4πε0(r
−1
B − r−1

C )−1. A and C are

boundary nodes, B is an interior node.

A B C
C Cα β

rA
rB

rC

From rotational symmetry, it is clear that the capacitive network faithfully reflects the physics

of the system of spheres. The answer to the question posed can then be found by applying the

general machinery: we write down the interior Laplacian △int, find the Green’s function G(B,B)
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by inversion of −△int, and compute the Poisson kernel coefficients KA(B) and KC(B). The result

for the influence charges is

ρA = −KA(B) ρB = − Cα

Cα + Cγ

ρB , ρC = −KC(B) ρB = − Cγ

Cα + Cγ

ρB . (4.61)

Short cut. Here is how to get this answer more quickly. Instead of attacking the Poisson problem

directly, we first solve the corresponding Dirichlet problem. Thus we prescribe potential values

Φ(A) and Φ(C) and set ρB = 0. Since there is now zero charge between the inner and the

outer sphere, the intermediate potential Φ(B) must divide the interval between Φ(A) and Φ(C)

according to Coulomb’s law:

Φ(A)− Φ(B)

Φ(B)− Φ(C)
=

r−1
A − r−1

B

r−1
B − r−1

C

=
Cγ

Cα

. (4.62)

From the solution of this equation for Φ(B),

Φ(B) = Φ(A)
Cα

Cα + Cγ

+ Φ(C)
Cγ

Cα + Cγ

, (4.63)

we read off the Poisson kernel KA(B) = Cα/(Cα + Cγ) and KC(B) = Cγ/(Cα + Cγ). Green

reciprocity then immediately returns our answer (4.61) for the boundary charges ρA and ρC of the

Poisson problem with interior charge ρB .
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