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We settle a long standing issue concerning the traditional derivation of non-compact
non-linear sigma models in the theory of disordered electron systems: the hyperbolic
Hubbard-Stratonovich (HS) transformation of Pruisken-Schäfer type. Only recently
the validity of such transformations was proved in the case of U (p, q) (non-compact
unitary) and O(p, q) (non-compact orthogonal) symmetry. In this article we give
a proof for general non-compact symmetry groups. Moreover, we show that the
Pruisken-Schäfer type transformations are related to other variants of the HS trans-
formation by deformation of the domain of integration. In particular we clarify the
origin of surprising sign factors which were recently discovered in the case of or-
thogonal symmetry. C© 2011 American Institute of Physics. [doi:10.1063/1.3585672]

I. INTRODUCTION

Non-compact non-linear sigma models are an important and extensively used tool in the study
of disordered electron systems. The relevant formalism was pioneered by Wegner,1 Schäfer and
Wegner,2 and Pruisken and Schäfer.3 Efetov4 improved the formalism by developing the supersym-
metry method to derive non-linear sigma models. Many applications of the supersymmetry method
can be found in the textbook by Efetov.5

There exist different ways to derive non-linear sigma models from microscopic models; for an
introduction see Ref. 6. One step in the traditional approach uses a Hubbard-Stratonovich transfor-
mation, i.e., a transformation of the form

c0 e− Tr A2 =
∫

D
e− Tr Q2−2i Tr Q A|d Q|, (1)

where c0 ∈ C and the domain of integration D is left unspecified for now. |d Q| denotes Lebesgue
measure of a normed vector space.

For the case of compact symmetries the transformation is just a trivial Gaussian integral. To
give an indication of the difficulty which arises in the case of a non-compact symmetry (also
known as the boson-boson sector of Efetov’s supersymmetry formalism) let us briefly discuss the
example of orthogonal symmetry O(p, q). There, A is given by Ai j =∑N

a=1 �a,i�a, j s j j with
s = Diag(1p,−1q ) and �a, j ∈ R. The �a, j represent the microscopic degrees of freedom. Using
Eq. (1) and integrating out � gives a description in terms of the effective degrees of freedom Q. The
task is to find a domain of integration D for which identity (1) holds and the term exp(−2i Tr Q A)
stays bounded. The latter condition is imposed in order for Fubini’s theorem to apply, as further
execution of the Wegner-Efetov formalism calls for the � and Q integrals to be interchanged. Note
that the real matrices A obey the symmetry relation A = s At s. A naive choice of integration domain
D keeping the term exp(−2i Tr Q A) bounded would be the domain of all real matrices satisfying
Q = s Qt s. Unfortunately, this choice of D is not a valid choice in the context of the integral (1) as
it renders the quadratic form Tr Q2 = Tr Qs Qt s of indefinite sign.
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Schäfer and Wegner (SW) (Ref. 2) suggested a domain and showed that it solves the difficulty.
Yet, a different domain was proposed in later work by Pruisken and Schäfer (PS).3 Until recently
the mathematical status of identity (1) for the PS domain was unclear. The main obstacle in proving
(1) for the PS domain is the existence of a boundary. This precludes an easy proof by completing
the square and shifting the contour (as is possible for the standard Gauss integral and for the SW
domain). Nevertheless, the PS domain was used in most applications worked out by the mesoscopic
and disordered physics community; an early and influential paper of this kind is Ref. 10. Most likely,
the reason is that it is easier to do calculations with, as it is invariant under the full symmetry group
of the domain of matrices A.

Recently Fyodorov, Wei, and Zirnbauer in a series of papers7–9 proved the PS variant of the HS
transformation for the special cases of unitary and orthogonal symmetry. In this article we extend
the results to more general symmetry groups. Moreover, our proof clarifies the relation between
the PS transformation, the SW transformation, and the standard Gaussian integrals. It is shown that
the different integrals can be transformed into each other by deforming the domain of integration
without changing the value of the integral.

Here is a guide to reading: in Sec. II we define the setting and state our main result in the form
of a theorem. In addition, we give two corollaries which relate more directly to previous results.
In Sec. III we apply our results to three different symmetry classes. In particular, previous results
concerning the cases of unitary and orthogonal symmetry are reproduced. The proof of the theorem
is contained in Sec. IV, which is divided into three subsections. For the convenience of the reader
each subsection is preceded by a short introduction of notation, essential structures, and a lemma
containing the results of the pertinent part of the proof. The last subsection of Sec. IV deals with the
two corollaries.

II. STATEMENT OF RESULT

All constructions take place in gl(n,C), the Lie algebra of complex n × n matrices. [Please
be advised however that the following results also apply to the case where gl(n,C) is replaced by
a complex reductive Lie subalgebra of gl(n,C).] Let s ∈ gl(n,C) be hermitian with the property
s2 = 1. This matrix s gives rise to two involutions θ (X ) = s Xs−1 and γ (X ) = −s X†s−1 on gl(n,C).
“Involution” here means an involutive Lie algebra automorphism. For greater generality we allow
for further involutions τi to be present on gl(n,C). Two requirements have to be fulfilled: Firstly,
all involutions have to commute with each other and secondly, s has to be in the plus or minus
eigenspace of each τi , i.e., s = ηiτi (s) with ηi ∈ {±1}.

The fixed point set of γ and the τi ’s is the real Lie algebra

g = {X ∈ gl(n,C) | X = γ (X ) and ∀i : X = τi (X )}.
We also introduce the real vector space

Q = {Q ∈ gl(n,C) | Q = −γ (Q) and ∀i : Q = ηiτi (Q)},
which is an R-module for the adjoint (or commutator) action by g.

Due to (θ ◦ γ )(X ) = −X†, the decompositions of g and Q into the plus and minus one
eigenspaces of θ are decompositions into hermitian and antihermitian parts. We write these de-
compositions as g = k ⊕ p and Q = Q+ ⊕ Q−, where k and Q+ are in the plus one eigenspace and
p and Q− are in the minus one eigenspace. k and Q− consist of antihermitian matrices whereas p

and Q+ consist of hermitian matrices. The commutation relations among all these spaces,

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k, [Q+ ,Q−] ⊂ p,

[Q± ,Q±] ⊂ k, [k,Q±] ⊂ Q± , [p,Q±] ⊂ Q∓ ,

imply that g ⊕ Q is a Lie algebra. (This Lie subalgebra of gl(n,C) could have served as the starting
point of our setting.) By the definition of Q the matrix As is hermitian for all A ∈ Q. Note that
s ∈ Q+. To preclude any pathologies that might otherwise occur, we demand that the Lie group
exp(k) be closed.
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The parametrization of the Pruisken-Schäfer domain is given by

PS : p ⊕ Q+ → Q,

(Y, X ) 	→ eY Xe−Y . (2)

The standard domain for a Gaussian integral is called “Euclidean” in the following. It is parametrized
by

Euclid : Q− ⊕ Q+ → QC,

(Ỹ , X ) 	→ X + i Ỹ ,

where QC = Q ⊕ iQ. Finally, the parametrization of the one-parameter family of Schäfer-Wegner
domains is given by

SW : p ⊕ Q+ → QC,

(Y, X ) 	→ X − ibeY se−Y ,

where b is any positive real number.
The following statement relies on making a choice of orientation for the PS domain. (Note that

no such choice is made for D in (1).) Once and for all we now fix an orientation for each of the
vector spaces Q+, p, and Q−. By viewing PS , Euclid , and SW as orientation-preserving maps, we
then have orientations on the corresponding domains of integration.

Theorem 2.1: Let A ∈ Q in the setting above. If As > 0 one has

lim
ε→0

∫
PS

e− Tr(Q2)−2i Tr(Q A)χε(Q)d Q = c e− Tr(A2).

Here, χε(Q) = exp( ε
4 Tr[Q − θ (Q)]2) ≤ 1 is a regulating function (ε > 0) and d Q denotes a con-

stant volume form (i.e., a constant differential form of top degree) on Q. The normalization constant
c ∈ C \ {0} does not depend on A.

The main idea of the proof is to show that the PS domain can be extended by a nulldomain (of
holomorphic continuation of d Q) and then deformed into a Euclidean domain without changing the
value of the integral. Appendix B shows that one can also deform the SW domain into this Euclidean
domain. Thus the PS and SW domains are deformations of the same Euclidean domain.

Now we formulate two corollaries. For that purpose let h be a maximal Abelian subalgebra
h ⊂ Q+ ⊂ gl(n,C). We require that s ∈ h. Let 	+(k ⊕ Q+, h) denote a set of positive roots of the
adjoint action of h on k ⊕ Q+. Similarly 	+(p ⊕ Q−, h) denotes a set of positive roots of the adjoint
action of h on p ⊕ Q−. The multiplicity of a root α is denoted by dα .

The following corollary is the analogue of Corollary 1 in Ref. 9.

Corollary 2.1: Let |dg| denote Haar measure of the closed analytic subgroup G ⊂ GL(n,C)
with Lie algebra g. We then have

lim
ε→0

∫
h

(∫
G

e−2i Tr(gλg−1 A)χε(gλg−1)|dg|
)

e− Tr λ2
J ′(λ)|dλ| = c̃ e− Tr(A2),

where |dλ| denotes Lebesgue measure on the vector space h and

J ′(λ) =
∏

α∈	+(k⊕Q+,h)

|α(λ)|dα

∏
α∈	+(p⊕Q−,h)

α(λ)dα .

The constant c̃ ∈ C \ {0} does not depend on A.

Remark 2.1: It is particularly noteworthy that for odd multiplicities dα of roots α ∈ 	+(p ⊕
Q−, h) the “Jacobian” J ′(λ) is not positive but has alternating sign.
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The following corollary is the analogue of Theorem 1 in Ref. 9.

Corollary 2.2: If the parametrization PS is nearly everywhere injective and regular, then

lim
ε→0

∫
ImPS

e− Tr(Q2)−2i Tr(Q A)χε(Q) sgn(J ′(λ))|d Q| = c̃′e− Tr(A2).

Here ImPS = PS denotes the non-oriented image of PS . The mapping from ImPS to h sending
Q to λ is well defined up to a set of measure zero. |d Q| denotes Lebesgue measure on Q, and
c̃′ ∈ C \ {0} is a constant which does not depend on A.

Remark 2.2: While we believe that the assumptions on PS in Corollary 2.2 follow from the
general setting, we have not been able to find a proof thereof.

III. EXAMPLES

First we reproduce the examples of unitary and orthogonal symmetry. For this we calculate J ′

and apply Corollary 2.1.

A. U(p, q) symmetry

This case has been handled by Fyodorov7 using different methods. To apply the general Theorem
2.1 we work in the complex Lie algebra gl(p + q,C) and define s = Diag(1p,−1q ). No additional
involutions τi are needed. We have

k ⊕ Q+ = {x ∈ gl(n,C) | X = s Xs}, p ⊕ Q− = {x ∈ gl(n,C) | X = −s Xs}.
The maximal Abelian subalgebra h ⊂ Q+ is spanned by the real diagonal matrices. Let λ :=
Diag(λ1, . . . , λp+q ) ∈ h be such a matrix. The roots 	+(gl(p + q), h) are given by fi − f j where
i < j and fi (λ) = λi . For i ≤ p < j ≤ p + q the roots fi − f j are elements of 	+(p ⊕ Q−, h),
otherwise they are elements of 	+(k ⊕ Q+, h).

The root space corresponding to fi − f j is CEi j where Ei j is the matrix with unity in the i j
position and zero elsewhere. Thus every root space has complex dimension one, or real dimension
two. Hence

J ′(λ) =
∏
i< j

|λi − λ j |2.

With this expression for J ′(λ) the formula of Corollary 2.1 agrees with that of Fyodorov.7

B. O(p, q) symmetry

This case has been dealt with by Fyodorov et al.9 In addition to the involutions of the unitary
setting we need an involution τ1(X ) = −s Xt s and η1 = −1. The additional presence of this involu-
tion requires all matrices to be real. In consequence, all root spaces are now one dimensional, and
they give rise to non-trivial signs:

J ′(λ) =
∏

α∈	+(p⊕Q−,h)

α(λ)
∏

α∈	+(k⊕Q+,h)

|α(λ)|

=
∏

i≤p< j≤p+q

(λi − λ j )
∏

i< j≤p,p<i< j≤p+q

|λi − λ j |

=
∏
i< j

|λi − λ j |
p∏

i=1

p+q∏
j=p+1

sgn(λi − λ j ),

which is precisely Corollary 1 in Ref. 9.
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C. Sp(2p, 2q) symmetry

Now we consider the case of symplectic symmetry which arises for random matrix ensembles
of class AII in the language of Ref. 14. Let σ i (i = 1, 2, 3) denote the three Pauli matrices and let
σ 0 = 12. Introducing σ i

p = 1p ⊗ σ i , we choose s = Diag(σ 0
p ,−σ 0

q ) and define 
 = Diag(σ 2
p,−σ 2

q ).
The involution τ1(X ) = −
Xt
−1 together with η1 = −1 leads to

k ⊕ Q+ =
{( A 0

0 D

)∣∣∣A = σ 2
p Āσ 2

p , D = σ 2
q D̄σ 2

q

}
,

p =
{( 0 B

B† 0

)∣∣∣B = −σ 2
p B̄σ 2

q

}
, Q− = {sY | Y ∈ p}.

A maximal Abelian subalgebra of h ⊂ Q+ is

h = {Diag(λ1, . . . , λp+q ) ⊗ σ 0 | λk ∈ R}.
Note s ∈ h. Let λ := Diag(λ1, . . . , λp+q ) ⊗ σ 0 and let fi ∈ h∗ be defined by fi (λ) = λi . Then we
have

	+(k ⊕ Q+, h) = { fk − fl | 1 ≤ k < l ≤ p or p < k < l ≤ p + q},
	+(p ⊕ Q−, h) = { fk − fl | 1 ≤ k ≤ p and p < l ≤ p + q}.

To determine the root multiplicities we note that the quaternions {σ 0, iσ 1, iσ 2, iσ 3} constitute a
basis of the space r := {X ∈ gl(2,C) | X = σ 2 X̄σ 2}. The root spaces corresponding to fk − fl then
are

1 ≤ k < l ≤ p :
{( Ekl ⊗ X 0

0 0

)∣∣∣X ∈ r

}
,

p < k < l ≤ p + q :
{(0 0

0 Ek−p,l−p ⊗ X

)∣∣∣X ∈ r

}
,

1 ≤ k ≤ p < l ≤ p + q :
{(0 Ek,l−p ⊗ X

0 0

)∣∣∣X ∈ r

}
.

Thus all root spaces have dimension four and J ′ is given by

J ′(λ) =
∏

1≤k<l≤p+q

(λk − λl)
4.

IV. PROOF

In the proof we use some standard results of Lie theory, all of which can be found in the literature,
e.g., in Ref. 11. Since g is closed under hermitian conjugation (†) we know that g is reductive, i.e.,
the direct sum of an Abelian and a semisimple Lie algebra. For simplicity we first restrict ourselves
to the case where g is semisimple. The extension to the reductive case will be straightforward.

The proof of the theorem is divided into three parts. The first part, in Sec. IV A, contains the
derivation of a new parametrization of the PS domain, which makes it possible to deal with its
boundary. The second part, in IV B, is concerned with the extension of the PS domain to a domain
without boundary. First we identify good directions into which to extend the PS domain. Then we
give an extension of PS which does not change the value of the integral. Although much of it is
unnecessary for the formal proof, Sec. IV B is an important prerequisite to understanding the third
part, IV C, where we give a homotopy EPS connecting the extended PS domain to the Euclidean
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domain. The main point is to make rigorous the following schematic application of Stokes’ theorem:∫
PS

g(Q, A)d Q = −
∫
EPS

d(g(Q, A)d Q)︸ ︷︷ ︸
=0

+
∫
Euclid

g(Q, A)d Q,

where we have introduced g(Q, A) := e− Tr(Q2)−2i Tr(Q A). The first term on the right hand side is
identically zero because g(Q, A) is holomorphic in Q. In the final Subsection IV D we deduce the
Corollaries 2.1 and 2.2.

At this point a warning is in order. In the given form the expressions above do not make sense.
In order for the integrals over PS and EPS to exist we have to include some regularization. This
delicate issue is discussed in detail in the last part of Subsection IV C. That discussion also entails
that the extension of PS does not contribute to the left hand side of the equation.

A. A suitable parametrization of the PS domain

We now invest some effort in order to derive a parametrization of the domain of integration
which gives full control over its boundary. To guide the reader, we first define and explain all objects
that are necessary to formulate a lemma stating the parametrization.

In order to evaluate eY Xe−Y in (2) explicitly, we need to compute multiple commutators of Y ∈ p

with X ∈ Q+. Therefore we now choose a maximal Abelian subalgebra a in p and diagonalize the
commutator action of a on Q. This diagonalization process gives rise to a root space decomposition

Q = Q0 ⊕
⊕

α∈	+(Q,a)

(Qα ⊕ Q−α),

where 	+(Q, a) denotes a set of positive roots. Each root space in turn is decomposed into a
hermitian (Q+) and an antihermitian (Q−) part:

Q±,α := Fix±θ (Qα ⊕ Q−α) ⊂ Q± .

We also let Q±,0 := Fix±θ (Q0) ⊂ Q±. Hence we have the decompositions

Q± = Q±,0 ⊕
⊕

α∈	+(Q,a)

Q±,α . (3)

For future reference we observe that

ad(s) : p → Q− , Y 	→ [s, Y ],

is an isomorphism. This fact will be used several times in the proof.
For the following constructions we review the notion of pointed polyhedral cone and triangu-

lations thereof.12, 13 A pointed polyhedral cone is a subset of a vector space. By definition it is an
intersection of finitely many half spaces where the intersection of all hyperplanes bounding the half
spaces contains only the zero vector. The word pointed reflects the fact that there exists a hyperplane
which intersects the cone only at zero, with the rest of the cone lying strictly on one side of that
hyperplane. For example, if 	+(g, a) denotes a system of positive roots for the adjoint action of a

on g, the positive Weyl chamber

a+ =
⋂

β∈	+(g,a)

{H ∈ a | β(H ) ≥ 0}

is a pointed polyhedral cone. In the following we refer to a pointed polyhedral cone as a cone for
short.

Let E ⊂ a be a vector space of codimension one such that a+ lies entirely on one side of E .
A face of a+ is a set of the form a+ ∩ E . The zero vector is the unique zero dimensional face. It is
convenient also to include the empty set as a face. The one dimensional faces are called edges. Note
that each nontrivial face is again a cone.
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It is a fact12 that any cone a+ admits a different representation: there exist m elements H ′
i ∈ a

such that

a+ =
{

m∑
i=1

hi H ′
i | hi ≥ 0

}
.

The H ′
i are called generators of the cone. They can be chosen in such a way that each H ′

i generates
an edge of the cone. In the case of a positive Weyl chamber a+ a set of generators is furnished by
the simple co-roots. A cone is called simplicial if its generators are linearly independent. A d-cone
is a cone of dimension d. It is a known fact of Lie theory that a+ is a simplicial dim(a)-cone.

A finite collection T of dim(a)-cones is called a subdivision of a+ if a+ = ∪S∈T S and S1 ∩ S2

is a face of both S1 and S2 for all S1, S2 ∈ T . If each cone in a subdivision T is simplicial, then T is
called a triangulation.

Bearing these facts in mind we proceed to describe a decomposition of a+ which, as we shall see
below, is directly related to the boundary of the PS domain. Note, first of all, that a root α ∈ 	+(Q, a)
may change sign on a+ since a+ is defined with respect to the root system 	+(g, a). The closures of
the connected components of a+ \ (a+ ∩ (∪α ker(α))) can be obtained as appropriate intersections of
half spaces and hence are again cones. Let {Hi }i=1,...,M denote the collection of generators of these
cones [the cardinality M exceeds m if a+ ∩ (∪α ker(α)) �= ∅]. By construction the intersection of
two such cones is a face common to both. Put differently, the generators common to two such cones
generate a joint face. Thus the decomposition we have just described yields a subdivision of a+. It
is a fact12, 13 that every subdivision of a cone can be refined to a triangulation without introducing
any new generators.

For the rest of the article we fix a triangulation

a+ =
⋃
c∈C

a+
c (4)

which refines the subdivision of a+ described above. Let Ic ⊂ {1, . . . , M} be such that {Hi }i∈Ic is
the set of generators for the simplicial cone indexed by c ∈ C , i.e., let

a+
c =

{∑
i∈Ic

hi Hi | hi ≥ 0
}

.

Note that |Ic| = dim a and that the generators {Hi }i∈Ic form a basis of a. The latter fact implies that
each H ∈ a+

c is represented uniquely as

H =
∑
i∈Ic

hi Hi (5)

with coefficients hi ∈ R+. The intersection a+
c ∩ a

+
c′ of two simplicial cones is again a simplicial

cone; indeed, the set of generators of the latter is {Hi }i∈Ic∩Ic′ . A key property of the decomposition
(4) is that the sign of each α ∈ 	+(Q, a) stays constant on any given simplicial cone a+

c . However
it may still happen that α vanishes on the boundary of a+

c .
Next we introduce a subdecomposition of each cone a+

c . Let L ⊂ Ic and define

a
+
L ,c :=

{∑
i∈Ic

hi Hi ∈ a+
c | ∀i ∈ L : hi ≥ 1 and ∀i /∈ L : hi ≤ 1

}
.

An example of this decomposition is shown in Fig. 1. It may be a helpful observation to note that
the decomposition

a+ =
⋃
c∈C

⋃
L⊂Ic

a
+
L ,c

carries the structure of a simplicial complex.
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H1

H2

L = ∅

L = {2}

L = {1}

L = {1,2}

FIG. 1. This figure shows a+ for g = su(2, 2). The index c has been omitted since there exists only one simplicial cone in
this case. The possible L’s are subsets of {1, 2}.

With these definitions understood we introduce for each index pair (α, c) a function on a by

Tα,c : a → R,

H =
∑
i∈Ic

hi Hi 	→
{

tanh
(∑

i∈Ic

hi

1−hi α(Hi )
)
, ∀i ∈ Ic :

(
hi < 1 or α(Hi ) = 0

)
,

sgn(α(Hi )), else,

where H =∑i∈Ic
hi Hi is meant in the sense of (5) with coefficients hi ∈ R. In order for this function

Tα,c to be well defined it is crucial that the decomposition of a+ into simplicial cones is such that for
fixed c and fixed α the sign of α(Hi ) is the same for all i ∈ Ic with α(Hi ) �= 0.

We are now going to formulate a lemma which summarizes what we are aiming at in this section.
For that purpose we introduce K := exp(k) and let ZK (a) be the centralizer of A = exp(a) in K .
Fixing some H ∈ a with α(H ) �= 0 for all α ∈ 	+(Q, a) we define

φ : Qα ⊕ Q−α → Qα ⊕ Q−α ,

Z + Z ′ 	→ α(H )−1[H, Z + Z ′] = Z − Z ′.

Note that φ satisfies

φ ◦ φ = id and φ(Q±,α) = Q∓,α .

In addition we define orthogonal projections

π±,α : Q → Q±,α .

The following lemma contains a parametrization of the domain of integration which gives direct
control over its boundary.

Lemma 4.1: The mappings

PS c : a
+
∅,c × (K ×Z K (a) Q+

)→ Q, (6)

(H, [k; X ]) 	→ Ad(k)
(

X0 +
∑

α∈	+(Q,a)

(Xα + Tα,c(H ) φ(Xα))
)
,

with Xα := π+,α(X ) and [k; X ] = [kz−1; zXz−1] for z ∈ ZK (a) have the following properties:

i) The boundary ∂PS c (in the sense of integration chains) is obtained by applying the boundary
operator ∂ to a

+
∅,c.

ii) A choice of orientation on a+ × (K ×Z K (a) Q+
)

induces an orientation for each PS c. There
exists a particular choice of orientation for which PS =∑c∈C PS c holds, where the equality
sign is meant in the sense of integration chains.

iii) The contributions to the boundary of PS c which come from ∂a
+
∅,c ∩ ∂a+ are of codimension

at least two and can be neglected.
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To prove Lemma 4.1 we perform a sequence of four reparametrizations of the original
parametrization PS . The first three reparametrizations are preparatory and do not relate directly
to Lemma 4.1. Each reparametrization is discussed in a separate subsection for clarity.

1. Reparametrization I: Decomposition of p

The goal of the next three reparametrizations is to evaluate PS (Y, X ) = Ad(eY )X in more detail.
Key to this is a choice of maximal Abelian subalgebra a ⊂ p whose adjoint action on Q = Q+ ⊕ Q−
is diagonalizable. To get started, we parametrize p using K/ZK (a) and the interior (a+)o of a+:

RI : (a+)o × K/ZK (a) → p,

(H, [k]) 	→ k Hk−1.

RI is obviously well defined, and it is a standard fact that RI is injective for semisimple Lie
algebras with Cartan decomposition g = k ⊕ p. Hence RI is a diffeomorphism onto Im(RI). Note
that p \ Im(RI) is a set of measure zero since p = ∪k∈K ka+k−1 (see, e.g., Ref. 11) and

Im(RI) = ∪k∈K k
(
a+ \ (a+ ∩ (∪α ker α))

)
k−1,

where α runs over the roots in 	+(g, a).
Precisely speaking, we are going to use the parametrization

PS ◦ RI : a+ × K/ZK (a) × Q+ → Q,

(H, [k], X ) 	→ ek Hk−1
Xe−k Hk−1

.

Recall that the PS domain is oriented by an orientation of p ⊕ Q+. Declaring RI to be orientation
preserving induces an orientation on a+ × K/ZK (a) × Q+.

Further reparametrizations of the PS domain are introduced below. To avoid an overload of
notation, we will denote each new parametrization still by PS .

2. Reparametrization II: Twisting K/ZK (a) and Q+

In this section we prepare the further evaluation of the ad(a) action in Subsection IV A 3.
Consider the reparametrization

RII : K ×Z K (a) Q+ → K/ZK (a) × Q+ ,

[kz−1; zXz−1] 	→ ([k], k Xk−1),

where the expression [k; X ] ≡ [kz−1; zXz−1] (for z ∈ ZK (a)) stands for an equivalence class of the
group action of ZK (a) on K × Q+. This group action defines the trivial bundle K ×Z K (a) Q+. The
inverse of RII is

R−1
II : K/ZK (a) × Q+ → K ×Z K (a) Q+ ,

([k], X ) 	→ [k; k−1 Xk].

RII is a diffeomorphism and can therefore be used as a reparametrization to obtain the new
parametrization

PS ◦ RII : a+ × K ×Z K (a) Q+ → Q,

(H, [kz; zXz−1]) 	→ ek Hk−1
k Xk−1e−k Hk−1

= keH Xe−H k−1 = Ad(k)(ead(H ) X ). (7)
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3. Decomposition of Q+

Since ZK (a) is a subgroup of K and, by definition, commutes with the ad(a) action on Q, the
parametrization (7) is compatible with the decomposition (3) of Q. In particular we have

π+,α ◦ Ad(z) = Ad(z) ◦ π+,α

for z ∈ ZK (a) and α ∈ 	+(Q, a). A short calculation for Xα ∈ Q+,α gives

ead(H ) Xα = cosh(α(H ))Xα + sinh(α(H ))φ(Xα).

Hence the parametrization (7) can be rewritten as

PS : a+ × K ×Z K (a) Q+ → Q,

(H, [k;X ]) 	→ Ad(k)
(

X0 +
∑

α∈	+(Q,a)

(
cosh(α(H ))Xα + sinh(α(H ))φ(Xα)

))
, (8)

where Xα = π+,α(X ).

4. Reparametrization III: Rectification

As a motivation for the next reparametrization we note that (X, Y ) 	→ Tr(XY ) is an Ad(K )-
invariant scalar product on Q and that all the different spaces Q±,α are orthogonal to each other. For
the moment, we fix α ∈ 	+(Q, a) and consider only the part

cosh(α(H ))Xα + sinh(α(H ))φ(Xα)

of the parametrization (8). The corresponding two-dimensional picture is shown in Fig. 2, where
we see the image of a straight line through the origin in a+ as a hyperbola. We are going to change
the parametrization in such a way that the hyperbola is rectified to a straight line; see Fig. 2.
Such a reparametrization gives us a handle on the boundary of the PS domain, as is discussed in
Subsection IV A 5. Accordingly, the third reparametrization we use is given by

RIII : a+ × K ×Z K (a) Q+ → a+ × K ×Z K (a) Q+ ,

(H, [k; X ]) 	→
(

H,
[
k; X0 +

∑
α∈	+(Q,a)

1

cosh(α(H ))
Xα

])
.

This is another orientation preserving diffeomorphism. We thus obtain

PS ◦ RIII : a+ × K ×Z K (a) Q+ → Q,

(H,[k; X ]) 	→ Ad(k)
(

X0 +
∑

α∈	+(Q,a)

(
Xα + tanh(α(H ))φ(Xα)

))
, (9)

which is renamed to PS in the following.

Q+,α

Q−,α

Q+,α

Q−,α

FIG. 2. Motivation for the third reparametrization step. The dashed lines are the images of straight lines through the origin
in a+ before (left) and after (right) the reparametrization RIII.
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5. Reparametrization IV: Making the boundary visible

From the parametrization (9) (see also Fig. 2) it is clear that the boundary is reached when
some α(H ) goes to ±∞ and hence tanh goes to ±1. Put differently, the boundary of the domain
of integration can be reached through a limit in the parameter space a+. To obtain control over the
boundary we have to make sense of the expression limH→∞ tanh(α(H )). This limit is encoded in the
functions Tα,c. Recall that

Tα,c

⎛
⎝∑

i∈Ic

hi Hi

⎞
⎠ =

{
tanh

(∑
i∈Ic

hi

1−hi α(Hi )
)
, ∀i : hi < 1 or α(Hi ) = 0,

sgn(α(Hi )), else,

where the index c refers to the decomposition (4) of a+ into the simplicial cones a+
c . Fix α ∈ 	+(Q, a)

and j ∈ Ic such that α(Hj ) �= 0. Then

lim
h j →1

Tα,c

⎛
⎝∑

i∈Ic

hi Hi

⎞
⎠ = sgn(α(Hj )).

This shows that Tα,c is continuous. Tα,c is also differentiable since

lim
h j →1

∂h j tanh

⎛
⎝∑

i∈Ic

hi

1 − hi
α(Hi )

⎞
⎠ = 0

generalizes to all higher (and mixed) partial derivatives.
To put the functions Tα,c to use we define for each cone c ∈ C the mapping

RIV,c : (a+
∅,c)o × K ×Z K (a) Q+ → a+

c × K ×Z K (a) Q+ ,⎛
⎝∑

i∈Ic

hi Hi , [k; X ]

⎞
⎠ 	→

⎛
⎝∑

i∈Ic

hi

1 − hi
Hi , [k; X ]

⎞
⎠ ,

where (a+
∅,c)o denotes the interior of a

+
∅,c. For each simplicial cone, this is an (orientation preserving)

diffeomorphism onto its image. The mapping is visualized in Fig. 3. We use it to reparametrize
PS on each cone. We thus obtain PS c = PS ◦ RIV,c, which is the parametrization defined in
Lemma 4.1, (6)

In the following we want to give the notion “boundary of the PS domain” a precise meaning. In
the case of integration cells, i.e., differentiable mappings defined on a cube, the boundary operator
∂ is defined as usual. ∂ can also be applied to integration chains, i.e., formal linear combinations
of cells. In principle the correct procedure would be to decompose each PS c into cells in order to
apply ∂ . However, in the following we argue that we can treat each PS c effectively as single cell
with the boundary operator ∂ acting just on the a

+
∅,c part of the domain of definition. Note that a

+
∅,c

by the decomposition (5) is diffeomorphic to an n-dimensional cube.
First note that PS c extends as a differentiable mapping to a neighborhood of a

+
∅,c since the Tα,c

are differentiable functions defined on a. Thus it is possible to define the orientation of the boundary.
Furthermore, since K is a closed compact manifold it suffices to discuss boundary contributions

RIV

FIG. 3. su(2, 2) example for RIV mapping a
+
∅ on the left hand side to a+ on the right side. In this example there is only one

simplicial cone.
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arising from a decomposition of Q+ into cells. By inspecting our parametrization we see that going
to infinity on Q+ implies going to infinity in the domain of integration. In Sec. IV C we show that the
integrand goes to zero exponentially on this domain and hence all possible boundary contributions
vanish. Thus we obtain part i) of Lemma 4.1.

Part ii) of Lemma 4.1 follows immediately by noting that the mappings RIV,c are diffeomor-
phisms onto.

Since similar arguments are needed in several other parts of Sec. IV, the proof of part iii) of
Lemma 4.1 is presented in Appendix A.

B. Extending the PS domain

In this section we construct an extension of the PS domain which has no boundary other than the
irrelevant boundary at infinity. The idea is to connect each boundary point to infinity by attaching one
halfline. The directions of these halflines should be such that the attached domain does not contribute
to the integral of g(Q, A)χε(Q) d Q. We first determine such a direction for each boundary point,
and then give a parametrization of the attached domains. In the following let

B(X, Y ) := Tr(XY )

denote the trace form on QC .
Some care must be exercised in order to guarantee the convergence of the integral on the

extended PS domain. The positivity requirement As > 0 in the theorem already gives a hint that
the matrix s plays a prominent role in the discussion of convergence. Owing to s ∈ Q+ we have the
decomposition

s = s0 +
∑

α∈	+(Q,a)

sα , (10)

where s0 ∈ Q+,0 and sα = π+,α(s) ∈ Q+,α .
The next lemma introduces the convergent directions which are used to extend PS in such a

way that convergence is maintained.

Lemma 4.2: The matrices

E j := 2 lim
t→∞

Ad(et Hj )s

maxα∈	+(Q,a) e|α(t Hj )| (11)

are well defined and non-zero. The following properties hold for all 1 ≤ i, j ≤ M:

i) Tr(Ei Ad(k)−1 A) > 0.
ii) There exist numbers eα

j ∈ {0, 1} such that the matrices E j decompose as

E j =
∑

α(Hj )�=0

eα
j

(
sα + sgn(α(Hj ))φ(sα)

)
. (12)

iii) For i, j ∈ Ic one has B(Ei , E j ) = 0. In particular, B(Ei , Ei ) = 0.

Before we come to the proof of Lemma 4.2, we formulate another lemma which suggests how
to extend the PS domain. Note however that an integral over PS needs a regulating function and
that we postpone the discussion of convergence to Sec. IV C. Strictly speaking, the next lemma is
not necessary for the proof of Theorem 2.1. It is included as a preparation for the more involved
definition of the homotopy introduced in Sec. IV C.

Lemma 4.3: For c ∈ C and L ⊂ Ic the mappings

PS L ,c : a
+
L ,c × K ×Z K (a) Q+ → QC,

(H, [k;X ]) 	→ Ad(k)
(

X0 +
∑

α∈	+(Q,a)

(
Xα + Tα,c(H )φ(Xα)

)
− i
∑
j∈L

(h j − 1)E j

)
,
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are well defined as integration chains and one has

∂

⎛
⎝∑

c∈C

∑
L⊂Ic

PS L ,c

⎞
⎠ = 0, (13)

as long as the sum of chains is integrated against forms with sufficiently rapid decay at infinity.

1. Proof of Lemma 4.2

To see that the matrices Ei are well defined, we express them in a more explicit fashion. A short
calculation using (10) gives

Ad(eH )s = s0 +
∑

α∈	+(Q,a)

(
cosh(α(H ))sα + sinh(α(H ))φ(sα)

)
.

This shows that the limit in (11) exists and that the matrices E j decompose as shown in Eq. (12).
Thus we obtain i i). Recalling that ad(s)|p is injective we conclude that each of the matrices E j is
non-zero.

For property i) we note that As > 0 and

s−1 E j = 2 lim
t→∞

e−2t Hj

maxα∈	+(Q,a) e|α(t Hj )| ≥ 0.

Thus Tr((Ad(k)s−1 E j )As) is the trace of the product of the non-zero positive semidefinite hermitian
matrix s−1 Ad(k)E j and the positive hermitian matrix As. By inserting the eigenvalue representation∑

n pnπn of s−1 Ad(k)E j we get

Tr(s−1 Ad(k)E j As) =
∑

n

pn Tr(πn As).

Since As is positive we have Tr(πn As) > 0. Property i) then follows because s−1 Ad(k)E j �= 0
implies that there exists some pn > 0.

To prove property i i i) we use i i) and note that for all α, β ∈ 	+(Q, a) we have the orthogonality
relations

B(sα, sβ) = −B(φ(sα), φ(sβ)) = δα,β B(sα, sα)

and B(sα, φ(sβ)) = 0. We also recall that a fixed root α does not change sign on a fixed simplicial
cone a+

c . The desired result B(Ei , E j ) = 0 for i, j ∈ Ic then follows directly.

2. Proof of Lemma 4.3

In this section we show that the mappings PS L ,c in Lemma 4.3 have the stated properties. First
of all, the mappings are well defined since ZK (a) acts trivially on the matrices Ei . We recall that the
situation is visualized in Fig. 1.

PS L ,c can be extended as a mapping to a since Tα,c makes sense on a and so does (h j − 1).
Thus PS L ,c is well defined as an integration chain. By the same argument as for the PS ∅,c case, a
boundary can arise only by the action of the boundary operator ∂ on the factor a

+
L ,c.

In the following we always neglect possible boundary contributions from infinity, since the
integrals under consideration are convergent by assumption.

To see that the different integration cells PS L ,c and PS L ′,c′ fit together in a seamless way,
we recall that a+

c ∩ a
+
c′ is again a simplicial cone which is generated by the set {Hi }i∈Ic∩Ic′ . In

particular each H ∈ a
+
L ,c ∩ a

+
L ′,c′ can be represented in the form H =∑i∈Ic∩Ic′

hi Hi , which implies
that Tα,c(H ) = Tα,c′ (H ). We have hi ≥ 1 for i ∈ L and hi ≤ 1 for i ∈ Ic \ L . Together with similar
conditions from L ′ this yields ∑

i∈L

(hi − 1)Ei =
∑
i∈L ′

(hi − 1)Ei
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on the intersection a
+
L ,c ∩ a

+
L ′,c′ . Hence we obtain the equality PS L ,c(H, [k; X ]) = PS L ′,c′ (H, [k; X ])

on the joint domain of definition.
Moreover, the induced orientations on the boundaries between two neighboring cells are oppo-

sites of each other. Together with the fact (shown in Appendix A) that the contributions from ∂a+

are of codimension no less than two, these results yield (13).
To get some intuition for the situation it is useful to observe that the halflines which are glued

to boundary points of the PS domain point into directions within ⊕α∈	(Q,a)iQα , and hence cannot
coincide with vectors tangent to PS, which live in Q.

C. Equivalence of PS and Euclid

Finally, we show that the integral over PS equals the integral over Euclid . The idea is to deform
the extended PS domain into the subspace Q+ ⊕ i[p, s] of QC where B is positive. Recall that
[p, s] = Q−. We have to show that the integral remains convergent along the path of deformation
and no boundary terms at infinity are generated. To that end we prefer to proceed in the reverse
order and deform Euclid into PS to the extent that this is allowed by convergence of the integral.
Recall that ZK (a) acts trivially on Hi ∈ a and the matrices Ei . It also acts trivially on [Hi , s] for all
i = 1, . . . , M because k ∈ K is fixed by conjugation with s. For these reasons the mapping defined
as

EPS ε
L ,c : [ε, 1]×a

+
L ,c × K ×Z K (a) Q+ → QC,

(t, H, [k; X ]) 	→ Ad(k)
(

X0 +
∑

α∈	+(Q,a)

(
Xα + (1 − t)Tα,c(H )φ(Xα)

))

− i Ad(k)
∑
j∈L

(h j − 1)
(
(1 − t)E j + 2t[Hj , s]

)
(14)

is well defined. By reasoning similar to that for PS L ,c each parametrization EPS ε
L ,c (c ∈ C) can be

seen as an integration cell with boundary coming only from the [ε, 1] × a
+
L ,c part. To simplify the

notation we define

EPS ε :=
∑
c∈C

∑
L⊂Ic

EPS ε
L ,c ,

EPS L ,c := EPS 0
L ,c and similarly EPS := EPS 0.

Lemma 4.4: The mappings EPS ε
L ,c have the following properties:

i) The boundary of the sum EPS ε is given by

∂(EPS ε) = Euclid −
∑
c∈C

∑
L⊂Ic

EPS L ,c(t = ε).

ii) Let g(Q, A) := e− Tr(Q2)−2i Tr(Q A). Then the integrals∫
EPS L ,c(t=ε)

g(Q, A)d Q

exist for ε > 0.
iii) For each c ∈ C and L ⊂ Ic with cardinality |L| > 0 we have

lim
ε→0

∫
EPS L ,c(ε)

g(Q, A)d Q = 0.

iv) Let P S(ε) :=∑c∈C E P S∅,c(ε). The integral over P S(ε) in the limit ε → 0 may be computed
as an integral over PS with regularized integrand:

lim
ε→0

∫
P S(ε)

g(Q, A)d Q = lim
ε→0

∫
P S

g(Q, A)χε(Q)d Q.
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The proof of the lemma is spelled out in Subsections IV C 1–IV C 4. Here we anticipate that
once the lemma has been established, we can do the following series of manipulations:∫

Euclid

g(Q, A)d Q =
∫
Euclid

g(Q, A)d Q − lim
ε→0

∫
EPS ε

d(g(Q, A)d Q)︸ ︷︷ ︸
=0

,

=
i),i i)

lim
ε→0

∫
EPS (ε)

g(Q, A)d Q

=
i i),i i i),iv)

lim
ε→0

∫
P S(ε)

g(Q, A)d Q

=
iv)

lim
ε→0

∫
P S

g(Q, A)χε(Q)d Q,

which yields the statement of our Theorem 2.1.

1. Proof of i): Deformation of PS into Euclid

Next we prove statement i) of Lemma 4.4. By an argument similar to that in the proof of
Lemma 4.3 we obtain

∂(EPS ε) ≡
∑
c∈C

∑
L⊂Ic

∂(EPS ε
L ,c) = EPS (t = 1) − EPS (t = ε).

We will now deal with the summand EPS (1).
For L � Ic the mapping EPS L ,c(t) degenerates in the limit t → 1. More precisely, for i ∈ Ic \ L

we have ∂hi EPS L ,c(1) = 0 and thus a reduction in dimension. Hence we have the following identity
relating integration chains:

EPS (1) =
∑
c∈C

EPS Ic,c(1).

In the following we establish the connection between EPS (1) and Euclid . For c ∈ C and
H =∑i∈Ic

hi Hi ∈ a
+
Ic,c

we have

EPS Ic,c(1, H, [k; X ]) = Ad(k)
(

X − 2i
∑
j∈Ic

(h j − 1)[Hj , s]
)
.

To facilitate the interpretation of the expression on the right hand side, we now change the left
factor of the domain of definition of EPS Ic,c(1) from a

+
Ic,c

to a+
c . This is done by introducing the

diffeomorphism

ψc : a
+
Ic,c

→ a+
c ,

H 	→
∑
i∈Ic

(hi − 1)Hi .

By inserting it into the previous formula we get

EPS Ic,c(1, ψ−1
c (H ), [k; X ]) = Ad(k)

(
X − 2i[H, s]

)
.

Note that while the composition with ψ−1
c does alter the mapping EPS Ic,c(1), the effect is not a

change of image but only a reparametrization.
The right hand side of the expression above does not have any explicit dependence on the sim-

plicial cone c any more. Therefore, by recalling
⋃

c∈C a+
c = a+ and noting that the diffeomorphisms
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ψc are orientation preserving, it is clear that our mappings EPS Ic,c combine to a smooth mapping∑
c∈C

EPS Ic,c(1) ◦ (ψ−1
c , id) : a+ × K ×Z K (a) Q+ → QC,

(H, [k; X ]) 	→ Ad(k)
(
X − 2i[H, s]

)
,

where id stands for the identity on K ×Z K (a) Q+.
The final step is to undo the reparametrizations RII and RI to obtain(∑

c∈C

EPS Ic,c(1) ◦ (ψ−1
c , id)

)
◦ R−1

II ◦ R−1
I (Y, X ) = X − 2i[Y, s],

where X ∈ Q+ and Y ∈ p. Since [p, s] = Q− we conclude that EPS (1) is the same as Euclid as an
integration chain.

2. Proof of ii): Existence of the integral for ε > 0

In this subsection we prove statement i i) of Lemma 4.4. Let us first make some general remarks
and definitions which allow a simpler discussion of the integrals to be considered. For this purpose let
idL ,c be the identity on a

+
L ,c and recall that RII yields a global factorization of the bundle K ×Z K (a) Q+

as K/ZK (a) × Q+. Let dμ([k]) be a left invariant volume form on K/ZK (a) and let d H and d Q+
denote constant volume forms on a+ and Q+, respectively. Then there exist functions PL ,c such that(

EPS L ,c(t = ε) ◦ (idL ,c, R−1
II )
)∗

d Q = PL ,c d H ∧ dμ([k]) ∧ d Q+ .

By inspection of EPS L ,c and R−1
II we see that PL ,c depends polynomially on ε, [k], the matrix entries

of X ∈ Q+, hi , and on ∂r Tα,c, where ∂r represents any number of partial derivatives with respect to
hi . For the rest of the proof it is more convenient to switch to a formulation in terms of measures
instead of volume forms. In that respect we have∫

a
+
L ,c×K/Z K (a)×Q+

(
EPS L ,c(t = ε) ◦ (idL ,c, R−1

II )
)∗

(g(·, A)d Q)

=
∫

a
+
L ,c×K/Z K (a)×Q+

g
(
EPS L ,c(t = ε) ◦ (idL ,c, R−1

II ), A
)

PL ,c |d H ||dμ([k])||d Q+|, (15)

where |d H | and |d Q+| are Lebesgue measures on a+ and onQ+ and |dμ([k])| denotes Haar measure
on K/ZK (a). To prove statement i i) it is enough to show the existence of∫

K/Z K (a)

∫
a

+
L ,c

∫
Q+

∣∣∣g(EPS L ,c(t = ε) ◦ (idL ,c, R−1
II ), A

)∣∣∣
× |PL ,c| |d Q+||d H ||dμ([k])|. (16)

Indeed, the Fubini-Tonelli theorem then asserts that the original integral exists and that Fubini’s
theorem can be applied to (15).

We now deal with the integral (16). Note that replacing K/ZK (a) by K in (16) introduces only
a constant factor which can be absorbed in the polynomial PL ,c. The mapping R−1

II extends naturally
from K/ZK (a) × Q+ to K × Q+ and, similarly, EPS L ,c(t) extends from a

+
L ,c × K ×Z K (a) Q+ to

a
+
L ,c × K × Q+. Furthermore we can apply for k ∈ K the transformation

Q+ → Q+ , X 	→ k Xk−1,

in the inner integral over Q+. The corresponding Jacobian is unity. Hence (16) equals∫
K

∫
a

+
L ,c

∫
Q+

∣∣∣g(EPS L ,c(ε), A
)∣∣∣ |PL ,c| |d Q+||d H ||dμ(k)|, (17)

where |dμ(k)| is a Haar measure on K .
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Let us now concentrate on the exponential function g
(
EPS L ,c(ε), A

)
which is responsible for

the convergence of the integral. Referring to the second and third lines in (14), we define

� := Ad(k)
(

X0 +
∑

α∈	+(Q,a)

(
Xα + (1 − ε)Tα,c(H )φ(Xα)

))
,

ϒ := −i Ad(k)
∑
j∈L

(h j − 1)
(

(1 − ε)E j + 2ε[Hj , s]
)
,

which lets us write the integrand in the form

g
(
EPS L ,c(ε, H, k, X ), A

)
= e−B(�+ϒ,�+ϒ)−2i B(�+ϒ,A).

Due to A, � ∈ Q and ϒ ∈ iQ, the terms B(�,ϒ) and i B(�, A) are imaginary. Therefore, they do
not contribute to (17). To evaluate the remaining terms we note some useful relations. For Xα ∈ Q+,α

and X, X ′ ∈⊕α∈	+(Q,a) Q+,α we have

B(Xα, Xβ ) = δα,β B(Xα, Xα), (18)

B(X, X ′) = −B(φ(X ), φ(X ′)), B(φ(X ), X ′) = 0. (19)

B(�,�) can be re-expressed as

B(�,�) =
(18)

Tr(X2
0) +

∑
α∈	+(Q,a)

Tr
(
Xα + (1 − ε)Tα,c(H )φ(Xα)

)2
=

(19)
B(X0, X0) +

∑
α∈	+(Q,a)

B(Xα, Xα)
(

1 − (1 − ε)2T 2
α,c(H )

)
. (20)

B is positive on Q+, and for all H ∈ a+ and 0 < ε < 1 we have

0 < ε(2 − ε) ≤ 1 − (1 − ε)2T 2
α,c(H ) ≤ 1. (21)

Thus B(�,�) is positive definite. Since all dependence on X ∈ Q+ occurs in B(�,�) this guarantees
the convergence of the inner integral in (17) for ε > 0.

We turn to B(ϒ,ϒ). Statement i i i) of Lemma 4.2 asserts that B(Ei , E j ) = 0 for i, j ∈ L ⊂ Ic.
Hence we have

B(ϒ,ϒ) = B(ϒ0, ϒ0) + 4ε(1 − ε)
∑
i, j∈L

(hi − 1)(h j − 1)B(−[Hj , s], Ei ),

where ϒ0 = −2iεAd(k)
∑

j (h
j − 1)[Hj , s]. Note that B(ϒ0, ϒ0) ≥ 0 since ϒ0 ∈ iQ−. The remain-

ing terms of B(ϒ,ϒ) are non-negative since

B(−[Hj , s], Ei ) =
10

B
(

−
∑

α∈	+(Q,a)

α(Hj )φ(sα), Ei

)

=
12

−
∑

α,β∈	+(Q,a)

eβ

i sgn(β(Hi ))α(Hj )B(φ(sα), φ(sβ))

= −
∑

α∈	+(Q,a)

eα
i |α(Hj )|B(φ(sα), φ(sα)) ≥ 0.

Since Ei is non-zero, identity (12) ensures that there exists some α ∈ 	+(Q, a) such that eα
i �= 0,

α(Hi ) �= 0 and sα �= 0. Thus we have

B(−[Hi , s], Ei ) > 0.

Together with (21) this shows that the second (or middle) integral in (17) exists. This conclusion is
not changed by the factor e−2i B(ϒ,A) as B(ϒ, A) is linear in the variables h j whereas B(ϒ,ϒ) is
quadratic. The result depends continuously on k ∈ K and we hence conclude that the outer integral
over the compact group K exists. It follows that all integrals

∫
EPS L ,c(ε) g(·, A)d Q exist for ε > 0.
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3. Proof of iii): The limit limε→0

Recall from Sec. IV C 2 that Fubini’s theorem applies to the integral (15). We repeat the steps
which led to (17) except that now we do not take the absolute value of the integrand. Thus we obtain∫

EPS L ,c(ε)

g(Q, A) d Q =
∫

K

∫
a

+
L ,c

∫
Q+

g(EPS L ,c(ε), A) PL ,c |d Q+||d H ||dμ(k)|. (22)

The reason why statement i i i) of Lemma 4.4 holds true is a very general one: the convergence of
the integral to zero is brought about by cancelations due to an oscillatory term. More specifically, by
integrating along one special direction in Q+ we obtain essentially a regularized delta distribution.
Our parametrization is well suited to exhibit this mechanism explicitly. We will show that it is
possible to perform the limit ε → 0 after doing the inner Gaussian integrations.

In the following, Einstein’s summation convention is in place. We can choose a basis of Q+
with coordinates xl such that the quadratic form Q 	→ Tr Q2 is diagonal. The choice of basis will
be made explicit below. Schematically speaking, the Gaussian integrations over Q+ in (22) are of
the form

IL ,c,ε(H, k) := e−hi g̃i

∫
RdimQ+

e−(xl )2 fl−2i xl gl PL ,c

∏
l

dxl ,

where g̃i (ε, k), fl(ε, hi , k), and gl(ε, hi , k) are functions of k ∈ K , ε ∈ [0, 1] and H ∈ a
+
L ,c. These

functions will be specified as we go along. Now it is possible to introduce sources jl for xl and
perform the integral:

IL ,c,ε(H, k) = e−hi g̃i P ′
L ,c(∂ jl , . . . )

∫
e− fl (xl )2−2i xl (gl+ jl )

∏
l

dxl
∣∣∣

jl=0

= e−hi g̃i P ′
L ,c(∂ jl , . . . )

∏
l

√
π

fl
e− (gl + jl )2

fl

∣∣∣
jl=0

= e−hi g̃i P ′′
L ,c(

1

fl
, gl, . . . )

∏
l

√
π

fl
e− g2

l
fl , (23)

where primes just indicate that these are different polynomials, and the dots represent a dependence
on ε, hi , k, and ∂r Tα,c. Assuming that |L| > 0, we will show that for ε → 0 we have f1 → 0 and
g1 �= 0 for a suitable choice of basis of Q+. We also show that fl ≥ 0 and gl ∈ R for all l and
ε ∈ [0, 1]. The exponential then dominates the polynomial and (23) converges to zero in the limit
of ε → 0. In addition, we show that g̃i > 0, which has the consequence that the remaining integrals
over a

+
L ,c are convergent (since hi > 0).

Thus the issue of convergence is reduced to a discussion of the functions g̃i , fl and gl . We start
with g̃i . Reading it off from its definition by

2i B(ϒ, A) = (hi − 1)g̃i ,

we find that it has the expression

g̃i = 2B(Ad(k)((1 − ε)Ei + 2ε[Hi , s]), A).

From inequality i) of Lemma 4.2 we infer that 2B(Ad(k)Ei , A) ≥ c > 0, since k ∈ K and K is
compact. (Recall that A is fixed.) We thus see that g̃i > 0 for small enough ε.

To discuss the functions fl and gl we have to choose a basis of Q+. For this purpose we fix
some j ∈ L , recalling that L �= ∅ in the situation at hand. We then consider the decomposition

Q+ = Q+,0 ⊕
⊕

α(Hj )�=0

Q+,α ⊕
⊕

α(Hj )=0

Q+,α .
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We define m := dim ⊕α(Hj )�=0 Q+,α and m ′ := dim ⊕α(Hj )=0 Q+,α . Denoting by �Q+ the orthogonal
projection onto Q+ we introduce

X1 := �Q+ (E j ) =
∑

α(Hj )�=0

eα
j sα �= 0.

We extend X1 to an orthogonal basis {Xl}l=1,...,m of ⊕α(Hj )�=0Q+,α . We also fix an orthogonal basis
{Xl}l=m+1,...,m+m ′ of ⊕α(Hj )=0Q+,α which respects the root decomposition. For the basis vectors
{Xl}l=1,...,m+m ′ we have identities like those in (18) and (19).

Recall that on a
+
L ,c we have h j ≥ 1 and therefore |Tα,c(H )| = 1 if α(Hj ) �= 0. As is shown by

B(�,�) =
(20)

B(X0, X0) + (1 − (1 − ε)2)
∑

α(Hj )�=0

B(Xα, Xα)

+
∑

α(Hj )=0

(
1 − (1 − ε)2T 2

α,c(H )
)

B(Xα, Xα)

= B(X0, X0) +
m+m ′∑
l=1

(xl)2 fl , (24)

our choice of basis diagonalizes the quadratic form B(�,�). We also see that fl ≥ 0. In particular,
for l = 1 we have

f1 = ε(2 − ε)B(X1, X1).

Note that f1 → 0 for ε → 0.
It is easy to check that the coefficients gl defined by

−2i B(�, A) − 2B(�,ϒ) = −2i xl gl (25)

are real. By using the statements i i) and i) of Lemma 4.2 we have

lim
ε→0

g1 = B(E j , Ad(k−1)A) > 0.

Thus we obtain the result

lim
ε→0

∫
Q+

g(EPS L ,c(ε), A) PL ,c |d Q+| = 0. (26)

Since the dependence on H ∈ a
+
L ,c in (26) is governed by the exponential function exp(−hi g̃i ) with

g̃i > 0 and the dependence on k ∈ K is continuous, the limit ε → 0 is uniform. Thus, taking the
limit commutes with the outer integrals and we obtain the third part of Lemma 4.4.

4. Proof of iv): Reaching PS

It remains to prove statement iv) of Lemma 4.4. To that end, for any c ∈ C we introduce on
a

+
∅,c × K the two functions

Ic,ε :=
∫
Q+

g(EPS ∅,c(ε), A)P∅,c|d Q+|,

I ′
c,ε :=

∫
Q+

g(P S∅,c, A)χε(P S∅,c)P∅,c(ε = 0, ·)d|Q+|. (27)

To prove the desired statement, it is sufficient to show that

lim
ε→0

∫
K

∫
a

+
∅,c

Ic,ε |d H ||dμ(k)| = lim
ε→0

∫
K

∫
a

+
∅,c

I ′
c,ε |d H ||dμ(k)| (28)
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holds for all c ∈ C . We will do so by using Lebesgue’s dominated convergence theorem on both
sides of (28).

Let us first establish that the two functions defined in (27) converge pointwise to the same
function in the limit of ε → 0. For that, we have to distinguish between two situations for H ∈ a

+
∅,c:

there either exists a non-trivial L ⊂ Ic such that H ∈ a
+
L ,c ∩ a

+
∅,c, or there does not. In the first

situation we can apply the result of Sec. IV C 3 to see that limε→0 Ic,ε(H, k) = 0 for all k ∈ K . A
similar argument yields the same result for the function I ′

c,ε . In the second situation there are no
problems of convergence with the Q+-integral (see (20)) and we can directly set ε = 0, in which
case the two functions coincide by definition. Thus we always have Ic,0 = I ′

c,0.
From now on, for brevity, we discuss only the left hand side of (28), as the discussion of the right

hand side is completely analogous. Our strategy is to show that the function (ε, H, k) 	→ Ic,ε(H, k)
on the compact domain [0, 1] × a

+
∅,c × K is continuous and hence integrable. The property of

continuity on a compact domain implies that the function Ic,ε is dominated by a constant function,
which in turn is integrable as well. Thus we will be able to draw the desired conclusion by applying
Lebesgue’s dominated convergence theorem.

Following the line of reasoning of Subsection IV C 3 we choose for Q+ an orthogonal basis
{X ′

l}l=1,...,dimQ+ compatible with the decomposition ⊕αQ+,α . This means that for each l there exists
a unique root αl (possibly the zero root) such that Xl ∈ Q+,αl . Moreover, whenever a root α is such
that s has non-zero projection sα = π+,α(s), then we take sα ∈ Q+,α to be an element of our basis
set {X ′

l}. We arrange for these non-zero vectors sα to be the first m1 vectors of the set {X ′
l}.

By adaptation (due to the change of basis {Xl} → {X ′
l}) of the definitions (24) and (25) we

obtain new coefficient functions

f ′
l = (1 − (1 − ε)2T 2

αl ,c

)
B(X ′

l , X ′
l),

g′
l = Tr

((
X ′

l + (1 − ε)Tαl ,c φ(X ′
l)
)
k−1 Ak

)
,

superseding the earlier functions fl and gl . If αl is the zero root we set T0,c = 0. Note that g′
l is still

real and f ′
l ≥ 0. By recalling the dependence on H ∈ a

+
∅,c of the functions Tα,c defined in Sec. IV A,

we see that if ε → 0 and if h j → 1 for at least one index j ∈ Ic, then we have f ′
l → 0 for all l with

αl (Hj ) �= 0. In view of this behavior, the set of problematic points where continuity of the function
(ε, H, k) 	→ Ic,ε(H, k) is not obvious is the set

{0} ×
{∑

i∈Ic

hi Hi ∈ a
+
∅,c | ∃i ∈ Ic : hi = 1

}
× K ,

as will be clear presently. To be precise, the limit function Ic,0 is not even defined on this set. Our
main work in the rest of this subsection will be to show that it extends continuously as zero. We will
do so by constructing a continuous function which dominates |Ic,ε | and is zero at the problematic
points.

In the following we restrict the discussion to the case of only one summand of the polynomial
in (23). Its modulus is certainly smaller than

C
∏

l

exp(−g′2
l / f ′

l )

f ′nl/2
l

,

with a constant C > 0 and natural numbers nl . Here we have dropped the factors corresponding
to zero roots, as these are of no relevance for our present purpose. Fixing some regular element
H̃ ∈ a

+
∅,c, so that α(H̃ ) �= 0 for all α ∈ 	+(Q, a), we introduce the functions

g′′
l := Tr

((
X ′

l + sgn(αl(H̃ ))φ(X ′
l)
)
k−1 Ak

)
.

By a short computation, these have the convenient property that

g′2
l − g′′2

l

fl
= − (Tr φ(X ′

l)k
−1 Ak

)2 − 2
Tr(X ′

l k
−1 Ak) Tr

(
φ(X ′

l)k
−1 Ak

)
sgn(αl(H̃ ))(1 + (1 − ε)|Tαl ,c|)
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is a continuous function on the compact space [0, 1] × a
+
∅,c × K and there exists a constant C ′ > 0

for which we have the upper bound

C
∏

l

exp(−g′2
l / f ′

l )

f ′nl/2
l

< C ′ ∏
l

exp
(−g′′2

l / f ′
l

)
f ′nl/2
l

. (29)

For the next step, we recall the constancy on a
+
∅,c of the sign function sgn(α(H̃ )) = sgn(αl(Hj ))

for αl(Hj ) �= 0. By parts i) and i i) of Lemma 4.2 and our choice of basis elements X ′
l = sαl for

l = 1, . . . , m1 we then have ∑
l≤m1 and αl (Hj )�=0

eαl
j g′′

l = Tr(E j k
−1 Ak) > 0 (30)

for every j ∈ Ic. For the following discussion we let k ∈ K be arbitrary but fixed. Inequality (30)
guarantees that there exists a neighborhood Uk of k so that for each j ∈ {1, . . . , dim a} there exists
an l j ∈ {1, . . . , dimQ+} with the property that g′′

l j
> 0 on Uk . By inspection of the right hand side

of (29) one can see that its behavior (in the limit ε → 0 and close to the set of problematic points) is
very similar to that of exp(−1/x)/xa for x → 0 and positive exponent a. To make this observation
more tangible we now show how to simplify the dependence of f ′

l on H ∈ a
+
∅,c. As a first step, we

note that only the first factor on the right hand side of

f ′
l = (1 − (1 − ε)|Tαl ,c|)(1 + (1 − ε)|Tαl ,c|)B(X ′

l, X ′
l )

is relevant for the discussion of the limit behavior. Now let H1, H2 ∈ a
+
∅,c and write Tj ≡ |Tαl ,c(Hj )|

and bl ≡ B(X ′
l , X ′

l ) for short. By invoking the addition formula for the hyperbolic tangent,

tanh(x + y) = tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
,

and observing that this formula carries over to our functions Tα,c, we obtain

1 − (1 − ε)|Tαl ,c(H1 + H2)| = (1 − (1 − ε)T1)(1 − (1 − ε)T2) + ε(2 − ε)T1T2

1 + T1T2
.

We claim that this identity yields the following bounds:

1

2

∏
i=1,2

(1 − (1 − ε)Ti ) ≤ b−1
l f ′

l (ε, H1 + H2) ≤ 6
∏

i=1,2

√
1 − (1 − ε)Ti , (31)

of which the left one is immediate. To verify the right inequality we observe that, by the identity
preceding it, a stronger statement is

(1 − (1 − ε)T1)(1 − (1 − ε)T2) + ε(2 − ε)T1T2 ≤ 3
∏

i=1,2

√
1 − (1 − ε)Ti .

Owing to 0 ≤ Ti ≤ 1 this inequality is obviously true if ε = 0. So let 0 < ε ≤ 1. Then the two square
root factors on the right hand side never vanish and we may divide by them. Since the resulting first
term on the left hand side is never greater than one, the remaining job is to show that

ε(2 − ε)T1T2√
1 − (1 − ε)T1

√
1 − (1 − ε)T2

≤ 2.

This follows from T1T2 ≤ 1 and
√

1 − (1 − ε)T1
√

1 − (1 − ε)T2 ≥ ε, which concludes our proof of
(31). As an easy consequence of (31) we have

1

8bl
f ′
l (H1) f ′

l (H2) ≤ f ′
l (H1 + H2) ≤ 6

√
f ′
l (H1) f ′

l (H2).

We now use these bounds to simplify the dependence on H =∑ hi Hi ∈ a
+
∅,c on the right hand

side of (29). Iteration gives

exp
(−g′′2

l / f ′
l

)
f ′nl/2
l

≤ exp(−C̃g′′2
l /
∏

i∈Ic
(1 − (1 − ε)|Tαl ,c(hi Hi )|)ni,c )∏

i∈Ic
(1 − (1 − ε)|Tαl ,c(hi Hi )|)n′

i,c
. (32)
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On the right hand side hiαl(Hi ) is meant without summation convention and C̃, ni,c and n′
i,c are

positive constants. By (11) and (12) it follows that |αl j (Hj )| = maxα|α(Hj )|. This property can be
used to see that (32) is bounded by

exp(−C̃g′′2
l /
∏

i∈Ic
(1 − (1 − ε)|Tαl ,c(hi Hi )|)ni,c )∏

i∈Ic
(1 − (1 − ε)|Tαli ,c

(hi Hi )|)n′
i,c

.

The exponential part of the right hand side is continuous and hence we have the bound

C
dimQ+∏

l=1

exp(−g′2
l / f ′

l )

f ′nl/2
l

< C̃ ′
dima∏
i=1

exp(−C̃g′′2
li

/(1 − (1 − ε)|Tαli ,c
(hi Hi )|)ni,c )

(1 − (1 − ε)|Tαli ,c
(hi Hi )|)m ′

i,c

where C̃ ′ and m ′
i,c are positive constants. Now it is easy to see that the right hand side is essentially a

product of continuous functions of the form exp(−c/xa)/xb (with a, b, c > 0) which are composed
with continuous functions of the form (1 − (1 − ε)|Tαli ,c

(hi Hi )|). Thus we obtain a dominating
function for Ic,ε on a neighborhood of k. In particular this yields continuity of Ic,ε in each point
of the set {0} × {∑i∈Ic

hi Hi ∈ a
+
∅,c | ∃i ∈ Ic : hi = 1} × {k}. Since k was taken to be arbitrary we

obtain that Ic,ε is a continuous function on [0, 1] × a
+
∅,c × K . Thus Ic,ε attains a maximum. The

maximum is a dominating function and hence Lebesgue’s dominated convergence theorem can be
applied. This finishes the proof of statement iv) in Lemma 4.4, which was the last step needed to
complete the proof of Theorem 2.1.

Remark 4.1: To obtain the theorem when g = k ⊕ p is the direct sum of an Abelian and a
semisimple Lie algebra, let a′ ⊕ a denote the corresponding decomposition of a maximal Abelian
subalgebra of p and replace a+ by a′ × a+ and H by H ′ + H everywhere in the proof. In addition
let k̃ denote the semisimple part of k and replace k by k̃ everywhere in the proof.

Remark 4.2: It is possible to choose different regularization functions χε . The choice made here
seems natural, as it has the highest invariance possible and was also used in earlier work.

Remark 4.3: The convergence properties can be seen quite clearly in the discussion of
Ic,ε(ε, H, [k]). The convergence is not uniform in A. To have uniform convergence, we need
As ≥ δ > 0. In applications with As ≥ 0, one has to replace A by A + δs. For fixed δ > 0 this
gives uniform convergence in A.

D. Different representations of the integral, and alternating signs

In this section we establish two different representations of the integral over the PS domain.
These are stated in Corollaries 2.1 and 2.2.

Recall that the “Jacobian” J ′(λ) which appears in both representations may have alternating
sign. In the following proof of Corollary 2.1 we pinpoint the origin of these surprising signs. First
we review the setting. Recall that the elements of k are antihermitian and those of Q+ hermitian.
Since g̃ = k ⊕ Q+ is closed under hermitian conjugation, it is the direct sum of an Abelian and a
semisimple Lie algebra. The semisimple part of g̃ is denoted by g̃s . We choose a maximal Abelian
subalgebra h of Q+ containing s. The decomposition of g̃ into an Abelian and a semisimple part
induces a decomposition of h = ha ⊕ hs and k = ka ⊕ ks . Here ha and ka lie in the Abelian part of
g̃ while hs and ks lie in the semisimple part of g̃. Let (h+

s )o denote a positive open Weyl chamber
in hs with respect to the semisimple Lie algebra g̃s . We also define Ks = exp ks . Then we have the
following reparametrization:

R̃ : p × Ks/ZKs (hs) × (h+
s )o × ha → p ⊕ Q+ ,

(Y, [k], Hs, Ha) 	→ (Y, k(Hs + Ha)k−1).

Recall that K = exp k is closed by assumption and G denotes the closed and analytic subgroup of
GL(n,C) with Lie algebra g = k ⊕ p. The subgroup Ka = exp ka ⊂ K is central and closed. By
the diffeomorphism p → exp p and the isomorphism Ks/ZKs (hs) ∼= K/(Ka ZKs (hs)) we have the
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reparametrization

R : exp(p)K/(Ka ZKs (hs)) × (h+
s )o × ha → p ⊕ Q+ ,

(eY [k], Hs, Ha) 	→ (Y, k(Hs + Ha)k−1).

By Ka ZKs (hs) = ZK (hs) and the Cartan decomposition G = exp(p)K (see Ref. 11) we obtain yet
another parametrization of the PS domain,

P S ◦ R : G/ZK (hs) × (h+
s )o × ha → Q,

([g], Hs, Ha) 	→ g(Hs + Ha)g−1,

which is the one most frequently used in the literature.
To proceed with the proof of Corollary 2.1, we have to diagonalize the commutator action of

h on g̃ and on p ⊕ Q−. For this purpose we note that the values α(Hs + Ha) of the roots α are real
since [Hs + Ha, ·] is hermitian with respect to the hermitian form Tr(X†Y ). Moreover α(Ha) = 0
for α ∈ 	+(k ⊕ Q+, h).

The pullback of d Q by P S ◦ R is then

(P S ◦ R)∗d Q = �(Hs + Ha) dμ([g]) ∧ d H,

where dμ([g]) is a left invariant volume form on G/ZK (hs) and d H is a constant volume form on
h. Denoting by dα the dimension of the root space corresponding to α, we get

�(Hs + Ha) =
∏

α∈	+(k⊕Q+,h)

α(Hs)dα

∏
β∈	+(p⊕Q−,h)

β(Hs + Ha)dβ .

Note that � differs from J ′ in Corollary 2.1 only by taking the modulus of the roots in 	+(k ⊕ Q+, h).
But these roots α ∈ 	+(k ⊕ Q+, h) are positive when evaluated on (h+

s )o. Therefore we have the
following equality:∫

P S◦R
f (Q) d Q =

∫
id

f (g(Hs + Ha)g−1)J ′(Hs + Ha) dμ([g]) ∧ d H,

where id denotes the identity on G/ZK (hs) × (h+
s )o × ha .

At this point a crucial difference between the roots in 	+(k ⊕ Q+, h) and those in 	+(p ⊕ Q−, h)
is detected: since the definition of the Weyl chamber ho

+ refers only to the former roots, it is possible
for the latter roots to change sign on ho

+. These sign changes are particulary evident in our approach
as we are integrating differential forms instead of densities (or measures).

Now it is convenient to replace the volume form dμ([g]) by the left invariant measure |dμ([g])|
and d H by Lebesgue measure |d H | on h:∫

P S◦R

f (Q) d Q =
∫

G/Z K (hs )×(h+
s )o×ha

f (g(Hs + Ha)g−1)J ′(Hs + Ha)|dμ([g])||d H |.

The replacement of G/(Ka ZKs (hs)) by G simply leads to a change of normalization constant
c′ ∈ R \ {0}:∫

P S◦R

f (Q) d Q = c′
∫

G×(h+
s )o×ha

f (g(Hs + Ha)g−1)J ′(Hs + Ha)|dμ(g)||d H |,

where |dμ(g)| denotes Haar measure on G.
Let NKs (hs) denote the normalizer of exp hs in Ks . In the following we make use of the Weyl

group NKs (hs)/ZKs (hs). This Weyl group acts on hs and generates hs from h+
s . To exploit this

property we need that J ′ is invariant under the action of the Weyl group. Recall that J ′ is given by

J ′(H ) =
∏

α∈	+(k⊕Q+,h)

|α(H )dα |
∏

β∈	+(p⊕Q−,h)

β(H )dβ .

The first factor is trivially invariant, whereas for the second factor an additional argument is needed.
For that purpose we define a root β ∈ 	(p ⊕ Q−, h) to be positive if β(s) > 0. This definition makes
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sense because β(s) �= 0 for all roots β ∈ 	(p ⊕ Q−, h). Since s is Ad(K ) invariant we conclude
that the action of the Weyl group does no more than permute the roots in 	+(p ⊕ Q−, h). Hence
	+(p ⊕ Q−, h) is Weyl-invariant and so is J ′. Now the Haar measure |dμ(g)| is G-bi-invariant and
hence Weyl-invariant. Therefore, introducing another normalization constant c′′ ∈ R \ {0} we have∫

P S◦R

f (Q) d Q = c′′
∫

G×h

f (gHg−1)J ′(H )|dμ(g)||d H |.

By setting f = g · χε we obtain Corollary 2.1.
Since PS is nearly everywhere injective and regular by assumption, so is P S ◦ R. Application

of the change of variable theorem then yields Corollary 2.2.
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APPENDIX A: CONTRIBUTIONS FROM ∂a+

Here we give the detailed argument showing that for our purpose of integrating over PS and
EPS ε the contributions from the boundary ∂a+ of the Weyl chamber a+ are irrelevant, as they are
of codimension at least two.

Without loss, we fix any c ∈ C and let Hi ∈ a+
c ∩ ∂a+ be any one of the generators of a+

c which
also lie in ∂a+ (if there is no such generator then there is nothing to prove). By removing this
generator we get a boundary component

a
+
i,c := ai,c ∩ a+ ⊂ ∂a+

c ∩ ∂a+ , ai,c :=
{∑

j∈Ic\{i}
h j Hj | h j ∈ R

}
.

Next recall the definition of P Sc in (6). We now show that by restricting to a
+
i,c in the leftmost

factor of the domain of definition of P Sc we get a domain of codimension at least two. Here the
main observation is that the dimension of the isotropy group of a changes at the boundary of a+

and, in particular, dim ZK (ai,c) > dim ZK (a). This is seen as follows. Each face of ∂a+ lies in the
zero locus ker α of some root α ∈ 	(g, a) and we can arrange for ai,c ⊂ ker α. If gα is the root
space of α, the group generated by Fixθ (gα ⊕ g−α) �⊂ LieZK (a) leaves the face a

+
i,c invariant. When

restricting P S ◦ RI in the first factor to a
+
i,c we may replace the second factor K/ZK (a) by the

lower dimensional space K/ZK (ai,c) without changing the image of the parametrization. Thus the
reduction dim a

+
i,c < dim a is accompanied by a reduction of dimension of the K -orbits on H ∈ a

+
i,c.

Altogether, the dimension is reduced by no less than two. Moreover, the eigenspace decomposition
of Q with respect to a is a refinement of the eigenspace decomposition with respect to the smaller
abelian algebra ai,c. Hence our further reparametrizations of PS (by RIII and RIV, which rely on an
eigenspace decomposition of Q) are compatible with the restriction of a to ai,c. This completes the
argument for P Sc.

Turning to EPS ε , we have to argue that the analogous restriction is still well defined. For that,
it is enough to note that for X ∈ ZK (ai,c) we have [X, E j ] = 0 if j �= i . By this token we see that
also for EPS ε the contributions from ∂a+ are of codimension at least two.

APPENDIX B: EQUIVALENCE OF SW AND Euclid

A detailed discussion of the SW domain and the validity of the pertinent Hubbard-Stratonovich
transformation can be found in Ref. 14. Here we give another proof by deforming SW into Euclid .
By using some of the constructions of the proof for the PS domain, this deformation can be stated
very explicitly.
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We start with a brief discussion of the convergence of the Gaussian integral (1) over

SW : p ⊕ Q+ → QC,

(Y, X ) 	→ X − ibeY se−Y .

For X ∈ Q+ and Y ∈ p we have that B(X, X ) ≥ 0 and

B(ibeY se−Y , ibeY se−Y ) = −b2 B(s, s)

is constant. The cross term B(X, ibeY se−Y ) is purely imaginary, and

−i B(−ibeY se−Y , A) = −b Tr(e−2Y As) < 0

for b > 0 yields convergence in the p directions.
To see the properties of SW more explicitly, we use the reparametrization RI and the decompo-

sition of s to obtain

SW ◦ RI : a+ × K/ZK (a) × Q+ → QC,

(H, [k], X ) 	→ X − ib Ad(k)
(

s0 +
∑

α∈	+(Q,a)

(
cosh(α(H ))sα + sinh(α(H ))φ(sα)

))
.

From this parametrization we see that the image of the boundary of a+ is again of codimension at
least two, which clearly shows that ∂(SW ) = 0.

A homotopy from SW to Euclid is given by

E SW : [0, 1] × a+ × K/ZK (a) × Q+ → QC,

(t, H, [k], X ) 	→ X − ib Ad(k)
[
(1 − t)s0+

∑
α∈	+(Q,a)

[(cosh((1 − t)α(H )) − t)sα + sinh((1 − t)α(H ))

1 − t
φ(sα)]

]
.

Note that E SW (t = 0) = SW and E SW (t = 1, H, [k], X ) = X − ib[k Hk−1, s]. Since [p, s] = Q−
we obtain E SW (1) = Euclid .

To complete the argument we show that the integral over E SW is convergent. For this we note
that for Qt = E SW (t, H, [k], X ) we have

B(Qt , Qt ) = B(X, X ) +
∑

α∈	+(Q,a)

(2t − t2)
sinh2((1 − t)α(H ))

(1 − t)2
B(sα, sα) + . . . ,

where the dots represent unimportant terms; these are terms which are purely imaginary, terms which
are linear in sinh and all terms containing s0. Owing to B(X, X ) ≥ 0 and B(sα, sα) > 0 we obtain
convergence for t > 0. For t = 0 convergence is ensured by the B(Q, A) term, as was discussed
above for the SW parametrization.
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