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An N-channel generalization of the network model of Chalker and Coddington is
considered. The model fod=1 is known to describe the critical behavior at the
plateau transition in systems exhibiting the integer quantum Hall effect. Using a
recently discovered equality of integrals, the network model is transformed into a
lattice field theory defined over Efetove model space with unitary symmetry.
The transformation is exact for a, no saddle-point approximation is made, and
no massive modes have to be eliminated. The naive continuum limit of the lattice
theory is shown to be a supersymmetric version of Pruisken’s nonlimeaodel

with couplingso,,=N/4 ando,,=N/2 at the symmetric point. It follows that the
model forN=2, which describes a spin degenerate Landau level and the random
flux problem, is noncritical. On the basis of symmetry considerations and inspec-
tion of the Hamiltonian limit, a modified network model is formulated, which still
lies in the quantum Hall universality class. The prospects for deformation to a
Yang—Baxter integrable vertex model are briefly discussed.1997 American
Institute of Physics.S0022-248807)01204-9

I. INTRODUCTION

The single-electron states of a two-dimensional disordered electron gas in a strong magnetic
field are localized except at the energies of the Landau band centers. As the Fermi energy ap-
proaches such a band center, a critical phenomenon takes place: the localization length diverges
and the Hall conductance jumps from one plateau to the next. This phase transition, which belongs
to the general class of Anderson metal—insulator transitions, has been seen in several experiments
and a substantial amount of data on its critical behavior is available from a number of numerical
simulations(in the absence of electron—electron interactipeee Ref. 1 and references therein.
Unfortunately, in spite of considerable efforts expended over the last decade, our analytical un-
derstanding of the plateau-to-plateau transition is still rather poor. It is expected that the critical
behavior is described by some nonunitary conformal field theory, but this theory has not yet been
identified.

There exist two opposite limits from which the transition in the noninteracting system can be
approached theoretically. The first limit is that of a slowly varying random potential with a
correlation length . much larger than the magnetic lendth In this limit, the electron’s motion
can be described in semiclassical tefmdore precisely, the motion separates into a rapid cyclo-
tron motion superimposed on a slow guiding center drift along spatially localized equipotential
lines. As the Fermi energy approaches the center of a Landau band, a percolating path develops
and a localization—delocalization transition takes place. Close to the transition, the qguantum me-
chanical possibility for an electron to tunnel from an equipotential to a neighboring one is a
relevant perturbation. The essential features of this quantum percolation transition were cast into
a random network model by Chalker and Coddingtémtheir model an electron acquires random
U(1) phases while moving along the directed bonds of a square network, and is scattered to the
right or left every time it passes through a node of the network. The model will be reviewed in
more detail below. Suffice it to say here that the model has been studied by numerical simulation
but has, in its original, spatially isotropic formulation, defied analytical treatment up to now,
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although a certain amount of analytical insight has come from consideration of its anisbémgic
weak disordet versions.

The opposite limit id .<<Ig . Historically, this was thdirst limit to be studied analytically, the
reason being that it is this limit that was amenable to the field theoretic machinery developed at the
beginning of the 1980’s by Wegn@iEfetov and others. Starting from a Gaussian white-noise
potential {.=0) Pruiskefi used the replica trick to set up a generating functional for the disorder
averaged retarded and advanced Green's functions of the single-electron Hamiltonian. After a
Hubbard—Stratonovitch transformation to matrix-valued fields, he made a saddle-point approxi-
mation, valid in the limit of a high Landau level. This was followed by a gradient expansion
leading to a Uf . +n_)/U(n,) X U(n_) nonlinearc model with a vanishing number of replicas,
n,.=n_=0, and a parity-violating topological term due to the strong magnetic field. The coupling
constants of the modetr,, and oy, were identified with the physical conductivities of thed2
disordered electron gas. The topological couplrg2mo,,, by its very nature, has no effect on
the equations of motion of the classical field theory, dagschange both the Hamiltonian and the
symplectic structure and, consequently, the commutator of the quantum theory. It was‘argued
that the nonlinearr model, while generically being massivee., having a finite correlation
length in two dimensions, becomes critical @t 7. The vanishing of the mass gap corresponds
to the appearance of delocalized states at the center of a Landau band. Thus, Pruisken’s model
provided the right kind of scenario in which to develop a scaling theory of the plateau-to-plateau
transition. A supersymmetric version of the model first appeared in'Ref.

Undeniably, Pruisken’s nonlinear model has served as a great inspiration to theory. One of
its early successes was thg, — ay, flow that was conjectured from'#t'®and later verified by
numerical and real experiments; see Ref. 1 and references therein. In spite of this, Pruisken’s
model or, rather, its promoters have been criticized; see Ref. 13 for a summary. For one thing, the
model has never yielded any quantitative results for the critical behavior at the transition, and
much less has it been solve@he same statement applies to the general class of nonlinear
models with a topological term. None of these has ever been solved, at least not dlifemtly.
another, even the derivation of the model is vulnerable to criticism: the validity of the saddle-point
approximation that is made to eliminate the so-called massive modes, regyiees. Although
this inequality is satisfied for the bater SCBA) value ofo,, in the limit of a high Landau level,
the renormalized theory at,,=1/2 is expected to have a,, of order unity or less. The cure
proposed by Pruisken was &gssumehe renormalizability of his model, and appeal to the RG flow
to take the coupling constant,, from large to small values. However, such an assumption needs
to be justified and, in fact, is not acceptable by current field theoretic knowledge, for Pruisken’s
model apparently lacks the conformal structure that is required of a fixed point theory with a
continuous symmetry in two dimensiorif other words, the model, while definitely being critical
at o,,=1/2, does not possess the conservation laws expected of an infrared stable fixgd point.

Two advances will be made in the present paper. The first is to establish a very close con-
nection between Pruisken’s nonlineamodel and the network model of Chalker and Coddington
at criticality. We will show that the latter can be viewed as a lattice discretization of the former or,
conversely, taking the continuum limit of the network model yieldsd¢hmodel. A more detailed
outline is the following. We start out by reviewing the supersymmetric version of Pruisken’s
model and the Chalker—Coddington network model in Secs. Il and lll. Then, in Sec. IV, the
network model is reformulated as a lattice-regularized field theory defined over Efetov’s super-
symmetric nonlinear- model space with unitary symmetry. This reformulation is exact. In con-
trast with the conventional method due to Wegner, Efetov and others, no saddle-point approxi-
mation is needed to eliminate the massive modes. Moreover, Sec. V shows that not only is the
supersymmetric reformulation of the network model defined over the same field space, but it also
has the same global symmetries as Pruisken’s model. At the critical point of the network model,
where the correlatiofor localization length diverges, the long wave length physics of the super-
symmetric lattice theory is expected to be described by a continuum field theory. The symmetries
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dictate that this continuum theory be Pruisken’s model at the critical couplige 1/2. As is
shown in Sec. VII A, the other coupling constaat,, equals 1/4. The numerical value of, is
checked in Sec. VII B, by evaluating the lattice action on a smooth field configuration with
nonzero topological charge. Section VIl C extends these results M-@mannel network model
with random U) matrices on links.

What we learn from all this is that, although historically Pruisken’s model was first obtained
from the Gaussian white noise limit<lg, in a low Landau level it is actually more closely
related to the opposite limit>1g, since it is the latter that provides the microscopic basis for the
network model.

The mathematical basis underlying the exact transformation fromNtehannel network
model to the supersymmetric lattice field theory is quite natural and simple, and is briefly sketched
as follows. (Readers who are not interested in mathematical structures may want to skip this
paragraph.For a pair of positive integens,N consider the tensor producf® CN, on which the
group GL(N) acts by Ilnear transformations. Span the corresponding Lie algebmdNyloy
bilinears{c,ch 'A’B 11 N '” in fermionic creators and annihilatorg, which act in a Fock space
with vacuum|0). There eX|st two natural subalgebras:rl( generated by;cic, and gliN),
generated byEAcAcA Now put n=n_+n, and fill the “negative energy states” to form
lvag =TI 1HA ch|0). The particle—hole coherent statethat are generated by the action of
GL(n) on|vag, are holomorphic sections of a line bundle associated to the homogeneous space
G/H:=GL(n)/GL(n,)XGL(n_) by the Slater-determinant representation of @L)Y on
|vac). They are parameterized by a comphexx n_ matrix Z with adjointZ'. By combining the
closure relation for particle—hole coherent states with a few elementary properties of Fermi-
coherent(or Grassmann-cohergrgtates, one can prove the following equality of integrals:

Ny
f duH Det(1—e*¢+aU) H Det(1—e~'¢-bU")
U(N)

a=1
=f du(Z,2")Det N(1+2'2)DetN(1+ ZTet !¢+ ze 1),

where . =diag(¢=1,...,¢+n, ) are diagonal matrices with real entriel) is the Haar measure

of a U(N) subgroup of GLN) anddu(Z,Z") expresses the W)-invariant measure of a compact
symmetric space W()/U(n,)xXU(n_) contained in the complex homogeneous spadd. This
integral identity forms the mathematical basis of our formalism. Its supersymmetric exténsion
permits us to carry out the disorder average over the randd) diatrices placed on the links of
the network, at the expense of introducing an integration over fielidking values in a symmet-

ric superspace.

Another issue addressed in this paper is the question whether the supersymmetric formulation
of the network model offers the possibility for an exact analytical solution. In Sec. VI | reveal that
the model resembles what is calledvartex modeln statistical physics, in the sense that the
Boltzmann weight is a product of factors, one for each node, or vertex. The weight associated with
a single vertex is called thR-matrix. The symmetries of thR-matrix are investigated in Sec.

VIII. 1t is eventually found that it can be interpreted as a mapVeoV—Ve®V, whereV is an
irreducible lowest-weight module for the Lie superalgebrangij, andn=n,+n_=1+1 for

the case of one retarded and one advanced Green’s function. This looks interesting as one may
hope that”2 can be deformed to aR-matrix that solves the quantum Yang—Baxter equation
underlying the integrability of two-dimensional vertex models. One would then have the possibil-
ity of an analytical and exact computation of critical properties. Unfortunately, the specific choice
of local directions for the single-particle motion on the network, shown in Fig. 2 below, turns out

to beincompatiblewith the standard schem&dor constructing solutions of the quantum Yang—
Baxter equation. The reason is that fRenatrix of a Yang—Baxter solvable model always trans-
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fers from one side of the vertex to the other, whereas the Chalker—Coddington vertex maps the
horizontal degrees of freedom into the vertical ones, or vice versa. Thus the Chalker—Coddington
model in its original form does not fit into the canonical framework of the theory of integrable
systems, and | am not aware of any method to make analytical progress with it.

However, this is not yet the end of the story. Additional insight can be gained by considering
the anisotropic limft of the Chalker—Coddington model. This limit and its relation to Pruisken’s
model are reviewed in Sec. IX. Based on it, in S¥ca modified version of the isotropic one-
channel network model is proposed, which differs from the original one in two respects. First, the
direction of the single-particle motion does not alternate constantly between being horizontal and
vertical. Instead, an electron may either pass straight through a(mitleno change of direction
or else be scattered either to the right or to left. Analysing such a model by the mapping onto
Pruisken’s nonlineas- model, we find that it is likelynot to be in the quantum Hall universality
class, but in a massiélaldane typgphase. Therefore, a second modification is proposed, which
is to add a second channel of propagatiorhaif the links, say the horizontal ones; see Fih)5
below. By the mapping onto Pruisken’s model, the doubly modified network model is expected to
be critical in a range of values of the parameter characterizing the scattering at the nodes. More-
over, by the changed transfer dynamics, the standard schemes for constructing solutions of the
quantum Yang—Baxter equation are no longer ruled out. | hope to elaborate on this theme in a
future publication.

Il. SUPERSYMMETRIC FORMULATION OF PRUISKEN'S MODEL (DEFINITIONS)

The original formulatiof of Pruisken’s nonlinear- model relied on the use of the replica
trick. When applied to phenomena that are nonperturbative in the disorder strength, the replica
trick is not mathematically sound but has been demonstrated to lead to incorrect results, at least in
some instance¥. (The analytic continuation to a vanishing number of replicas is not unique in
general Fortunately, we can avoid the replica trick by using an alternative, supersymmetric
formalism/ which is on firm mathematical ground. The purpose of this section is to briefly review
the supersymmetric formulatiGhof Pruisken’s model in a language that is well suited for what
will follow below. For simplicity, only the model pertaining to one retarded and one advanced
Green’s function is treated. A more detailed discussion of the model can be found in Ref. 13.

To define Pruisken’s nonlinear model we first specify its field space, as follows. Consider a
pair Z,Z of 2X2 complex supermatrices,

~ ( Zep Zgr

~ (ZBB Zgr
Zrg  Zpr

Zeg  Zer

where the subscripts B and F stand for Bosonic and Fermionic, and let

A B
0=| o pleGL22)
act on these by
Z—g-Z=(AZ+B)(CZ+D) !, Z—g-Z=(C+DZ)(A+BZ) .

Following Ref. 13 one identifies the pzﬂr,f as a set of coordinates for the complex coset space
G/H:=GI(2|2)/GL(1|1)X GL(1|1), where the denominator is the subgroup generated by the
block-diagonal matrices
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o A O
~\o D/
With this identification, the actioZ—g-Z and’Zqu;:Zv coincided?® with the natural action of
G on G/H by left translation. The supermatricBsandZ then are viewed as left-translates of the
origin in G/H, by writing Z=g-0=BD ! andZ=g-0=CA ™%,
The coset spac&/H, being a homogeneous space, admits only (@mpeto multiplication by

a constantrank-two supersymmetric tensor that is invariant under the actiga-oGL(2(2). In
the coordinateZ,Z it is given by

g=STr1—227)"1dz(1-Z2) 1dz,

where STr denotes the supertrace. Gx&variant superintegration measure that derives ffpisn
denotedD(Z,Z) and has the local coordinate expression

4

D(Z,Z)= 0Zga/\WZ o/ \ZrA\Z ‘
(2,2)=dZgg/\dZgg/\dZpp/\ " 0Zer0ZeriZreiZp

(Note that superintegration measures, also called integral superforms or Berezin forms, generically
suffer from a coordinate ambiguity, or anomaly; see Ref. 19. A general procedure by which to
define D(Z,Z) globally is described in Sec. Il A of Ref. 20The integration domain for the
bosonic variables is fixed by the conditions

Zep=—Zpp, Zgs=+tZgs and|Zgg|’<1,

where the bar denotes complex conjugation. These conditions select a submihifoldl - of
G/H,

Mg=U(1,1)/U(1)XU(1)=H? Mg=U(2)/U(1)XU(1)=S

on which the metri@ is Riemann. The variablegr andZgg can be showlt to have a meaning
as complex stereographic coordinates on the two-spteaa@®two-hyperboloid B respectively.

The triple (G/H,MgXM¢g,g) is a Riemannian symmetric supersp&tand is called Efetov’s
o model space with unitary symmetry. In most of the existing literature, this space is parameter-
ized by a 4<4 supermatrixQ, introduced below.

After these preparations, Pruisken’s nonlinganodel(or, rather, the supersymmetric version
thereoj is defined by the functional integral,

(@)= f NZ,Z)@exp— Syl Z,Z],

Wherescon{Z,Z]:dezr is obtained by integrating the following Lagrangian:

L= (Lt L) + 0 (Ly= Ly, @

~ -1 o177
Lyw=ST(1-22)""9,Z(1-2Z)""d,Z,

and the functional integration measure is

7z,2= Il D(z(r).zr).
r=(x\y)
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By construction, this field theory is invariant under global GHRp transformations
Z(r)—g-Z(r) and Z(r)~—>g-Z(r) (each of the terms”,,, is). The partition functionZ=(1)
equals unity by supersymmetry. To obtain physical observables, one adds sources and takes
functional derivatives, as usual.

For some purposes it is useful to switch to a coordinate-independent language by introducing
a 4x4 supermatrix fieldQ by

o[z 3l Sz )

in terms of which the Lagrangian takes the familiar f8rm
Lxt Lyy=STH3,Q3,Q+d,Q4d,Q)/8=:L,,

Fy— Lyx=STH3,Qd,Q— 3,Q3,Q) Q/8=L 5p.

The global action of GL({2) onQ is Q(r)—gQ(r)g~1. On a configuration manifol@ without
boundary the integral of,, is quantized®*® [ cL,,dr = 2arin, and the integen is called the
“winding number” or “topological charge.”L, andL,, are invariant under rotations in they
plane, and these are the only invariants that can be formed. #gm Note thatl is real-valued,
wheread. o, is purely imaginary. The coupling constant§ ando()) have been interpretdas
the longitudinal and Hall conductivities of the 2d electron gas.

Let me mention in passing that the terms in the Lagrangian can be written as

(?2 [92 —_~
| T _ 11
0_(axax'+&yay’ In SDet1—Z(x,Y)Z(X',y") ™ Hyexr yy' 2
L—a2 ‘?2|SD12 Z(x'y'))
o0\ xay” ~ ayac| ™ SPELTZONZCY ) ey

where SDet denotes the superdeterminant. The function In SB@E is called the Klgu]_er
potential of the Khler supermanifolds/H parameterized by the complex coordinafeandZ.

lll. THE CHALKER-CODDINGTON MODEL

The Chalker—Coddington model was formulatéar the purpose of describing the plateau-
to-plateau transition in systems exhibiting the integer quantum Hall effect. Its microscopic foun-
dation as a model for the motion of a single 2d electron subject to a smooth random potential and
a strong magnetic field, is explained in the original paper.

The model is defined on a finite or infinite square lattice forming a network of nodes and
directed links; see Fig. 1. A “wave function” of the model is a collection of complex amplitudes
{¢(1)}, one for each link of the network. The dynamics is governed not by a Hamiltonian but by
a unitary operatolJ, called the one-step time evolution operatdracts on wave functions, and
is given by a sequence of two distinct operations. The first one is stochastic and, in a microscopic
picture, accounts for the random phase acquired by the electron’s guiding center while drifting
along equipotentials between saddle points of the random potential. In formal language, the sto-
chastic phases are encapsulated in a unitary opddgtdnat is diagonal in the basis provided by
the links: Uy(l1',1)=8(1",1)expi¢(l), wheree(l) are uncorrelated random variables with a uni-
form distribution on the intervdl0,2].

The second process built into the one-step time evolution operator is determinestic
nonrandon and accounts for the quantum mechanical possibility for an electron to tunnel across
a saddle point. This is modeled via the nodes of the network. One imagines that the guiding center
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FIG. 1. The network model of Chalker and Coddington in a quasi 1d geometry. A single electron propagates ballistically
along the links and is scattered at the nodes of the network.

drift motion of the electron follows the direction indicated by the arrows in Fig. 1. An electron
incident on a node can be scattered either to the left or to the right, corresponding to the two
possibilities of continuing on its way along the same equipotential, or tunneling to a neighboring
one. It cannot be backscattered, and it cannot pass straight through a node. The probabilities for
scattering to the right or left are denotpdand 1— p. The probabilityamplitudesfor scattering at

the nodes then have magnituglp and \1—p, respectively. They are taken to be real, but they
cannot all be chosen positive as this would violate unitarity. Various choices are possible. For
definiteness we take the amplitudes to be negative for right-up to left-up and for right-down to
left-down turns(see Fig. 1 and positive otherwisé€Which choice is made actually turns out to be
immaterial. All we need is that some choice consistent with unitarity exigié.this fixes a
unitary operatorU,; with matrix elementsU,(l’,I) that vanish unless the scattering process
|—I" is allowed by the (one-step dynamics, in which caseU,(l’,1)==+p or
U,(I",)==x+y1—-p, as specified. The full one-step time evolution operator is the product
U=U;U,.

For the purpose of doing numerical simulations, one usually takes the network to be a long
strip (quasi-1d geometjywith periodic boundary conditions for the short direction to minimize
finite size effects. By computing the exponential growth of the transfer matrix for the strip and
averaging over many realizations of the disorder embodiedJpy one extracts a Lyapunov
exponent or inverse localization length. Fpe=1/2 the localization length is found to grow
linearly with the width of the strip, indicating a critical point.

The existence of critical behavior pt=1/2 can be anticipated by the following argumént.
Consider the Chalker—Coddington model with the open boundary conditions of Fig. 1. For
p=0 (left turns only all electron states encircle elementary squares of the network in the coun-
terclockwise direction, and thus are strongly localized. The same statement apppesifdright
turns only, except that now the orientation of the motion around squares is clockwise, @dgi@n
stateat the boundary of the strip appears, as is seen by inspection of Fig. 1. The appearance of an
edge state implies that somewhere in the integval[0,1] a delocalized state must form. For
symmetry reasons, this is expected to happen at the left—right symmetricppelip.

The method to be introduced in Sec. IV is quite capable of dealing with a quasi-1d geometry
and its boundary conditions. However, for maximal simplicity we will consider below a somewhat
different setup, where periodic boundary conditions are imposed in both directions, i.e., the net-
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FIG. 2. Chalker—Coddington network with two interior contadds and N. The corresponding link$y, and |y are
connected to one incoming and one outgoing channel each.

work is placed on a torus'& St. We envisage making a conductance measurement between two
interior contactsM andN as shown in Fig. 2. These contacts are “point” contacts in the sense
that they each attach only tosinglelink, I, andly. For most purposes it is helpful to imagine
that each link with a contact is replaced by two links, an “in-link” feeding the network from a
reservoir, and an “out-link” draining the network through an outgoing channel leading back to the
reservoir. Outgoing-wave boundary conditions are imposed on out-links, i.e. probability flux that
is scattered into such a link by the actionldf, must exit and never returns to the network. The
conductance pertaining to two interior contabsandN can be computed from the Landauer—
Buttiker formula,gyn=|Sunl?, whereSyy is the S-matrix element relating an incoming state on
the in-link of Iy to an outgoing wave amplitude on the out-linklgf. This S-matrix element is
determined by the solution of Schiager's equatiorl »=e'“y with incoming-wave boundary
conditions atN. The eigenphase'® may be gauged away by a global shift of the random U(1)
factors on links,Uq(l)—>€e'*Uy(1). It is convenient to implement the loss of probability flux
through out-links by the modificatiobl o(1) = expig(l)—Uy(I°")=0 for every linkl with a con-

tact. Then, solving the equatiaf= U ¢ by iteration, we easily see that the d.c. conductance equals

gmn=Sunl?=[(RI T2,
whereT is the operator
T:U1+U1U0U1+ U1UOU1U0U1+ e :(1_ U]_UO)_lUl. (3)

Note that owing toUq(I%")=Uq(19" =0, the eigenvalues of),U, lie inside the unit circle
(rather than on the unit circlen C, so the inverse (+ U,Ug) "1 is well-defined. Without chang-
ing the matrix elemenSyy|?, we setUq(l})=Uq(I3)=0.

IV. REFORMULATION BY SUPERSYMMETRY

In this section we will show how to map the problem of calculating the disorder averaged
conductance (gyn) On an equivalent lattice field theory. Frongyn=|{I%ITIIN)[%,
T=(1-U;Up) 'U;, andT'=(1—-UJuU{)~*ul, the mean conductandg,,) equals the disor-
der average of the expression

J. Math. Phys., Vol. 38, No. 4, April 1997

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Martin R. Zirnbauer: Theory of the integer quantum Hall transition 2015

2 (RI=UIU0) ) Ui, R (1= UsUo) I Ua(ln, 1.

mln

This disorder average can be processed by a variant of Efetov’s supersymmetry method introduced
in Ref. 15, as follows. The method starts by expressing the product of matrix elements as a
Gaussian superintegral:

(INIA=0TUD (I (1=U1Ue) Y1)
=f T D). U0 oI sl o159 1)

X exp(— i o (1817, =U1(1",HUo(D ] (1)
— g (N80, 1) = U(LINUg(D ]9 (1)),

where ¢.., are the components of a complex superfield(1). The indexo=B or F distin-
guishes between Bosonic and Fermionic components;anelates to retardedT() and advanced
(T™) Green'’s functions. The bar denotes complex conjugafi, ¢#) denotes the “flat” super-
integration measure, i.e., is given by the product of the differentials of the bosonic components
times the product of partial derivatives with respect to the fermionic ones. The summation con-
vention is used here and throughout the paper.

For the following step, it is notationally convenient to absdth temporarily by setting
b (D=, (1UL(1",1) and _ ()= (1")U4(1,1"). We will now trade the average over
random phaseg1l,dUy(I)= [II,de(l)/27 for an integral over Efetov’sr model space with
unitary symmetry, reviewed in Sec. Il. This is done by a kind of Hubbard—Stratonovitch trans-
formation,

J H’ dUo(exp( iy o(NUo(1) s () + dr_ (DU (1))

=f H’ Du(Z(1),Z()exp s o(NZo (N h— D)+ P (N Zro (D (1), (4)

which is a special case of a more general result proved in Ref. 15. X upermatrix valued
fieldsl—Z(l) andl—Z(l) are lattice discretizations of the continuous fields of Pruisken’s model.
The superintegration measure,

Du(Z,Z):=cons D(Z,Z)SDet1—Z22),

is normalized by the conditiofiD u(Z,Z) = 1. Because of the boundary condition at the contacts,
Uo(Im)=Ug(ln) =0 (in- and out-link3, the product over links on both sides @) excludesl
andly. An alternative scheme of implementing the boundary condition is to let the product run
overall links, including the boundary ones, and set

Z(w) =Z(lw)=Z(1\) =Z(1) =O0. ®)
We adopt this scheme. By usir{d) to deal with the disorder average of the product of matrix

elements, we obtain
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RIA=UTUDH (I (1 =U1Ug) 1))
=J H DM(Z(l),E(l))J H D(y(1), (1))
X a1 (I 1 a(18Y 51
XexXp — s o)t (1)t (1)UL (1 D Zg (D (1)
— g (N () + (1)UL Z (D (D).

The final step is to carry out the Gaussian integral oyemda which gives

<gMN>:J H Du(Z(1),Z(1))SDetA1-2yZ) " [Zy(1-ZZy) Hes(1%", 104
X[Zyt(1=2ZZy1) ge(1R,10),

by an elementary calculation. HeZgy denotes the supermatrix fielevolved forward in time by
one action of the deterministic scattering operdthy, i.e., ZU=U12UI or, in more explicit
notation,

(U5ZUD) (1,1 = U5 (11" Z, (1)U, (17, 17).

Similarly, Z+ is the supermatrix fiel& evolved backward in time by one St@QT:UIZUj_.
The subscriptZ on SDet indicates that the superdeterminant runs over both superspace and the
Hilbert space of wave functions supported on links.

In summary, we have shown that the average conductance pertaining to two interior contacts

M andN can be computed as a two-point functithN>=<é’(M)Z“(N)) of operators
AM)=[Zy(1—ZZy) 1O, 10,
N =[Zyr(1=ZZy0 ORI,

in a lattice field theory,

<0>=f 1 D(Z(1),Z(1)) ®@exp- Sl Z,Z],

with lattice action
Sed Z,Z]=In SDet,(1—ZyZ)—In SDet,(1—22). (6)

The second term i, originates from the measu2u(Z,Z) =D(Z,Z)SDet(1-ZZ). Note that
the functional integral for the two-point functiofa”(M)(N)) is regularized by the boundary
condition (5).

What we have done is axact rewritingof the original problem. It might superficially look
as though we have made the problem more complicated by transforming from U(1) phase inte-
grals to an integral over supermatrix fieldsandZ, but this is not so. The point is that while the
U(1) phasedJy(l) fluctuate independentlfthe dominant contributions to the integral over the
supermatrix field come frorslowly varyingfield configurations. The latter property is best seen by
combining terms to rewrite the lattice action as follows:
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Sad Z,Z]=In SDet(1—(1-22)"Z(zy~2)).

The right-hand side vanishes for constant fieldg € Z) and is small for slowly varying ones.
This will allow us to take a continuum limit and describe the low energy or long wave length
physics of the Chalker—Coddington network model by a continuum field theory. In vig®) of
and(6), it should not come as a surprise that this field theory will turn out to be Efetov’s nonlinear
o model with unitary symmetry, augmented by Pruisken’s topological term.

The formula we have derived fofgyy) illustrates how the transport coefficients of the
network model can be expressed as correlations functions of a supersymmetric lattice field theory.
In the remainder of the paper we will not discuss the specific corrglgigg) any further, but will
concentrate on the general structure of the theory.

V. GLOBAL SYMMETRY UNDER GL(2 |2)

To get ready for taking the continuum limit, we will now elucidate the symmetries of the
lattice field theory. We are going to show that it is invariant under global transformations,

Z(Hh—g-Z(1)=(AZ(l)+B)(CZ(l)+D) %,
Z(1)—g-Z(1)=(C+DZ(1))(A+BZ(1)) "1,

for

c ol
9=| . p<CLE@2).

The integration measurB(Z(I),E(l)) has this invariancéy definition To see that the lattice
action (6) is invariant, we first transform the factor SDet{Z(1)Z(l)) for a single linkl, tem-
porarily dropping the argumemtfor notational simplicity:

SDet1—(g-Z)(g-Z))=SDet1—(AZ+B)(CZ+D) Y{C+DZ)(A+BZ) Y
=SDef1—(Z+A 1B)(1+D!C2)"YZ+D C)(1+A 1BZ)1).
This expression is further processed by set#igB=:X andD 1C= ‘X and using the identity
1—(Z+X)(1+X2Z) " HZ+X)(1+XZ) 1= (1—XX)(1+ZX) " H(1-ZZ)(1+X2) L,
which follows from elementary algebra. We then get
SDet1—(g-2)(g-Z))=SDet(1—XX)(1+ZX) " {(1-ZZ)(1+X2) " 1).

The “dynamical” factor SDe}//(l—ZUZ)‘1 is transformed in an identical fashion. Because
the transformation is global arld; acts as the identity in superspace, we have

(9-2)y=U1(9-2)U; '=g-(U;ZU; H=g-Zy,
i.e., the actions of andU, commute. We thus obtain
SDet,(1—-(g- Z)y(g-Z)) ~*=SDet,(1-(g-Zy)(g-Z))
=SDet,((1-XX)(1+ZyX) " Y(1-Z,Z)(1+X2) ™).

By combining factors and using the multiplicativity of the superdeterminant, we arrive at
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a) b)

\
|
A
|

FIG. 3. The two types of elementary vertex of the Chalker—Coddington model. (Bype obtained from typda) by a
rotation throughm/2.

Sad9-Z,9-Z]= Sl Z,Z] - In SDet,(1+ZX) "1 +1In SDet(1+Z,X) L.
The last two terms on the right-hand side cancel each other by
SDet,(1+Z,X) = SDet,(1+U;ZU; *X) = SDet,(1+ZX),

sinceX is constant on links and therefore commutes With(i.e., U1’1XU1= X). This establishes
the global invarianc&,{ 9-Z,9- Z1= Sl Z,Z].

The global GL(22) symmetry ofS,; is broken by the boundary conditiai), of course.
Such a symmetry breaking is needed for the mathematical consistency of the formulation, since
the integral over they=0, or zero momentum, mode of the noncompact bosonic sector would
otherwise be divergent.

In Sec. IV we saw that the supersymmetric reformulation of the Chalker—Coddington model
is defined over the same field space as Pruisken’s model. What we have just learned is that these
models not only share the field space, but also havedhge internal symmetrie$his is already
a strong indication of their equivalence at the critical pgirt1/2, resp.ogf;):l/z

VI. REFORMULATION AS A VERTEX MODEL

Further analysis is facilitated by the observation that the “Boltzmann weight” of the lattice
field theory,

W[Z,Z]=SDet,(1—Z2Zy)*SDet,(1-2Z),

factors to a large extent. This factorization is seen as follows. Consider the expression
Z(1"MU,(1",1MZ(1")u;H(1",1) and takel to be the linkl =D, say, emanating in the downward
direction from the node shown in Fig(a8. The matrix eIemenU[l(I’,D) is nonzero only if

|" is one of the two linksl’ =L or |’ =R in the figure, that flow into the same node. In either case,
the matrix element(1”,1') leads to the final stat&’ being one of only two links, namely
I”=1=D (the one we started fromor elsel”=U, the link emanating from the node in the
upward direction. Similarly, if the initial state is=U, the final state i”=U or 1”"=D. These
statements remain tryenutatis mutandiif the node of Fig. 8a) is replaced by any other node of

the network (Half of the nodes of the network are obviously equivalent to the one considered. The
other half of them has links emanating in the horizontal direction and nodes flowing into it in the
vertical direction; see Fig.(B). These nodes become equivalent to the one of Fig. &ter a
rotation by ninety degrees.
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Thus,EU 1ZU1’1 viewed as an operator in the space of states supported on links, connects
only pairs of links namely the two links that emanate from one and the same node. This means
that the Boltzmann weightV is a product of factors, one for each node:

wiz,zl= [l 2Z(U,),Z(D,).Z(L,),Z(Ry), )

nodesn

where the assignment of link labdls D,L,R is defined by Fig. 3. From the definition &f; in
Sec. lll, the weight for a single node works out to be

A(Z(U),Z(D),Z(L),Z(R))
=SDet[1-Z(U)Z(U)][1-Z(D)Z(D)][1-Z(L)Z(L)][1- Z(R)Z(R)])
1-pZ(U)Z(R) —(1-p)Z(V)Z(L)  Jp(1—p)Z(U)[Z(L)-Z(R)]
Jp(1-p)Z(D)[Z(L)-Z(R)]  1-pZ(D)Z(L)—(1-p)Z(D)Z(R)/’
®

A model of the kind(7) is called avertex modein statistical mechanics, ané is called the
R-matrix. The global symmetries of this R-matrix will be investigated in Sec. VIII. In Sec. X we
will show how to pass from the integration over the fiell¥ to a summation over superspin
degrees of freedom.

X SDef ?

VIl. CONTINUUM LIMIT

For values of the parameterclose to 1/2, where the Chalker—Coddington model undergoes
a quantum percolation transition, the correlati@n localization length is very large, and we
expect the lattice functional integral to be dominated by fields that vary slowly. Our goal in this
section is to extract fron(6) the continuum field theory governing these slowly varying modes.
Recall the following facts(i) Pruisken’s model and the supersymmet&tJSY) reformula-
tion of the Chalker—Coddington model are defined over the very same complex field space,
G/H=GL(2]|2)/GL(1]1)xGL(1]|1). (ii) Both the action functional of Pruisken’s mod&,,;,
and the lattice action of the SUSY reformulated Chalker—Coddington m8gg|, are invariant
under global GL(#2) transformations(iii) The metric tensor of the field spa@H,

g=STr1-22) dz(1—-ZZ) 'dZ=—STndQ)¥s,

is invariant under GL(}2) [i.e., underQ—~gQg ! with ge GL(2|2)], and this is theonly
second-rank supersymmetric tensor on the homogeneous §l&tahat has this invariance.
When combined with a standard field theoretic power counting argument, these facts lead to the
conclusion that the continuum limit of the lattice actiSg,; must be a linear combination of the
four terms 2, (u,v=X,y) in (1), which are induced frong.

A further constraint comes from the spatial symmetries. At large s¢atesin the infrared
limit), where details of the network structure are washed out, the Chalker—Coddington model
acquires an invariance under rotations in space. From the four tgrmeone can form only two
linear combinations that are rotationally invariant. These are precisely the ones that figure in the
expressior(1) for Pruisken’s LagrangiatPruiskenet al1° arrived at them by essentially the same
argumenk, namely Z,,+ %, and #,,— %, We thus conclude that the continuum limit of the
SUSY reformulated Chalker—Coddington model at criticalipy=(1/2) is Pruisken’s model at the

critical topological couplingd=7=2mo{}), and some as yet unknown coupling} :
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Siarl sSmooth field$= Seonf (02 O —1/5.
XX Xy

The only thing that remains to be done, then, is to work out the numerical value of the coupling
constantr)) . Although it is not too difficult to do this calculation for a whole range of values of
the parametep, we restrict ourselves to the critical poipt 1/2, for simplicity. In the following
subsection we will show that

oO=1/4 (for p=1/2).

The small value ofaf(?()=1/4 means that the theory is strong coupling (The weak-coupling
limit, where Pruisken’s derivation is valid, isi?()> 1.)The superscript (0) alerts us to the fact that
this is a “bare” value, obtained by a naive continuum limit, i.e. without taking into account
possible renormalizations coming from modes with short wave lengths.

In the following we pay no attention to the boundary conditions and assume the network to be
infinitely extended.

A. The coupling constant  ¢{?

To show thataf(?()z 1/4 for the Chalker—Coddington model @t 1/2, we first expancb,, to
quadratic order irz andZ and then take the long wave length limit. The quadratic pa@.gfis
conveniently obtained by expanding the expressi) for the R-matrix:

—21In.2(Z(U),Z(D),Z(L),Z(R))=STrZ(U)[Z(U)—Z(L)]+[Z(R) — Z(U)]Z(R)+ Z(D)
X[Z(D)—Z(R)]+[Z(L)—Z(D)]Z(L))+ (Z%Z?).

Now recall the meaning of the label$,D,L,R defined by Fig. 8), and let f,,n,) e 7? be the
Cartesian coordinates of the node in that figure. Thea,iff the lattice constant of the network,

Z(L)=Z(an,—al2,an), Z(D)=Z(any,an,—al2),
Z(R)=Z(an,+al2,any), Z(U)=Z(any,an,+al/2).
Similar expressions hold for the other type of node, shown in Fig. @otate by#/2). We sum

In .72 over all nodes of the lattice and go to momentum space with wave vieetfk, ,k,). The
gquadratic pars, of S is then obtained as

1 ~
$:=52 4 STZ(KZ(~kK),

where

t,=4— el (kctkyal2_ g=ilkrkpal2_ gitke—kya/2_ gilk—kyai2
On taking the continuum limia— 0, and replacing the sum over momenta by an integral, we get

11 d% ) -
SZ:ZJ(ZT)Zk STrz(k)Z(—k).

Matching this expression to the quadratic partSgf.:, Eq. (1), gives(rf(?()=1/4, as was claimed

above.
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B. The coupling constant &)

The critical points of the Chalker—Coddington model and Pruisken’s model gre 82 and
058,)=1/2 (mod 1), respectively. Therefore, as was argued earlier, there cannot be any doubt that
the continuum limit of the lattice actiof6) at p=1/2 is Pruisken’s action with topological
coupling ag):llz. Nevertheless, it is both reassuring and instructive to check this by direct
calculation, which is what we do next.

In Sec. VII A the value ofaf(?() was found by looking at the quadratic part of the action. The
topological coupling[r(x‘;), by its very nature, evades any such attempt at perturbative calculation.
To extract it from(6) a different, nonperturbative scheme must be used. A direct approach would
be to perform a gradient expansion around a topologically nontrivial background. For reasons that
will be explained at the end of Sec. VIII, this is not easy to do. Here we will follow a different
procedure, which is to evalua®,; on the lattice discretizatiod™ of some smooth field con-
figuration with topological chargen # 0.

Given the relation IBg,,{ Z™,ZM]=27mo{) and the requiremerBeon= S for smooth

fields, the topological coupling is determined by
Im Slan[Z(m),E<m)]=27Tm0'§(?/) .

To calculateo(x(;) from this equation, it is easiest to consider fields that have topological charge
m=1 and are of the special form

7(1) 00 71 0 0
o f)’ lo —f/

Here the componentdgg, Zgr, andZgg, which are topologically trivial, have been set to zero
and onlyZg¢ has been retained. With this choice, the formulaéﬁg%) reduces to

1 ~
045 =5 IM Su Z9,Z9]

l I —
T on Im In Det;(1+fU;fU; )

l ) —_ —_
=——— > ImIn . Zf(Uy),f(Dy).f(Ly),F(Ry),

2Tnodesn

where. % is the R-matrix in the FF sector:

1+ (UL +f(R2  FU[F(L)—f(R)]/2

%FF(f(U“)’f(D”)’f(L“)’f(R”)):De[( fD)f(L)-F(R)I2  1+F(D)F(L)+F(R)]/2
=1+ 5 (1) D)L + HRI TUITD) (LR,

Now consider in the 2d plane with coordinatesandy the smooth field configuration

X—y X+y -1
f(xy)= o +|A——zo (AL eR),
- +

which interpolates betweein= (corresponding to the south pole on the two-sphdge=S?) at
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o1 1+i
x+|y=TA, Re zg+ TA+ Im zg, 9

and f=0 (the north pole on 4§ at infinity, and has topological charge=1, as can easily be
checked.(Note thatf is not a one-instanton configuration, unleds =A, .) The parameters
A. set the size ix=y of the region where the topological density,, for f is appreciably
different from zero.

For this choice off, we now work out the R-matrix at the node in FigaBwith coordinates
(ny,Nny). Settinga.=a/(2A.), and{=(n,—ny)a/A_+i(n,+ny)a/A, —z,, we have

f(U)=({—a_—ia,)", f(D)=({+a_+ia)) Y,
f(Ly=({—a_—ia;) Y, f(R=(+a_+ia,) L
The resulting value for the R-matrix is

2|Z12+1

T e (0 e )PP (a tia)d]

In order for the field configuration to be smooth on the lattice, the parameteraust be small.
This allows us to Taylor expand with respect to one of these asay Taking also the imaginary
part of the logarithm, we obtain

Im In Zee=4a,a_p(1+p) * R({2—a®) 1+ 0(a?),

where Hp=72¢d, -0

In the next step we sum the contributions from all nodeg+k,n,+k) with ke Z. The
smallness ofa <1 allows us to convert the expression Brim In .72 into an integral. De-
composing into real and imaginary parts b§=&+i 7,

£=2a_(ny—ny)—Rez;, #n=2a,(ny+ny)—Im z,,

we arrive at

a;—0

% P : 2_ 25\—-1
EK Im In 'r/l/)FFl(nx-*—k,ny-*—k) - a—fﬁdﬂlw Re(({+in)—aZ) "

This integral is easily evaluated by closing the contour and applying the method of residues. One
finds

r—ﬂ', if |é<a_;

0, otherwise.

p L
a_f|§d7]mRe((§+'7l)2 a?) 1=

What is the geometric interpretation of this result? Let us agree that the word “vertex”” here
means a node taken together with its four links, severed at half the distance to neighboring nodes.
The set of vertices with node coordinates { k,n,+k) (ke Z) sweep out a diagonal strip of the
2d network. The above result means tRatim In .72 vanishes if the centd®) of the topologi-
cal excitation lies outside the diagonal strip swept out by the vertitcesK,n,+k) (with variable
k € 7Z), and equals- = when it lies inside.

The above calculation applies to the type of node shown in K&, &hich may be charac-
terized by the conditiom,+n,e 27, say. Doing the calculation for the other type of node
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[ny+ny e 27Z+1, or Fig. 3b)] gives the same result except for a change of sign— . Now
observe that the diagonal strips swept out by the vertioesk;—n+k) and (h+k,—n+1+Kk)
(k,n e 7Z) cover the plane completely without overlapping. Therefore,

expi Im S ZV,ZW]=exp D —i ImIn Zee=e*7=—1,

all nodes

independent of the location of the topological singularity. &)= (27)~* Im Sl ZM, 707,
this provess(y)=1/2 (mod 1.

C. Generalization to N channels

Lee and Chalkét introduced a generalization of the network model thattiaschannels per
link. The one-step time evolution operator of that modg#{?), is again a product of factors:
U@=uUPUulP . The second factor is diagonal on links and associates with each BnRx 2
matrix Uy(l) drawn at random from the unitary group in two-dimensional channel spgd@, U
The first factor describes the deterministic scattering at the nodes. Depending on the choice made
for this factor, the two-channel model applies to a spin degenerate Landau level or electrons in a
random magnetic fieldthe so-called random flux problem

In this subsection we consider achannel generalization of the one- and two-channel
network models, where random N matrices are placed on the links. The one-step time evolu-
tion operator is writteld ™M =UMU{ . The two factors describe the deterministechannel
scattering at the nodes, and the randoniN)(lirected propagation along links, respectively.

The case ofN channels per link can be treated by a slight extension of our field theoretic
formalism. Such an extension is possible since the basic forfdilavas shown in Ref. 15 to
generalize from U(1) to WY), as follows:

J dU exp(y Uy, gl UYL )= f Dun(Z.Z)eXp - o Zo Y Z ot ),
U(N) Efetov

whereU=Uy(l), and the link label was suppressed for clarity. The right-hand side differs from
that of (4) only by the channel indek=1,...N attached toy, ¢, and the different form of the
weight function in the superintegration measure:

Dun(Z,Z):=D(Z,Z)SDet1—-Z2)N.

Using the above generalization 6f), we can reformulate thBl-channel model as a supersym-
metric lattice field theory with action

SN[Z,Z]1=In SDety o n(1—UNZUN'Z) — N In SDet;(1-22).

The derivation exactly parallels that of Sec. IV. The first superdeterminant runs over the tensor
product of superspace with link spaceZ] and channel spacel).

If we choose the deterministic scatteribg™ to be of the special forry{M=UN"Ye1,,
ie. U(lN) acts as the identity in channel spa&% is simply a multiple of the action of the
one-channel model:

SailZ,.Z]1=NxsiV[z,z].

Therefore, from Secs. VII A and VII B the coupling constants of the corresponding continuum
field theory are
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o =N/4, oi)=N/2.

The choiceU{V=U{N=Y 1, for N=2 is appropriat# for the spin degenerate Landau level at

the center of the band, and for the random flux problem at the symmetric point. Because
Pruisken’s model atri?,)=2/2 (mod 2)=0 is known to be a massive theory, our result

confirms the proposition of Ref. 21 that neither of these systems is critical. Rather, they are in a
(Haldane typgmassive phastcorresponding to localization of all states.

VIIl. SYMMETRIES OF THE R-MATRIX

The basic building block of the SUSY reformulated Chalker—Coddington model is its
R-matrix. For the casBl=1, which is to be analysed here in more detail, this building block was
given in(8). To gain a deeper understanding of the model and possible variations thereof, we are
now going to investigate the symmetries of that R-matrix. Most of the effort will be expended on
rewriting the expressiof8) in a different form, so as to make those symmetries more evident.

We start by undoing thé, ¢ integration to write the R-matrix as

7=11 SDet1-Z(0)Z(0))Y2 SDet1-Z(1)Z(1))¥2 j D (¢, )Xt — - ,(O) i, ,(O)

s o(0)U(0,)Zo, (N p (D)= () () + ¢ (DUTH1,0)Z,,(0) ¢, ,(0)).

Here we have introduced the labélg {i1,2}:={L,R} andO e {01,02}:={U,D}. The notation
is motivated by observing that, according to the direction of motion indicated by the arrows in Fig.
3, the linksL and R areincomingstates for the scattering at the nodes, while the lidkand
D areoutgoingstates.

To proceed, we need to recall briefly various mathematical structures that were developed in
detail in the appendices of Refs. 15 and 22. First of all, we introduce Fock opecatordc,
which are quantum counterparts of the classical varialflemnd . Let bTi N andfl f+ be
canonical boson and fermion creation and annihilation operators, and set

c.gk=f,, cig=b,, c_p=f", c_g=b",
C_+F:f1:r ) C_+B:b1 , Cg=f_, cg=—b_.
The operatorg andc are canonical pairs, with gradédr supey commutation relations
[cx,Cyl:=cxCy— (—1)XIYie ey = oxy,

where |[X|=0 if X=%=B and |X|=1 if X==F. They act in a Bose—Fermi Fock space with
vacuum

C+B|0>:C+F|O>:EB|O>:EF|O>:O. (10)

The graded commutation relations are invariant under canonical transformations,
Cxi—>ToCxTg ' = CyOyx andcy—>TgCx Ty ' = (9~ HxyCy, Where

A B _
9=lc b e GL(2[2)—T4:=exp(cx(In g)xyCy)

defines a representation of GLg) on Fock space. o
Consider now the subspacé, selected by the conditiooycy=0 (summation convention!
or, equivalently, by
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blb,+flf,=b b _+ff_.

The resulting constraint on the Bose—Fermi occupation numbeng,is-n;, =n,_+n;_. By
using this equation to eliminate,_, say, we can characterize the statesvoby a triplet of

integers Qp. ,ns+,N;_), where n;, and n;_ take values from the se{0,1}, and ny,.
=0,1,2... co.

Let Py, be the operator that projects Fock space onto the sub3pads was shown in Ref.
15, this projector has a resolution,

P~ [ D2 D122,
by generalized coherent states,
|Z)=exp(c; ,Z,,C-,)|0)SDe(1-22)*2
(Z)=SDet1—Z27)¥%0|exp —C_,Z,,Cx ).

By simple manipulations exploiting the standard properties of coherent states, one can verify
the following equality:

H SDet1—Z(1)Z(1)2X exp(4 ,(0)U1(0,1) Z, (N (1))
=(0[exp(¥+ ,(0p)U1(0p,iv)C o(v) = C_ (¥ (i))|Z(11)® Z(i2))
= (0] @XP( 4 o (0)C.y o) —C_(¥) (i 1))
xexp(Co o(w)(IN Uy)(u,v)C. o(1))]Z(11)®Z(i2)).
Here u,v € {1,2, and U, is defined by identifying initial and final channels, i.€l;(u,v)
= U (ou,iv). Similarly,

lg SDet1-Z(0)Z(0))"2xexp(¢/_,(1)U7 X(1,0)Z,,(0) i, ,(O))

=(2(01)®Z(02)|exp(1h_ (i »)U7 H(iv,0)C_ (1) +Cy o 1)t o(01))|0)
=(Z(01)®Z(02)exp(c_(»)(INUy) (v, m)c_ (1))
X @XP(Cx o ) s o(O) + Y iv)C_(1))]0).

The variables,/;,?have now served their purpose and we integrate them out, by using the closure
relation for Bose—Fermi coherent states:

id= f D (¢, ) X0 — (1) s (1) — () (1)) EXP(C () 4 o 1)
(V)€ (1) 0)O0| XAy o(1)Cy o (1) —C_ (V) (V).

All this results in the following formula for the R-matrix:

Z(Z(U),Z(D),Z(L),Z(R))=(Z(U)®Z(D)|. 7%

Z(L)®Z(R)),

where the operato#? is expressed by
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=expcx(w)(IN01) (u,v)ex(v)). (19)
The advantage of this reformulation is that the invariancezofinder GL(22) transformations,
Cx(m)=Tex(1) Ty =Cy(w)Gyx,

Cx( )= ToCx(1) Tg = (g xyCy( ),

is obvious whereas previously, in Sec. VI, we had to work quite hard to establish the global
GL(2|2) invariance.

AIthough.,%* commutes withT, its matrix elements areot invariant:

gl
A(Z(U),Z(D),2(L),Z(R) #.7(g- Z(U),g- Z(D),g- Z(L),g- Z(R)).

It is worth spending a little effort to explain how that comes about. As will be seen, the reason is
that, since the Fock space vacuum is not a scalar with respedt=tGL(1|1)x GL(1|1), the
coherent states do not transform as function&éH, but rather as sections of an associated line
bundle, see Ref. 13 and references therein. In other words,

Tol2)#(9-2).
The correct transformation law is derived as follows. We write the coherent states as
|Z)=T4z7)10), where
10
Z 1)

- (1-27)"Y2  z(1-Z77)"12

1 z\((1-z2)*v2 0
(2D 51 731 (137w )"

0 1 0 (1-2z)~ 2

We then define ai-valued functionh(g;Z,E) by
98(Z,2)=s(9-Z,9-2)h(;:Z,2).

The explicit formgfh(g;Z,Z) can be found in Appendix B of Ref. 13. Frofl0) and the
definition T,=expx(In g)xvCy), one easily sees that the vacuum carries a one-dimensional rep-
resentation of H:

Tnl0)=[0)u(h) (for heH), wu(diagA,D))=SDetD 1.

Therefore, the coherent states transform as

Tg|z> = TgTs(Z,E)|O> :Ts(g-Z,g-E)Th(g:ZE)|O>: |g -Zyp(h(g;2,2)).

As a result, the R-matrix obeys the following transformation law:
7A(g-Z(01),9-Z(02),9-Z(i1),9-Z(i2))

=%(Z(01),E(02),Z(i1).Z(i2))xlz_[lzM(h(g;Z(ok),E(ok)))

x I u(h(g:z(in),Z(iv) ™.
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Because each link is incoming with respect to one node, and outgoing with respect to another, the
multipliers w(h(g;Z,Z)) cancel when all R-matrices are multiplied together, so that the global
GL(2|2) invariance is recovered.

The transformation law for the R-matrix explains why a direct gradient expansion to extract
o(x‘;) from S, is difficult. Such an expansion locally produces terms such as

ST(1-22)"'Za,2(1-22)"'Z4,2,

for example, which arsingularat Ze= (the south pole oM =S?). When all of these terms

are correctly summed over the entire network, they cancel, as is guaranteed by the global
GL(2|2) invariance, which permits us to rotate the south pole into any other point on the two-
sphere & However, the cancellation really does take place afilgr summation of terms. By the
multiplier-corrected transformation law of the R-matrix, singular terms remain locally, making the
extraction of the topological coupling difficult. This, then, is the reason why a gradient expansion
was not attempted in Sec. VII B.

IX. ANISOTROPIC LIMIT

We have presented an analytical method for dealing with the Chalker—Coddington model in
its original isotropic formulation, by mapping it on a lattice equivalent of Pruisken’s nonlinear
o model. In this section we will review another way of arriving at Pruisken’s model, a replica
version of which was first published by D. H. Lee. Following Ref. 4 we now take for our starting
point the anisotropiclimit of the Chalker—Coddington model, and replace the unitary operator
U=U,U, by the HamiltoniarH for an array of chiral modes=1,2,..., with velocityv and an
alternating direction of propagation:

H= fﬁ dx>, WO Spnr (— 1) dy+ Vi (X) T 10 (X).
n,n’

The functions\/nn,(x)zv_n,n(x) are uncorrelated Gaussian random variables with zero mean and

variance,

(Vo () Vi (X)) =2(UgSpn + U10nnr+1F U1y nr—1) S(X=X).

The symbolé means that we are using periodic boundary conditions. in

To prepare the treatment of the general case, we shall first consider the case of a single chiral
moden. The supersymmetric generating functional for the retarded and advanced Green’s func-
tions ofH is set up in the usual way, see Sec. IV. Ensemble averaging over the random potential
V(X)=V,n(X) leads to the functional integral

2= [ Aprexn § XU Avi—)u-uo WA YD),

wheree is a positive infinitesimal. As before)x(x) is a super “spinor” field with four compo-
nents X=+B (retarded Boson X=+F (retarded Fermion X=—B (advanced Bosgn and

X= —F (advanced FermionThe notation meangA =, ;. ,— ¥_ y_ .. If the energy in the
retarded and advanced sectors is different E, —E_#0, we need to add a teriw ¢ to the
Lagrangian. To probe this field theory more generally, we may couple it to an external non-
Abelian gauge fieldA(x) e Lie(GL(2|2)) and consider

Z8ad Ali= J f%(n,b,%expg@ AX(P AV (dy+A)h— (A )?).
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2028 Martin R. Zirnbauer: Theory of the integer quantum Hall transition

We have temporarily sai=ug for notational simplicity. The special coupling to frequency is
retrieved by puttingA=(io—¢)A/v, independent ok. Note that the generating functional
ZRiad Al is invariant under local gauge transformations,

ZLoirad Al= ‘“"/Z“Dirac[hA]v "A=hAh~'+hgh~t,

whereh(x) e GL(2|2) acts on the spinor field by—hy and yA—yAh™L.

It turns out that one can write down anothet @-dimensional field theory that has the very
same local gauge invariance. The field of this theory is the supern@tigA g, which was
defined in Sec. Il and transforms @->hQh™1. The generating functional is

A
zWZ[A]::f ngxp% dx STr5971(5x+A)g-

Clearly, this satisfiesZy,,[A]=Zw["A]. The linear derivative term in the action is of the
Wess—Zumino type, i.e., it cannot be expressed in a globally nonsingular way in tefpnsaofl

is often called a Berry phase. The theory is well-defined because the ambiguity under right
translationgg—ghg [hRAh§1=A or, equivalentlyhg(x) e GL(1|1) X GL(1|1)] gives rise to a
factor

A A
exp 3& dx STrghF}lathﬁexp fﬁ dXdy STrE In hg=exp 2rim=1,

which is unobservable in the functional integrdfor more details see Sec. 3.4 of Ref.)13.
The local gauge invariance shared 8y, J A] and Z,;[ A] suggests the existence of some
relation between these theories. In fact, the following statement is true:

lim "%Birac[A] =Zwzl Al (12

u—o

This identity can be viewed as atQL-dimensional analog of non-Abelian bosonization i 1L
dimensions and, sino& couples taw A andgAg~ /2= Q/2 in the respective cases, amounts to
the “bosonization rule,”

u—ow

VA — Q/2.

We now briefly sketch the proof of the non-Abelian bosonization fornti. By the local
gauge invariance of both theories, it is sufficient to prove the equality fariadependent gauge
field A. Moreover,A may be taken to be a diagonal matrix. In this special case, it is easy to apply
a method that was described at length in Ref. 22 and works as follows. As a first step, one
identifies Zp;.{ A] as the coherent state path integral of a supersymmetric Hubbard Hamiltonian
for bosons and fermions. Then, one takes advantage of theuimit, which enforces a Hubbard
constraint reducing théow energy degrees of freedom to that of a single superspin. And finally,
one sets up the coherent state path integral for the superspin Hamiltonian. The latter path integral
turns out to beZ,[ A], which completes the proof.

This proof, although straightforward, has the disadvantage of being somewhat indirect. A
more direct procedure is to decouple the interaction tegm )2 by introducing a Hubbard—
Stratonovitch fieldQ coupling togA and then to integrate oyt and«. The effective action for

|

u
ot AL

u

SQ]= 3€ dx STV( - —Q2+In
4v
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The next step is to simplify th® field functional integral by means of the saddle-point approxi-
mation, as a result of whic® gets restricted to the nonlinear spa@e-gAg~*. This step, while
only approximate in general, here becomegactin the limit u—cc. [What makes this possible is
the stationarity of the average density of states ofid,+V(x).] By expanding
In(Ag~Y(a+A)g+ulv?) to linear order ing~(d,+A)g, one obtains the action of the Wess—
Zumino functionalZy,;[ A]. Higher orders are suppressed by powers @{L,u), with L, the
system size.

Let us finally return to the case of many counterpropagating chiral modes that are coupled by
hopping matrix elements between neighboring modes, with variapcéhe Gaussian random
hopping gives rise to an additional term in the Lagrangian,

LeL+2u, X @Awnﬂ)(%lwn):uzu@ STH rnthaA) (s 10n s 1A).

By the bosonization rulevwﬁ\ﬂQIZ for up—w, the additional term turns into
(u1/2v?) 2, STr(Q,Qn4+1). The condition of validity of this step i8,>u; . As a result we obtain
the Q field action,

A u
Q= %dx; STr((_l)nEgnlaxgn+ ElZQnQn+1 .

By a standard calculati@h?? this is the action of the coherent state path integral for a quantum
superspin Hamiltonian,

2uq
HspinZFE ;{ (— 1)|Y|+1S?1(YS:1{111 (13

whereS*Y=cycy, and the graded commutation relations of the Fock operatorsere given in

Sec. VIII. To reproduce the alternating sign of the Wess—Zumino term, we must alternate the
definition of the Fock vacuum. On even sites<(27) the relationg(10) apply, whereas on odd
sites he2Z+1) we have

c4gl0)=c.¢0)=c_g|0)=c_¢0)=0, (14

instead. The alternating vacuum plays the same role as teedtie for ordinary spin systems
and means that the superspin chain is “antiferromagnetic” in character.

The HamiltoniarH g, with translational invariant coupling=2u, /v?>0 was shown in Ref.
13 to represent the low energy limit of the quantum Hamiltonian of Pruisken’s nonkinesdel
at criticality. Thus, we finally conclude that the anisotropic Chalker—Coddington model with
homogeneousgon averagginter-channel hopping is in the same universality class as Pruisken’s
model atafg): 1/2. (Clearly, this line of reasoning is much less direct than that presented for the
isotropic model in Secs. IV-VI).

To conclude this section let me mention that the non-Abelian bosonization forth@la
extends toN channels:

A
J IQ exp jg dx NSTrig‘l(aerA)g

—im [ 10§ AX U (Gt A= A ) (U A ).
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2030 Martin R. Zirnbauer: Theory of the integer quantum Hall transition

The strategy of the proof is the same asNbt 1. Using this formula we can easily reproduce the
N-channel resultr&?,)z N/2 of Sec. VII C. TheN-channel bosonization formula offers also a quick
way of analysing the zero-dimensional limit of thd 2hiral metal?

X. MODIFIED NETWORK MODEL

The primary goal of all field theoretic analysis of the plateau-to-plateau transition in integer
guantum Hall systems must be ittentify the fixed point theorthat describes this transition and
uncover theconformal structuret is expected to have. Recent attenipis this direction started
from the observation that Pruisken’s model or, rather, the closely related Dirac theory with random
mass, random scalar potential and random gauge field, has a globa)Z3Lgy@mmetry for the
case of one retarded and one advanced Green’s fun¢fiofinite imaginary part of the energy
argument of the Green’s functions reduces this symmetry to @)¢LGL(1|1). However, in
Secs. Il and IV it is shown how such a symmetry breaking can be avoided by calculating a
conductance between interior contacts of the network mp@kis symmetry was then assumed to
be promoted in the infrared to a Kac—Moody symmetry, which severely restricts the number of
possible candidates for the fixed point theory. Unfortunately, these attempts have not been suc-
cessful so far. What is needed as additional input to such considerations, which are purely alge-
braic, is a firm understanding of the Hilbert space structure, or the representations involved. It is
one of the aims of the present work to contribute to such an understanding.

Following up on unpublished work by Read, it was argued in Ref. 13 that the quantum
Hamiltonian of the critical theory should be a superspin Hamiltonian of the @i/eacting on a
space of states built from alternating G232 modules,

. VRVFRVRVFR ...,

whereV andV* are generated by the actigﬂ»ngexp@(ln g)xyCy) of GL(2|2) on the vacua
(10) and(14), respectively(As follows from Sec. 4.4 of Ref. 13, the elements\ondV* have
an interpretation as holomorphic and antiholomorphic sections of a line bundle associated to
G—G/H by the one-dimensional representatipnof H. This permits the construction of a
nondegenerate pairing betwe®nand V*, so that these spaces can be viewed as being dual to
each other, as suggested by our notajidinis then natural to ask whether one might be able to
construct arintegrablesuperspin Hamiltonian, offering the possibility of an analytical and exact
computation of critical properties. This question will now be addressed in the light of the results
of Secs. VIII and IX.

Recall the “functional” vertex model presentatién), (8) of the Chalker—Coddington model,

2= f 222 TT RZ(un),Z(d), Z(10),Z(r ),

nodesn
R(Z(1),Z(2),2(3),2(4))=(Z(1)®Z(2)|R|Z(3)® Z(4)),

R=exp(Cx(x)(In Uy)(u,v)cx(v)). (15

(Note the change in the notation for links from capital to small leftétss instructive to pass
from theintegrationover fieldsZ,Z to asummatiorover discrete degrees of freedom, as follows.
Every link| emanates from one node, and ends at one node. ThereforeZ@daabccurs once in
the “bra” and once in the “ket” of some R-matrix. Recall from Sec. VIII thBt, denotes the
projector from Bose—Fermi Fock space onto the GR)2moduleV, where the elements af,
referred to as superspin states, are labeled by three quantum numpees{0,1} and
N+ =0,1,2...50. On using the closure relation,
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HH P

FIG. 4. (a) lllustration of the row-to-row transfer matrix of the supersymmetric vertex model associated with the one-
channel Chalker—Coddington mod@) The transfer matrix of the anisotropic modelpat O translates the system by one
lattice unit.

”ﬂksl D(Z(1),Z(1))®|Z())XZ(1)| = Py(]),

the lattice functional integral ova,z turns into a partition sum over superspin configurations
{a(l)} [with a(1) e V(I)] of a vertex model defined over the tensor product spagé(l):

Z= E (—1)NF H Rauyad,).adla(r,) Raﬁ,y§:<a®3|§|7®5>v

{a()} nodesn

where (—1)NF is a sign factor due to supersymmefithe partition sum is a supertraceand
R:V(1)®V(r)—V(u)®V(d) is still given by(15). Forp=0 (left turns only, R can be seen to be
the identity map, while fop=1 (right turns only we haveR=>’, where

Aaep)y=(-1)| g a)

is the graded permutation operator.

Let me mention in passing that the presentation as a superspin partition sum can also be
obtained from the network modelirectly,?® without passing through the intermediate stage of a
Z field formulation.

How is the model built from the verteR; ,s related to the superspin Hamiltoni&h3)?
GivenR, ,s We can set up the row-to-row transfer matit,illustrated in Fig. 4a), by summing
over the superspin degrees of freedom that are situated on the horizontalTihksneaning of
the arrows in the present context will become clear belole corresponding Hamiltonian,
defined as the logarithm of the transfer matrix, is nonlocal in general. A local Hamiltonian results
on making the following modification of the isotropic network model. On nodes with coordinates
(ng,ny) € 72 such than,+ n, e 27, the R-matrix is taken as it stands; but on the other half of the
nodes (,+nye27+1), we replace the left-right asymmetry paramegpeby its complement
1-p. (At the level of the random network model, this is precisely what one does to arrive at the
anisotropic limit of Sec. IX. The row-to-row transfer matrix of the resultirpisotropicvertex
model has the property, fgg=0, of translating the system by one lattice ufftig. 4(b)]. By
differentiating the logarithm of this transfer matrix @t 0, one gets a superspin Hamiltonian that
couples only nearest neighbors and is precisely the Hamiltdrigp of (13).

Hspinis Not expected to be exactly solvable. However, one may ask whether it could be made
so by slightly changing some parameters while keeping the general structure and symmetries the
same. To get some hint, we turn to the well-developed theory of integrable sySt@mere, the
integrability of a 1d quantum Hamiltoniad is traced back to the existence of a transfer matrix
T(u) that depends on a “spectral” parametein such a way thaT(u)T(v)=T(v)T(u) for all
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a) b)
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FIG. 5. (a) One-channel Chalker—Coddington model, modified so as to make the direction of motion invariant along every
horizontal and vertical line(b) The model of(a) modified further, by doubling the number of channels on the horizontal
links.

u,v, andH is the logarithmic derivative off (u) at some special poini=uy. A sufficient
condition for T(u) to form a commuting family is known to be the quantum Yang—Baxter
equation for the R-matrix.

To my knowledge, mostif not all) of the integrable models discussed in the literature have
one characteristic feature in common: their commuting family of transfer matrices possesses a
“classical” limit, where T becomes the identity. In contrast, for the row-to-row transfer matrix
associated to the Chalker—Coddington mdééj. 4(a)], no such limit exists. The reason is simply
this. The R-matrixR:VoV—V®V in (8) relates incoming channels on horizontat vertica)
links to outgoing channels on verticar horizonta) links. On the other hand, the transfer matrix
T propagates the degrees of freedom from one row to the next. Therefore, to construct the
row-to-row transfer matrix from the R-matrix, we must reinterpret some initial states as final
states, and vice versa. This is done by noting that the space of lineaMraj'sis isomorphic to
the tensor producV®V*. In this way, one sees that in Fig(a} vertical links with an arrow
pointing up carry the spacé, whereas vertical links with an arrow pointing down carry the dual
spaceV*. (This, then, is the meaning of the arrows in that figukéence, the row-to-row transfer
matrix of the SUSY reformulated Chalker—Coddington model is a map

T @VRV*QV®:- - —- - V*VV*®:---,

which connectsnequivalentspaces. Thereford, cannot ever be the identity. This means that the
Chalker—Coddington model lies outside the category of vertex models for which the well-
developed Yang—Baxter machinery applies. Thus it seems that there exists no known systematic
way of deforming the Chalker—Coddington model to integrability and obtain an analytical solu-
tion.

The above discussion, though being a falsification, also suggests a remedy. Given that the
standard formalism of the theory of integrable systems requires the row-to-row transfer matrix to
be a map,

T VOV*QV®: - — - VeV*QV®- -, (16
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we can turn things around and modify the network model accordingly. Consider the network
shown in Fig. %a). As before, the electron follows the direction of motion dictated by the arrows.
It picks up a random U(1) phase while propagating along the links, and is scattered determinis-
tically at the nodes, just as for the original one-channel Chalker—Coddington model. The crucial
difference from Fig. 2 is that now the direction of motidaes not alternate but is invariaaiong
vertical and horizontal lines. An electron incident on a node either passes straight through it, with
probability p, say, or else is scattered to the right or left, as the case may be, with probability
1-p. (Note that such a modification of the scattering dynamics has no justification from a
microscopic picture of guiding center drift along equipotentials. However, since our aim is only to
describe thecritical behavior, we should have a certain amount of freedom in the choice of
model)

By construction, the row-to-row transfer matrix of the supersymmetric vertex model associ-
ated with the network model of Fig(&® is a map of the desired tyg&6). One may now hope to
be able to deform and extend this transfer matrix to a one-parameter family of commuting transfer
matrices. In somewhat more detail, this hope is based on the following facts. Consider the Lie
superalgebras” of polynomial mapsu e C—gl(2,2) (with u being the spectral paramekeif
E,g are the canonical generators of gl(2,2), the classicelmatrix r(u,v)
= (u—z;)‘lENg,E,m(—1)“3|EBA gives rise to a o@upejcommutators— £® < in the usual
way'® thereby turning? into a Lie bisuperalgebra. Quantization &fleads to aYangian supe-
ralgebra 77:=Y(91(2,2)), which is aZ,-graded Hopf algebra deformation of the universal envel-
oping algebra of gl(2,2). LeA: 77— 7/® 7/ be the comultiplication of/, and A°®’=>"°A its
opposite. According to general principl€sthere exists a formal object called the universal
R-matrix.72e 7/® 7/, which is determined by the intertwining relatiai?®(a) =.%2A (a).72~* and
has the expansion

In . Z(u)=u"1>, (—1)BIE\g®Ega+A(u3).
AB

An irreducible matrix representatignof 7/ yields an R-matrixR ,(u)=(p® p)(.2(u)) that is a
rational function ofu and solves the quantum Yang—Baxter equation.

When applying this formalism to our problem, we should beware of potential problems due to
theinfinite-dimensionalityf the space¥ andV*. Nevertheless, it does not seem unreasonable to
expect the existence of R-matrices

R(U)=(py® py) (Z2(U)):VeV—VaV,

R(U) = (py® pys ) (Z2(U)):VRV* VR V*.

I have been able to verify that this expectation is fulfilled in the cas&(af), by explicit
construction. The existence &(u) remains an open question at the present tithkelp from
experts on quantum groups would be very much apprecjatée. latter case is more complicated
to treat because the decomposition of the tensor prod@dt* into gl(2,2)-irreducible subspaces
involves a continuous series of representations of gl(2s8e Sec. 5.2 of Ref. 13while in
VeV only a discrete series appears.

Suppose now that bofR(u) andR(u) exist, at least in some domain of the spectral parameter
u. Then, since the quantum Yang—Baxter equation is automatically fulfilled, we can build a
one-parameter family of commuting transfer matrices. The next question is: given the modifica-
tions we have made, is the physics of such a model still that of the plateau transition? Surely,
obtaining an exact solution remains a far goal. It is therefore helpful that the mapping onto
Pruisken’s nonlinear model provides us with a quick way to get oriented in the enlarged
landscape of modified network models. Consider the model of Faj.vith parameteip=1/2.
Taking the continuum limit and computing the topological coupling in the same way as in Sec.
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VIl B, one finds<r§8,)=0 (mod ). This means that the model dosest lie in the quantum Hall

universality class, but is in a massive phase with a fifgtbeit large localization length and
exponentially decaying correlations.

This result could have been anticipated from the following heuristic argument. Imagine sepa-
rating the network into two independent subsysté&rendB, one consisting of the vertical lines
and the other of the horizontal ones. Then couple the modes within each subsystem by weak
tunneling amplitudes. What you get in this way are two copies of Lee’s anisotropic limit of the
Chalker—Coddington model. By the reasoning reviewed in Sec. IX, each of these is critical, with
the o model topological coupling constants beind}),=o{5s=1/2. Now join the two sub-
systems to form the network model of Figah From the meaning df,,, as a topologicatiensity
it is reasonable to expect thaf)) = o)), + o\0)s=2x 1/2=0 (mod 1 for the coupled system, if
the fusion is done in such a way thaig) for the coupled system is spatially homogeneous. Thus
the network model of Fig. ® will be noncritical atp=1/2. (Its correlation functions at large
scales should be similar to those of the two-channel Chalker—Coddington model at the symmetric
point) Since noncriticality is a generic property, this will remain so in a neighborhood of the point
p=1/2.

In view of this heuristic argument, we expect that criticality can be restored by superimposing
on the noncritical network of Fig.(8) yetanothercopy of the anisotropic network model, thereby
producing the network of Fig.(b). There, the horizontal lines carry two, rather than one, channels
per link. The propagation on vertical links is governed by random U(1) phases, as before, but the
horizontal links now carry random U(2) matricgast like the two-channel Chalker-Coddington
mode). One of the horizontal channels passes straight through the nodes, the other one is subject
to the rules specified for the model of Figah The topological coupling of the model is then
found to have the critical valuef(?,)z 3X 1/2(mod )=1/2. Thus the last, doubly modified network
model is critical and, on symmetry grounds, lies in the quantum Hall universality class. From what
was said above, it is also a suitable starting point for attempting to deform to an integrable model.

Xl. SUMMARY

Several messages result from the present paper. First of all, a close relation between two
standard models of the integer quantum Hall transition, namely the Chalker—Coddington model at
its symmetric poinp=1/2, and the supersymmetric formulation of Pruisken’s nonlimearodel
at 022770&?,& 7 (mod 2r), was established. Let us put this result in the proper context. To be
sure, it has been clear for a number of years now that some sort of relation between these models
ought to exist. We know that both are critical and belong to the same universality class, so they
cannot but describe the same physics at long wave lengths. However, prior to our work, the
understanding of the precise connection between Chalker—Coddington and Pruisken was rather
indirect, relying on a double use of the anisotrof@c Hamiltoniar) limit. The connection went as
follows. At one end, by taking the Chalker—Coddington model and going to its anisotropic limit,
D. H. Lee arrived at a network model consisting of an array of chiral modes with an alternating
direction of motion. At the other end, the anisotropic limit of Pruisken’s model was investigated,
by an elaboration of the work of Shankar and R&azh the O(3) nonlinearr model. It was
argued in Ref. 13 that the Hamiltonian limit of Pruisken’s modebat7 and strong coupling
(small a;3>) is an antiferromagnetic superspin chain. Now, the array of chiral modes and the
superspin chain are easy to relate by conventional techniques. At the level of the replica trick that
this was done in Ref. 4, the correct supersymmetric extension follows from Ref. 22. In more
detail, the functional integral representation of the array of chiral modes maps on a nonlinear
model with an alternating sum of Wess—Zumino ter(@s we have seen, this mapping is based
on a 0+ 1- dimensional analog of non-Abelian bosonization i 1L dimensiong. The latter, in
turn, coincides with the coherent-state path integral of the antiferromagnetic superspin chain.
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One disadvantage of the above way of relating the models is that one does not have good
control over the numerical value of the coupling const@fﬂ?. In the present work, this uncer-
tainty was resolved by dealing directly with tietropic models, using a novel scheme devised in
Ref. 15. What we have shown is this. Starting from the Chalker—Coddington moglel HP and
doing no more than an exact transformation followed by a continuum lveitarrive at Pruisken’s
model with 6= and ¢{Q'=1/4. Or, in different words, the former model is equivalent to a
specific lattice discretization of the latter.

Previously, Pruisken’s model was thought to be associated primarily with the white noise limit
I.<<lg, which is where Pruisken’s derivation begins. Recall, though, that in the course of deriving
his model, Pruisken made a saddle-point approximation to eliminate the “massive” modes. Naive
use of this approximation scheme is justified only in the limit of Iaué?é (high Landau level In
contrast, the present work makessuch approximation. The only assumption we needed was the
dominance of slowly varying fields in the functional integral, allowing us to pass from the lattice
to the continuum. Thus, contrary to what might have been expected, Pruisken’s model at small
0'5(?() is actually associated more closely with thigh-field limit | .>1g, as it is this limit that
provides the microscopic justification of the network model. Note, however, that the ratio of
microscopic length scalds/l 5 is expected to be an irrelevant parameter at a critical point with an
infinite correlation length. Thus, our result is not in conflict with Pruisken’s derivation ofrthe
model as a critical theory.

In my opinion, neither the Chalker—Coddington model nor Pruisken’s model hold much
promise for an exact analytical solution in the near future. If so, the mapping of one model on the
other is not yet a big step forward. The good news is that there are several useful spinoffs. D. K.
K. Lee and Chalker suggested modeling the random flux prolfleam the motion of a single
electron in a random magnetic figldy a network with two channels per link and local U(2)
gauge invariance. Our mapping onto a nonlineanodel easily extends to include this case. The
coupling constants of the continuum field theory were found t00’§@:2><1/4= 1/2 and
0-58,):2>< 1/2 (mod 1)=0 at the symmetric point of the random flux problem. This is a massive
theory with exponential decay of all correlation functions are large scales. Thus, contrary to claims
made in the literature, there is no room for truly extended states in the random flux problem, at
least not by slight deformation away from the two-channel network model. This conclusion had
already been reached in Refs. 21 and 4.

Another spinoff helps us along in our quest to understand the integer quantum Hall transition.
We observed that the SUSY reformulated Chalker—Coddington network model has the structure
of what is known as a vertex model in statistical physics. Motivated by information from the
theory of integrable systems, we then modified the network model in several ways. First, we
abandoned the alternating direction of the electron’s motion along the horizontal and vertical
straight lines of the network. Instead, we took the direction of motion to be constant along every
such line. The mapping onto Pruisken’s model indicates that this modification changes the phys-
ics: the value of the topological coupling nowdég)zo, which corresponds to a noncritical state.

We argued that criticality can be restored by doubling the number of channels on all horizontal
links (or on all vertical links. Alternatively, we can spatially separate the two channels on hori-
zontal links and return to a model with only one channel per link, at the expense of doubling the
size of the unit cell in the vertical direction.

The resulting modified network model is critical, but no longer has a justification from a
microscopic picture of guiding center drift along equipotentials. Its virtue is that the corresponding
supersymmetric model is of a type for which systematic ways of constructing solutions of the
guantum Yang-—Baxter equation are in principle available. Whether our model can actually be
deformed into one that is a Yang—Baxter integrable, is a question whose answer lies far beyond
the scope of the present paper.
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Erratum: “Toward a theory of the integer quantum Hall
transition: Continuum limit of the Chalker—Coddington
model” [J. Math. Phys. 38, 2007 (1997)]

Martin R. Zirnbauer
Universitat zu Koln, Institut fur Theoretische Physik, Zulpicher Str. 77, 50937 Koln,
Germany

(Received 20 April 1998; accepted for publication 21 April 1998
[S0022-248829)02404-4

The value of the coupling constaa ?2 computed in Sec. VII A is not correct. Its calculation

was based on the reasonable but false assumption that the field configurations which dominate at
large wavelengths are smooth. As a matter of fact, the relevant configurations contain a small
high-momentum component due to the alternating structure of the Chalker—Coddington network.
When this is taken into account, the value of the longitudinal conductivity changég)tellz for

the single-channel model anti?():N/Z for the N-channel model. The rest of the paper is unaf-
fected by this change.
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