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Gaussian random-matrix ensembles defined over the tangent spaces of the large
families of Cartan’'s symmetric spaces are considered. Such ensembles play a cen-
tral role in mesoscopic physics, as they describe the universal ergodic limit of
disordered and chaotic single-particle systems. The generating function for the
spectral correlations of each ensemble is reduced to an integral over a Riemannian
symmetric superspace in the limit of large matrix dimension. Such a space is
defined as a pairG/H,M,), whereG/H is a complex-analytic graded manifold
homogeneous with respect to the action of a complex Lie superd@zoamdM, is

a maximal Riemannian submanifold of the supportGiH. © 1996 American
Institute of Physics.S0022-248806)00710-4

I. INTRODUCTION

The mathematics of supersymmetry, though conceived and developed in elementary particle
theory, has been applied extensively to the physics of disordered metals during the past decade.
Improving on earlier work by Wegnér Efetov’ showed how to approximately map the problem
of calculating disorder averages of products of the energy Green’s functions for a single electron
in a random potential, on a supersymmetric nonlineanodel. Later it was showfrthat the same
nonlinear ¢ model describes the large- limit of a random-matrix ensemble of the
Wigner—Dyson type. Since then, Efetov’s method has evolved into a prime analytical tool in the
theory of disordered or chaotic mesoscopic single-particle systems. Competing methods are lim-
ited either to the diffusive regiméhe impurity diagram technigieor to isolated systems in the
ergodic regimgthe Dyson—Mehta orthogonal polynomial methodr to quasi-one-dimensional
systemgthe DMPK equatioh In contrast, Efetov’'s method is applicable to isolated and to open
systems in the diffusive, ergodic, localized, and even ballistic regime, to both spectral correlations
and transport properties, and it can, in principle, be used in any dimension. This versatility has
engendered a large body of nontrivial applications, many of which are outside the range of other
methods. Of these, let me mentiihthe Anderson transition on a Bethe lattfcé(ii) localization
in disordered wire$; 23 (iii ) multifractality of energy eigenstates in two dimensidfig® (iv) weak
localization and conductance fluctuations of chaotic billiards strongly coupled to a small number
of scattering channel€;*®and, most recently(v) a theoretical physicist's proof of the Bohigas—
Giannoni—Schmit conjecture for chaotic Hamiltonian systéhss.

In spite of these manifest successes, Efetov’'s supersymmetry method has been(fgnaded
that | know by mathematical physicists. This is rather unfortunate for several reasons. First, an
infusion of mathematical expertise is needed to sort out some matters of principle and promote the
method to a rigorous tool. Second, various extensions of currently available results seem possible
but have been hindered by the lack of mathematical training on the part of the condensed matter
theorists applying the method. And third, the geometric structures underlying Efetov’s nomtinear
models are of exquisite beauty and deserve to be studied in their own right. Part of the reason why
neither mathematicians nor mathematical physicists have monitored or contributed to the devel-
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opment, may be that there does not exist a concise status report that would appeal to a mind
striving for clarity and rigor. Hence the first, and very ambitious, motivation for getting started on
the present paper was to make an attempt and partially fill the gap.

Another objective is to report on a recent extension of the supersymmetry method to random-
matrix theories beyond the standard Wigner—Dyson ones. In her study of Anderson localization in
the presence of an A—B sublattice symmetry, Gadeticed that the manifold of the nonlinear
model is promoted to a larger manifold at zero energy. The same phenomenon occurs in the chiral
limit of the QCD Dirac operator at zero virtuality.For several years it remained unclear how to
handle this enlargement of the manifold in the supersymmetric sch@aele used the replica
trick instead of supersymmetjyThe key to solving the problem can be found in a paper by
Andreev, Simons, and Taniguchiwho observed that what one needs to do is to avoid complex
conjugation of the anticommuting variables. In the present paper | will elaborate on this observa-
tion and cast it in a concise mathematical language. Moreover, | will show that the same technical
innovation allows one to treat the random-matrix theories that 6% the stochastic modeling
of mesoscopic metallic systems in contact with a superconductor.

An outline of the basic mathematical structure is as follows. Consider a homogeneous space
G/H, whereG and H are complex Lie supergroups, and reg&¢H as a complex-analytic
(p,q)-dimensional supermanifold in the sense of Berezin—Kostant—L%itésTo integrate its
holomorphic sections, select a closed, oriented, andpreahnifold M, contained in the support
M =Gy/H, of the supermanifold. The naturahvarian) supergeometry o&/H induces a geom-
etry on M, by restriction. If this geometry is Riemann ah, is a symmetric space, the pair
(G/H,M,) is called a Riemannian symmetric superspace. This definition will be shown to be the
one needed for the extension of the supersymmetry method beyond Wigner—Dyson. The difficul-
ties disordered single-particle theorists had been battling with were caused by the fact that the
exact sequence

0— nilpotents-»G/H—M —0,

does not, in general, reduce to an exact sequence of shearas-ahalyticsections terminating
at the Riemannian submanifoMd, .

When integrating the invariant holomorphic Berezin superfornGéH, one must pay careful
attention to its coordinate ambiguity. This subtle point is reviewed in Sec. Il A. After a brief
reminder of the procedure of Grassmann-analytic continudiiorSec. Il B), the complex Lie
supergroups Gia|n) and Osp|2n) (in Sec. Il Q, and Cartan’s symmetric spacés Sec. Il B,
the details of the definition of Riemannian symmetric superspaces are given in Sec. Il F. Table Il
lists the large families of these spaces.

Section lll, the largest of the paper, treats the Gaussian random-matrix ensemble defined over
the symplectic Lie algebra sN{, by an adaptation of Efetov’s method. A simple exam(3ec.

Il A) illustrates the general strategy. Details of the method, including a complete justification of
all manipulations involved, are presented in Secs. Il B—Ill F. Theorem 3.3 expresses the Gaussian
ensemble average of a productrofatios of spectral determinants as a superintegral. Theorem 3.4
reduces this expression to an integral over the Riemannian symmetric superspace|2rs(2
Gl(n|n) with M, =(SO*(2n)/U(n))x(Sp(n)/U(n)), in the limit N—oe.

According to Cartan’s list, there exists 11 large families of symmetric spaces. Ten of these
correspond to universality classes that are known to describe disordered single-particle systems in
the ergodic regimé*?° The class singled out for detailed treatment in Sec. Il describes mesos-
copic normal-superconducting hybrid systems with time-reversal symmetry broken by a weak
magnetic field. The remaining nine classes are briefly discussed in Sec. IV. Each of them is
related, by the supersymmetry method, to one of the large families of Riemannian symmetric
superspaces of Table Il. A summary is given in Sec. V.
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II. RIEMANNIAN SYMMETRIC SUPERSPACES

A. The Berezin integral on analytic supermanifolds

Let A(U) denote the algebra of analytic functions on an open subs#tp-dimensional real
space. By taking the tensor product with the Grassmann algebragwgnerators one obtains
A(U)®A(RY), the algebra of analytic functions dd with values in A(RY). Multiplication on
A(RY) is the exterior one, so the algebra is supercommutétivgraded commutatiyeThe object
at hand serves as a model for what is called a real-analgtig) {dimensional supermanifolgbr
graded manifol®f) in the sense of Berezin, Kostant, and Leit@®&KL );?®?” which, precisely
speaking, is a sheaf of supercommutative algebrawith an ideal /" (the nilpotenty such that
M=_7/.7"is an analyticp-manifold and on a domaitlCM, .7 splits asA(U)®A(RY). The
global sections of the bundleZ—M are called superfunctions, or functions for shftis called
the underlying space, or base, or support, of the supermaniblgill be assumed to be orient-
able and closedsM =0).

The calculus on analytic supermanifolds is a natural extension of the calculus on analytic
manifolds. Functions are locally expressed in terms ofsuperjcoordinates
(x;€):=(x4,.. &%), wherex (¢)) are ever(resp., oddllocal sections of Z. If (x;&) and
(y 7) are two sets of local coordinates on domains that overlap, the transition functions

y'=f1(x;&) and 7' = ¢)(x; &) are analytic functions of their arguments and are consistent with the
Z2 grading of. ~.

In what follows the focus is on the theory of integration on analytic supermanifolds. Recall

that onp-manifolds the objects one integrates préorms and their transformation law is given by

a3y
dy*/A\---AdyP=dx/\---AdxPDe il

The obvious(superjgeneralization of the Jacobian Dég(/9x)) is the Bereziniaf?

ay' oy
i 98

Ber(y 7]) =SDe ,
X I Im
oxt 9¢

where SDet is the symbol for superdeterminant. Guided by analogy, one postulates that an integral
superform ought to be an objebt transforming according to the law

D(y,n)=D(x,é)Bery, 7/x,£). (1)
A natural candidate would seem to be
D(X,&):=dx*\-- - AdXP@ dg1-* dpa,

which is a linear differential operator taking superfunctidristo p-forms D[f] (. denotes the
partial derivative with respect to the anticommuting coordingije The p-form D[f] can be
integrated in the usual sense to produce a number. However, the transformation R féy
turns out to be not quitél), but rather

D(y,n)=D(x,é)Bery, n/x,§)+ B. 2
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An explicit description of the tern® on the right-hand side, here referred to asahemaly was

first given by Rothsteif® It is nonzero whenever some even coordinate functions are shifted by
nilpotent terms. Its main characteristic is that on applying it to a superfunétiane gets a
p-form that isexact B[f]=d(«[f]).

The existence of an anomaly in the transformation lawDdK, &) leads one to consider a
larger class of objects, namel{’(M)® ,Z, the sheaf of linear differential operators .of with
values in thep-forms onM. [AP(M)® ,& naturally is a right Z-module] To rescue the simple
transformation law(1) one usually passes from°(M)® , to its quotient by the anomaliéSin
order for the integral to be well-defined over the quotient, one must take the functions one
integrates to be compactly supported.

Sadly, this last options not available to usThe functions that will be encountered in the
applications worked out below, do not ever have compact support buaradgtic functions
instead. When integrating such functions, we need to work with the full transformatiof2jaw
which includes the anomaly.

Another way of avoiding the anomaly is to arrange for the transition functions never to shift
the even coordinates by nilpotents, by constructing a restricted subatiasvever, because the
concept of a restricted subatlas is somewhat contrived, this approach has been found to be of
limited use in the type of problem that is of interest here.

To arrive at a definition of superintegration that is useful in practice, we proceed as follows.
The supermanifold is covered by a set of charts with doméalpsand coordinatesX(;y , &)
(i=1,...n). On charti let w;:=D(x;),&i)°®; with ®; a local section of 7, and let
e APY(M) ® z£77‘|ui- PartitionM into a number of consistently orientpdcellsD4,...,D,,, with
D; contained inJ; . Fori<j putD;; :=dD;NdD; and, ifD;; is nonempty and is gp—1)-cell, fix
its orientation bydD;= +Dj;+--- .

Definition 2.1 A collection{w;,a;};—; . is called aBerezin measure if the conditions

wi+dai=wj+daj, (4)

are satisfied on overlapping domains. The Berezin intefgral \, o[ f] is defined as

| otf1=3 [ i+ | ayn, 5)
M i=1 JDj i<j JDj

wherea;; = @;— @; . The quantitiess; andq; are called the principal term and the anomaly of the
Berezin measure on chart

Remark 2.2: The conditions(3) and (4) ensure the existence of a global section
we AP(M)® ,&, whose local expression in chairis w;+ da; . The existence ob means that the
distribution(5) is independent of the coordinate systems and the cell partition chosen. B&€gause
depends only on the differences— «;, one can gauge the anomaly to zero on one of the charts
without changing the Berezin integral.

Example 2.3:Consider the real supersphe@é'z, a (p,2)-dimensional supermanifold with
supportSP, which is the space of solutions {p+1,2) dimensions of the quadratic equation

52,32 <52 - ¢
X0+ X1+ e +Xp+ 25152: 1.

Cover SP by two domains 1 and 2 obtained by removing the Sobijx—1) or North Pole
(Xo=+1). Introduce stereographic coordinat@s, ... Xy ;& ,&) and(yy,....yp 71,7, for SP2 on
these domains with transition functions
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T S TR | =12
yi=— gz, Vit (=2..p), m=gz (j=12,

whereR?=3P_,x?+2¢,£,. (The minus sign preserves the orientaticBonsider

-p+2

w1= D(X,§)°( 1+ x24+2&,

w=D(y,7)°

—p+2
1+ Yi2+2771772) ,

(3x) 022
2=~ s ©20a e ik,

where Q=(Z;x%) "P2SP_; (= 1)'dxg /A - Adx - /AxidX; 4 1/\- - AdXx, is the solid-anglep—1)

form in p dimensions. It is not difficult to check by direct calculation that w, and a;=a;,,

a,=0 obey the relation3) and(4). Hence, they express a globally defined Berezin meastine
the sense of Definition 2.1The geometric meaning @f will be specified in Sec. Il §.Forp=3,

the anomalya;, scales to zero wheBx?—x, so we may shrink cell 2 to a single poifa set of
measure zepoand compute the Berezin integral simply from

—-p+2
fspw[f]= RLIERCIERDY x?+2§1§2) f(x;8).

In these cases we can get away with using only a single chart. The situation is differprtZor
andp=1. In the first case the anomaly is scale-invarigmé¢ solid angle isand by again shrinking
cell 2 to one poinfthe South Poley(;,y,)=(0,0) on S?] we get

fzw[f]=f DX, &) (x;€)+ 4t
S R

South Pole

In particular, [ 2w[1] = 4. For p=1 the anomaly diverges at=0 andx=c. In this case the
general formulg5) must be used, and one finflsiw[ 1] = 0.

B. Grassmann-analytic continuation

In the formulation of BKL, the vector fields of a supermanifold do not constitute a module
over . but are constrained to bevenderivations of #, which is to say that their coordinate
expression is of the form

X=fi O gl i
= X: _ X: _
(68 T8 57,

wheref ' and¢' are even and odd superfunctions, respectively. Unfortunately, this formulation is
too narrow for most purposes. The reason is that in applications one typically deals not with a
single supermanifold but with many copies therémfe per lattice site of a lattice-regularized field
theory, for example So, in addition to the anticommuting coordinates of the one supermanifold
that is singled out for special consideration, there exist many more anticommuting variables
associated with the other copies of the supermanifold. When the focus is on one supermanifold,

these can be considered as “parameters.” Often one wants to make parameter-dependent coordi-
nate transformations, leading to coefficientf;il...in(x) in the expansion f(x;§&)

= Efil...in(x) £1.-- £'n that depend on extraneous Grassmann paraméfensexample, when the
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supermanifold is a Lie supergroup, it is natural to consider making left and right translations
g—0,.90r.) The upshot is that one wants to také as a sheaf of graded commutative algebras
not overR but over somdlarge parameter Grassmann algebrathe Grassmann algebra gener-
ated by the anticommuting coordinates of the “other” supermanifoltaking this extension,
which is called “Grassmann-analytic continuation” in Ref. 29, one is led to consider the more
general class of vector fields of the form

A d . d
X=1x.68) or+ el E8) S, ®)

where the symbop stands for the extra Grassmann parameters and the dependences on these are
such thatf' and ¢! continue to be even and odd, respectivéllye Z, grading of.Z after
Grassmann-analytic continuation is the natural)one

The vector field€6) still are even derivations of the extended algebra. One can go further by
demanding that DerZ be free over Z and including the odd ones, too. When that development
is followed to its logical conclusion, one arrives at Rothstein’s axiomatic defifftiohsuper-
manifolds, superseding an earlier attempt by Rog&téAlthough there is no denying the el-
egance and consistency of Rothstein’s formulation, we are not going to embrace it here, the main
reason being that odd derivations will not really be needed. For the purposes of the present paper
we will get away with considering vector fields of the constrained f@8in

C. The complex Lie supergroups GI(  m|n) and Osp( m|2n)

The supermanifolds we will encounter all derive from the complex Lie supergfotips
GI(m|n) and Osptn|2n), by forming cosets. The definition of Gi(n) rests on the notion of an
invertible supermatrix

_(900 901)
910 911/’

whereggg, Jo1, 910, @ndg,; are matrices of sizenxXm, mXn, nXm, andnXxn. The supermani-
fold structure of Gltn|n) comes from taking the matrix elementsgyf, andg,, (go; andg,) for
the even(resp., oddl coordinates on suitable domains of the blse GI(m,C) XGl(n,C). The Lie
supergroup structure derives from the usual law of matrix multiplication.

For m#n, it is common practice to split off from Gig|n) the Gl1)-ideal generated by the
unit matrix, so as to have an irreducible Lie superalgébfaFor m=n, which turns out to be the
case of most interest here, one ends up having to remove t{iy'sGlone generated by the unit
matrix and the other one by the superparity mawixdiag(l,,—1,). And even then the Lie
superalgebra is not irreducible in a sense, for the Killing form STKaad(Y) vanishes identi-
cally. We therefore prefer to take @(n) as it standgwith no ideals removedand replace the
Killing form by the invariant quadratic form B(,Y)=STrXY, which is nondegenerate in all
casegincluding m=n).

The complex orthosymplectic Lie supergroup Qs{fn) is defined as a connected subgroup
of GI(m|2n) fixed by an involutory automorphisg—7(g) = =g~ 7, wherer is supersym-
metric (r= 7" o=07").3" The support of Ospfi|2n) is SAM,C)xSp(n,C).

The action of a Lie supergroup on itself by left and right translations gives rise to right- and
left-invariant vector fields. A Berezin measure on a Lie supergroup is said to be invariant, and is
called a Berezin—Haar measure, if its Lie derivatiesith respect to the invariant vector fields
vanish.

Given a Lie supergroufis and a subgrougH, the coset superspad@/H is defined by
decreeing that the structure sheaf of the coset superspace is a quotient of sheaves. The@ction of
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on G/H by left translation gives rise to so-called Killing vector fields. A Berezin measui@/éh
is called invariant if its Lie derivatives with respect to the Killing vector fields are zero.

If Ospg(m|2n) denotes the orthosymplectic supergroup over the reals, the coset space
Ospy(m+1]2n)/Osp,(m|2n) can be identified with the real supersph&f¥". The Berezin mea-
sure discussed in Example 2.3 is invariant with respect to the action gf(©5f|2) on SP12 and
can be viewed as the “volume superform” &2, Hence we can restate the results of that
example as follows: vo&??): = [@w[1] = 47randvolS'?): = [qw[1] = 0.

D. Holomorphic Berezin measures on complex-analytic supermanifolds

To go from real-analytic supermanifolds to complex-analytic ones, one replaces the structure
sheaf 7 by a sheaf of graded commutative algebrasover C such thatM =.77/./"is a complex
manifold and 7 is locally modeled byH (U) ® A(CY), whereH (U) is the algebra of holomorphic
functions onUCM. The natural objects to consider then are holomorphic superfunctions, i.e.,
global sections of the bundléZ—M. In local coordinates?,... z"; ¢*,...49 such sections are
written asf(z;{). Grassmann-analytic continuation is done as before when needed. A Berezin
measure on a complex-analytip,)-dimensional supermanifold is a linear differential operator
o that takes holomorphic superfunctiohénto holomorphicp-forms o[ f] on M. The statements
made in Sec. Il A about the anomalous transformation behavior of Berezin measures apply here,
too (mutatis mutandi

To define Berezin’s integral in the present context, one more piece of data must be supplied,
namely areal p-dimensional submanifolt, CM over which the holomorphip-form o[ f] can
be integrated to produce a complex number. Thus, giwesnd M, , Berezin's integral is the
distribution

foMrw[f]. 7)

Let me digress and mention that this definition, natural and simple as it is, was not “discov-
ered” by the random-matrix and mesoscopic physics commuimigluding myself until quite
recently. With one notable exceptiéhall past superanalytic work on disordered single-particle
systems employed some operation of “complex conjugation” of the Grassmann generators—
namely an adjoint of the first or second kffid-to make the treatment of the ordinary
(“bosonic”) and anticommuting““fermionic” ) degrees of freedom look as much alike as pos-
sible. Presumably this was done because it was felt that such egalitarian treatment is what is
required by the principle of “supersymmetry.” Specifically, a reality constraint was imposed, not
just on the underlying spadé (fixing M) but on the entire structure sheaf to reduzéo a sheaf
of algebras oveR. Although this reduction can be done with impunity in some césamely, the
classic Wigner—Dyson symmetry clasgashas turned out to lead to insurmountable difficulties
in others(the chiral and normal-superconducting symmetry class®smajor incentive of the
present paper is to demonstrate that the constru¢tipis in fact the “good” one to use for the
application of supermanifold theory to disordered single-particle systems in general. Although that
construction may hurt the physicists’ aesthetic sense by “torturing supersymmetry,” it should be
clear that we are not breaking any rules. Recall that according to Berezin, superintegration is a
two-step process: first, the Fermi integfaé., differentiation with respect to the anticommuting
coordinatesis carried out, and it is onhafterward that the ordinary(Bose integrals are done.
When the sequential nature of the Berezin integral is taken seriously, there is no compelling reason
why one should ever want to “complex conjugate” a Grassmann variable. In the present paper,
we take the radical step of abandoning complex conjugation of Grassmann variables altogether.

Example 2.4:The simplest nontrivial examp&is given by G(1|1), the Lie supergroup of
regular complex X2 supermatrices
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a B
g= y d
with  support M=GI(1,0)XGI(1,C). The Berezin—-Haar measure on (Gl) is

=(27i) D(ad;By), where D(ad;By)=da\dd®dgd,. Solving the regularity conditions
a#0 andd+0 by parametrizing Gl|1) through its Lie algebra,

=exp<Zl 51)
g L 7o)’

(21— 29)?
(1- ezl_zz)(eZZ_Zl— 1)

one finds

2miw=D(2125;{1L5)°

(z21—2,)(dzy—d2)

—| dIn(e1—e®2)— (1_ez1zz)(ezzz1_1)>®5g107§2°§1§2- (8

Note that this expression is holomorphic in a neighborhood of the azigirz,=0. The first term
on the right-hand side is the principal term, and the second one is the anomalynothese
coordinates. To integrate, one might be tempted to choose figr, the U1)XU(1) subgroup
defined by R&,)=0=Regz,). However, since the rank-two tensor
STrdg dg '=da da '—dd dd !+nilpotents=—dZ+dz+-- is not Riemann on (1)xU(1),
this will not be the best choice. A Riemannian structure is obtained by takingR * xS* defined
by Im(z;)=0=Re(z,). To computef y+xsiw[ f] we may use a single cell,

D:—oo<x<+o0, —gay<+m,

where x=Re(z;) and y=Im(z,). The boundaryyD consists of the two liney=—7 andy==
(xeR). Using(8), paying attention to the orientation of the boundary, and simplifying terms, one
finds the following explicit expression for the integral ©f

—Iy)2 X 4
f}ﬂ*xsl J’ dXJ dy COSKX ly)— 10751(%2];( '{gz iy
1 (= dx e 0
23 .
2 J_» coshx+1 0 -1
By construction, this Berezin integral is invariant under left and right translations

f(g)—f(9.90g). Evaluation givesfp+xsiw[1]=1#0. The naive guess would have been
fo[1]=(27i) tfda/\dd dd,=0 due todgd,-1=0. Such reasoning is false becayse da=cc.

E. Symmetric spaces: A reminder

A Riemannian(globally) symmetric space is a Riemannian manifdfti such that every
peM is an isolated fixed point of an involutive isometyn normal coordinates' centered
around p, this isometry is given by'— —x'.) This definition implies(cf. Ref. 3§ that the
Riemann curvature tensor is covariantly constant, so that “the geometry is the same everywhere.”
The curvature can be positive, negative, or zero, and the symmetric space is said to be of compact,
noncompact, or Euclidean type correspondingly.

According to Cartan’s complete classification scheme, there exi$t lmge classes of sym-
metric spaces. Apart from some minor modifications these are the entries of Table |. The differ-
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TABLE I. The large families of symmetry spaces.

Class Noncompact type Compact type
A GI(N,C)/U(N) U(N)
Al GI(N,R)/O(N) U(N)/O(N)
All U*(2N)/Sp(N) U(2N)/Sp(N)
Alll U(p,a)/U(p) xU(q) U(p+a)/U(p) xU(a)
BDI SO(p,q)/SO(p) XSO(@) SO(p+q)/SO(P) XSO(a)
Cli Sp(p,q)/Sp(p) X Sp(@) Sp(p+a)/Sp(p) XSp(@)
BD SQO(N,C)/SO(N) SOWN)
c Sp(N,C)/Sp(N) Sp(N)
Cl Sp(N,R)/U(N) Sp(N)/U(N)
Dill SO*(2N)/U(N) SO(2N)/U(N)

ence from the standard taBiés that some of the entries of Table |, namely, the spaces of type A,
Al, and All, are not irreducible. They can be made so by dividing out a factay (R*) in the
compact(resp., noncompactases. Division by such a factor is analogous to removing the center
of mass motion from a mechanical system with translational invariance. It turns out that, with a
view to superanalytic extensiorisf. Example 2.4, it is preferable not to insist on irreducibility
but to “retain the center of mass motion.”

The next section introduces supergeneralizations of Cartan’s symmetric spaces, which have
appeared in the theory of mesoscopic and disordered single-particle systems and have come to
play an important role in that field.

F. Riemannian symmetric superspaces (definition)

Let G, be a complex Lie supergroup that is realized as a group of supermatrices

(goo Jo1
J10 911

with matrix elements that take values in(sufficiently large parameter Grassmann algebra
A=AgtA;. If = £2+ Zlisthe Lie superalgebra &, , the Lie algebra o6 , is obtained by
taking the even part of the tensor product withLie (G,) = Ay ® 5';‘8 + A ® % = (A ® %0)o.
Thus, if{e;,¢;} is a homogeneous basis of complex matricessin an elemenX eLie(G,) is
expressed bX=7z'e;+ '¢; with Z’ e Ag and £ e A;.

Let #:G,— G, be an involutory automorphism and ldt, C G, be the subgroup fixed bg.

The decomposition into even and odd eigenspaced,atie(G,)—Lie(G,) is written as
Lie(G,)=Lie(H,)+.#, . This decomposition is orthogonal with respect to thé€@g)-invariant
quadratic form B:Li¢G,)XLie(G,)—Ag, B(X,Y):=STrXY.

Both G, andH, are supermanifolds with underlying spaces that are Lie groups and are
denoted byG. and H.. Passing to the coset spaces one obtains a graded commutative algebra
=7+ 7, of (Grassmann-analytically continuecholomorphic sections of the bundle
G,/H,—G/H(. These sections are calldduperfunctions (on G,/H,) for short. In local
complex coordinates z*,...,2°; 4.9 they are written as f(z,...,2%Z%,....¢%)
= 3f . (24....2°) {1+ {'n, where the coefficients; ..; (z,...,z°) take values inA after
Grassmann-analytic continuation. For coordinate-independent calculations the alternative notation
f(gH,) or f(g-0) is used. In the followings/H is assumed to be connected.

Every X eLie(G,) is associated with a vector fieldr even derivationX:.77—.7 by

. d
(Xf)(g-0)= 43 f(e 5*g-0). 9
s=0
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Here eS*g means the usual product of supermatrices, and the funéieitg- o) is determined
from f(g-0) by Grassmann-analytic continuation. The Lie algebra of even derivation’ isf a
left .77,-module denoted by Dgr7.*°

A notion of supergeometry orG,/H, is introduced via a left-invariant tensor field
(s,%):Dery 7 XDery 7#— . 7,. The details are as followss, acts onG,/H, by left translation,
Th :f(g - 0)—f((hg) - 0). The left-translate T,(X) of a vector fieldX is defined by the equation
T dTR(X)f ) = X(T} f ), and one requires

H(ATH(X),dTh(¥V)) =(X,Y).

This equation determings,s) uniquely within a multiplicative constant. For vector fields of the
special form(9), one obtains

(X,Y)(g-0)=CcoX B((Ad(9) "*X)_,,.(Ad(9) 1Y) ),

where the subscript#, means projection on the odd eigenspace #gf Note that since
(Ad(gh)™*X)_,, = Ad(h)"*(Ad(g) *X)., for heH,, this is well-defined as a function on
G,/H, . The normalization is fixed by choosirgg=1.

The metric tensofs,*) induces a geometry on the ordinary manif@g/H . by restriction(i.e.,
by setting all anticommuting variables equal to 2ef@f course, since the grou: andH are
complex, this geometry is never Riemann. However, there exist submanifol@g/t. that are
Riemannian symmetric spaces and can be constructed by selecting from the tangent space
T.(G/H ) a Lie-triple subsystem# (i.e.,[.Z [. 7, #]1C.7#), such that the quadratic form B
restricted ta 7 is of definite sign. It is then not hard to shdihat the image of # under the
exponential majX—e*H , is Riemann in the geometry given by restriction(g#). Its completion
is a symmetric space.

Definition 2.5: A Riemannian symmetric supersp&a pair G,/H,;M), whereM is a
maximal Riemannian submanifold of the baSg/H ..

Remark 2.6 The merit of this definition is that it avoids any use of an adjdort“complex
conjugation”) of the Grassmann variables. ]

By the complex structure o66/H., the tangent spacez.:=T,(G/H: decomposes as
Moo=+, where. 7 is taken to be the subspace.of . on which the quadratic form B is
strictly positive. Now observe that, since an elemggatG,. is of the formg=diag(qs911), the
groupG. is a Cartesian product of two factors, and the same is trudl foHence G/H . factors
asG./H. = M2 x ML, and. 7 is a sum of two spacesz =. #y®. 7, which are orthogonal with
respect to the quadratic form Bt may happen, of course, that one of these spaces is tjifat.
Ze. ./, let the corresponding orthogonal decomposition be writteA-aX + Y. Then B restricted
to. 7 is evaluated as

B(Z,Z)=Try X>—Tr; Y?,

where the relative minus sign between traces is due to supersymg®sin:Tr,—Tr,). The
positivity of B on .7 is seen to implyX=X" and Y=—Y' (the dagger denotes Hermitian
conjugation, i.e. transposition in conjunction with complex conjugation

GivenG,/H, , the condition thaM be Riemann and maximal @./H, fixesM uniquely up
to two possibilities: eitheif ,(M)=.7#, or To,(M)=i.7. In either caseM is a product of two
factors,M = MyXxX M, both of which are Riemannian symmetric spaces. In the first dhgés of
the noncompact type and , is of the compact type, while in the second case it is the other way
around. We adopt the convention of denoting the compact spatémand the noncompact one
by Mg.

In view of Cartan’s list of symmetric spacé$able |), we arrive at Table Il listing the large
families of Riemannian symmetric superspaces. Although the edtji&sBD|C, andC|BD look

J. Math. Phys., Vol. 37, No. 10, October 1996

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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TABLE Il. The large families of Riemannian symmetric superspaces.

Class G,/H, Mg Mg
AlA Gl(m|n) A A
AlJAIl  GI(m|2n)/Osp(m|2n) Al All
All|AI  GI(m|2n)/Osp(m|2n) All Al
AllLAIT GI( m;+m,|n; +n,)/Gl(my|ny) XGI(my|ny) Alll Al
BD|C  Osp(m|2n) BD C
C|BD  Osp(m|2n) C BD
cIpill  Osp(2m|2n)/GI(m|n) cl bl
DII|CI  Osp(2m|2n)/GI(m|n) DIl Cl

BDI|CIl  Osp(m;+m,|2n;+2n,)/Osp(m,|2n;) XOsp(m,|2n,) BDI ClI
ClI|BDI  Osp(m;+m,|2n;+2n,)/0sp(m;,|2n,) XOsp(m,|2n,) ClI BDI

extraneous because they are groups rather than coset spaces, they fit in the same framework by
putting byG,=GXG and #(g,,9,)=(9,,94), SOH,=diag(GXG)=G andG,/H,=G.

As far as applications to random-matrix theory and disordered single-particle systems are
concerned, the most important structure carried by Riemannian symmetric superspaces is their
G ,-invariant Berezin measure. Such a measure always exists by Definition 2.1 and the existence
of local coordinates. To describe it in explicit terms, one introduces a local coordinate system by
the exponential map# ,—G,/H, , Z—exp(Z)H , . By straightforward generalizatiofreplace
the Jacobian by the Berezinjaof a corresponding calculatidief. Ref. 38 for ordinary symmet-
ric spaces, one obtains for the principal term of the invariant Berezin measure the expression
DZ°J(Z),whereDZ = dz' /\ --- A dz" ® d1- - d o denotes the flat Berezin measure gfy , and if
T, % \—. 7, is the linear operator defined by

ad"(2)
T=2 S
ai=o (2n+1)!
the functionJ(Z)=SDefT, . [Note 2}_, x?"/(2n+1)!=x"1 sinhx]. A universally valid expres-
sion for the anomaly in these coordinates is not available at present.

lll. SUPERSYMMETRY APPLIED TO THE GAUSSIAN RANDOM-MATRIX ENSEMBLE OF
CLASS C

The goal of the remainder of this paper will be to demonstrate that Riemannian symmetric
superspaces, as defined in Sec. Il F, arise in a compelling way when Gaussian ensemble averages
of ratios of spectral determinants for random matrices are considered in theNdng: The
example to be discussed in detail will be the Gaussian ensemble defined over the symplectic Lie
algebra spi{), which has recently been identiffddas a model for the ergodic limit of normal-
superconducting mesoscopic systems with broken time-reversal symmetry.

A. The supersymmetry method: A simple example

The pedagogical purpose of this section is to illustrate our strategy at a simple exXanfiple.
u(N) is the Lie algebra of the unitary group M dimensions, consider amu(N) (the Hermitian
N N matrice$ the Gaussian probability measure with width/N. Denoting byH the elements
of iu(N) and bydH a Euclidean measure, we write the Gaussian probability measure in the form
du(H)=exp(—N Tr H%2v?)dH, [du(H)=1. This measure is called the Gaussian unitary en-
semble(GUE) in random-matrix theory. The object of illustration will be the average ratio of
spectral determinants,
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H_
Zap)= jiu(N)Det( H—§>dM(H)’

whereaq, are complex numbers andis not in the spectrum dfl. Given the generating function
Z, the GUE average resolvent is obtained by

J
_ 1 -
Ji o THD = Z@p)

We will now show how to comput& using a formalism that readily generalizes to more com-
plicated situations.

To avoid the introduction of indices and have a basis-independent formulation, we choose to
interpretH as a self-adjoint endomorphiskhe End(V) of N-dimensional complex spadg=CN
with a Hermitian quadratic formx(y)—(x,y)y .

The supersymmetry method starts by introducing “bosonic spa¥g=W,=C and “fermi-
onic space"W=W,=C. Auxiliary space is th&,,-graded sunw= WB@WFZCM. The Cartesian
basis of W is denoted by ez=(1,0 and e=(0,1). Let Hom(W,V):=\,
®Hom(Wg ,V)+N@HOom(We,V), where A=\y+t\; is the Grassmann algebra with
dim; Hom(Wg,V)=N generators(Grassmann-analytic continuation will not be needed here.
Honmiy (V,W) is defined similarly, with another Grassmann algebré@he key idea is to utilize the
Gaussian Berezin integral over the complex-analytic superspacg(Maivi) < Honi(V,W). Let
D (¢, ¢) [with yeHom(W,V) andy e Hont(V,W)] denote a translation-invariant holomorphic
Berezin measure on this linear spaceydf ) is the restriction ofj( ) to a mapWg—V (resp.,
V—Wp), fix a Berezin integraf— [ D (4, ) f (i, 4) by choosing for the domain of integration the
subspaceéM, selected by the linear conditiafpig = 5 (the adjointzp',;:(;”—& being defined by
JBG = (z,45 - 1)y). Because Hop(W,V) x Hon%(V,W) has complex dimension (22N), the
integral fD (i, ) f(y, ) does not change its value whéris replaced by the rescaled function
3y, ) =f(sy,s¢p) (seR). Now with Eng(W)=EndWg)dEndWg) and End(W)
=Hom(Wg ,Wg)®@Hom(W,,\W;), let

Endy,(W): =A@ Ench(W) + A1 ® Endy (W),

where A=Ay+A; is the Grassmann algebra with difend,(W)=2 generators, and pick
AeEnd(V), BeEnd,(W). B corresponds to what is called a2 supermatrix in physics. An
elementary but useful result is that, if we normali2z&y, i) by D (4, ¢)exp(—s? Tr yp)=1, the
identity

f D (¢, p)exp(i Try Agg—i SThy Bhy) = SDetow(A®1—18B) ¢, (10)

holds withc=1 provided that the integral existélhe parametec is introduced for later conve-
nience) When A and B are represented by diagonal matrices, verificatio1@ is a simple
matter of doing one-dimensional Gaussian integrals. The general case follows by the invariance of
D(¢,4) under unitary transformations & and “super-rotations” inw.

Now introduce elementsEggz and Ee of Endy(W) by Eggeg=eg, Eger=e€g, and
Egger=Ere=0. By settingA:=H andB: = aEgg+BE=:0, and using

SDet,w(H®1—1® w)=Det(H— a)/Det(H— 8),

we get a Gaussian integral representatioz of
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4998 Martin R. Zirnbauer: Riemannian symmetric superspaces and their origin
Z(w):=Z(a,B)= f SDet/uw(H®1— 10 w)  Sdu(H)

:f D(l//,@)f exp(i Try Hy—i STry wdh)du(H).
(11

In the next step, the GUE ensemble average is subjected to the following manipulations:

Tr H?

2v°

- ~ N
J’ expi Tr Hzplp)dﬂ(H)=fiu(N) exy{i Tr Hyp— )dH

2
v ~
=exp- o TR(W)?
2

—exp- 5 ST )2

_ ~ NSTrQ?
f - DQ exp(u STrQyy— —5—o—
RXiR 1%

: f Du(Q)expi STrQy). (12

The fourth equality sign decouples the quartic term,&Tr)? by introducing an auxiliary inte-
gration overQ e End,(W). In order for this Gaussian integral to converge, the integration domain
for the BB partQgg :Wg—Wpg (FF part,Qrr:W—Wp), is taken to be the redtesp., imaginary
numbers. By using the relatiori$0)—(12), we obtain

Z(w)=f D(W)(J expl TrVHzﬁ?f)du(H))eer Sy
=f DM(Q)J D(4,9)expi Try Y(Q— )P
:f Du(Q)SDetew(Iy®(Q—w))~©
- | D@ sDetiQ-w) ™

2
=f DQ exp—N STr(zngn(Q—w)). (13
RXiR v

These steps reduce an integral overkheN matrix H to an integral over the’22 supermatrixQ.
The large parametéd now appears in the exponent of the integrand, so tha@tiegral can be
evaluated by a saddle-point approximation that becomes exact in theNlimit. By solving the
saddle-point equation-Q/v?=(Q—w) ! and doing an elementary calculation, one obtains
Wigner’s semicircle law for the GUE density of staf8s:

N E\2
fTr 5(E—H)d,u(H):7T—v 1_(Z>’ (14)
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which will be of use later.

B. Definition of the Gaussian ensemble of type C

Having run through a simple and well-known example, we now treat in detail a less trivial
case where the reduction toQintegral representation requires more care.

The “physical space” of our model i&/=C22CN. As before, letx—x denote complex
conjugation, and fix a symmetric quadratic foKme), :VXV—C, such that the corresponding
Hermitian quadratic forn{x,y)y = (y,X)y is strictly positive. The transpose and the adjoint of a
linear transformatioh. e End(V) are defined byx,LTy),=(Lx,y)y and(x,LTy)y = (Lx,y)y, as
usual.

Consider now the spac®, of self-adjoint HamiltoniandH e End(V) subject to the linear
condition

H=—#ZHTr 1, (15)

where 7 is skew andZz?=—1. Clearly,iP is isomorphic to sp{l)=C, (the symplectic Lie
algebra in N dimensiong. Introducing an orthonormal real basis \éfwe can represerii by a
2NX 2N matrix. The explicit form of such a matrix is

a b . 0 1y
H= if Z=
) I _1N O )

bt —a'
wherea(b) is a complex Hermitiafresp., symmetricN X N matrix. The Gaussian ensemble to be
studied is defined by the probability measuae(H)=exp(—N Tr H*/2v?)dH, fdu(H)=1. For
any twoA,B eEnd(V),

2

J Tr(AH)Tr(BH)du(H)= v Tr(AB—AZBTZ 1), (16)
ixsp(N) 2N

The joint probability density for the eigenvaluestdfhas been given in Ref. 24.

The physical motivation for considering a Gaussian random-matrix ensemble of the above
type (type C) comes from the faét that it describes the ergodic limit of mesoscopic normal-
superconducting hybrid systems with time-reversal symmetry broken by the presence of a weak
magnetic field. To deal with such systems, the Bogoliubov—deGe(Rd€&) independent-
quasiparticle formalism is used. The first factor in the tensor prodeat?®CN accounts for the
BdG particle-hole degree of freedom, which is introduced for the purpose of treating the pairing
field of the superconductor within the formalism of first quantization. The second factor represents
the orbital degrees of freedom of the electrbh.is the Hamiltonian that enters into the BdG
equations, and the relatidd5) expresses the particle-hole symmetry of the BAG formalism.

Our goal is to compute the following ensemble average:

du(H). )

n H_ i
Zo(ag,..oan: By )= HDet( A

i sHN)I=1 H—aq
By the particle-hole symmetry ¢4, Z,, is invariant under a reversal of sign for any pai (3;),
so no information is lost by restricting al} to one-half of the complex plane. For definiteness, we
require

Im a;<0 (i=1,...n). (18
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All information about the statistical correlations between the eigenvalués adn be extracted
from Z,,. For example, the probability that, given there is an eigenvalue, athere exisin—1
eigenvalues aE,,... E, (regardless of the positions of all other eigenvalussqual to

nn n
—€ d d
Ry(Eyq,....E )=Iim(—) T —
" " e—0 T =1 (9a/2| a2|:E|—i€|:l ﬂaZIil (1/2|7l:—E|—i€
XZog(aq,...,asn E1—i€,—E;—ie€,....E,—i€,—E,—ie). (19

The functionR,(E,,...,E,) is called then-level correlation function in random-matrix thed®.

C. Symmetries of the auxiliary space

To transcribe the supersymmetry method of Sec. Il A to the computatiod, ofwhich
involvesn ratios of spectral determinants simple and natural procedure would be to enlarge the
auxiliary spaceW by taking the tensor product with”. However, on using the formula

~ 1 ~
f expi Tr Hzpde(H):expu(—EJiSp(N)(TrHlplp)Z du(H) |,

one faces the complication that the second monfént Hy)? du(H) then is a sum of two
terms, see the right-hand side (@6). Consequently, one neetlso decoupling supermatrice3

(one for each terpn Although this presents no difficulty of a principal nature, it does lead to rather
complicated notations. An elegant remedy is to modify the definitiop afid ¢ so thatys shares

the symmetry(15) of the BdG HamiltoniarH. The two terms then combine into a single one:

2
| e H dpat) = 3 SToGr?,

which can again be decoupled by a single superm&riXdo implement the symmetr§l5), we
proceed as follows.

We enlarge the auxiliary spadkl=Wg® W in some way(left unspecified for the moment
and fix a rule of supertransposition HgfV,V)—Hom(V,W), ¢—y', and
Hom, (V,W) —Hom,(W,V), ¢ . Such a rule obeysy’ "=yo and ¥ "T=0v, where
oeEndy(W) is the operator for superparity, i.e(x+y)=x—y for x+ye Wg®W=W. It in-
duces a rule of supertransposition Efd/)—End, (W), Q—Q' (no separate symbol is intro-
duced. Combination with complex conjugation gives a rule of Hermitian conjugation
T:Endy(W)—End,(W). Now impose onje Hom,(W,V), & eHom,(V,W) the linear conditions

b=2yTy N =T (20

with some invertible even element of Endy(W). The mutual consistency of these equations
requires

y=7v'o. (21)

To see that, insert the transpose of the second equatit@Djrinto the first one. Using/'' = yor

you obtaing = — 27 Y oy Ty L. Sincer 71 = —1 andoy"=1"a, Eq. (21) follows. The

consistency condition can be implemented by takivig=Wr=C(?2(", see below. By multiplying
the equation$20) we obtain

Yi=— () EY Y= — () Ty L (22
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The first equation is the desired symmetry relation allowing us to combine terms. To appreciate
the consequences of the second equation, note that by the fourth §i@ptime symmetries ofyys
get transferred ont@, so that the latter is subject to

Q=—9QTy (23

This symmetry reflects that of the BdG Hamiltonidn see(15). The linear space ERdw), when
given a Lie bracket by the commutator, can be identified with ig2a) =Lie(GI(2n|2n)). As y
is supersymmetri¢y=7y"0), (23) fixes an osp(8|2n) subalgebra.

y is not unique. For definiteness we choose it as follows.{Eg{}; ;-1 m be a canonical
basis of En¢CM) satisfyingE;; E, ;= 5;«E;j; (hereM =2 or M=n). For M =2 define the Pauli spin
operatorso,=Eq,+Eyy, 0y= —iE,+iE, ando,=E;;— E,,. The usual rule of supertransposi-
tion on End (W) is given by(u,»=1,2 andi,j=1,...n)

(Epg®E,,®Ej))'=Epg®E,,®E;;, (Ege®E,,®F) =—EmoE,,0F;,
(Erg®E,,,®E))"=Ege®E,,®Eji, (Ep®E,,®E))"=Ex®E,,®E;.

With these conventions, one possible choicefas
y=Egs® yst Epe® vp, Where yg=0,®1,, yr=ioy®1,. (29

This is the choice we make.

D. Gaussian Berezin integral

To repeat the steps of Sec. lll A and deriveQaintegral representation for the generating
function Z,,, we must first generalize the basic identify0), whose left-hand side is

f D(y, p)exp(i Try Agy—i STry Byp). (25)
By (22) we have
Tr Agp=Tr(yp) A = ETr(A— ZATZ Yy yp,
STrBYy=STi(yy) BT = 5Tr(B— BTy Y yy.
In view of this we demand thak andB satisfy
A=—¢ATz 1 B=—9yBTy L (26)

When carrying out the calculatidd1)—(13) we need to apply the identiyL0) twice, the first time
with A=H, B=w, and the second time with=0, B=w— Q. In order for(26) to be satisfied with
these identifications, we choose to set

n n

w:EBB®UZ®; aiEii+EFF®UZ®jZl ﬁ]E” .

The presence of the facter,=diag+1,—1) reverses the sign of the, and §; on that subspace

whereo, acts by multiplication with—1. As the imaginary parts of the control the convergence

of the integral, this sign reversal affects the correct choice of integration domaifg fand g .

To ensure convergence of the integ@b), we require Im STwy<0. This inequality is

achieved by imposing the conditiofy = (o, ® 1,) ¢g, which is compatible wittt'=io,® 1y,
B:gwgﬂ;la andy=0,®1,.
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Lemma 3.1Let D(¢,4) denote a translation-invariant holomorphic Berezin measure on the
subspace of HoptW, V) xHom,(V,W) defined by(20). le the_integration domain byB = (o,
® 1,) z//B, and normalize® (i, ) so that/D (¢, ¢)exp(—s? Tr p)=1 (seR). Then ifA e End(V)
andB e End, (W) are diagonalizable and satisfy the linear conditi@®, the identity(10) holds
with c=1/2 provided that the integral exists.

Proof: Assume thatA andB are represented by diagonal matrices,

N n n

A:0Z®Zl XiEii ’ B:EBB®UZ®J_21 ZJE“ +E|:|:®O'Z®j21 y]E“ y
which conforms with(26). The right-hand side of10) then reduces to

Xi—y)(xi+y;j)
(Xi—z)(Xi+z) "

N n
SDet, w(A®1—10B) 2= ]:[ [[1 (27

To evaluate the left-hand side, write

_(a b _(a ,6’)
'r/fB—C q/’ (/fF_y sl

wherea,b,c,d(a,B,7,6) are compleXN X n matrices with commutingresp., anticommutingma-
trix elements. The constraint=—yy' 7 results in

_ _dT bT _ _5T IBT
WB:(_T ). ¢F:( T T)’

c a Y -«

and the reality conditioEB = (0,9 1,) z/;; meansi= —a andc=b. The exponent of the integrand
is expressed by

1 -1 - Jo o _
5 TrAYY— S TrBgy=2 X (x—2z))aya;— (X +2)byb,
2 2 i=1j=1

+ (X Yy)) i 6ij = (X —Y)) Bij ¥ij)-

Doing the Gaussian integrals one gets a result that is identig@7jpwhich proves the Lemma
for diagonalA andB. The general case follows by the invariance propertieB @f, ).
Remark:The condition of diagonalizability can of course be weakened but we will not need
that here. |
To apply Lemma 3.1 to our problem, note
1/2 l_nI r( H-— ai)

I H- g

(H=a)(H+a)
(H=8)(H+8)

SDet/,w(H®1— l®w)1/2—1_[ Det,

where in the second step we used the invariance of the ratio of determinantsHmderH,
which is due to the particle-hole symmetry=—7H"% 1. Moreover, note

SDet/,w(1®(Q—w)) *=SDety(Q—w) .
The previous calculatiofil1)—(13) thusformally goes through witlt=1/2, andisp(N) for iu(N),
and we arrive at the following representation of the generating function:
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2
Zn(w)=J DQ exp—N STr(%erln(Q—w)), (28
where the supermatrix

:(QBB QBF)
QFB QFF

is subject to(23). To make this rigorous, we have to specify the integration domairQf@and
show that the interchange of tlig,)- and Q-integrations is permitted.

E. Choice of integration domain

If the steps(11)—(13) are to be valid, we must arrange for all integrals to be convergent, at
least. This is easily achieved @y, the FF component d®, but requires substantial labor for
Y, g, andQgg. ConsiderQg¢ first. Since—STrQ?=—Tr Q3+ Tr Q2+ nilpotents, we want
Tr QreQpre=<0, which leads us to require th@¢ be anti-Hermitian. Combining this witf23) we
get

Qp=— YFQEFVEl: - QEF!

wherey=io,®1,; see(24). The solution space of these equations im$pthe symplectic Lie
algebra in 2 dimensions. Thus we choogk: =sp(n) for the integration domain d®gg, and, of
course, the integration measure is taken to be the flat one.

The choice of integration domain f@gg is @ much more delicate matter and will occupy us
for the remainder of this section. Recall, first of all, that the convergence of

f D(, p)expli Tr Hyd—i STrwyp)

requires taking'ZB = ng, wheref :=0,® 1, cancels the minus signs that multiply the imaginary
parts of the parameteks in w. To ensure the convergence of

f D(¢, p)expi Tr $(Q—w) ¥,

one is tempted to choos@gg in such a way that Re TyQ«=0. Unfortunately, when this
condition is adopted one ge@gs = BQsB3, which causes TQ3; = Tr QggBQLsB, to be of
indefinite sign so that the integral ove® does not exist.

A way out of this difficulty was first described by Sdaaand Wegnérin a related context.
We are now going to formulate their prescription in a language that anticipates the geometric
structure emerging in the largédimit. To simplify the notation, we puQgg=iZ. What we need
to do is investigate the expression

exp(— N Tr Q34/20%+i Tr Qgathgire) =exp(N Tr Z2/20%—Tr Zigihs). (29)
The conditions orQgg translate into
Z=—ygZ"yg'=-BZ'B".
Becauseyz=0,®1, is symmetric, the solution space of the first equation is a complex Lie algebra

“=s02n,C). The matrix representation of an elemént . is of the form
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A B

cC —-AT)
whereB and C are skew. The second equatiofi=f — 8Z"81) meansA=—A" and C=B",
which fixes a real formZ=sd"(2n) of “.=sa2n,C). This real form isnoncompactfi.e.,

‘¢’=Lie(G) with G a noncompact Lie grodpwhich is what causes all the trouble and is forcing
us to work hard. Its maximal compact subalgeb¥ais the set of solutions ak=pBXB8 "1 in ¥.

From
« A 0
lo —AT
andA=—A" we see thatZ=u(n).
To display clearly the general nature of the following construction, we introduce a symmetric
quadratic form By X £ -—C by B(X,Y)=Tr XY. The Cartanorthogonal decomposition ofs
with respect to this quadratic form is written &=.77®.7,. An elementY of .Z satisfies
Y=—BYB L. From this, in conjunction with the equation fixing (X=+ 8XB8~ 1), one deduces
the commutation relations

(#, 2C, [ %, HC, [FT]CH. (30)

Note that the elements ofZ are Hermitian while those ofZ" are anti-Hermitian. We will also
encounter the complexified spac@s.=.7%+i.7%2 and. 7 .=.7+i.7. They, too, are orthogonal
with respect to B and satisfy the commutation relati¢88). The elemen{3=0,® 1, satisfies
B=—vaB" v and can therefore be regarded as an element ofMoreover,Bei. % C <.

Now we embeds=.7%2'®.7 into £ by a mapdy,,

Do X M — 5,
(X.Y)= (X, Y) =bx (X+e¥Be ),

whereb#0 is some constant that will be specified later.

Lemma 3.2:¢,(.% X.7) is an analytic manifold without boundary, and is diffeomorphic to
<
i

Proof: Analyticity is clear. To prove the other properties, we first establishdhas injective.
For that purpose, we write*Be~ Y = e g, where ad{)8=[Y,#] is the adjoint action or¥ ..
Decomposing the exponential function according to =egpsht+sinh, we write ¢g,=¢, +¢_,
where

& (X,Y)=bX (X+cosh adY)p),
¢_(X,Y)=bXsinh adY)g.

From the commutation relatior{80) and Bei.7Z, we see thatp.. takes valuesb, (X,Y)e7%; and
d_(X,Y)e .. Since s .= -®.7, (direct sum, injectivity is equivalent to the regularity of
the mapsX— ¢, (X,Y) (with Y viewed as a paramejerand Y—¢_(X,Y). The function
é.(X,-)=X+const is obviously regular. BY =Y" the elementy is diagonalizable with real
eigenvalues. The regularity @f_ then follows from sinhR—R being monotonic and—ad(Y) 8
being regular. This completes the proof th#f is injective. The injectivity of¢h, means that
(X ) is diffeomorphic tois=.72®. 7. This in turn means that, sincé has no boundary,
(72X ) has no boundary either. |
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We are now going to demonstrate thaf(. 72" X.#) for any b>0 may serve as a mathemati-
cally satisfactory domain of integration for the variaBlen (29). We begin by investigating the
quadratic form TZ2=B(Z,Z) on ¢, (%X 7). For this we seZ=Z_+Z_ with Z. = ¢ (X,Y).
Using B(Z..,Z_)=0 (recall. % .L. %), B(ad(Y)A,B)=—B(A,ad(Y)B) and cosh—sint*=1, we
obtain

B(Z,Z)/b?=B(X,X)+2B(X,cosh adY)B)+B(B,B).

The antihermiticity ofX .77 gives B(X,X)=<0. In contrast, cosh al() 8 i.7%" is Hermitian, so
B(X,cosh ad¥)p) eiRR. It follows that exgN Tr Z%/2v?)=exp(N Tr ¢, (X,Y)?/2v?) is decaying
with respect taX and oscillatory with respect t4.

We have not yet made any uselof0 yet. This inequality comes into play when the coupling
term

—Tr ZF‘Z’B’/’B: - B(Z:EBIPB) == bB(Xa"/jB';bB) - bB(eY,BefY,’lZB‘ﬂB)

is considered. Fron2) andZB = ,ng we see thaEszB satisfies

EB’#B: - YB(EB¢B)T7§1: + B(ﬁ‘/;B‘//B)Tﬁila

SO nggeiff. Since B is real valued 0¥’ X, the term RX,'(ZB(IIB) is purely imaginary. The
other term,

—bB(e¥Be ™, Ygihs) = —b Tr(yge? gl =0,

is never positive ib>0. Hence the real part of the exponential29) is negative semidefinite for
Q=iZeig,(ZX.7#) andb>0. As a result, the integrals ov€ and ¢, converge if the inte-
gration domain forQ is taken to be ¢, (77X %)X 7/ (b>0). Because ¢, (7 X . #)X 7 is an
analytic manifold without boundary and Cauchy’s theorem applies, we may perform the shift of
integration variables that is implied by the fourth equality sigiili#). Moreover, the presence of
the_nonvanishing imaginary parts of the parametgrsm » ensureauniform convergencef the
(1) integral with respect t®, so that we may interchange the order of integrafibe second
equality sign in(13)]. And finally, any breakdown of diagonalizability f—w occurs on a set of
measure zero, so that the identifyo) (Lemma 3.) may be used, and all steps leading28) are
rigorous. In summary, we have proved the following result.

Theorem 3.3: For V=02 (N andW= (@2 (" define the generating function

Zn,N(w):f

N Tr H2)
HI
i X sp(N)

SDet/ o w(H®1- 10 w) 2 exp( -7

n n

w=EBB®0'Z®E aiEii+EFF®UZ®E ﬁ]E” (Im ai<0).
i=1 j=1

Let DQ denote a translation-invariant holomorphic Berezin measure of the complex-analytic
superspace ospt22n). Then for allNeN, neN andb>0, DQ can be normalized so that

2
Zn'N(w)=f DQ exp—N STr(%an(Q—w)), (31)

i pp( TEX )X 7
where 7Z=sp(n), Z=u(n), .# is determined by Z® #=sd(2n), and ¢,(X,Y)
=b(X+Ad(e")(0,21,)). [ |
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5006 Martin R. Zirnbauer: Riemannian symmetric superspaces and their origin

We conclude this section with a comment. In the literature a parametrization of the form
Q=TPT ! (cf. Ref. 43 has been very popular. In our language, this factorization amounts to
choosing for the integration domain @gg the image ofg: &= #—%, X+Y—>e'Xe Y.
This isnot a valid choice ag/(%) does have a boundarmamely the light con¢z|B(Z,Z) =0} in
¢, so that shifting of integration variables is not permittddowever, it turns out that the error
made becomes negligible in the linht—co, so that the final results remain valid if that limit is

assumed.

F. Saddle-point supermanifold

The result(31) holds for allN e N. We are now going to use the method of steepest descent to
show that in the limitN—oo, the integral on the right-hand side reduces to an integral over a
Riemannian symmetric superspace of typil |CI.

With our choice of normalization, the mean spacing between the eigenvalltscdles as
N~ for N—o; see(14). We are most interested in the eigenvalues close to zero, as their statistical
properties describe those of the low-lying Bogoliubov independent-quasiparticle energy levels of
mesoscopic normal-superconducting systéhiEo probe their statistical behavior, what we need
to do is keepv=Nw/7v (i.e., w scaled by the mean level spacjrixed asN goes to infinity. In
this limit o~@(1/N) can be treated as a small perturbation and we may expand
N STrin(Q@—w)=N STrinQ—mv STrQ &+(1/N) if Q! exists.

To evaluate the integrdB1) by the method of steepest descent, we first look for the critical
points of the functioNF(Q)=N STrHQ?%*/2v2+In Q). These are the solutions of

F'(Q=Q/v?*+Q *=0,

or Q?=—1y2. The solution spaces, the so-called “saddle-point supermanifolds,” are nonlinear
subspaces of ospt22n), which can be distinguished by the eigenvalueQofOf these super-
manifolds, which are the ones to select for the steepest-descent evaluation of the (3Bgral

To tackle this question, we start out by setting all Grassmann variables to zero. The BB part
of the saddle-point manifo(d) is uniquely determined by the forced choice of integration domain
i ¢, (X, 7) and by analyticity. This is because the saddle-point manifold must be deformable
(using Cauchy’s theoreninto the integration domain without crossing any of the singularities of
SDet@Q— ») ~M; and by inspection one finds that this condition rules out all saddle-point mani-
folds except for one, which isi¢,(0X.#), the subspace of the integration domain
i o (X )|y, Obtained by dropping frony'=7%®. 7 the 7 degrees of freedortthese are
the directions of steepest desgei®ty an argument given in the proof of Lemma 3.2 we know that
i ¢,(0X.#) is diffeomorphic to.#. On general grounds the latter is diffeomorphic to a coset
spaceG/K by the exponential map#Z—G/K, Y+—>e"K; where in the present cage = {g
e GI(2n,C)|g = yeg Y ygt = Bg*ﬂﬂfl}, andK={ke G|k=BkB !} (on settingg=expZ,
k=expX and linearizing, we recover the conditiofis: — y3Z vz 1=—BZ'8 ! defining < and the
conditionX= BX B~ fixing the subalgebra?’). We already knows=sd*(2n) and.7Z=u(n), so
G=exp¥=S0"(2n) and K=exp.Z%Z'=U(n). BecauseK is a maximal compact subgroup, the
coset spac&/K is a Riemannian symmetric space of the noncompact type. In Cartan’s notation,
G/K=S0O"(2n)/U(n) is called typeDIIl. For better distinction from its FF analog, we will
henceforth denot&/K by G/Kg.

We turn to the FF sector. Since SD@tf ») " does not have poles but only hasrosas a
function of Qgg, analyticity provideso criterion for selecting any specific solution space of the
saddle-point equatio®@2-= —v?. Instead, the determining agent now is the liNit-oc. From(31)
it is seen that integration over the Gaussian fluctuations around the saddle-point manifold produces
one factor ofN"}(N™1) for every commuting(resp., anticommutingdirection of steepest de-
scent. Therefore, the limN—oe is dominated by the saddle-point manifold that has the minimal
transverse (supendimension dg—df. A little thought shows that the transverse dimen-
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sion is minimized by choosin@¢ to possess eigenvaluestiv andn eigenvalues-iv. Thus,
the dominant saddle-point manifold is unique and contains the specialqoitv B (8=0,81,
now acts in the fermionic subspace

Recall that the integration domain f@¢ is a compact Lie algebra/=sp(n). The corre-
sponding Lie groupgJ =Sp(n) operates orv/ by the adjoint action Adf):7/— 7/, X—>uXu ™.
Because the saddle-point equati@p=—v>Qf¢ is invariant under this action, the FF part of the
(dominanj saddle-point manifold can be viewed as the orbit of the action ofAd{n the special
point goe7/. Let K¢ be the stability group ofqq, i.e., Ke={keU|kgok '=qo}. By
Ad(Kp)go=qq the orbit AdU)qy is diffeomorphic to the coset spatd K. Arguing in the same
way as for the BB sector, one shows thigi=Kg=U(n). HenceU/K=Sp(n)/U(n), which in
Cartan’s notation is a compact Riemannian symmetric space ofQype

We are finally in a position to construct the full saddle-panpemanifold. Recall, first of all,
that Q is subject to the conditio®=—yQ"y %, which defines an orthosymplectic complex Lie
algebra?’, :=osp(2h|2n) in End,(W). The solution spaces itf, of the equatiorQ/v?+Q 1=0
are complex-analytic supermanifolds that are invariant under the adjoint action of the complex Lie
supergroupG , :=0sp(2n|2n). They can be regarded as @&l,) orbits of elementQ,eLie(G,)
that are solutions of@y)°= —v?. From the above analysis of the BB and FF sectors, we know
that the saddle-point supermanifold that dominates in the Idrdieit is obtained by setting
Qo=ivX, whereX,=1g®B=(Egg+Egp® 0,®1,. If H, is the stability group oR, the orbit
Ad(G,)Q, is diffeomorphic to the coset spa&,/H, . From y3,+3,,y=0 and the equation
hs,h~1=3, (or, equivalentlyh=3,hS,) for he H, one infersH ,=GI(n|n). Hence the unique
complex-analytic saddle-point supermanifold that dominates the Mrgdimit is
G /H ,=0sp(2n|2n)/GI(n|n).

Turning to the integral (31) we note the relations ST3=-v?STr1=0 and
In SDeQ,=In 1=0. These imply that the functidf(Q) =STrQ?/2v2+In Q) vanishes identically
on Ad(G,)Q,. Hence the exponent of the integrand(81) restricted toG,/H, is

7o STrQ ™ a|g, 1, + (LUN)=—i7B(d,Ad(9)2 )+ “(1N).

To complete the steepest-descent evaluatioi3bfwe need to Taylor expand the exponent of the
integrand up to second order and do a Gaussian integral. By tf@ Adhvariance of the function
NF(Q) itis sufficient to do this calculation for one element of the saddle-point supermanifold, say
Q=Qq. PuttingQ=Qy+Z (Ze ¥,) we get

N
NF(Qo+2Z)= 552 STHZ%+ 273,25, + (Z3).

Now we make the orthogonal decompositigh =Lie(H ) +.7#, , Z=X+Y, whereY=-3% Y%,
are the degrees of freedom tangent to the saddle-point supermanifol& =and. X3, are the
degrees of freedom transverse to it. The translation-invariant Berezin méaguné .5, factors
asDZ=DY DX We thus obtain the transverse Gaussian integral

N
f DX exp{—FSTrXZJr@‘(NO) .

The integration domain foK is i.7ZgX. 7 g=iu(n) Xu(n). By dim Lie(H,)=(p,q) and p=q,
this integral reduces to a constant independent d@fi the limit N—co.

What remains is an integral over the saddle-point supermanifold itself. Sicis the local
expression of the invariant Berezin measureGof/H, at Ad(e")Qy|y_o=Q, we arrive at the
following result.

Theorem 3.4:1f Dgy is a suitably normalized invariant holomorphic Berezin measure of the
complex-analytic supermanifol@ ,/H , =Osp(2h|2n)/Gl(n|n),
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lim an(m):f Dg,, exp—i7B(®,Ad(g)3,), (32)
1 N MgXMg

N— oo

whereX,=1g®0,®1,, Mg=S0*(2n)/U(n), andM=Sp(n)/U(n).

Remark 3.5:This result expresses the generating functionNerc as an integral over a
Riemannian symmetric superspace of typkl |Cl (see Tables | and Jiwith m=n.

In Ref. 44 then-level correlation functiorR,, is calculated exactly fronG32) for all n.

IV. OTHER SYMMETRY CLASSES

There exist ten known universality classes of ergodic disordered single-particle systems.
These are the three classic Wigner-Dyson cla$6&3E, GUE, GSE, the three “chiral” ones
describing a Dirac particle in a random gauge fi@ldGUE, chGOE, chGSEand the four classes
that can be realized in mesoscopic normal-supercondu@tiBghybrid systems. In Ref. 25 it was
noted that there exists a one-to-one correspondence between these universality classes and the
large families of symmetric spacéwith the exception of the orthogonal group in odd dimen-
siong. Specifically, the Gaussian random-matrix ensemble over the tangent space of the symmet-
ric space describes the corresponding universality class, in theNimib. In the notation of Table
| the correspondences ad—GUE, Al—GOE, All—GSE, Alll -chGUE, BDI+—chGOE,
Cll—chGSE, and the four NS classes correspon@ t®, Cl, andDIII.

We have shown in detail how to use the supersymmetry method for the Gaussian ensemble
overCy=sp(N), the tangent space of the symplectic Lie group. There are nine more ensembles to
study. We will now briefly run through all these cases, giving only a summary of the essential
changes.

A. Class D

Recall the definitions given at the beginning of Sec. 11l B and replace the symplectic unit by
z=0,®1y.What you get is a Gaussian random-matrix ensemble Dyerso(2N), the orthogo-
nal Lie algebra in & dimensions. The explicit form of the Hamiltonian is

a b
H= bT _aT

wherea(b) is complex Hermitiar(resp., skew The treatment of this ensemble closely parallels
that of typeC. A change first occurs in the consistency condition forwhich now reads as
y=—7"0o (instead ofy=+y"0) by 77~ 1" = +1. The extra minus sign can be accommodated by
simply exchanging the BB and FF sectdhg < ¥). The linear constrainQ=— yQ"y ! again
defines an osp(#2n) Lie algebra, the only difference being that the BB sector is now “sym-
plectic” while the FF sector has turned “orthogonal.” Everything else goes through as before and
we arrive at the statement of Theorem 3.3 with=so(2n), .7Z=u(n), and.Z'®. #Z=spin,R).

A novel feature arises in the larde-limit, where instead of one dominant saddle-point
supermanifold there now emerggo. One of them is the orbit with respect to the adjoint action of
Osp(2n|2n) on Qy=iv1gE®0,®1, as before, and the other one is the orbit of

Ql:ivEBB® (TZ® ln+iUE|:|:® O'Z®

n
Eu—i:Z2 En).

[The orbits ofQ, andQ, are disconnected because the Weyl group of sp(2 “too small.”]
Consequently, the right-hand side of Theorem 3.4 is replaced by a sum of two terms, one for each
of the two saddle-point supermanifolds. The integral is over a Riemannian symmetric superspace
of type CI|DIIl (m=n) in both cases.
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B. Class CI

Let V=C?®CN carry a Hermitian inner produdas always and consider the spacB, of
self-adjoint Hamiltonian#d e End(V) of the form

0 1N)

a b
H=H'=-7HTz 1= here =io,®1y=
/ z (b —a)’ where loy®1y “1, 0

The NX N matricesa andb are real symmetric. It is easy to $8¢hat P is isomorphic to the
tangent space of the symmetric spaceNgpJ(N) (typeCl). A Gaussian measudu(H) onP is
completely specified by its first two momenys, Tr(AH)dw(H)=0 and

2
fTr(AH)Tr(BH)d,u(H)— o Tr(A(B+BT) —AZ(B+BT)z1).

To deal with the random-matrix ensemble defined by this measure, We/\tal(ém@f‘ ®C2eC",

Recalliye Hom, (W, V) andz,b e Hont (V,W). The symmetries dfl are copied to,/n,/; by imposing
the linear conditions

b=y T =T e
In order for these conditions to be mutually consistentye Endy(W) must satisfy

Y= ’}/TO', T= TTO', )/7'71: - 7771.
Without loss, we takey and 7 to be orthogonal. The consistency conditions can then be written in
the form

72= o=172, yr+ 7y=0.

If GI(W)=GlI(4n|4n) is the Lie supergroup of regular elements in EQ\), the equationy’=¢

in conjunction with g""=0go means that the automorphismGI(W)—GI(W) defined by
%g) = yg~ 1y Lis involutory. The same is true fardefined byr(g) = g~ = and, more-

over, ¥ and 7 commute byyr+7y=0. For definiteness we take

Y=Egs® ¥ TEre® ¥F, ¥8=0x®0,01,, y=ioy®1,01,,
T=EBB®TB+EFF®TF1 TB=12®UX®1HY 7'|:=O'Z®i0'y®1n.

(This choice is consistent wit—ErB = ,Bz/fg, B=0,®1,81,.) Let

©:={QeEndy(W)|Q=-»QTy *=+7Q'7 !}

be the subspace distinguished by the symmetry propertiggsofrhe group GIWW) acts onZ by
Q—gQg . We now ask what is the subgro@®, of GI(W) that leaves the symmetries f
invariant[the normalizer ofZ in GI(W)].

Lemma 4.1: G is isomorphic to Osp(&|2n) X Osp(2n|2n).

Proof: The conditions orge G, can be phrased as follows:

y=gy9', 7=9719".

Equivalently, G, can be described as the simultaneous “fixed point €etf the involutory
automorphismsy and 7. We first describe the fixed point set ofo7, which acts by
(¥°7)(9) = €ge ™, wheree=—iy7~. From the explicit expressioa=1gF® 0, ® oy® 1, We see
that € has 4 eigenvalues equal ta-1, 4n eigenvalues equal te-1, and these are equally
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distributed over the bosonic and fermionic subspaces. Hence the subgroup\df ikd by o 7
is isomorphic to G,XG_, where G,=Gl(2n|2n)=G_. Denote the embedding
G, XG_—GI(W) by ¢(g. ,9_)=g. The groupG, is the fixed point set of (or, equivalently, of
y) in (G, XG_) [T commutes withye7 and therefore takeg(G, X G_) into itself]. Note
€T= —T€, el = - €, and forg e ¢(G, X G_) do the following little calculation:

1T -1 17

er(g)=erg l rl=—regl 7 1= T(eg)_lT7_1= 7(€g).

Combining this withee(g, ,g_)=¢(g. ,—g_) one infers that acting ong(G_, X G_) is of the
form 7¢(g9, ,0_)=¢(7.(9,),7_(g_)). By a short calculatiorfwork in an eigenbasis of) one
sees that the involutory automorphisms Gl(2n|2n)—GI(2n|2n) (i==) are expressed by
7i(g) = rig*1T7f1 with supersymmetrie;(7; = ’TiTO'). It follows that7; fixes an orthosymplectic
subgroup ofG;=GI(2n|2n), so G ,=0sp(|2n) xOsp(2h|2n), as claimed.

Corollary 4.2: The space” is isomorphic to the complement of osp(2n) osp(2n|2n) in
osp(4n|4n).

Proof: The solution space in EqW) of Q=—yQ"y ! is an osp(4|4n) algebra. Imple-
menting the second conditid@= + 7Q"7 * amounts to removing from osp(#n) the subalge-
bra fixed byX=—7XT7 1. By linearization of the conditiong= y(g)=7(g), this subalgebra is
identified as Li€G ,)=osp(2n|2n)@osp(2n|2n). |

The Gaussian integral identitft0) continues to hold, albeit with a different value of1/4.
The proof is essentially the same as before.

Sinceis not a Lie algebra, the description of the correct choice of integration domain for the
auxiliary variableQ is more complicated than before. In the FF sector we take= {Qgr
€ CrdQpe = —QEF}. By Corollary 4.2, sp(8)=(sp(n) ®sp(n))@®%/. To deal with the BB sector
we introduce the spaces

7={Xegl(2n,0)|X=—ygXTyg "=~ 7eX"r5 ' = = BX'B71},
={Ye\Y==BYB Y}, 7*={XeCg|X=—BXTB"1=+pXB"1},

whereB=0,®1,®1,. The Lie algebras is a noncompact real form of the BB part of [@&,).
By Bei’" and the commutation relatiofis7, 7" |C~ and[.#,77|C’", we have an embed-
ding,

o X M= Cgg=T + T,
(X,Y)—bXx (X+e2dY)p).

Similar considerations as in Sec. Il E show that all integrals are rendered convergent by the
choice of integration domaigh, (7" X.7)x 7/ (b>0) for Q. With this choice we again arrive at
Theorem 3.3.

The largeN limit is dominated by a single saddle-point supermanifold, which can be taken as
the orbit of Qp=ivX, (hereX,=1g®0,®1,®1,) under the adjoint action d&, . This orbit is
diffeomorphic toG,/H , , whereH , ={he G,|h3,h~*=3 }. The stability groufH , can equiva-
lently be described as the fixed point set®f:G,—G, , 2,(9)=2,9%,. By the relations>,
=37 = —9y3,y7t = 3,71 (3,€0), the elemenE, anticommutes withe=—iy7 1, and3,
commutes withye7. These relations are compatible with the existence of an embedgling
Osp(2n|2n) XOsp(n|2n) —GI(W), such that E,°¢)(g, ,9-)=¢(g_,g.). (Such an embed-
ding is easily constructedHenceH ,=diag(Osp(2n|2n) X Osp(2n|2n))=0sp(n|2n). In this
way we arrive at Theorem 3.4 witB ,/H , =Osp(2n|2n), and the maximal Riemannian submani-
fold MgXMg, whereMg=S0(2n,()/SO(2n) andM=Sp(n) (type D|C).*’
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C. Class DIl
Consider forV=C2@C?®CN the linear space
P={HeEndV)H=HT=-¢zHT¢ 1=+ 7HT7 1},

where 7 =0,®1,® 1y and.7=1,®i0,®1y. It has been show that P is isomorphic to the
tangent space of SON)/U(2N) (a symmetric space of typ@lll). Introducing an orthonormal
real basis ofv, we can represeri by a ANX 4N matrix. If 2" and.7 are given by

0 0 1, O 0 1, 0 0

o 0o o x| _[-wo0o o o

““l1, 0 0o ol 7Tl 0o 0o o
0 1y 0 0 0 0 -1y 0

a b c d

bt a' —dT —c'
H= ¢t —dT —aT b |

d -c b -a

where all entries are compldX¥X N matrices anda,d(b,c) are Hermitian(skew.
The Gaussian random-matrix ensemblePois defined by the Gaussian measdye(H) with
vanishing first moment, and second moment,

2
f Tr(AH)Tr(BH)du(H) = :—N TIAB-AZBT¢ '+ ATB .7 1= A(2.7)B(Z.7)"Y).
P

Given the auxiliary spaceW:=C1e(2(22C", we impose on yeHom(W,V), ¥
e Hont (V,W) the linear conditions

Y=y ey Y=—ryTy Y

p=ry 7Y Y=Y

with some invertible orthogonal elemenygr of End,(W). Consistency requireg?=—o=+* and
vyr+7y=0. A possible choice is

y:(EBB®iay®12+EFF®UX®UZ)®1H!
T:(EBB®UZ®iO'y+ EFF®12®0-X)®1n'

Because this differs from clagdl only by the exchange of the bosonic and fermionic subspaces,
the following development closely parallels that 61, and we arrive at another variant of
Theorem 3.3.

The largeN limit is dominated by a pair of complex-analytic saddle-point supermanifolds,
each being isomorphic to Ospf2n). [The reason why there are two is tha2@,C) has two
connected componentsthe first one is the orbit under AG,) of Qy=iv1lg®0,®1,®1,, and
the second one is the orbit of
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n
Q]_:il) EBB®UZ®12®1H+EFF® 12®(TX®E11+O'Z®12®2 E“)>
1=2

Both saddle-point supermanifolds are Riemannian symmetric superspaces @|Bpeith di-
mensionalitym=2n (Table 1.4’

D. Class Alll
The tangent space at the origin of fJ¢)/U(p) XU(q) consists of the matrices of the form

0 z

H=l2t o

where Z is complex and has dimensiogmx g. Such matrices are equivalently described by
Hi'=H=-7H71, where 7’=diag(1,,—14). For simplicity, we will consider only the case
p=q (the general case has not yet been analyzed in the present forpnalisenGaussian en-
semble of random matricds is taken to have second moment

2

The physical space ¥=(?®CP, and the auxiliary space &/=C"®(?(". The definition ofw
is unchanged from clags. To implement the symmetry conditiapy=—7y4:7* we set

Y=i2ym 1 ’1/-/=i77n1/1f.9/)71,
where 7=1g®io,®1,. This choice is consistent with the relati&g = ng which ensures
convergence of théy,¢) integration. The auxiliary variabl® ranges over the complex-analytic
superspace
©={QeEnd,(W)|Q=—mQm"1},
and the normalizer ofY in GI(W) is
G,={geGlI(W)|g=mgnm }=GI(n|n) X GI(n|n).

For the integration domai# in the FF sector we again take the anti-Hermitian matriceSgdp.
In the BB sector we set

={Y e End(Wp)|Y=mY7 1=—-gYR 1=YT,
7= ={Xe Endy(Wpg)|X=—mX7 1=+ pXB 1= X"}.
The treatment of Sec. Il E then goes through as before, leading again to Theorem 3.3.
There is a single dominant saddle-point supermanifold, which is théGAQd orbit of
Qo=ivlge®0,®1, and is diffeomorphic td@5 \/H ,=GI(n|n). The integration domaiivigXM ¢

is given byMg=GlI(n,C)/U(n) andM =U(n). The invariant Berezin measure of this Riemannian
symmetric superspace of tygeA was discussed fan=1 in Example 2.4.
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E. Class BDI

The form of the random-matrix HamiltoniaH for classBDI can be obtained from the
preceding case by taking thexq matrix Z to be real. Put in formulasH is subject to
H'=H=HT=—7H>!. We again make the restriction po=q. The basic correlation law of the
Gaussian ensemble is

2

f Tr(AH)Tr(BH)du(H) = 4U__N Tr(A(B+ BT) —AAB+ BT)?/rl)_

To accommodate the extra symmekty=H", auxiliary space is extended W= ("o (20 (2a(".
The symmetry conditions o, ¢ are

p=ipmt, Y=imps =gt =y,

wherem=1g®io,®1,81, and7=(Egg®L,® o+ Ee®1,®i 0y )®1p. The auxiliary integration
space,

©={QeEnd\(W)|Q=—mQm '=+7Q7 1},
has the symmetry grouf@r normalizey
G,={geGl(W)|g=mgm 1=rg 1 7 }=GI(2n|2n).

For the integration domai# in the FF sector we once again take the anti-Hermitian matrices in
Cee. In the BB sector we set

={YeEnd(Wg)|[Y=nYrm 1=—7YTr 1=—pBYB 1=Y",
7 ={XeEnd(Wg)|X=—mX7 1=+ XTr 1=+ gxXp 1= X".

The treatment of Sec. Il E then goes through with modifications as in Sec. IV B.

There is a single dominant saddle-point supermanifold, which is théGQd orbit of
Qo=ivilgr®0,®1,®1, and is diffeomorphic ta5 ,/H ,=Gl(2n|2n)/Osp(zh|2n). The integra-
tion domainMgXM¢ is given byMg=GI(2n,R)/O(2n) and M=U(2n)/Sp(n). This is a Rie-
mannian symmetric superspace of tybgAIll with m=2n (Table II).

F. Class CIlI

The tangent space at the origin of 8hN)/Sp(N) XSp(N) (a noncompact symmetric space of
type Cll) can be described by the equations

HI=sH=—oH7 '=—7HT7 1,

where7’=0,®1,®1y and.7=1,®i0,® 1y (the physical space ¥ =C20C22CN). The explicit
form of the matrices is
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1y, 0 0 O

P=
0 0 -1 0
0O O 0 -1y
and
0 N 0 0
-1y O 0 0
T = ,
0 0 0 1y
0 0 -1y O

wherea and b are complex and have dimensidix N. The correlation law of the Gaussian
random-matrix ensemble of typ@ll is

2
J Tr(AH)Tr(BH)du(H) = :—N TrA-7A7 1) (B-7BT7 1.

As before, W=C11@ (2222 C". The symmetry conditions og, i are
Y=irpm 1 Flzziwrzjuf?/"*l; 1/12,7—‘1/?7'71, ’J: 7

where 7=1g®i0,®1,®1, and 7=(Egg®1,®i0,+ E®1,®00,)®1,. This differs from class
BDI only by the exchange of the bosonic and fermionic subspaces. Once more we arrive at
another version of Theorem 3.3.

There is only one complex-analytic supermanifold of saddle-points that dominati¥sfer.
It is isomorphic to that for classBDI. The integration domainMgXMg changes to
Mg=U*(2n)/Sp(n) andM g=U(2n)/O(2n) [not U(2n)/SO(2n)]. This is a Riemannian symmet-
ric superspace of typAll|Al with m=2n (Table Il). The group U(2n) is defined as the non-
compact real subgroup of @n,C) fixed byg=297"*, wherez =io,®1,.

G. Class A

This class fom=1 was used to illustrate our general strategy in Sec. Il A. Let us now do the
case of arbitrann,

n H_ i
Zn(al,...,an;ﬂl,...,ﬁn)=fl u(N)iljl Det(H_'ji)d,u(H).

The classes treated so f&@,D,CI,DlIll, Alll,BDI,Cll) all share one feature, namely the existence
of a particle-hole type of symmetiH=—7H7" L orH=—%HTZ 1), which allows us to restrict

all «; to one-half of the complex plane. Such a symmetry is absent for the Wigner—Dyson
symmetry classes, Al, andAll, which results in a somewhat different scenario, as it now matters
how manyg; lie above or below the real axis. For definiteness let

Im ;<0 (i=1,...04), Ima;>0 (j=na+1,...0n),

and selhg=n—n,.
Auxiliary space is taken to b&/=C'®C". The definition ofw changes to
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n n

w:EBB®i21 aiEii+EFF®jzl ,BJE“ .

Recall that the imaginary parts of tke steer the convergence of tl(|$,l) integration. Sincew
couples toy, iy by exp—i STry w iy, convergence forces us to takkg = ,Bz/f,;, where

na n
B=2 Ei— > Ej; -
i=1 j=na+1

There are no further constraints @n «, or Q. Thus the complex-analytic auxiliary integration
space isZ=End,(W), andG ,=GI(W)=GlI(n|n).

The integration domain fo in the FF sector is taken to be the anti-Hermitian matrices
7z=u(n). In the BB sector we introduce

C={Xegl(n,C)|X=—pXT'p~1, Z={XeZ|X=pXp '}

The Lie algebra¢ is a noncompact real form og,ng) of gl(n,C), and.ZZ'=u(n,)®u(ng) is a
maximal compact subalgebra. The spag¢gis defined by the Cartan decompositigr=7Z®. 7.
The integration domain foQgg is taken to be ¢, (7% X.7), wheredy(X,Y) = b(X + €24 g)
(b>0). This gives Theorem 3.3.

By simple power counting, the limil—» is again dominated by a single complex-analytic
saddle-point supermanifold, which is the (@},)-orbit of Qy=iv1gr®B. The stability grouH ,
of Qg is H,=Gl(nu|ns) XGl(ng|ng), so

Ad(GA)QO:GA/HA:G|(n|n)/GI(nA|nA)XGI(nR|nR).

The intersection of AdG,)Qy with i¢ (ZXZ)X7% is MgXMg, where
Mg=U(ny,ng)U(ny) XU(ng) and M=U(n,+ng)/U(ny) XU(ng). This is a Riemannian sym-
metric superspace of typ&lll |Alll with m;=n;=n, andm,=n,=ng (see Table I\

H. Class Al

The tangent space of BI)/O(N) is the same agi timeg the real symmetric matrices
H'=H=HT. It differs from the tangent space of SN)J/SO(N), a symmetric space of typ&! in
an inessential wagjust remove the multiples of the unit matrixrhe Gaussian ensemble over the
real symmetric matrices has its second moment given by

2

J Tr(AH)Tr(BH)du(H)= ;—N Tr(AB+ABT).

This ensemble is related to tygein the same way that typ€l is related to typeC.
To implement the symmetrid=HT we setW=C"e(?®C" and requirey=y"7 %, y=7y",
where7=(Egg®0,+ Ee®igy)®1,. The auxiliary integration space,
©={QeEnd\(W)|Q=7Q 71},
has the symmetry group
G,={geGlI(W)|g=rg~ 1 7 L}=0sH2n|2n).

The intersectiorvz of the FF sector/g with the anti-Hermitian matrices is given by sp@ 7/
=u(2n). In the BB sector we put
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={Y e End(Wp)|Y=—7YTr"1=—-BYB 1=V},
7= ={Xe Endy(Wp)|X=+7XT7r 1= = gXp~ 1=+ X1},

which leads to yet another version of Theorem 3.3.

The largeN limit is controlled by a single complex-analytic saddle-point supermanifold
Ad(G,)Qy=G,/H,, whereH ,=0sp(2n,|2n,) XO0sp(2hg|2ng) is the stability group ofQ,
=ivlgr® (Ei”QlE” — E?:nAHE”). The intersection of Adg ,) Qg with the integration domain
G TXM)X7  is MgXMg, where Mg=SO(2,4,2n5)/SO(2n,) XSO(2ng) and
M e=Sp(ns+ng)/Sp(n,) XSp(ng). This is a Riemannian symmetric superspace of ®pd|ClI
(Table 1) with m;=2n;=2n, andm,=2n,=2ng.

I. Class All

Finally, the tangent space of UKB/Sp(N) [a symmetric space of typall, except for the
substitution SU(&)—U(2N)] can be described dstimes the subspace of Efid?oCN) fixed by

—

the linear equationsl’=H=7H"7"1, 7=io,®1y. The explicit matrix form ofH is

’ a b
bt aT)’
whereb is skew anda is Hermitian. _

The conditions y=7¢"'7* and y¢y=7¢4"'7 1 are mutually consistent if, say,
7=(Egg®i0oy+ Ee®0,)®1,. The rest of the manipulations leading up to Theorem 3.3 are the
same as for clasAl, except for the exchange of the bosonic and fermionic subsdagesr:).

The largeN limit is controlled by a single saddle-point supermanif@®l,/H, ,MgXMpg), where

G, /H,=0s[2n|2n)/Os[H 2na|2n,) X Os(2ng|2nR),
Mg=Sp(Na,NRr)/SpPNA) X SP(NR),
M (= qunA"f‘ 2nR)/Sq2nA) X SQZHR),

which is a Riemannian symmetric superspace of §HéBDI (Table Il) with m;=2n,=2n, and
m2= 2I’]2= 2nR .

V. SUMMARY

When Dyson realizéf that the random-matrix ensembles he had introduced were based on
the symmetric spaces of typg Al, andAll, he wrote: “The proof of(the) Theorem... is a mere
verification. It would be highly desirable to find a more illuminating proof, in which the appear-
ance of thdfinal resul} might be related directly to the structure of the symmetric space...”. The
advent of the supersymmetry method of Efetov and others has improved the situation lamented by
Dyson. The present work takes the Gaussian random-matrix ensembles defined over Cartan’s large
families of symmetric spaces and, going to the limit of large matrix dimension, expresses their
spectral correlation functions as integrals over the corresponding Riemannian symmetric super-
spaces. These correspondences are summarized in Table Ill. The Riemannian symmetric super-
spaces that appear there all have superdimengiay) (vith p=q. We say that they are “perfectly
graded” or “supersymmetric.” An interesting question for future mathematical research is
whether our procedure can be optimized by reducing it to a computation involving no more than
the root system of the symmetric space, thereby obviating the space- and time-consuming need to
distinguish cases(Although | have treated all ten cases separately, it is possible, following
Efetov? to shorten the derivation by starting from a large “master ensemble” of highest symme-
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TABLE lll. The symmetric-space based random-matrix theories of the first column map onto the Riemannian symmetric
superspaces listed in the third column. The notation for the dimensions is taken from Table II.

RMT Comments RSS Dimensions
A Wigner—Dyson(GUE) AlllAIN m;=nN;=Np, My=N,=nNg
Al Wigner—Dyson(GOE) BDI|CII m;=2n;=2n,, My,=2n,=2ng
All Wigner—Dyson(GSE Cli|BDI m;=2n;=2n,, My=2n,=2ng
Alll (p=q) chiral GUE AlA m=n
BDI (p=0q) chiral GOE Al|AlI m=n
Cll (p=q) chiral GSE All|AI m=n
C NS DlII|CI m=n
Cl NS D|C m=2n
D NS clpii m=n
DIl NS c|D m=2n

try and then reducing it by the addition of symmetry-breaking terms. | chose not to follow this
route as it involves handling large tensor products, which makes the computations less transparent
and the identification of the spaces involved more diffigult.

The great strength of the supersymmetry method, as compared to other methods of meso-
scopic physics, stems from the fact that it easily extends beyond the universal random-matrix limit
to diffusive and localized systems. What one obtains for these more general systems are field
theories of the nonlineas- model type, with fields that take values in a Riemannian symmetric
superspace. The method also extends beyond spectral correlations and allows the calculation of
wave function statistics and of transport coefficients such as the electrical conduaadhe
literature cited in the Introduction

Let me end on a provocative note. Mathematicians and mathematical physicists working on
supermanifold theory have taken much guidance from developments in such esoteric subjects as
supergravity and superstring theory. Would it not be just as worthwhile to investigate the beautiful
structures outlined in the present paper, whose physical basis is not speculative but firmly estab-
lished, and which are of direct relevance to experiments that are currently being performed in
physics laboratories all over the world?
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