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The ground state of any time-reversal-invariant system of an odd number of electrons moving in a
disordered normal-metal ring is doubly degenerate by Kramers’ theorem. We argue that the degen-
erate ground state is current carrying if the electrons experience scattering by a spin-orbit field. The
insertion of an Aharonov-Bohm flux ¢ lifts the degeneracy, thereby causing the zero-temperature per-
sistent current to vary discontinuously with ¢ at ¢=0. This conclusion holds true irrespective of the
presence of electron-electron interactions and potential scattering by impurities.

When a Hamiltonian system does not have a unique
ground state but possesses a continuous family of degen-
erate ground states instead, a number of interesting phe-
nomena take place: the state of the system is determined
by history (or preparation); there exists some observable,
called the “order parameter,” that depends nonanalytical-
ly on the external field which it couples to; and there may
exist some spontaneously broken symmetry.! The para-
digm of such behavior are ferromagnets, where magneti-
zation is a nonanalytic function of the applied magnetic
field, and rotational symmetry is spontaneously broken.
While spontaneous breakdown of symmetry is found ex-
clusively in systems with an infinite number of degrees of
freedom, the other features, namely, a continuous family
of degenerate ground states and nonanalytic dependence
of the order parameter on the symmetry-breaking field,
may occur in finite quantum systems as well. An example
thereof is presented in this paper.

One of the exciting recent developments in mesoscopic
physics is the demonstration by Levy et al. % that persistent
currents in isolated disordered normal-metal rings, whose
existence had been predicted by Biittiker, Imry, and Lan-
dauer? in 1983, are observable under currently available
experimental conditions. Three prerequisites are neces-
sary in order for persistent currents to exist: the multiply
connected topology of a ring, phase coherence of the elec-
tron wave function over distances of the order of the cir-
cumference of the ring, and an Aharonov-Bohm flux
threading the ring. Although the phenomenon is thought
to be qualitatively understood, it has proved difficult*~° to
explain the unexpectedly large magnitude of the persistent
current observed in the experiment of Ref. 2. According
to current opinion, which has received further substance
by the very recent experiment of Chandrasekhar ezal.,” a
quantitative understanding will come from careful
analysis of the screened Coulomb interaction between the
electrons, first discussed by Ambegaokar and Eckern® in
this context.

The present paper is not concerned with the size of the
experimentally observed persistent current, but focuses on
its qualitative behavior for zero temperature and small
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values of the Aharonov-Bohm flux ¢ < ¢9=hc/e. To es-
tablish the context, let us first review what is known®
about this behavior for noninteracting electrons in an
ideal ring. Assuming the ring to be rotationally sym-
metric, one has that angular momentum is a good quan-
tum number. At zero flux, (almost) every energy level for
a single electron is doubly degenerate, since the energy
does not change when the sign of the angular momentum
is reversed. The flux couples to the orbital current, which
is proportional to angular momentum, and therefore the
degenerate levels are split when ¢ is changed from zero to
some small value. To obtain the ground state of the
noninteracting system, one successively fills the single-
electron levels up to the Fermi energy er. Because of the
occurrence and removal of degeneracy, the resulting
ground-state energy E(¢) has a cusp at ¢ =0, when the
total particle number is such that the pair of crossing
single-particle levels at ¢f is occupied by exactly one elec-
tron. Computing the total current /(¢) from the relation
1(¢p) =—dE(¢)/d¢, one sees that I(¢) depends discon-
tinuously on ¢ at ¢ =0. The size of the jump is deter-
mined by the single-level current at ef.

An essential, and unrealistic, ingredient to the above ar-
gument is rotational symmetry of the ring. The argument
in fact collapses when rotational symmetry is broken by
the introduction of an impurity potential. This leads to
avoided level crossings at zero flux, so that the cusp in the
ground-state energy is smoothed and current response to
flux becomes linear.’ So far, the spin degree of freedom
of the electron has been neglected. We shall now proceed
to show that the inclusion of spin has a significant effect,
provided that time-reversal-invariant interactions involv-
ing the spin, such as scattering by a spin-orbit field, are
present.

Consider the most general case of disordered system of
N interacting electrons moving in the multiply connected
geometry of a ring. For such a system, as in fact for any
system of N spin-% particles, two applications of the
time-reversal operator T result in T2y =(—1)"y for an
arbitrary state y. Now set ¢ =0 and assume the Hamil-
tonian H for zero flux to be invariant under time reversal.
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Then, if y is an eigenstate of H with energy E, so is the
time-reversed state Ty. Moreover, for odd N the two
states y and Ty must be linearly independent, since any
linear relation Ty=Ay (L € C) would be inconsistent
with T2y = —y.'® The statement we have just proven is
known as Kramers’ theorem'' and can be found in stan-
dard textbooks on quantum mechanics. 2

Given a Kramers pair y and T y of degenerate energy
eigenstates with an odd number of electrons, consider the
matrix j of the (orbital) current operator J in the two-
dimensional subspace spanned by this pair. Every current
in physics is required to be odd under time reversal.
Therefore,

=y, )=y, T " UTy) =(Ty,JTy)*, (1)

the second equality sign being a consequence of the an-
tiunitarity'3 of T. Equation (1) in conjunction with the
Hermitecity of J yields for the matrix elements of the 2x2
matrix j the relations j;; = —j € R and j{2 =j,. These
are expressed most succinctly by writing

3

J =/.§| JkOk , @

where o) are the Pauli matrices and j; (k =1, 2, 3) are
real numbers. There exist no further constraints on j from
general symmetry principles beyond those stated and, in
particular, there is no cogent reason why j should be zero.
(Note, however, that in a singly connected isolated system
j=0 would be in conflict with current conservation.)
Therefore, j does not vanish, in general.

Now, perturb the system by introducing a small
Aharonov-Bohm flux. To calculate the resulting effect on
the degenerate energies of a pair of ground states y and
T y, use singular perturbation theory and diagonalize the
perturbation in the two-dimensional subspace spanned by
v and Ty. The perturbation (equal to current operator
times flux) is represented by the 2X2 matrix j¢ in this
subspace.  Diagonalization gives the eigenvalues
+ ¢ltr(j2/2)1"2, which are different from zero unless j
vanishes identically. We thus see that the Kramers degen-
eracy of the ground state is lifted by flux, and the situation
is qualitatively similar to that for noninteracting electrons
in an ideal ring. Hence, by the same reasoning as before,
the persistent current for zero temperature depends
discontinuously on ¢ at ¢ =0:

1(¢) =Itr(j?/2)1"2sgn(p) . 3)

Let it be clearly stated how all this ties up with our in-
troductory remarks: There exists a two-dimensional mani-
fold (Riemann sphere) of degenerate ground states y*
given by y*=Ay+Ty (A € C); the symmetry-breaking
field is the Aharonov-Bohm flux; and nonanalyticity
occurs in the order parameter, which is the persistent
current.

We wish to stress the generality of our conclusion (3),
which was derived on the basis of two conditions only: (i)
The Hamiltonian for ¢ =0 must be invariant under time
reversal but must possess no additional symmetries, and
(ii) the total number of electrons must be odd. The
second condition poses no limitations if instead of a single
ring a statistical ensemble of rings is considered whose
members contain an odd number of electrons with proba-

bility ¥. We emphasize, in particular, that the conclusion
is affected neither by electron-electron interactions nor by
impurity scattering, unless the impurities are of magnetic
type.

To illustrate the role of additional symmetries, we shall
now consider especially systems with disorder but without
spin interactions. As is well known® and was mentioned
earlier, the persistent current for such systems vanishes
with ¢ in the limit ¢— 0. It is instructive to see how this
follows from the above argument featuring the time-
reversal operator 7. Neither an Aharonov-Bohm flux nor
an impurity potential couples to spin. When the electron
spin takes part in none of the other interactions either,
there is perfect spin degeneracy. In such a situation we
may just as well consider spinless electrons and multiply
the result for the persistent current by a factor of 2 at the
end. For spinless particles, however, T?=+1 and T
coincides with complex conjugation when state vectors are
represented by functions on position space. In the absence
of flux, every eigenstate ¢ of the time-reversal-invariant
Hamiltonian H can be turned into a “real” eigenstate of
H by the replacement ¢— ¢ =¢+T¢. The state ¢, so
obtained is an eigenstate of 7 with eigenvalue +1. Let
the ground state y of H be chosen accordingly, and let
there be no additional symmetries, so that y is nondegen-
erate (ignoring spin). Then the relation T y =1y together
with Eq. (1) forces the real number (y,Jy) to be zero,
i.e., the ground state carries no current.

Of course, the crucial circumstance making the current
for ¢ =0 vanish by the above argument, is the possibility
to choose 7 w =y in the absence of spin. We thus perceive
the true reason why the current matrix j is nonvanishing,
and the persistent current discontinuous in ¢, under the
conditions given earlier: It is impossible to arrange for a
state with an odd number of spin-§ particles to be an
eigenstate of time reversal.

With the novel phenomenon of quantum jumps in the
persistent current of disordered metal rings now firmly es-
tablished as an effect that exists in principle, various ques-
tions related to experimental observability arise. How
strong a spin-orbit field is required? What can be said
about the typical size and the distribution of current
jumps in a statistical ensemble of rings? What are the
effects of finite temperature? We will answer these ques-
tions in the order in which they are asked. A measure of
the strength of the spin-orbit field is the inverse of the
spin-orbit scattering time 7so. We expect the relevant pa-
rameter to be tgsoA with A the single-electron level spac-
ing, since this is known to determine the scale for cross-
over to the spin-orbit (or “symplectic™) universality class
for noninteracting systems.'* According to what has been
said, tr(j?) vanishes for 7soA— oo, and we expect satura-
tion to occur for t50AK 1.

To gather information about the statistical distribution
of tr(j?), we pick a cross section S of the ring and com-
pute the current matrix j by integrating the corresponding
current density j(x) over S. (The choice of cross section
is arbitrary by current conservation.) Let us assume the
correlation length of j(x) to be much smaller than the
thickness of the ring.'> Under this assumption, the
current matrix j [being the integral of j(x) over S] is a
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sum of many independent random variables and each of
its components j; (k =1, 2, 3), introduced in Eq. (2), is
normally distributed by the action of the central limit
theorem. The variance of the distribution is the same in
each case because of the isotropic distribution of the spin-
orbit field in a thick ring, which leads to isotropy in the
two-dimensional manifold of degenerate ground states y™.
Finally, changing variables to the “‘length” Ide=r[tr(j2/
D12 =(jt+3+3)"? and “direction” j/I of the vector
with components (jy,j2,/3), we obtain for / the (normal-
ized) probability density

P(1)dl =

4]? 12
exp|——|dI, 4)
Vrid [ ]

where Iy is the typical value of /. To deduce the depen-
dence of /¢ on the number of “channels” M ~area (S),
we observe that j(x) scales with M as M ~', by the nor-
malization of wave functions. I§, being the variance of
V21, is proportional to the number of independent random
variall/)zles adding up to j, and we conclude that / scales as
M-

At finite temperature T, phase-breaking processes lower
the coherence of the many-electron wave function, there-
by reducing the dependence or E(¢) on ¢ and depressing
the persistent current. Here we disregard such processes
and consider only the consequences of replacing ground-
state energy by the free energy F = —kgTlogtrexp(— H/
kgT). Omitting from the partition sum all terms except
those coming from the pair of degenerate (at ¢=0)
ground-state energies E +(¢)=FE(0) = 1I¢, and differ-
entiating F with respect to flux, we obtain instead of (3)
the formula

I1(¢) =Itanh(I¢/kpT) , )

valid for kgT < A and ¢ < A/Iy. Thus, the singular behav-
ior of the persistent current is rounded off by finite tem-
perature, but the typical slope of 7(¢) at ¢ =0 diverges as
13/kgT for T— 0.

All of the above will now be further substantiated and
illustrated by direct calculation of /o for the case where
electron-electron interactions are absent. According to
our general picture, there exits pairs of crossing energy
levels whose splitting at ¢=0 (¢ small) is proportional to
the current I. Clearly, this splitting must be visible in the
flux-dependent energy-level correlation functions for a
single electron. We are thus led to consider a problem in
energy-level statistics.

It is convenient for our purposes to study Dyson’s two-
level correlation function R,(r), defined as the probability
density for finding two single-electron energy levels at a
distance rA, regardless of the positions of other levels.'®
In formal terms, R.(r) =AXv(ep)vier+ra))—8(r),
where v is the level density, and the subtraction of the o-
function eliminates self-correlations of the levels.
Efetov'* has shown how to calculate R, for small metallic
particles, using Berezin’s theory of superintegration and
the mapping onto a nonlinear o model. We here consider
the limit tspA < 1, where the system is in the symplectic
universality class perturbed by magnetic flux, and we take
¢ to be small compared to ¢o, so that the so-called zero-

mode approximation'* may be used. The latter reduces
the expression for R, to an integral over a single superma-
trix, which can be computed with the help of a variant of
Efetov’s method recently introduced by lida; see Ref. 17.
Having completed this computation, we realized that an
equivalent problem, which in random-matrix terminology
is called the crossover from Gaussian symplectic ensemble
to Gaussian unitary ensemble, had already been solved
completely by Mehta and Pandey'® in 1983. After intro-
duction of the proper physical units, our result for R,
reassuringly, coincides with theirs. It is given by

Ry(ria)=1—

. 2
sinunr
r

e 1
+f dx x sin(zrx)e ""Z"zf E,Xsin(ﬂry)e"z-”z.
1 0y

(6)
Here a=QrE./A)'"?¢/¢o, with E.=hDQr/L)? the
Thouless energy, D the diffusion constant, and L the cir-
cumference of the ring.
The integral over x in Eq. (6) is nonanalytic in a at
a=0. Asymptotic evaluation for a <1 gives

2
32,2 exp
a3

”2r2

4q?

R.(r;a) =R3™(r)+ , 7

where R3™ is Dyson’s two-level correlation function for
the Gaussian symplectic ensemble,'® with (nonstandard)
normalization f¢°[1 — R$™ (r)ldr=1. The a-dependent
term in (7) contracts to §(r)/2 in the limit a— 0, and it is
recognized as the peaklike structure that we expect to be
present in R, because of the splitting of degenerate energy
levels by the dimensionless flux @. From (7) and the rela-
tion

P(I)dI =2 1lim R,
¢ -0

ol K2
A ,a(¢)] L ®)

we see that the distribution function P(I) for the single-
level current I has the form (4), with the typical single-
level current /¢ given by
12
2E.A

V4

[0=‘2—
$o
Averaging Eq. (5) over the distribution (4), and using
(9), we obtain the following linear response of the per-
sistent current to flux ¢:
12EA (10)
kg Tod
The result (9) for Iy is easy to understand. We argued
earlier that /o scales with the number M of channels as
M ~Y2 In the limit under consideration, i.e., for
7s0A <1 and ¢— 0, there exist no other energy scales
beyond E. and A on which /o may depend. The only func-
tion of these parameters with the physical dimension of a
current and the correct dependence on M is (E. M) '/2/(1)0.
Recall that all of our results apply to systems with an
odd number of electrons. For even electron number,
where the effect of spin is less dramatic, we expect the

9)

(I(p))=
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analysis of Altland etal. ?® to be applicable. These au-
thors consider systems in the orthogonal universality class
perturbed by magnetic flux, and they obtain a zero-
temperature linear response (/(¢))~ E.¢/¢¢, which differs
from (10) by the absence of a factor of A/kgT. Thus,
there is a qualitative difference between even and odd par-
ticle number, suggesting the striking experimental possi-
bility of discriminating, at temperatures kgT <A, a sys-
tem with 107 electrons from another one with 107+1.

In summary, we have shown that any time-reversal-
invariant generic Hamiltonian for an odd number of elec-
trons moving in a disordered metal ring, possesses a two-
parameter family of current-carrying degenerate ground
states. The lifting of degeneracy by the insertion of an
Aharonov-Bohm flux ¢ causes the zero-temperature per-
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sistent current to jump at ¢ =0. This singular behavior is
destroyed neither by impurity scattering nor by electron-
electron interactions, but is rounded off by finite tempera-
ture only.

Note added in proof. A paper by O. Entin-Wohlman,
Y. Gefen, Y. Meir, and Y. Oreg [Phys. Rev. B 45, 11890
(1992)] has recently appeared in print which discusses the
drastic consequences of spin-orbit scattering and Kramers
degeneracy for the paramagnetic susceptibility at zero
flux.

We are grateful to K. B. Efetov, Y. Gefen, 1. V. Lerner,
H. A. Weidenmiiller, and V. I. Yudson for numerous
stimulating discussions. We are especially grateful to S.
lida for letting us use his unpublished work.
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