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An N-channel generalization of the network model of Chalker and Coddington is
considered. The model forN51 is known to describe the critical behavior at the
plateau transition in systems exhibiting the integer quantum Hall effect. Using a
recently discovered equality of integrals, the network model is transformed into a
lattice field theory defined over Efetov’ss model space with unitary symmetry.
The transformation is exact for allN, no saddle-point approximation is made, and
no massive modes have to be eliminated. The naive continuum limit of the lattice
theory is shown to be a supersymmetric version of Pruisken’s nonlinears model
with couplingssxx5N/4 andsxy5N/2 at the symmetric point. It follows that the
model forN52, which describes a spin degenerate Landau level and the random
flux problem, is noncritical. On the basis of symmetry considerations and inspec-
tion of the Hamiltonian limit, a modified network model is formulated, which still
lies in the quantum Hall universality class. The prospects for deformation to a
Yang–Baxter integrable vertex model are briefly discussed. ©1997 American
Institute of Physics.@S0022-2488~97!01204-8#

I. INTRODUCTION

The single-electron states of a two-dimensional disordered electron gas in a strong magnetic
field are localized except at the energies of the Landau band centers. As the Fermi energy ap-
proaches such a band center, a critical phenomenon takes place: the localization length diverges
and the Hall conductance jumps from one plateau to the next. This phase transition, which belongs
to the general class of Anderson metal–insulator transitions, has been seen in several experiments
and a substantial amount of data on its critical behavior is available from a number of numerical
simulations~in the absence of electron–electron interactions!, see Ref. 1 and references therein.
Unfortunately, in spite of considerable efforts expended over the last decade, our analytical un-
derstanding of the plateau-to-plateau transition is still rather poor. It is expected that the critical
behavior is described by some nonunitary conformal field theory, but this theory has not yet been
identified.

There exist two opposite limits from which the transition in the noninteracting system can be
approached theoretically. The first limit is that of a slowly varying random potential with a
correlation lengthl c much larger than the magnetic lengthl B . In this limit, the electron’s motion
can be described in semiclassical terms.2 More precisely, the motion separates into a rapid cyclo-
tron motion superimposed on a slow guiding center drift along spatially localized equipotential
lines. As the Fermi energy approaches the center of a Landau band, a percolating path develops
and a localization–delocalization transition takes place. Close to the transition, the quantum me-
chanical possibility for an electron to tunnel from an equipotential to a neighboring one is a
relevant perturbation. The essential features of this quantum percolation transition were cast into
a random network model by Chalker and Coddington.3 In their model an electron acquires random
U(1) phases while moving along the directed bonds of a square network, and is scattered to the
right or left every time it passes through a node of the network. The model will be reviewed in
more detail below. Suffice it to say here that the model has been studied by numerical simulation
but has, in its original, spatially isotropic formulation, defied analytical treatment up to now,
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although a certain amount of analytical insight has come from consideration of its anisotropic4 and
weak disorder5 versions.

The opposite limit isl c! l B . Historically, this was thefirst limit to be studied analytically, the
reason being that it is this limit that was amenable to the field theoretic machinery developed at the
beginning of the 1980’s by Wegner,6 Efetov7 and others. Starting from a Gaussian white-noise
potential (l c50) Pruisken8 used the replica trick to set up a generating functional for the disorder
averaged retarded and advanced Green’s functions of the single-electron Hamiltonian. After a
Hubbard–Stratonovitch transformation to matrix-valued fields, he made a saddle-point approxi-
mation, valid in the limit of a high Landau level. This was followed by a gradient expansion
leading to a U(n11n2)/U(n1)3U(n2) nonlinears model with a vanishing number of replicas,
n15n250, and a parity-violating topological term due to the strong magnetic field. The coupling
constants of the model,sxx andsxy , were identified9 with the physical conductivities of the 2d
disordered electron gas. The topological couplingu52psxy , by its very nature, has no effect on
the equations of motion of the classical field theory, butdoeschange both the Hamiltonian and the
symplectic structure and, consequently, the commutator of the quantum theory. It was argued10

that the nonlinears model, while generically being massive~i.e., having a finite correlation
length! in two dimensions, becomes critical atu5p. The vanishing of the mass gap corresponds
to the appearance of delocalized states at the center of a Landau band. Thus, Pruisken’s model
provided the right kind of scenario in which to develop a scaling theory of the plateau-to-plateau
transition. A supersymmetric version of the model first appeared in Ref.11.

Undeniably, Pruisken’s nonlinears model has served as a great inspiration to theory. One of
its early successes was thesxx 2 sxy flow that was conjectured from it12,10 and later verified by
numerical and real experiments; see Ref. 1 and references therein. In spite of this, Pruisken’s
model or, rather, its promoters have been criticized; see Ref. 13 for a summary. For one thing, the
model has never yielded any quantitative results for the critical behavior at the transition, and
much less has it been solved.~The same statement applies to the general class of nonlinears
models with a topological term. None of these has ever been solved, at least not directly.! For
another, even the derivation of the model is vulnerable to criticism: the validity of the saddle-point
approximation that is made to eliminate the so-called massive modes, requiressxx@1. Although
this inequality is satisfied for the bare~or SCBA! value ofsxx in the limit of a high Landau level,
the renormalized theory atsxy51/2 is expected to have asxx of order unity or less. The cure
proposed by Pruisken was toassumethe renormalizability of his model, and appeal to the RG flow
to take the coupling constantsxx from large to small values. However, such an assumption needs
to be justified and, in fact, is not acceptable by current field theoretic knowledge, for Pruisken’s
model apparently lacks the conformal structure that is required of a fixed point theory with a
continuous symmetry in two dimensions.~In other words, the model, while definitely being critical
at sxy51/2, does not possess the conservation laws expected of an infrared stable fixed point.!

Two advances will be made in the present paper. The first is to establish a very close con-
nection between Pruisken’s nonlinears model and the network model of Chalker and Coddington
at criticality. We will show that the latter can be viewed as a lattice discretization of the former or,
conversely, taking the continuum limit of the network model yields thes model. A more detailed
outline is the following. We start out by reviewing the supersymmetric version of Pruisken’s
model and the Chalker–Coddington network model in Secs. II and III. Then, in Sec. IV, the
network model is reformulated as a lattice-regularized field theory defined over Efetov’s super-
symmetric nonlinears model space with unitary symmetry. This reformulation is exact. In con-
trast with the conventional method due to Wegner, Efetov and others, no saddle-point approxi-
mation is needed to eliminate the massive modes. Moreover, Sec. V shows that not only is the
supersymmetric reformulation of the network model defined over the same field space, but it also
has the same global symmetries as Pruisken’s model. At the critical point of the network model,
where the correlation~or localization! length diverges, the long wave length physics of the super-
symmetric lattice theory is expected to be described by a continuum field theory. The symmetries
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dictate that this continuum theory be Pruisken’s model at the critical couplingsxy51/2. As is
shown in Sec. VII A, the other coupling constant,sxx , equals 1/4. The numerical value ofsxy is
checked in Sec. VII B, by evaluating the lattice action on a smooth field configuration with
nonzero topological charge. Section VII C extends these results to anN-channel network model
with random U(N) matrices on links.

What we learn from all this is that, although historically Pruisken’s model was first obtained
from the Gaussian white noise limitl c! l B , in a low Landau level it is actually more closely
related to the opposite limitl c@ l B , since it is the latter that provides the microscopic basis for the
network model.

The mathematical basis underlying the exact transformation from theN-channel network
model to the supersymmetric lattice field theory is quite natural and simple, and is briefly sketched
as follows. ~Readers who are not interested in mathematical structures may want to skip this
paragraph.! For a pair of positive integersn,N consider the tensor productCn^CN, on which the
group GL(nN) acts by linear transformations. Span the corresponding Lie algebra gl(nN) by
bilinears$c̄A

i cB
j %A,B51, . . . ,n

i , j51, . . . ,N in fermionic creatorsc̄ and annihilatorsc, which act in a Fock space
with vacuumu0&. There exist two natural subalgebras: gl(n), generated by( i c̄A

i cB
i , and gl(N),

generated by(Ac̄A
i cA

j . Now put n5n21n1 and fill the ‘‘negative energy states’’ to form
uvac&5) i51

N )A51
n2 c̄A

i u0&. The particle–hole coherent states14 that are generated by the action of
GL(n) on uvac&, are holomorphic sections of a line bundle associated to the homogeneous space
G/H:5GL(n)/GL(n1)3GL(n2) by the Slater-determinant representation of GL(n2) on
uvac&. They are parameterized by a complexn13n2 matrixZ with adjointZ†. By combining the
closure relation for particle–hole coherent states with a few elementary properties of Fermi-
coherent~or Grassmann-coherent! states, one can prove the following equality of integrals:

E
U~N!

dU)
a51

n1

Det~12e1 iw1aU !)
b51

n2

Det~12e2 iw2bU†!

5E dm~Z,Z†!Det2N~11Z†Z!DetN~11Z†e1 iw1Ze2 iw2!,

wherew65diag(w61,...,w6n6
) are diagonal matrices with real entries,dU is the Haar measure

of a U(N) subgroup of GL(N) anddm(Z,Z†) expresses the U(n)-invariant measure of a compact
symmetric space U(n)/U(n1)3U(n2) contained in the complex homogeneous spaceG/H. This
integral identity forms the mathematical basis of our formalism. Its supersymmetric extension15

permits us to carry out the disorder average over the random U(N) matrices placed on the links of
the network, at the expense of introducing an integration over fieldsZ taking values in a symmet-
ric superspace.

Another issue addressed in this paper is the question whether the supersymmetric formulation
of the network model offers the possibility for an exact analytical solution. In Sec. VI I reveal that
the model resembles what is called avertex modelin statistical physics, in the sense that the
Boltzmann weight is a product of factors, one for each node, or vertex. The weight associated with
a single vertex is called theR-matrix. The symmetries of theR-matrix are investigated in Sec.
VIII. It is eventually found that it can be interpreted as a mapR:V^V→V^V, whereV is an
irreducible lowest-weight module for the Lie superalgebra gl(n,n), andn5n11n25111 for
the case of one retarded and one advanced Green’s function. This looks interesting as one may
hope thatR can be deformed to anR-matrix that solves the quantum Yang–Baxter equation
underlying the integrability of two-dimensional vertex models. One would then have the possibil-
ity of an analytical and exact computation of critical properties. Unfortunately, the specific choice
of local directions for the single-particle motion on the network, shown in Fig. 2 below, turns out
to be incompatiblewith the standard schemes16 for constructing solutions of the quantum Yang–
Baxter equation. The reason is that theR-matrix of a Yang–Baxter solvable model always trans-
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fers from one side of the vertex to the other, whereas the Chalker–Coddington vertex maps the
horizontal degrees of freedom into the vertical ones, or vice versa. Thus the Chalker–Coddington
model in its original form does not fit into the canonical framework of the theory of integrable
systems, and I am not aware of any method to make analytical progress with it.

However, this is not yet the end of the story. Additional insight can be gained by considering
the anisotropic limit4 of the Chalker–Coddington model. This limit and its relation to Pruisken’s
model are reviewed in Sec. IX. Based on it, in Sec. X a modified version of the isotropic one-
channel network model is proposed, which differs from the original one in two respects. First, the
direction of the single-particle motion does not alternate constantly between being horizontal and
vertical. Instead, an electron may either pass straight through a node~with nochange of direction!,
or else be scattered either to the right or to left. Analysing such a model by the mapping onto
Pruisken’s nonlinears model, we find that it is likelynot to be in the quantum Hall universality
class, but in a massive~Haldane type! phase. Therefore, a second modification is proposed, which
is to add a second channel of propagation onhalf the links, say the horizontal ones; see Fig. 5~b!
below. By the mapping onto Pruisken’s model, the doubly modified network model is expected to
be critical in a range of values of the parameter characterizing the scattering at the nodes. More-
over, by the changed transfer dynamics, the standard schemes for constructing solutions of the
quantum Yang–Baxter equation are no longer ruled out. I hope to elaborate on this theme in a
future publication.

II. SUPERSYMMETRIC FORMULATION OF PRUISKEN’S MODEL (DEFINITIONS)

The original formulation8 of Pruisken’s nonlinears model relied on the use of the replica
trick. When applied to phenomena that are nonperturbative in the disorder strength, the replica
trick is not mathematically sound but has been demonstrated to lead to incorrect results, at least in
some instances.17 ~The analytic continuation to a vanishing number of replicas is not unique in
general.! Fortunately, we can avoid the replica trick by using an alternative, supersymmetric
formalism,7 which is on firm mathematical ground. The purpose of this section is to briefly review
the supersymmetric formulation11 of Pruisken’s model in a language that is well suited for what
will follow below. For simplicity, only the model pertaining to one retarded and one advanced
Green’s function is treated. A more detailed discussion of the model can be found in Ref. 13.

To define Pruisken’s nonlinears model we first specify its field space, as follows. Consider a
pair Z,Z̃ of 232 complex supermatrices,

Z5S ZBB ZBF

ZFB ZFF
D , Z̃5S Z̃BB Z̃BF

Z̃FB Z̃FF
D ,

where the subscripts B and F stand for Bosonic and Fermionic, and let

g5S A B

C DD PGL~2u2!

act on these by

Z°g•Z5~AZ1B!~CZ1D !21, Z̃°g•Z̃5~C1DZ̃!~A1BZ̃!21.

Following Ref. 13 one identifies the pairZ,Z̃ as a set of coordinates for the complex coset space
G/H:5Gl(2u2)/GL(1u1)3GL(1u1), where the denominator is the subgroup generated by the
block-diagonal matrices
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h5SA 0

0 D D .
With this identification, the actionZ°g•Z and Z̃°g•Z̃ coincides13 with the natural action of
G onG/H by left translation. The supermatricesZ andZ̃ then are viewed as left-translates of the
origin in G/H, by writing Z[g•05BD21 and Z̃[g• 0̃5CA21.

The coset spaceG/H, being a homogeneous space, admits only one~up to multiplication by
a constant! rank-two supersymmetric tensor that is invariant under the action ofG5GL(2u2). In
the coordinatesZ,Z̃ it is given by

ĝ5STr~12ZZ̃!21dZ~12Z̃Z!21dZ̃,

where STr denotes the supertrace. TheG-invariant superintegration measure that derives fromĝ is
denotedD(Z,Z̃) and has the local coordinate expression18

D~Z,Z̃!5dZBB`dZ̃BB`dZFF̀ dZ̃FF
]4

]ZBF]Z̃BF]ZFB]Z̃FB
.

~Note that superintegration measures, also called integral superforms or Berezin forms, generically
suffer from a coordinate ambiguity, or anomaly; see Ref. 19. A general procedure by which to
defineD(Z,Z̃) globally is described in Sec. II A of Ref. 20.! The integration domain for the
bosonic variables is fixed by the conditions

Z̃FF52Z̄FF, Z̃BB51Z̄BB and uZBBu2,1,

where the bar denotes complex conjugation. These conditions select a submanifoldMB3MF of
G/H,

MB5U~1,1!/U~1!3U~1!.H2, MF5U~2!/U~1!3U~1!.S2,

on which the metricĝ is Riemann. The variablesZFF andZBB can be shown
13 to have a meaning

as complex stereographic coordinates on the two-sphere S2 and two-hyperboloid H2, respectively.
The triple (G/H,MB3MF ,ĝ) is a Riemannian symmetric superspace,20 and is called Efetov’s
s model space with unitary symmetry. In most of the existing literature, this space is parameter-
ized by a 434 supermatrixQ, introduced below.

After these preparations, Pruisken’s nonlinears model~or, rather, the supersymmetric version
thereof! is defined by the functional integral,

^d&5E D~Z,Z̃!dexp2Scont@Z,Z̃#,

whereScont@Z,Z̃#5*Ld2r is obtained by integrating the following Lagrangian:

L5sxx
~0!~Lxx1Lyy!1sxy

~0!~Lxy2Lyx!,
~1!

Lmn5STr~12ZZ̃!21]mZ~12Z̃Z!21]nZ̃,

and the functional integration measure is

D~Z,Z̃!5 )
r5~x,y!

D~Z~r !,Z̃~r !!.
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By construction, this field theory is invariant under global Gl(2u2) transformations
Z(r )°g•Z(r ) and Z̃(r )°g•Z̃(r ) ~each of the termsLmn is!. The partition functionZ5^1&
equals unity by supersymmetry. To obtain physical observables, one adds sources and takes
functional derivatives, as usual.

For some purposes it is useful to switch to a coordinate-independent language by introducing
a 434 supermatrix fieldQ by

Q5S 1 Z

Z̃ 1D S 1 0

0 21D S 1 Z

Z̃ 1D
21

,

in terms of which the Lagrangian takes the familiar form8

Lxx1Lyy5STr~]xQ]xQ1]yQ]yQ!/85:L0 ,

Lxy2Lyx5STr~]xQ]yQ2]yQ]xQ!Q/85:L top.

The global action of GL(2u2) onQ isQ(r )°gQ(r )g21. On a configuration manifoldC without
boundary the integral ofL top is quantized:

10,18 *CL topd
2r52p in, and the integern is called the

‘‘winding number’’ or ‘‘topological charge.’’L0 andL top are invariant under rotations in thexy
plane, and these are the only invariants that can be formed fromLmn . Note thatL0 is real-valued,
whereasL top is purely imaginary. The coupling constantssxx

(0) andsxy
(0) have been interpreted9 as

the longitudinal and Hall conductivities of the 2d electron gas.
Let me mention in passing that the terms in the Lagrangian can be written as

L05S ]2

]x]x8
1

]2

]y]y8D ln SDet~12Z~x,y!Z̃~x8,y8!!21ux5x8,y5y8 ,
~2!

L top5S ]2

]x]y8
2

]2

]y]x8D ln SDet~12Z~x,y!Z̃~x8,y8!!21ux5x8,y5y8 ,

where SDet denotes the superdeterminant. The function ln SDet(12ZZ̃) is called the Ka¨hler
potential of the Ka¨hler supermanifoldG/H parameterized by the complex coordinatesZ and Z̃.

III. THE CHALKER–CODDINGTON MODEL

The Chalker–Coddington model was formulated3 for the purpose of describing the plateau-
to-plateau transition in systems exhibiting the integer quantum Hall effect. Its microscopic foun-
dation as a model for the motion of a single 2d electron subject to a smooth random potential and
a strong magnetic field, is explained in the original paper.

The model is defined on a finite or infinite square lattice forming a network of nodes and
directed links; see Fig. 1. A ‘‘wave function’’ of the model is a collection of complex amplitudes
$c( l )%, one for each linkl of the network. The dynamics is governed not by a Hamiltonian but by
a unitary operatorU, called the one-step time evolution operator.U acts on wave functions, and
is given by a sequence of two distinct operations. The first one is stochastic and, in a microscopic
picture, accounts for the random phase acquired by the electron’s guiding center while drifting
along equipotentials between saddle points of the random potential. In formal language, the sto-
chastic phases are encapsulated in a unitary operatorU0 that is diagonal in the basis provided by
the links:U0( l 8,l )5d( l 8,l )exp iw(l), wherew( l ) are uncorrelated random variables with a uni-
form distribution on the interval@0,2p#.

The second process built into the one-step time evolution operator is deterministic~i.e.,
nonrandom! and accounts for the quantum mechanical possibility for an electron to tunnel across
a saddle point. This is modeled via the nodes of the network. One imagines that the guiding center
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drift motion of the electron follows the direction indicated by the arrows in Fig. 1. An electron
incident on a node can be scattered either to the left or to the right, corresponding to the two
possibilities of continuing on its way along the same equipotential, or tunneling to a neighboring
one. It cannot be backscattered, and it cannot pass straight through a node. The probabilities for
scattering to the right or left are denotedp and 12p. The probabilityamplitudesfor scattering at
the nodes then have magnitudeAp andA12p, respectively. They are taken to be real, but they
cannot all be chosen positive as this would violate unitarity. Various choices are possible. For
definiteness we take the amplitudes to be negative for right-up to left-up and for right-down to
left-down turns~see Fig. 1! and positive otherwise.~Which choice is made actually turns out to be
immaterial. All we need is that some choice consistent with unitarity exists.! All this fixes a
unitary operatorU1 with matrix elementsU1( l 8,l ) that vanish unless the scattering process
l→ l 8 is allowed by the ~one-step! dynamics, in which caseU1( l 8,l )56Ap or
U1( l 8,l )56A12p, as specified. The full one-step time evolution operator is the product
U5U1U0 .

For the purpose of doing numerical simulations, one usually takes the network to be a long
strip ~quasi-1d geometry! with periodic boundary conditions for the short direction to minimize
finite size effects. By computing the exponential growth of the transfer matrix for the strip and
averaging over many realizations of the disorder embodied byU0 , one extracts a Lyapunov
exponent or inverse localization length. Forp51/2 the localization length is found to grow
linearly with the width of the strip, indicating a critical point.

The existence of critical behavior atp51/2 can be anticipated by the following argument.3

Consider the Chalker–Coddington model with the open boundary conditions of Fig. 1. For
p50 ~left turns only! all electron states encircle elementary squares of the network in the coun-
terclockwise direction, and thus are strongly localized. The same statement applies forp51 ~right
turns only!, except that now the orientation of the motion around squares is clockwise, and anedge
stateat the boundary of the strip appears, as is seen by inspection of Fig. 1. The appearance of an
edge state implies that somewhere in the intervalpP@0,1# a delocalized state must form. For
symmetry reasons, this is expected to happen at the left–right symmetric pointp51/2.

The method to be introduced in Sec. IV is quite capable of dealing with a quasi-1d geometry
and its boundary conditions. However, for maximal simplicity we will consider below a somewhat
different setup, where periodic boundary conditions are imposed in both directions, i.e., the net-

FIG. 1. The network model of Chalker and Coddington in a quasi 1d geometry. A single electron propagates ballistically
along the links and is scattered at the nodes of the network.
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work is placed on a torus S13S1. We envisage making a conductance measurement between two
interior contactsM andN as shown in Fig. 2. These contacts are ‘‘point’’ contacts in the sense
that they each attach only to asingle link, l M and l N . For most purposes it is helpful to imagine
that each link with a contact is replaced by two links, an ‘‘in-link’’ feeding the network from a
reservoir, and an ‘‘out-link’’ draining the network through an outgoing channel leading back to the
reservoir. Outgoing-wave boundary conditions are imposed on out-links, i.e. probability flux that
is scattered into such a link by the action ofU1 , must exit and never returns to the network. The
conductance pertaining to two interior contactsM andN can be computed from the Landauer–
Büttiker formula,gMN5uSMNu2, whereSMN is the S-matrix element relating an incoming state on
the in-link of l N to an outgoing wave amplitude on the out-link ofl M . This S-matrix element is
determined by the solution of Schro¨dinger’s equationUc5eiac with incoming-wave boundary
conditions atN. The eigenphaseeia may be gauged away by a global shift of the random U(1)
factors on links,U0( l )°eiaU0( l ). It is convenient to implement the loss of probability flux
through out-links by the modificationU0( l )5exp iw(l)→U0(l

out)[0 for every link l with a con-
tact. Then, solving the equationc5Uc by iteration, we easily see that the d.c. conductance equals

gMN5uSMNu25u^ l M
outuTu l N

in&u2,

whereT is the operator

T5U11U1U0U11U1U0U1U0U11•••5~12U1U0!
21U1 . ~3!

Note that owing toU0( l M
out)5U0( l N

out)50, the eigenvalues ofU1U0 lie inside the unit circle
~rather than on the unit circle! in C, so the inverse (12U1U0)

21 is well-defined. Without chang-
ing the matrix elementuSMNu2, we setU0( l M

in )5U0( l N
in)50.

IV. REFORMULATION BY SUPERSYMMETRY

In this section we will show how to map the problem of calculating the disorder averaged
conductance ^gMN& on an equivalent lattice field theory. FromgMN5u^ l M

outuTu l N
in&u2,

T5(12U1U0)
21U1 , andT

†5(12U1
†U0

†)21U1
† , the mean conductance^gMN& equals the disor-

der average of the expression

FIG. 2. Chalker–Coddington network with two interior contactsM and N. The corresponding linksl M and l N are
connected to one incoming and one outgoing channel each.
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(
lml n

^ l N
inu~12U1

†U0
†!21u l m&U1

†~ l m ,l M
out!^ l M

outu~12U1U0!
21u l n&U1~ l n ,l N

in!.

This disorder average can be processed by a variant of Efetov’s supersymmetry method introduced
in Ref. 15, as follows. The method starts by expressing the product of matrix elements as a
Gaussian superintegral:

^ l N
inu~12U1

†U0
†!21u l m&^ l M

outu~12U1U0!
21u l n&

5E )
l
D~c~ l !,c̄~ l !!c2B~ l N

in!c̄2B~ l m!c1B~ l M
out!c̄1B~ l n!

3exp~2c̄1s~ l 8!@d~ l 8,l !2U1~ l 8,l !U0~ l !#c1s~ l !

2c̄2t~ l 8!@d~ l 8,l !2Ū1~ l ,l 8!Ū0~ l !#c2t~ l !!,

wherec6s are the components of a complex superfieldl°c( l ). The indexs5B or F distin-
guishes between Bosonic and Fermionic components, and6 relates to retarded (T) and advanced
(T†) Green’s functions. The bar denotes complex conjugation.D(c,c̄) denotes the ‘‘flat’’ super-
integration measure, i.e., is given by the product of the differentials of the bosonic components
times the product of partial derivatives with respect to the fermionic ones. The summation con-
vention is used here and throughout the paper.

For the following step, it is notationally convenient to absorbU1 temporarily by setting
ĉ1s( l )5c̄1s( l 8)U1( l 8,l ) and ĉ2t( l )5c̄2t( l 8)Ū1( l ,l 8). We will now trade the average over
random phases*) ldU0( l )5*) ldw( l )/2p for an integral over Efetov’ss model space with
unitary symmetry, reviewed in Sec. II. This is done by a kind of Hubbard–Stratonovitch trans-
formation,

E )
l

8 dU0~ l !exp~ ĉ1s~ l !U0~ l !c1s~ l !1ĉ2t~ l !Ū0~ l !c2t~ l !!

5E )
l

8 Dm~Z~ l !,Z̃~ l !!exp~ ĉ1s~ l !Zst~ l !c2t~ l !1ĉ2t~ l !Z̃ts~ l !c1s~ l !!, ~4!

which is a special case of a more general result proved in Ref. 15. The 232 supermatrix valued
fields l°Z( l ) andl°Z̃( l ) are lattice discretizations of the continuous fields of Pruisken’s model.
The superintegration measure,

Dm~Z,Z̃!:5const3D~Z,Z̃!SDet~12Z̃Z!,

is normalized by the condition*Dm(Z,Z̃)51. Because of the boundary condition at the contacts,
U0( l M)5U0( l N)50 ~in- and out-links!, the product over links on both sides of~4! excludesl M
and l N . An alternative scheme of implementing the boundary condition is to let the product run
overall links, including the boundary ones, and set

Z~ l M !5Z̃~ l M !5Z~ l N!5Z̃~ l N!50. ~5!

We adopt this scheme. By using~4! to deal with the disorder average of the product of matrix
elements, we obtain
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^^ l N
inu~12U1

†U0
†!21u l m&^ l M

outu~12U1U0!
21u l n&&

5E )
l
Dm~Z~ l !,Z̃~ l !!E )

l
D~c~ l !,c̄~ l !!

3c2B~ l N
in!c̄2B~ l m!c1B~ l M

out!c̄1B~ l n!

3exp~2c̄1s~ l !c1s~ l !1c̄1s~ l 8!U1~ l 8,l !Zst~ l !c2t~ l !

2c̄2t~ l !c2t~ l !1c̄2t~ l 8!Ū1~ l ,l 8!Z̃ts~ l !c1s~ l !!.

The final step is to carry out the Gaussian integral overc and c̄, which gives

^gMN&5E )
l
Dm~Z~ l !,Z̃~ l !!SDetH~12ZUZ̃!21@ZU~12Z̃ZU!21#BB~ l M

out,l M
out!

3@ Z̃U†~12ZZ̃U†!21#BB~ l N
in ,l N

in!,

by an elementary calculation. HereZU denotes the supermatrix fieldZ evolved forward in time by
one action of the deterministic scattering operatorU1, i.e., ZU5U1ZU1

† or, in more explicit
notation,

~U1ZU1
†!st~ l ,l 8!5U1~ l ,l 9!Zst~ l 9!Ū1~ l 8,l 9!.

Similarly, Z̃U† is the supermatrix fieldZ̃ evolved backward in time by one step:Z̃U†5U1
†Z̃U1 .

The subscriptH on SDet indicates that the superdeterminant runs over both superspace and the
Hilbert space of wave functions supported on links.

In summary, we have shown that the average conductance pertaining to two interior contacts
M andN can be computed as a two-point function^gMN&5^O (M )Õ (N)& of operators

O ~M !5@ZU~12Z̃ZU!21#~ l M
out,l M

out!,

Õ ~N!5@ Z̃U†~12ZZ̃U†!21#~ l N
in ,l N

in!,

in a lattice field theory,

^d&5E )
l
D~Z~ l !,Z̃~ l !!dexp2Slatt@Z,Z̃#,

with lattice action

Slatt@Z,Z̃#5 ln SDetH~12ZUZ̃!2 ln SDetH~12ZZ̃!. ~6!

The second term inSlatt originates from the measureDm(Z,Z̃)5D(Z,Z̃)SDet(12ZZ̃). Note that
the functional integral for the two-point function̂O (M )Õ (N)& is regularized by the boundary
condition ~5!.

What we have done is anexact rewritingof the original problem. It might superficially look
as though we have made the problem more complicated by transforming from U(1) phase inte-
grals to an integral over supermatrix fieldsZ andZ̃, but this is not so. The point is that while the
U(1) phasesU0( l ) fluctuate independently, the dominant contributions to the integral over the
supermatrix field come fromslowly varyingfield configurations. The latter property is best seen by
combining terms to rewrite the lattice action as follows:
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Slatt@Z,Z̃#5 ln SDetH~12~12Z̃Z!21Z̃~ZU2Z!!.

The right-hand side vanishes for constant fields (ZU5Z) and is small for slowly varying ones.
This will allow us to take a continuum limit and describe the low energy or long wave length
physics of the Chalker–Coddington network model by a continuum field theory. In view of~2!
and~6!, it should not come as a surprise that this field theory will turn out to be Efetov’s nonlinear
s model with unitary symmetry, augmented by Pruisken’s topological term.

The formula we have derived for̂gMN& illustrates how the transport coefficients of the
network model can be expressed as correlations functions of a supersymmetric lattice field theory.
In the remainder of the paper we will not discuss the specific correlator^gMN& any further, but will
concentrate on the general structure of the theory.

V. GLOBAL SYMMETRY UNDER GL(2 z2)

To get ready for taking the continuum limit, we will now elucidate the symmetries of the
lattice field theory. We are going to show that it is invariant under global transformations,

Z~ l !°g•Z~ l !5~AZ~ l !1B!~CZ~ l !1D !21,

Z̃~ l !°g•Z̃~ l !5~C1DZ̃~ l !!~A1BZ̃~ l !!21,

for

g5S A B

C DD PGL~2u2!.

The integration measureD(Z( l ),Z̃( l )) has this invarianceby definition. To see that the lattice
action ~6! is invariant, we first transform the factor SDet(12Z( l )Z̃( l )) for a single link l , tem-
porarily dropping the argumentl for notational simplicity:

SDet~12~g•Z!~g•Z̃!!5SDet~12~AZ1B!~CZ1D !21~C1DZ̃!~A1BZ̃!21!

5SDet~12~Z1A21B!~11D21CZ!21~ Z̃1D21C!~11A21BZ̃!21!.

This expression is further processed by settingA21B5:X andD21C5:X̃ and using the identity

12~Z1X!~11X̃Z!21~ Z̃1X̃!~11XZ̃!215~12XX̃!~11ZX̃!21~12ZZ̃!~11XZ̃!21,

which follows from elementary algebra. We then get

SDet~12~g•Z!~g•Z̃!!5SDet~~12XX̃!~11ZX̃!21~12ZZ̃!~11XZ̃!21!.

The ‘‘dynamical’’ factor SDetH(12ZUZ̃)
21 is transformed in an identical fashion. Because

the transformation is global andU1 acts as the identity in superspace, we have

~g•Z!U5U1~g•Z!U1
215g•~U1ZU1

21!5g•ZU ,

i.e., the actions ofg andU1 commute. We thus obtain

SDetH~12~g•Z!U~g•Z!!215SDetH~12~g•ZU!~g•Z̃!!21

5SDetH~~12XX̃!~11ZUX̃!21~12ZUZ̃!~11XZ̃!21!.

By combining factors and using the multiplicativity of the superdeterminant, we arrive at
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Slatt@g•Z,g•Z̃#5Slatt@Z,Z̃#2 lnSDetH~11ZX̃!211 ln SDetH~11ZUX̃!21.

The last two terms on the right-hand side cancel each other by

SDetH~11ZUX̃!5SDetH~11U1ZU1
21X̃!5SDetH~11ZX̃!,

sinceX̃ is constant on links and therefore commutes withU1 ~i.e.,U1
21X̃U15X̃). This establishes

the global invarianceSlatt@g•Z,g•Z̃#5Slatt@Z,Z̃#.
The global GL(2u2) symmetry ofSlatt is broken by the boundary condition~5!, of course.

Such a symmetry breaking is needed for the mathematical consistency of the formulation, since
the integral over theq50, or zero momentum, mode of the noncompact bosonic sector would
otherwise be divergent.

In Sec. IV we saw that the supersymmetric reformulation of the Chalker–Coddington model
is defined over the same field space as Pruisken’s model. What we have just learned is that these
models not only share the field space, but also have thesame internal symmetries. This is already
a strong indication of their equivalence at the critical pointp51/2, resp.sxy

(0)51/2.

VI. REFORMULATION AS A VERTEX MODEL

Further analysis is facilitated by the observation that the ‘‘Boltzmann weight’’ of the lattice
field theory,

W@Z,Z̃#5SDetH~12Z̃ZU!21SDetH~12Z̃Z!,

factors to a large extent. This factorization is seen as follows. Consider the expression
Z̃( l 9)U1( l 9,l 8)Z( l 8)U1

21( l 8,l ) and takel to be the linkl5D, say, emanating in the downward
direction from the node shown in Fig. 3~a!. The matrix elementU1

21( l 8,D) is nonzero only if
l 8 is one of the two links,l 85L or l 85R in the figure, that flow into the same node. In either case,
the matrix elementU1( l 9,l 8) leads to the final statel 9 being one of only two links, namely
l 95 l5D ~the one we started from!, or else l 95U, the link emanating from the node in the
upward direction. Similarly, if the initial state isl5U, the final state isl 95U or l 95D. These
statements remain true~mutatis mutandi! if the node of Fig. 3~a! is replaced by any other node of
the network.~Half of the nodes of the network are obviously equivalent to the one considered. The
other half of them has links emanating in the horizontal direction and nodes flowing into it in the
vertical direction; see Fig. 3~b!. These nodes become equivalent to the one of Fig. 3~a! after a
rotation by ninety degrees.!

FIG. 3. The two types of elementary vertex of the Chalker–Coddington model. Type~b! is obtained from type~a! by a
rotation throughp/2.
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Thus, Z̃U1ZU1
21 viewed as an operator in the space of states supported on links, connects

only pairs of links, namely the two links that emanate from one and the same node. This means
that the Boltzmann weightW is a product of factors, one for each node:

W@Z,Z̃#5 )
nodesn

R~ Z̃~Un!,Z̃~Dn!,Z~Ln!,Z~Rn!!, ~7!

where the assignment of link labelsU,D,L,R is defined by Fig. 3. From the definition ofU1 in
Sec. III, the weight for a single node works out to be

R~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!

5SDet~@12Z̃~U !Z~U !#@12Z̃~D !Z~D !#@12Z̃~L !Z~L !#@12Z̃~R!Z~R!# !1/2

3SDet21S 12pZ̃~U !Z~R!2~12p!Z̃~U !Z~L ! Ap~12p!Z̃~U !@Z~L !2Z~R!#

Ap~12p!Z̃~D !@Z~L !2Z~R!# 12pZ̃~D !Z~L !2~12p!Z̃~D !Z~R!
D .
~8!

A model of the kind~7! is called avertex modelin statistical mechanics, andR is called the
R-matrix. The global symmetries of this R-matrix will be investigated in Sec. VIII. In Sec. X we
will show how to pass from the integration over the fieldsZ,Z̃ to a summation over superspin
degrees of freedom.

VII. CONTINUUM LIMIT

For values of the parameterp close to 1/2, where the Chalker–Coddington model undergoes
a quantum percolation transition, the correlation~or localization! length is very large, and we
expect the lattice functional integral to be dominated by fields that vary slowly. Our goal in this
section is to extract from~6! the continuum field theory governing these slowly varying modes.

Recall the following facts:~i! Pruisken’s model and the supersymmetric~SUSY! reformula-
tion of the Chalker–Coddington model are defined over the very same complex field space,
G/H5GL(2u2)/GL(1u1)3GL(1u1). ~ii ! Both the action functional of Pruisken’s model,Scont,
and the lattice action of the SUSY reformulated Chalker–Coddington model,Slatt , are invariant
under global GL(2u2) transformations.~iii ! The metric tensor of the field spaceG/H,

ĝ5STr~12ZZ̃!21dZ~12Z̃Z!21dZ̃52STr~dQ!2/8,

is invariant under GL(2u2) @i.e., underQ°gQg21 with gPGL(2u2)#, and this is theonly
second-rank supersymmetric tensor on the homogeneous spaceG/H that has this invariance.
When combined with a standard field theoretic power counting argument, these facts lead to the
conclusion that the continuum limit of the lattice actionSlatt must be a linear combination of the
four termsLmn (m,n5x,y) in ~1!, which are induced fromĝ.

A further constraint comes from the spatial symmetries. At large scales~i.e., in the infrared
limit !, where details of the network structure are washed out, the Chalker–Coddington model
acquires an invariance under rotations in space. From the four termsLmn one can form only two
linear combinations that are rotationally invariant. These are precisely the ones that figure in the
expression~1! for Pruisken’s Lagrangian~Pruiskenet al.10 arrived at them by essentially the same
argument!, namelyLxx1Lyy andLxy2Lyx . We thus conclude that the continuum limit of the
SUSY reformulated Chalker–Coddington model at criticality (p51/2) is Pruisken’s model at the
critical topological couplingu5p52psxy

(0) , and some as yet unknown couplingsxx
(0) :
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Slatt@smooth fields#5Scontus
xx
~0!5?,s

xy
~0!51/2.

The only thing that remains to be done, then, is to work out the numerical value of the coupling
constantsxx

(0) . Although it is not too difficult to do this calculation for a whole range of values of
the parameterp, we restrict ourselves to the critical pointp51/2, for simplicity. In the following
subsection we will show that

sxx
~0!51/4 ~ for p51/2!.

The small value ofsxx
(0)51/4 means that the theory is atstrong coupling. ~The weak-coupling

limit, where Pruisken’s derivation is valid, issxx
(0)@1.)The superscript (0) alerts us to the fact that

this is a ‘‘bare’’ value, obtained by a naive continuum limit, i.e. without taking into account
possible renormalizations coming from modes with short wave lengths.

In the following we pay no attention to the boundary conditions and assume the network to be
infinitely extended.

A. The coupling constant sxx
(0)

To show thatsxx
(0)51/4 for the Chalker–Coddington model atp51/2, we first expandSlatt to

quadratic order inZ andZ̃ and then take the long wave length limit. The quadratic part ofSlatt is
conveniently obtained by expanding the expression~10! for the R-matrix:

22 lnR~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!5STr~ Z̃~U !@Z~U !2Z~L !#1@ Z̃~R!2Z̃~U !#Z~R!1Z̃~D !

3@Z~D !2Z~R!#1@ Z̃~L !2Z̃~D !#Z~L !!1O ~Z2Z̃2!.

Now recall the meaning of the labelsU,D,L,R defined by Fig. 3~a!, and let (nx ,ny)PZ2 be the
Cartesian coordinates of the node in that figure. Then, ifa is the lattice constant of the network,

Z~L !5Z~anx2a/2,any!, Z~D !5Z~anx ,any2a/2!,

Z~R!5Z~anx1a/2,any!, Z~U !5Z~anx ,any1a/2!.

Similar expressions hold for the other type of node, shown in Fig. 3~b! ~rotate byp/2). We sum
lnR over all nodes of the lattice and go to momentum space with wave vectork5(kx ,ky). The
quadratic partS2 of Slatt is then obtained as

S25
1

2(k tkSTrZ̃~k!Z~2k!,

where

tk542ei ~kx1ky!a/22e2 i ~kx1ky!a/22ei ~kx2ky!a/22e2 i ~kx2ky!a/2.

On taking the continuum limita→0, and replacing the sum over momenta by an integral, we get

S25
1

4E d2k

~2p!2
k2 STr Z̃~k!Z~2k!.

Matching this expression to the quadratic part ofScont, Eq. ~1!, givessxx
(0)51/4, as was claimed

above.
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B. The coupling constant sxy
(0)

The critical points of the Chalker–Coddington model and Pruisken’s model are atp51/2 and
sxy
(0)51/2 ~mod 1!, respectively. Therefore, as was argued earlier, there cannot be any doubt that

the continuum limit of the lattice action~6! at p51/2 is Pruisken’s action with topological
coupling sxy

(0)51/2. Nevertheless, it is both reassuring and instructive to check this by direct
calculation, which is what we do next.

In Sec. VII A the value ofsxx
(0) was found by looking at the quadratic part of the action. The

topological couplingsxy
(0) , by its very nature, evades any such attempt at perturbative calculation.

To extract it from~6! a different, nonperturbative scheme must be used. A direct approach would
be to perform a gradient expansion around a topologically nontrivial background. For reasons that
will be explained at the end of Sec. VIII, this is not easy to do. Here we will follow a different
procedure, which is to evaluateSlatt on the lattice discretizationZ(m) of some smooth field con-
figuration with topological chargemÞ 0.

Given the relation ImScont@Z
(m),Z̃(m)#52pmsxy

(0) and the requirementScont5Slatt for smooth
fields, the topological coupling is determined by

Im Slatt@Z
~m!,Z̃~m!#52pmsxy

~0! .

To calculatesxy
(0) from this equation, it is easiest to consider fields that have topological charge

m51 and are of the special form

Z~1!5S 0 0

0 f D , Z̃~1!5S 0 0

0 2 f̄
D .

Here the componentsZBB , ZBF , andZFB , which are topologically trivial, have been set to zero
and onlyZFF has been retained. With this choice, the formula forsxy

(0) reduces to

sxy
~0!5

1

2p
Im Slatt@Z

~1!,Z̃~1!#

52
1

2p
Im ln DetH~11 f̄ U1fU1

21!

52
1

2p (
nodes n

Im ln RFF~ f̄ ~Un!, f̄ ~Dn!, f ~Ln!, f ~Rn!!,

whereRFF is the R-matrix in the FF sector:

RFF~ f̄ ~Un!, f̄ ~Dn!, f ~Ln!, f ~Rn!!5DetS 11 f̄ ~U !@ f ~L !1 f ~R!#/2 f̄ ~U !@ f ~L !2 f ~R!#/2

f̄ ~D !@ f ~L !2 f ~R!#/2 11 f̄ ~D !@ f ~L !1 f ~R!#/2
D

511
1

2
@ f̄ ~U !1 f̄ ~D !#@ f ~L !1 f ~R!#1 f̄ ~U ! f̄ ~D ! f ~L ! f ~R!.

Now consider in the 2d plane with coordinatesx andy the smooth field configuration

f ~x,y!5S x2y

A2
1 i

x1y

A1
2z0D 21

~A6PR!,

which interpolates betweenf5` ~corresponding to the south pole on the two-sphereMF5S2) at
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x1 iy5
12 i

2
A2 Re z01

11 i

2
A1 Im z0 , ~9!

and f50 ~the north pole on S2) at infinity, and has topological chargem51, as can easily be
checked.~Note that f is not a one-instanton configuration, unlessA25A1 .) The parameters
A6 set the size inx6y of the region where the topological densityL top for f is appreciably
different from zero.

For this choice off , we now work out the R-matrix at the node in Fig. 3~a! with coordinates
(nx ,ny). Settinga65a/(2A6), andz5(nx2ny)a/A21 i (nx1ny)a/A12z0 , we have

f̄ ~U !5~ z̄2a22 ia1!21, f̄ ~D !5~ z̄1a21 ia1!21,

f ~L !5~z2a22 ia1!21, f ~R!5~z1a21 ia1!21.

The resulting value for the R-matrix is

RFF511
2uzu211

@z22~a21 ia1!2#@ z̄22~a21 ia1!2#
.

In order for the field configuration to be smooth on the lattice, the parametersa6 must be small.
This allows us to Taylor expand with respect to one of these, saya1 . Taking also the imaginary
part of the logarithm, we obtain

Im ln RFF54a1a2r~11r!21 Re~z22a2
2 !211O ~a1

2 !,

where 11r5RFFua150 .
In the next step we sum the contributions from all nodes (nx1k,ny1k) with kPZ. The

smallness ofa1!1 allows us to convert the expression for( Im lnRFF into an integral. De-
composingz into real and imaginary parts byz5j1 ih,

j52a2~nx2ny!2Re z0 , h52a1~nx1ny!2Im z0 ,

we arrive at

(
k

Im ln RFFu~nx1k,ny1k! ——→
a1→0

a2E
R
dh

r

11r
Re~~j1 ih!22a2

2 !21.

This integral is easily evaluated by closing the contour and applying the method of residues. One
finds

a2E
R
dh

r

11r
Re~~j1 ih!22a2

2 !215H 2p, if uju,a2 ;

0, otherwise.

What is the geometric interpretation of this result? Let us agree that the word ‘‘vertex’’ here
means a node taken together with its four links, severed at half the distance to neighboring nodes.
The set of vertices with node coordinates (nx1k,ny1k) (kPZ) sweep out a diagonal strip of the
2d network. The above result means that(k Im lnRFF vanishes if the center~9! of the topologi-
cal excitation lies outside the diagonal strip swept out by the vertices (nx1k,ny1k) ~with variable
k P Z), and equals2p when it lies inside.

The above calculation applies to the type of node shown in Fig. 3~a!, which may be charac-
terized by the conditionnx1nyP2Z, say. Doing the calculation for the other type of node

2022 Martin R. Zirnbauer: Theory of the integer quantum Hall transition

J. Math. Phys., Vol. 38, No. 4, April 1997

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



@nx1ny P 2Z11, or Fig. 3~b!# gives the same result except for a change of sign2p→p. Now
observe that the diagonal strips swept out by the vertices (n1k,2n1k) and (n1k,2n111k)
(k,n P Z) cover the plane completely without overlapping. Therefore,

exp i Im Slatt@Z
~1!,Z̃~1!#5exp (

all nodes
2 i Im ln RFF5e6 ip521,

independent of the location of the topological singularity. Bysxy
(0)5(2p)21 Im Slatt@Z

(1),Z̃(1)#,
this provessxy

(0)51/2 ~mod 1!.

C. Generalization to N channels

Lee and Chalker21 introduced a generalization of the network model that hastwo channels per
link. The one-step time evolution operator of that model,U (2), is again a product of factors:
U (2)5U1

(2)U0
(2) . The second factor is diagonal on links and associates with each linkl a 232

matrix U0( l ) drawn at random from the unitary group in two-dimensional channel space, U(2).
The first factor describes the deterministic scattering at the nodes. Depending on the choice made
for this factor, the two-channel model applies to a spin degenerate Landau level or electrons in a
random magnetic field~the so-called random flux problem!.

In this subsection we consider anN-channel generalization of the one- and two-channel
network models, where random U(N) matrices are placed on the links. The one-step time evolu-
tion operator is writtenU (N)5U1

(N)U0
(N) . The two factors describe the deterministicN-channel

scattering at the nodes, and the random U(N) directed propagation along links, respectively.
The case ofN channels per link can be treated by a slight extension of our field theoretic

formalism. Such an extension is possible since the basic formula~4! was shown in Ref. 15 to
generalize from U(1) to U(N), as follows:

E
U~N!

dU exp~ c̄1s
i Ui jc 1s

j 1c̄2t
j Ū i jc2t

i !5E
Efetov

DmN~Z,Z̃!exp~ c̄1s
i Zstc2t

i 1c̄2t
j Z̃tsc1s

j !,

whereU[U0( l ), and the link labell was suppressed for clarity. The right-hand side differs from
that of ~4! only by the channel indexi51,...,N attached toc,c̄, and the different form of the
weight function in the superintegration measure:

DmN~Z,Z̃!:5D~Z,Z̃!SDet~12ZZ̃!N.

Using the above generalization of~4!, we can reformulate theN-channel model as a supersym-
metric lattice field theory with action

Slatt
~N!@Z,Z̃#5 ln SDetH^CN~12U1

~N!ZU1
~N!†Z̃!2N ln SDetH~12ZZ̃!.

The derivation exactly parallels that of Sec. IV. The first superdeterminant runs over the tensor
product of superspace with link space (H) and channel space (CN).

If we choose the deterministic scatteringU1
(N) to be of the special formU1

(N)5U1
(N51)

^1N ,
i.e. U1

(N) acts as the identity in channel space,Slatt
(N) is simply a multiple of the action of the

one-channel model:

Slatt
~N!@Z,Z̃#5N3Slatt

~N51!@Z,Z̃#.

Therefore, from Secs. VII A and VII B the coupling constants of the corresponding continuum
field theory are
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sxx
~0!5N/4, sxy

~0!5N/2.

The choiceU1
(N)5U1

(N51)
^1N for N52 is appropriate21 for the spin degenerate Landau level at

the center of the band, and for the random flux problem at the symmetric point. Because
Pruisken’s model atsxy

(0)52/2 ~mod 1!50 is known to be a massive theory, our result forsxy
(0)

confirms the proposition of Ref. 21 that neither of these systems is critical. Rather, they are in a
~Haldane type! massive phase,4 corresponding to localization of all states.

VIII. SYMMETRIES OF THE R-MATRIX

The basic building block of the SUSY reformulated Chalker–Coddington model is its
R-matrix. For the caseN51, which is to be analysed here in more detail, this building block was
given in ~8!. To gain a deeper understanding of the model and possible variations thereof, we are
now going to investigate the symmetries of that R-matrix. Most of the effort will be expended on
rewriting the expression~8! in a different form, so as to make those symmetries more evident.

We start by undoing thec,c̄ integration to write the R-matrix as

R5)
I ,O

SDet~12Z̃~O!Z~O!!1/2 SDet~12Z̃~ I !Z~ I !!1/2E D~c,c̄ !exp~2c̄1s~O!c1s~O!

1c̄1s~O!U1~O,I !Zst~ I !c2t~ I !2c̄2t~ I !c2t~ I !1c̄2t~ I !U1
21~ I ,O!Z̃ts~O!c1s~O!!.

Here we have introduced the labelsI P $ i1,i2%:5$L,R% andO P $o1,o2%:5$U,D%. The notation
is motivated by observing that, according to the direction of motion indicated by the arrows in Fig.
3, the linksL andR are incomingstates for the scattering at the nodes, while the linksU and
D areoutgoingstates.

To proceed, we need to recall briefly various mathematical structures that were developed in
detail in the appendices of Refs. 15 and 22. First of all, we introduce Fock operatorsc and c̄,
which are quantum counterparts of the classical variablesc and c̄. Let b6

† ,b6 and f6
† , f6 be

canonical boson and fermion creation and annihilation operators, and set

c1F5 f1 , c1B5b1 , c2F5 f2
† , c2B5b2

† ,

c̄1F5 f1
† , c̄1B5b1

† , c̄2F5 f2 , c̄2B52b2 .

The operatorsc and c̄ are canonical pairs, with graded~or super! commutation relations

@cX ,c̄Y#:5cXc̄Y2~21! uXuuYuc̄YcX5dXY ,

where uXu50 if X56B and uXu51 if X56F. They act in a Bose–Fermi Fock space with
vacuum

c1Bu0&5c1Fu0&5 c̄2Bu0&5 c̄2Fu0&50. ~10!

The graded commutation relations are invariant under canonical transformations,
c̄X°Tgc̄XTg

215 c̄YgYX andcX°TgcXTg
215(g21)XYcY , where

g5S A B

C DD PGL~2u2!°Tg :5exp~ c̄X~ ln g!XYcY!

defines a representation of GL(2u2) on Fock space.
Consider now the subspace,V, selected by the conditionc̄XcX50 ~summation convention!!

or, equivalently, by
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b1
† b11 f1

† f15b2
† b21 f2

† f2 .

The resulting constraint on the Bose–Fermi occupation numbers isnb11nf15nb21nf2 . By
using this equation to eliminatenb2 , say, we can characterize the states ofV by a triplet of
integers (nb1 ,nf1 ,nf2), where nf1 and nf2 take values from the set$0,1%, and nb1

50,1,2,... ,̀ .
Let PV be the operator that projects Fock space onto the subspaceV. As was shown in Ref.

15, this projector has a resolution,

PV5E D~Z,Z̃!uZ&^Zu,

by generalized coherent states,

uZ&5exp~ c̄1sZstc2t!u0&SDet~12ZZ̃!1/2,

^Zu5SDet~12ZZ̃!1/2^0uexp~2 c̄2tZ̃tsc1s!.

By simple manipulations exploiting the standard properties of coherent states, one can verify
the following equality:

)
I

SDet~12Z̃~ I !Z~ I !!1/23exp~ c̄1s~O!U1~O,I !Zst~ I !c2t~ I !!

5^0uexp~ c̄1s~om!U1~om,in!c1s~n!2 c̄2t~n!c2t~ in!!uZ~ i1! ^Z~ i2!&

5^0uexp~ c̄1s~om!c1s~m!2 c̄2t~n!c2t~ in!!

3exp~ c̄1s~m!~ ln Û1!~m,n!c1s~n!!uZ~ i1! ^Z~ i2!&.

Here m,n P $1,2%, and Û1 is defined by identifying initial and final channels, i.e.,Û1(m,n)
5 U1(om,in). Similarly,

)
O

SDet~12Z̃~O!Z~O!!1/23exp~ c̄2t~ I !U1
21~ I ,O!Z̃ts~O!c1s~O!!

5^Z~o1! ^Z~o2!uexp~ c̄2t~ in!U1
21~ in,om!c2t~m!1 c̄1s~m!c1s~om!!u0&

5^Z~o1! ^Z~o2!uexp~ c̄2t~n!~ lnÛ1!~n,m!c2t~m!!

3exp~ c̄1s~m!c1s~om!1c̄2t~ in!c2t~n!!u0&.

The variablesc,c̄ have now served their purpose and we integrate them out, by using the closure
relation for Bose–Fermi coherent states:

id5E D~c,c̄ !exp~2c̄1s~m!c1s~m!2c̄2t~n!c2t~n!!exp~ c̄1s~m!c1s~m!

1c̄2t~n!c2t~n!!u0&^0uexp~ c̄1s~m!c1s~m!2 c̄2t~n!c2t~n!!.

All this results in the following formula for the R-matrix:

R~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!5^Z~U ! ^Z~D !uR̂uZ~L ! ^Z~R!&,

where the operatorR̂ is expressed by
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R̂5exp~ c̄X~m!~ lnÛ1!~m,n!cX~n!!. ~11!

The advantage of this reformulation is that the invariance ofR̂ under GL(2u2) transformations,

c̄X~m!°Tgc̄X~m!Tg
215 c̄Y~m!gYX ,

cX~m!°TgcX~m!Tg
215~g21!XYcY~m!,

is obvious whereas previously, in Sec. VI, we had to work quite hard to establish the global
GL(2u2) invariance.

Although R̂ commutes withTg , its matrix elements arenot invariant:

R~ Z̃~U !,Z̃~D !,Z~L !,Z~R!!ÞR~g•Z̃~U !,g•Z̃~D !,g•Z~L !,g•Z~R!!.

It is worth spending a little effort to explain how that comes about. As will be seen, the reason is
that, since the Fock space vacuum is not a scalar with respect toH5GL(1u1)3GL(1u1), the
coherent states do not transform as functions onG/H, but rather as sections of an associated line
bundle, see Ref. 13 and references therein. In other words,

TguZ&Þug•Z&.

The correct transformation law is derived as follows. We write the coherent states as
uZ&5Ts(Z,Z̃)u0&, where

s~Z,Z̃!5S ~12ZZ̃!21/2 Z~12Z̃Z!21/2

Z̃~12ZZ̃!21/2 ~12Z̃Z!21/2 D 5S 1 Z

0 1D S ~12ZZ̃!11/2 0

0 ~12Z̃Z!21/2D S 1 0

Z̃ 1D .
We then define anH-valued functionh(g;Z,Z̃) by

gs~Z,Z̃!5s~g•Z,g•Z̃!h~g;Z,Z̃!.

The explicit form of h(g;Z,Z̃) can be found in Appendix B of Ref. 13. From~10! and the
definition Tg5exp(c̄X(ln g)XYcY), one easily sees that the vacuum carries a one-dimensional rep-
resentationm of H:

Thu0&5u0&m~h! ~ for hPH !, m~diag~A,D !!5SDetD21.

Therefore, the coherent states transform as

TguZ&5TgTs~Z,Z̃!u0&5Ts~g•Z,g• Z̃!Th~g;Z,Z̃!u0&5ug•Z&m~h~g;Z,Z̃!!.

As a result, the R-matrix obeys the following transformation law:

R~g•Z̃~o1!,g•Z̃~o2!,g•Z~ i1!,g•Z~ i2!!

5R~ Z̃~o1!,Z̃~o2!,Z~ i1!,Z~ i2!! )
l51,2

m~h~g;Z~ol!,Z̃~ol!!!

3 )
n51,2

m~h~g;Z~ in!,Z̃~ in!!!21.
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Because each link is incoming with respect to one node, and outgoing with respect to another, the
multipliers m(h(g;Z,Z̃)) cancel when all R-matrices are multiplied together, so that the global
GL(2u2) invariance is recovered.

The transformation law for the R-matrix explains why a direct gradient expansion to extract
sxy
(0) from Slatt is difficult. Such an expansion locally produces terms such as

STr~12Z̃Z!21Z̃]xZ~12Z̃Z!21Z̃]yZ,

for example, which aresingularat ZFF5` ~the south pole onMF5S2). When all of these terms
are correctly summed over the entire network, they cancel, as is guaranteed by the global
GL(2u2) invariance, which permits us to rotate the south pole into any other point on the two-
sphere S2. However, the cancellation really does take place onlyafter summation of terms. By the
multiplier-corrected transformation law of the R-matrix, singular terms remain locally, making the
extraction of the topological coupling difficult. This, then, is the reason why a gradient expansion
was not attempted in Sec. VII B.

IX. ANISOTROPIC LIMIT

We have presented an analytical method for dealing with the Chalker–Coddington model in
its original isotropic formulation, by mapping it on a lattice equivalent of Pruisken’s nonlinear
s model. In this section we will review another way of arriving at Pruisken’s model, a replica
version of which was first published by D. H. Lee. Following Ref. 4 we now take for our starting
point theanisotropic limit of the Chalker–Coddington model, and replace the unitary operator
U5U1U0 by the HamiltonianH for an array of chiral modesn51,2,..., with velocityv and an
alternating direction of propagation:

H5 R dx(
n,n8

Cn
†~x!@dnn8~21!niv]x1Vnn8~x!#Cn8~x!.

The functionsVnn8(x)5V̄n8n(x) are uncorrelated Gaussian random variables with zero mean and
variance,

^Vnn8~x!V̄nn8~x8!&52~u0dnn81u1dn,n8111u1dn,n821!d~x2x8!.

The symbolr means that we are using periodic boundary conditions inx.
To prepare the treatment of the general case, we shall first consider the case of a single chiral

moden. The supersymmetric generating functional for the retarded and advanced Green’s func-
tions ofH is set up in the usual way, see Sec. IV. Ensemble averaging over the random potential
V(x)5Vnn(x) leads to the functional integral

Z5E D~c,c̄ !exp R dx~ c̄~Lv]x2«!c2u0~ c̄Lc!2!,

where« is a positive infinitesimal. As before,cX(x) is a super ‘‘spinor’’ field with four compo-
nentsX51B ~retarded Boson!, X51F ~retarded Fermion!, X52B ~advanced Boson!, and
X52F ~advanced Fermion!. The notation meansc̄Lc5c̄1sc1s2c̄2tc2t . If the energy in the
retarded and advanced sectors is different,v5E12E2Þ0, we need to add a termivc̄c to the
Lagrangian. To probe this field theory more generally, we may couple it to an external non-
Abelian gauge fieldA(x)PLie(GL(2u2)) and consider

ZDirac
u @A#:5E D~c,c̄ !exp R dx~ c̄Lv~]x1A!c2u~ c̄Lc!2!.
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We have temporarily setu5u0 for notational simplicity. The special coupling to frequency is
retrieved by puttingA5( iv2«)L/v, independent ofx. Note that the generating functional
ZDirac

u @A# is invariant under local gauge transformations,

ZDirac
u @A#5ZDirac

u @hA#, hA5hAh211h]xh
21,

whereh(x)PGL(2u2) acts on the spinor field byc°hc and c̄L°c̄Lh21.
It turns out that one can write down another 011-dimensional field theory that has the very

same local gauge invariance. The field of this theory is the supermatrixQ5gLg21, which was
defined in Sec. II and transforms asQ°hQh21. The generating functional is

ZWZ@A#:5E DQexp R dx STr
L

2
g21~]x1A!g.

Clearly, this satisfiesZWZ@A#5ZWZ@
hA#. The linear derivative term in the action is of the

Wess–Zumino type, i.e., it cannot be expressed in a globally nonsingular way in terms ofQ, and
is often called a Berry phase. The theory is well-defined because the ambiguity under right
translationsg°ghR @hRLhR

215L or, equivalently,hR(x)PGL(1u1)3GL(1u1)# gives rise to a
factor

exp R dx STr
L

2
hR

21]xhR5exp R dx]x STr
L

2
ln hR5exp 2p im51,

which is unobservable in the functional integral.~For more details see Sec. 3.4 of Ref. 13.!
The local gauge invariance shared byZDirac

u @A# andZWZ@A# suggests the existence of some
relation between these theories. In fact, the following statement is true:

lim
u→`

ZDirac
u @A#5ZWZ@A#. ~12!

This identity can be viewed as a 011-dimensional analog of non-Abelian bosonization in 111
dimensions and, sinceA couples tovcc̄L andgLg21/25Q/2 in the respective cases, amounts to
the ‘‘bosonization rule,’’

vcc̄L ——→
u→`

Q/2.

We now briefly sketch the proof of the non-Abelian bosonization formula~12!. By the local
gauge invariance of both theories, it is sufficient to prove the equality for anx-independent gauge
field A. Moreover,A may be taken to be a diagonal matrix. In this special case, it is easy to apply
a method that was described at length in Ref. 22 and works as follows. As a first step, one
identifiesZDirac

u @A# as the coherent state path integral of a supersymmetric Hubbard Hamiltonian
for bosons and fermions. Then, one takes advantage of the limitu→`, which enforces a Hubbard
constraint reducing the~low energy! degrees of freedom to that of a single superspin. And finally,
one sets up the coherent state path integral for the superspin Hamiltonian. The latter path integral
turns out to beZWZ@A#, which completes the proof.

This proof, although straightforward, has the disadvantage of being somewhat indirect. A
more direct procedure is to decouple the interaction term (c̄Lc)2 by introducing a Hubbard–
Stratonovitch fieldQ coupling tocc̄L and then to integrate outc andc̄. The effective action for
Q is

S@Q#5 R dx STrS 2
u

4v2
Q21 lnS ]x1A1

uQ

v2 D D .

2028 Martin R. Zirnbauer: Theory of the integer quantum Hall transition

J. Math. Phys., Vol. 38, No. 4, April 1997

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



The next step is to simplify theQ field functional integral by means of the saddle-point approxi-
mation, as a result of whichQ gets restricted to the nonlinear spaceQ5gLg21. This step, while
only approximate in general, here becomesexactin the limit u→`. @What makes this possible is
the stationarity of the average density of states ofv i ]x1V(x).] By expanding
ln(Lg21(]x1A)g1u/v2) to linear order ing21(]x1A)g, one obtains the action of the Wess–
Zumino functionalZWZ@A#. Higher orders are suppressed by powers ofv2/(Lxu), with Lx the
system size.

Let us finally return to the case of many counterpropagating chiral modes that are coupled by
hopping matrix elements between neighboring modes, with varianceu1 . The Gaussian random
hopping gives rise to an additional term in the Lagrangian,

L°L12u1(
n

~ c̄nLcn11!~ c̄n11Lcn!5L12u1(
n

STr~cnc̄nL!~cn11c̄n11L!.

By the bosonization rulevcc̄L→Q/2 for u0→`, the additional term turns into
(u1/2v

2)(nSTr(QnQn11). The condition of validity of this step isu0@u1 . As a result we obtain
theQ field action,

S@Q#5 R dx(
n

STrS ~21!n
L

2
gn

21]xgn1
u1
2v2

QnQn11D .
By a standard calculation23,22 this is the action of the coherent state path integral for a quantum
superspin Hamiltonian,

Hspin5
2u1
v2 (

n
(
XY

~21! uYu11Sn
XYSn11

YX , ~13!

whereSXY5 c̄XcY , and the graded commutation relations of the Fock operatorsc,c̄ were given in
Sec. VIII. To reproduce the alternating sign of the Wess–Zumino term, we must alternate the
definition of the Fock vacuum. On even sites (nP2Z) the relations~10! apply, whereas on odd
sites (nP2Z11) we have

c̄1Bu0&5 c̄1Fu0&5c2Bu0&5c2Fu0&50, ~14!

instead. The alternating vacuum plays the same role as the Ne´el state for ordinary spin systems
and means that the superspin chain is ‘‘antiferromagnetic’’ in character.

The HamiltonianHspinwith translational invariant couplingJ52u1 /v
2.0 was shown in Ref.

13 to represent the low energy limit of the quantum Hamiltonian of Pruisken’s nonlinears model
at criticality. Thus, we finally conclude that the anisotropic Chalker–Coddington model with
homogeneous~on average! inter-channel hopping is in the same universality class as Pruisken’s
model atsxy

(0)51/2. ~Clearly, this line of reasoning is much less direct than that presented for the
isotropic model in Secs. IV–VII.!

To conclude this section let me mention that the non-Abelian bosonization formula~12!
extends toN channels:

E DQ exp R dx NSTr
L

2
g21~]x1A!g

5 lim
u→`

E D~c,c̄ !exp R dx~ c̄nL~]x1A!cn2u~ c̄nLcn8!~ c̄n8Lcn!!.
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The strategy of the proof is the same as forN51. Using this formula we can easily reproduce the
N-channel resultsxy

(0)5N/2 of Sec. VII C. TheN-channel bosonization formula offers also a quick
way of analysing the zero-dimensional limit of the 2d chiral metal.22

X. MODIFIED NETWORK MODEL

The primary goal of all field theoretic analysis of the plateau-to-plateau transition in integer
quantum Hall systems must be toidentify the fixed point theorythat describes this transition and
uncover theconformal structureit is expected to have. Recent attempts24 in this direction started
from the observation that Pruisken’s model or, rather, the closely related Dirac theory with random
mass, random scalar potential and random gauge field, has a global GL(2u2) symmetry for the
case of one retarded and one advanced Green’s function.@A finite imaginary part of the energy
argument of the Green’s functions reduces this symmetry to GL(1u1)3GL(1u1). However, in
Secs. III and IV it is shown how such a symmetry breaking can be avoided by calculating a
conductance between interior contacts of the network model.# This symmetry was then assumed to
be promoted in the infrared to a Kac–Moody symmetry, which severely restricts the number of
possible candidates for the fixed point theory. Unfortunately, these attempts have not been suc-
cessful so far. What is needed as additional input to such considerations, which are purely alge-
braic, is a firm understanding of the Hilbert space structure, or the representations involved. It is
one of the aims of the present work to contribute to such an understanding.

Following up on unpublished work by Read, it was argued in Ref. 13 that the quantum
Hamiltonian of the critical theory should be a superspin Hamiltonian of the type~13! acting on a
space of states built from alternating GL(2u2) modules,

. . . ^V^V* ^V^V* ^ . . . ,

whereV andV* are generated by the actiong°Tg5exp(c̄X(ln g)XYcY) of GL(2u2) on the vacua
~10! and~14!, respectively.~As follows from Sec. 4.4 of Ref. 13, the elements ofV andV* have
an interpretation as holomorphic and antiholomorphic sections of a line bundle associated to
G→G/H by the one-dimensional representationm of H. This permits the construction of a
nondegenerate pairing betweenV andV* , so that these spaces can be viewed as being dual to
each other, as suggested by our notation.! It is then natural to ask whether one might be able to
construct anintegrablesuperspin Hamiltonian, offering the possibility of an analytical and exact
computation of critical properties. This question will now be addressed in the light of the results
of Secs. VIII and IX.

Recall the ‘‘functional’’ vertex model presentation~7!, ~8! of the Chalker–Coddington model,

Z5E D~Z,Z̃! )
nodesn

R~ Z̃~un!,Z̃~dn!,Z~ l n!,Z~r n!!,

R~ Z̃~1!,Z̃~2!,Z~3!,Z~4!!5^Z~1! ^Z~2!uR̂uZ~3! ^Z~4!&,

R̂5exp~ c̄X~m!~ ln Û1!~m,n!cX~n!!. ~15!

~Note the change in the notation for links from capital to small letters.! It is instructive to pass
from the integrationover fieldsZ,Z̃ to asummationover discrete degrees of freedom, as follows.
Every link l emanates from one node, and ends at one node. Therefore, eachZ( l ) occurs once in
the ‘‘bra’’ and once in the ‘‘ket’’ of some R-matrix. Recall from Sec. VIII thatPV denotes the
projector from Bose–Fermi Fock space onto the GL(2u2) moduleV, where the elements ofV,
referred to as superspin states, are labeled by three quantum numbersnf6P$0,1% and
nb150,1,2...,̀ . On using the closure relation,
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E )
links l

D~Z~ l !,Z̃~ l !! ^ l uZ~ l !&^Z~ l !u5 ^ lPV~ l !,

the lattice functional integral overZ,Z̃ turns into a partition sum over superspin configurations
$a( l )% @with a( l )PV( l )# of a vertex model defined over the tensor product space^ lV( l ):

Z5 (
$a~ l !%

~21!NF )
nodesn

Ra~un!a~dn!,a~ l n!a~r n! , Rab,gd5^a ^ buR̂ug ^ d&,

where (21)NF is a sign factor due to supersymmetry~the partition sum is a supertrace!, and
R̂:V( l )^V(r )→V(u)^V(d) is still given by~15!. Forp50 ~left turns only!, R̂ can be seen to be
the identity map, while forp51 ~right turns only! we haveR̂5P , where

P ua ^ b&5~21! uauubuub ^ a&

is the graded permutation operator.
Let me mention in passing that the presentation as a superspin partition sum can also be

obtained from the network modeldirectly,25 without passing through the intermediate stage of a
Z field formulation.

How is the model built from the vertexRab,gd related to the superspin Hamiltonian~13!?
GivenRab,gd we can set up the row-to-row transfer matrix,T, illustrated in Fig. 4~a!, by summing
over the superspin degrees of freedom that are situated on the horizontal links.~The meaning of
the arrows in the present context will become clear below.! The corresponding Hamiltonian,
defined as the logarithm of the transfer matrix, is nonlocal in general. A local Hamiltonian results
on making the following modification of the isotropic network model. On nodes with coordinates
(nx ,ny)PZ2 such thatnx1nyP2Z, the R-matrix is taken as it stands; but on the other half of the
nodes (nx1nyP2Z11), we replace the left-right asymmetry parameterp by its complement
12p. ~At the level of the random network model, this is precisely what one does to arrive at the
anisotropic limit of Sec. IX.! The row-to-row transfer matrix of the resultinganisotropicvertex
model has the property, forp50, of translating the system by one lattice unit@Fig. 4~b!#. By
differentiating the logarithm of this transfer matrix atp50, one gets a superspin Hamiltonian that
couples only nearest neighbors and is precisely the HamiltonianHspin of ~13!.

Hspin is not expected to be exactly solvable. However, one may ask whether it could be made
so by slightly changing some parameters while keeping the general structure and symmetries the
same. To get some hint, we turn to the well-developed theory of integrable systems.26 There, the
integrability of a 1d quantum HamiltonianH is traced back to the existence of a transfer matrix
T(u) that depends on a ‘‘spectral’’ parameteru in such a way thatT(u)T(v)5T(v)T(u) for all

FIG. 4. ~a! Illustration of the row-to-row transfer matrix of the supersymmetric vertex model associated with the one-
channel Chalker–Coddington model.~b! The transfer matrix of the anisotropic model atp50 translates the system by one
lattice unit.
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u,v, and H is the logarithmic derivative ofT(u) at some special pointu5u0 . A sufficient
condition for T(u) to form a commuting family is known to be the quantum Yang–Baxter
equation for the R-matrix.

To my knowledge, most~if not all! of the integrable models discussed in the literature have
one characteristic feature in common: their commuting family of transfer matrices possesses a
‘‘classical’’ limit, where T becomes the identity. In contrast, for the row-to-row transfer matrix
associated to the Chalker–Coddington model@Fig. 4~a!#, no such limit exists. The reason is simply
this. The R-matrixR̂:V^V→V^V in ~8! relates incoming channels on horizontal~or vertical!
links to outgoing channels on vertical~or horizontal! links. On the other hand, the transfer matrix
T propagates the degrees of freedom from one row to the next. Therefore, to construct the
row-to-row transfer matrix from the R-matrix, we must reinterpret some initial states as final
states, and vice versa. This is done by noting that the space of linear mapsV→V is isomorphic to
the tensor productV^V* . In this way, one sees that in Fig. 4~a! vertical links with an arrow
pointing up carry the spaceV, whereas vertical links with an arrow pointing down carry the dual
spaceV* . ~This, then, is the meaning of the arrows in that figure.! Hence, the row-to-row transfer
matrix of the SUSY reformulated Chalker–Coddington model is a map

T:••• ^V^V* ^V^ •••→••• ^V* ^V^V* ^ •••,

which connectsinequivalentspaces. Therefore,T cannot ever be the identity. This means that the
Chalker–Coddington model lies outside the category of vertex models for which the well-
developed Yang–Baxter machinery applies. Thus it seems that there exists no known systematic
way of deforming the Chalker–Coddington model to integrability and obtain an analytical solu-
tion.

The above discussion, though being a falsification, also suggests a remedy. Given that the
standard formalism of the theory of integrable systems requires the row-to-row transfer matrix to
be a map,

T:••• ^V^V* ^V^ •••→••• ^V^V* ^V^ •••, ~16!

FIG. 5. ~a! One-channel Chalker–Coddington model, modified so as to make the direction of motion invariant along every
horizontal and vertical line.~b! The model of~a! modified further, by doubling the number of channels on the horizontal
links.
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we can turn things around and modify the network model accordingly. Consider the network
shown in Fig. 5~a!. As before, the electron follows the direction of motion dictated by the arrows.
It picks up a random U(1) phase while propagating along the links, and is scattered determinis-
tically at the nodes, just as for the original one-channel Chalker–Coddington model. The crucial
difference from Fig. 2 is that now the direction of motiondoes not alternate but is invariantalong
vertical and horizontal lines. An electron incident on a node either passes straight through it, with
probability p, say, or else is scattered to the right or left, as the case may be, with probability
12p. ~Note that such a modification of the scattering dynamics has no justification from a
microscopic picture of guiding center drift along equipotentials. However, since our aim is only to
describe thecritical behavior, we should have a certain amount of freedom in the choice of
model.!

By construction, the row-to-row transfer matrix of the supersymmetric vertex model associ-
ated with the network model of Fig. 5~a! is a map of the desired type~16!. One may now hope to
be able to deform and extend this transfer matrix to a one-parameter family of commuting transfer
matrices. In somewhat more detail, this hope is based on the following facts. Consider the Lie
superalgebraG of polynomial mapsuPC→gl(2,2) ~with u being the spectral parameter!. If
EAB are the canonical generators of gl(2,2), the classicalr -matrix r (u,v)
5 (u2v)21(ABEAB(21)uBuEBA gives rise to a co~super!commutatorG→G ^G in the usual
way,16 thereby turningG into a Lie bisuperalgebra. Quantization ofG leads to aYangian supe-
ralgebraY :5Y(gl(2,2)), which is aZ2-graded Hopf algebra deformation of the universal envel-
oping algebra of gl(2,2). LetD:Y→Y^Y be the comultiplication ofY , andDop5P +D its
opposite. According to general principles,27 there exists a formal object called the universal
R-matrixRPY^Y , which is determined by the intertwining relationDop(a)5RD(a)R21 and
has the expansion

ln R~u!5u21(
AB

~21! uBuEAB^EBA1O ~u23!.

An irreducible matrix representationr of Y yields an R-matrixRr(u)5(r ^ r)(R(u)) that is a
rational function ofu and solves the quantum Yang–Baxter equation.

When applying this formalism to our problem, we should beware of potential problems due to
the infinite-dimensionalityof the spacesV andV* . Nevertheless, it does not seem unreasonable to
expect the existence of R-matrices

R~u!5~rV^ rV!~R~u!!:V^V→V^V,

R̃~u!5~rV^ rV* !~R~u!!:V^V*→V^V* .

I have been able to verify that this expectation is fulfilled in the case ofR(u), by explicit
construction. The existence ofR̃(u) remains an open question at the present time.~Help from
experts on quantum groups would be very much appreciated.! The latter case is more complicated
to treat because the decomposition of the tensor productV^V* into gl(2,2)-irreducible subspaces
involves a continuous series of representations of gl(2,2)~see Sec. 5.2 of Ref. 13!, while in
V^V only a discrete series appears.

Suppose now that bothR(u) andR̃(u) exist, at least in some domain of the spectral parameter
u. Then, since the quantum Yang–Baxter equation is automatically fulfilled, we can build a
one-parameter family of commuting transfer matrices. The next question is: given the modifica-
tions we have made, is the physics of such a model still that of the plateau transition? Surely,
obtaining an exact solution remains a far goal. It is therefore helpful that the mapping onto
Pruisken’s nonlinears model provides us with a quick way to get oriented in the enlarged
landscape of modified network models. Consider the model of Fig. 5~a! with parameterp51/2.
Taking the continuum limit and computing the topological coupling in the same way as in Sec.
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VII B, one findssxy
(0)50 ~mod 1!. This means that the model doesnot lie in the quantum Hall

universality class, but is in a massive phase with a finite~albeit large! localization length and
exponentially decaying correlations.

This result could have been anticipated from the following heuristic argument. Imagine sepa-
rating the network into two independent subsystemsA andB, one consisting of the vertical lines
and the other of the horizontal ones. Then couple the modes within each subsystem by weak
tunneling amplitudes. What you get in this way are two copies of Lee’s anisotropic limit of the
Chalker–Coddington model. By the reasoning reviewed in Sec. IX, each of these is critical, with
the s model topological coupling constants beingsxy,A

(0) 5sxy,B
(0) 51/2. Now join the two sub-

systems to form the network model of Fig. 5~a!. From the meaning ofL top as a topologicaldensity,
it is reasonable to expect thatsxy

(0)5sxy,A
(0) 1sxy,B

(0) 5231/250 ~mod 1! for the coupled system, if
the fusion is done in such a way thatsxx

(0) for the coupled system is spatially homogeneous. Thus
the network model of Fig. 5~a! will be noncritical atp51/2. ~Its correlation functions at large
scales should be similar to those of the two-channel Chalker–Coddington model at the symmetric
point.! Since noncriticality is a generic property, this will remain so in a neighborhood of the point
p51/2.

In view of this heuristic argument, we expect that criticality can be restored by superimposing
on the noncritical network of Fig. 5~a! yetanothercopy of the anisotropic network model, thereby
producing the network of Fig. 5~b!. There, the horizontal lines carry two, rather than one, channels
per link. The propagation on vertical links is governed by random U(1) phases, as before, but the
horizontal links now carry random U(2) matrices~just like the two-channel Chalker-Coddington
model!. One of the horizontal channels passes straight through the nodes, the other one is subject
to the rules specified for the model of Fig. 5~a!. The topological coupling of thes model is then
found to have the critical valuesxy

(0)5331/2~mod 1!51/2. Thus the last, doubly modified network
model is critical and, on symmetry grounds, lies in the quantum Hall universality class. From what
was said above, it is also a suitable starting point for attempting to deform to an integrable model.

XI. SUMMARY

Several messages result from the present paper. First of all, a close relation between two
standard models of the integer quantum Hall transition, namely the Chalker–Coddington model at
its symmetric pointp51/2, and the supersymmetric formulation of Pruisken’s nonlinears model
at u52psxy

(0)5p ~mod 2p!, was established. Let us put this result in the proper context. To be
sure, it has been clear for a number of years now that some sort of relation between these models
ought to exist. We know that both are critical and belong to the same universality class, so they
cannot but describe the same physics at long wave lengths. However, prior to our work, the
understanding of the precise connection between Chalker–Coddington and Pruisken was rather
indirect, relying on a double use of the anisotropic~or Hamiltonian! limit. The connection went as
follows. At one end, by taking the Chalker–Coddington model and going to its anisotropic limit,
D. H. Lee arrived at a network model consisting of an array of chiral modes with an alternating
direction of motion. At the other end, the anisotropic limit of Pruisken’s model was investigated,
by an elaboration of the work of Shankar and Read28 on the O(3) nonlinears model. It was
argued in Ref. 13 that the Hamiltonian limit of Pruisken’s model atu5p and strong coupling
~small sxx

(0)) is an antiferromagnetic superspin chain. Now, the array of chiral modes and the
superspin chain are easy to relate by conventional techniques. At the level of the replica trick that
this was done in Ref. 4, the correct supersymmetric extension follows from Ref. 22. In more
detail, the functional integral representation of the array of chiral modes maps on a nonlinears
model with an alternating sum of Wess–Zumino terms.~As we have seen, this mapping is based
on a 011- dimensional analog of non-Abelian bosonization in 111 dimensions.! The latter, in
turn, coincides with the coherent-state path integral of the antiferromagnetic superspin chain.
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One disadvantage of the above way of relating the models is that one does not have good
control over the numerical value of the coupling constantsxx

(0) . In the present work, this uncer-
tainty was resolved by dealing directly with theisotropicmodels, using a novel scheme devised in
Ref. 15. What we have shown is this. Starting from the Chalker–Coddington model atp51/2 and
doing no more than an exact transformation followed by a continuum limit, we arrive at Pruisken’s
model with u5p and sxx

(0)51/4. Or, in different words, the former model is equivalent to a
specific lattice discretization of the latter.

Previously, Pruisken’s model was thought to be associated primarily with the white noise limit
l c! l B , which is where Pruisken’s derivation begins. Recall, though, that in the course of deriving
his model, Pruisken made a saddle-point approximation to eliminate the ‘‘massive’’ modes. Naive
use of this approximation scheme is justified only in the limit of largesxx

(0) ~high Landau level!. In
contrast, the present work makesno such approximation. The only assumption we needed was the
dominance of slowly varying fields in the functional integral, allowing us to pass from the lattice
to the continuum. Thus, contrary to what might have been expected, Pruisken’s model at small
sxx
(0) is actually associated more closely with thehigh-field limit, l c@ l B , as it is this limit that

provides the microscopic justification of the network model. Note, however, that the ratio of
microscopic length scalesl c / l B is expected to be an irrelevant parameter at a critical point with an
infinite correlation length. Thus, our result is not in conflict with Pruisken’s derivation of thes
model as a critical theory.

In my opinion, neither the Chalker–Coddington model nor Pruisken’s model hold much
promise for an exact analytical solution in the near future. If so, the mapping of one model on the
other is not yet a big step forward. The good news is that there are several useful spinoffs. D. K.
K. Lee and Chalker suggested modeling the random flux problem~i.e., the motion of a single
electron in a random magnetic field! by a network with two channels per link and local U(2)
gauge invariance. Our mapping onto a nonlinears model easily extends to include this case. The
coupling constants of the continuum field theory were found to besxx

(0)5231/451/2 and
sxy
(0)5231/2 ~mod 1!50 at the symmetric point of the random flux problem. This is a massive

theory with exponential decay of all correlation functions are large scales. Thus, contrary to claims
made in the literature, there is no room for truly extended states in the random flux problem, at
least not by slight deformation away from the two-channel network model. This conclusion had
already been reached in Refs. 21 and 4.

Another spinoff helps us along in our quest to understand the integer quantum Hall transition.
We observed that the SUSY reformulated Chalker–Coddington network model has the structure
of what is known as a vertex model in statistical physics. Motivated by information from the
theory of integrable systems, we then modified the network model in several ways. First, we
abandoned the alternating direction of the electron’s motion along the horizontal and vertical
straight lines of the network. Instead, we took the direction of motion to be constant along every
such line. The mapping onto Pruisken’s model indicates that this modification changes the phys-
ics: the value of the topological coupling now issxy

(0)50, which corresponds to a noncritical state.
We argued that criticality can be restored by doubling the number of channels on all horizontal
links ~or on all vertical links!. Alternatively, we can spatially separate the two channels on hori-
zontal links and return to a model with only one channel per link, at the expense of doubling the
size of the unit cell in the vertical direction.

The resulting modified network model is critical, but no longer has a justification from a
microscopic picture of guiding center drift along equipotentials. Its virtue is that the corresponding
supersymmetric model is of a type for which systematic ways of constructing solutions of the
quantum Yang–Baxter equation are in principle available. Whether our model can actually be
deformed into one that is a Yang–Baxter integrable, is a question whose answer lies far beyond
the scope of the present paper.
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The value of the coupling constantsxx
(0) computed in Sec. VII A is not correct. Its calculation

was based on the reasonable but false assumption that the field configurations which dominate at
large wavelengths are smooth. As a matter of fact, the relevant configurations contain a small
high-momentum component due to the alternating structure of the Chalker–Coddington network.
When this is taken into account, the value of the longitudinal conductivity changes tosxx

(0)51/2 for
the single-channel model andsxx

(0)5N/2 for theN-channel model. The rest of the paper is unaf-
fected by this change.
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