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We develop a classification of composite operators without gradients at Anderson-transition critical points
in disordered systems. These operators represent correlation functions of the local density of states (or of
wave-function amplitudes). Our classification is motivated by the Iwasawa decomposition for the field of the
pertinent supersymmetric σ model: The scaling operators are represented by “plane waves” in terms of the
corresponding radial coordinates. We also present an alternative construction of scaling operators by using
the notion of highest-weight vector. We further argue that a certain Weyl-group invariance associated with the
σ -model manifold leads to numerous exact symmetry relations between the scaling dimensions of the composite
operators. These symmetry relations generalize those derived earlier for the multifractal spectrum of the leading
operators.
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I. INTRODUCTION

The phenomenon of Anderson localization of a quantum
particle or a classical wave in a random environment is one
of the central discoveries made by condensed-matter physics
in the second half of the last century.1 Although more than 50
years have passed since Anderson’s original paper, Anderson
localization remains a vibrant research field.2 One of its central
research directions is the physics of Anderson transitions,3 in-
cluding metal-insulator transitions and transitions of the quan-
tum Hall type (i.e., between different phases of topological
insulators). While such transitions are conventionally observed
in electronic conductor and semiconductor structures, there is
also a considerable number of other experimental realizations
actively studied in recent and current works. These include
localization of light,4 cold atoms,5 ultrasound,6 and optically
driven atomic systems.7 On the theory side, the field received
a strong boost through the discovery of unconventional sym-
metry classes and the development of a complete symmetry
classification of disordered systems.3,8–10 The unconventional
classes emerge due to additional particle-hole and/or chiral
symmetries that are, in particular, characteristic for models
of disordered superconductors and disordered Dirac fermions
(e.g., in graphene). In total one has 10 symmetry classes,
including three standard (Wigner-Dyson) classes, three chiral,
and four Bogoliubov–de Gennes (“superconducting”) classes.
This multitude is further supplemented by the possibility for
the underlying field theories to have a nontrivial topology (θ
and Wess-Zumino terms), leading to a rich “zoo” of Anderson-
transition critical points. The recent advent of graphene11 and
of topological insulators and superconductors12 reinforced the
experimental relevance of these theoretical concepts.13

In analogy with more conventional second-order phase
transitions, Anderson transitions fall into different universality

classes according to the spatial dimension, symmetry, and
topology. In each of the universality classes, the behavior of
physical observables near the transition is characterized by
critical exponents determined by the scaling dimensions of the
corresponding operators.

A remarkable property of Anderson transitions is that
the critical wave functions are multifractal due to their
strong fluctuations. Specifically, the wave-function moments
(or equivalently, the averaged participation ratios 〈Pq〉 =
〈∫ ddr|ψ(r)|2q〉) show anomalous multifractal scaling with
respect to the system size L,

Ld〈|ψ(r)|2q〉 ∝ L−τq , τq = d(q − 1) + �q, (1.1)

where d is the spatial dimension, 〈· · · 〉 denotes the operation
of disorder averaging, and �q are anomalous multifractal
exponents that distinguish the critical point from a simple
metallic phase, where �q ≡ 0. Closely related is the scaling
of moments of the local density of states (LDOS) ν(r),

〈νq〉 ∝ L−xq , xq = �q + qxν, (1.2)

where xν ≡ x1 controls the scaling of the average LDOS, 〈ν〉 ∝
L−xν . Multifractality implies the presence of infinitely many
relevant [in the renormalization-group (RG) sense] operators at
the Anderson-transition critical point. The first steps towards
the experimental determination of multifractal spectra have
been made recently.6,7,18

Let us emphasize that when we speak about a qth moment,
we require neither that q is an integer nor that it is positive.
Throughout the paper, the term “moment” is understood in this
broad sense.

In Refs. 19 and 20 a symmetry relation for the LDOS
distribution function (and thus for the LDOS moments) in

125144-11098-0121/2013/87(12)/125144(26) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.125144


I. A. GRUZBERG, A. D. MIRLIN, AND M. R. ZIRNBAUER PHYSICAL REVIEW B 87, 125144 (2013)

the Wigner-Dyson symmetry classes was derived:

P(ν) = ν−q∗−2P(ν−1), 〈νq〉 = 〈νq∗−q〉, (1.3)

with q∗ = 1. Equation (1.3) is obtained in the framework
of the nonlinear σ model and is fully general otherwise;
i.e., it is equally applicable to metallic, localized, and crit-
ical systems. An important consequence of Eq. (1.3) is an
exact symmetry relation for Anderson-transition multifractal
exponents21

xq = xq∗−q . (1.4)

While σ models22 in general are approximations to particular
microscopic systems, Eq. (1.4) is exact in view of the
universality of critical behavior.

In a recent paper,23 the three of us and A. W. W. Lud-
wig uncovered the group-theoretical origin of the symmetry
relations (1.3) and (1.4). Specifically, we showed that these
relations are manifestations of a Weyl symmetry group acting
on the σ -model manifold. This approach was further used to
generalize these relations to the unconventional (Bogoliubov–
de Gennes) classes CI and C, with q∗ = 2 and q∗ = 3,
respectively.

The operators representing the averaged LDOS mo-
ments (1.2) by no means exhaust the composite operators
characterizing LDOS (or wave-function) correlations in a
disordered system. They are distinguished in that they are
the dominant (or most relevant) operators for each q, but they
only represent “the tip of the iceberg” of a much larger family
of gradientless composite operators. Often, the subleading
operators are also very important physically. An obvious
example is the two-point correlation function

Kαβ(r1,r2) = ∣∣ψ2
α(r1)ψ2

β(r2)
∣∣ − ψα(r1)ψβ(r2)ψ∗

α (r2)ψ∗
β (r1),

(1.5)

which enters in the Hartree-Fock matrix element of a two-body
interaction,

Mαβ =
∫

dr1dr2Kαβ(r1,r2)U (r1 − r2). (1.6)

Questions about the scaling of the disorder-averaged function
Kαβ(r1,r2), its moments, and the correlations of such objects,
arise naturally when one studies, e.g., the interaction-induced
dephasing at the Anderson-transition critical point.24–26

The goals and the results of this paper are threefold.
(1) We develop a systematic and complete classification

of gradientless composite operators in the supersymmetric
nonlinear σ models of Anderson localization. Our approach
here differs from that of Höf and Wegner27 and Wegner28,29 in
two respects. First, we work directly with the supersymmetric
(SUSY) theories rather than with their compact replica
versions as in Refs. 27–29. Second, we employ (a superization
of) the Iwasawa decomposition and the Harish-Chandra
isomorphism, which allow us to explicitly construct “radial
plane waves” that are eigenfunctions of the Laplace-Casimir
operators of the σ -model symmetry group, for arbitrary (also
noninteger, negative, and even complex) values of a set of
parameters qi [generalizing the order q of the moment in
Eqs. (1.1) and (1.2)]. We also develop a more basic construc-
tion of scaling operators as highest-weight vectors (and explain
the link with the Iwasawa-decomposition formalism).

(2) We establish a connection between these composite
operators and the physical observables of LDOS and wave-
function correlators, as well as with some transport observ-
ables.

(3) Furthermore, the Iwasawa-decomposition formalism al-
lows us to exploit a certain Weyl-group invariance and deduce
a large number of relations between the scaling dimensions
of various composite operators at criticality. These symmetry
relations generalize Eq. (1.4) obtained earlier for the most
relevant operators (LDOS moments).

It should be emphasized that we do not attempt to generalize
Eq. (1.3), which is also valid away from criticality, but rather
focus on Anderson-transition critical points. The reason is as
follows. The derivation of Eq. (1.3) in Ref. 23 was based
on a (super-)generalization of a theorem due to Harish-
Chandra. We are not able to further generalize this theorem
to the nonminimal σ models needed for the generalization
of Eq. (1.3) to subleading operators. For this reason, we use
a weaker version of the Weyl-invariance argument which is
applicable only at criticality. This argument is sufficient to get
exact relations between the critical exponents.

In the main part of the paper we focus on the unitary Wigner-
Dyson class A (which includes, in particular, the quantum Hall
critical point). Generalizations to other symmetry classes, as
well as some of their peculiarities, are discussed at the end of
the paper.

The structure of the paper is as follows. In Sec. II we
briefly review Wegner’s classification of composite operators
in replica σ models by Young diagrams. In Sec. III we
introduce the Iwasawa decomposition for SUSY σ models of
Anderson localization and, on its basis, develop a classification
of the composite operators. The correspondence between the
replica and SUSY formulations is established in Sec. IV for
the case of the minimal SUSY model. Section V is devoted
to the connection between the physical observables (wave-
function correlation functions) and the σ -model composite
operators. This subject is further developed in Secs. VI A–
VI D, where we identify observables that correspond to exact
scaling operators and thus exhibit pure power scaling (without
any admixture of subleading power-law contributions). In
Sec. VI E we formulate a complete version (going beyond
the minimal-SUSY model considered in Sec. IV) of the
correspondence between the full set of operators of our SUSY
classification and the physical observables (wave-function and
LDOS correlation functions). An alternative and more basic
approach to scaling operators via the notion of highest-weight
vector is explained in Sec. VI F. We also indicate how
this approach is related to the one based on the Iwasawa
decomposition. In Sec. VII we employ the Weyl-group invari-
ance and deduce symmetry relations among the anomalous
dimensions of various composite operators at criticality. The
generalization of these results to other symmetry classes is
discussed in Sec. VIII. In Sec. IX we analyze the implications
of our findings for transport observables defined within
the Dorokhov-Mello-Pereyra-Kumar (DMPK) formalism. In
Sec. X we discuss peculiarities of symmetry classes whose
σ models possess additional O(1) (classes D and DIII) or
U(1) (classes BDI, CII, DIII) degrees of freedom. Section XI
contains a summary of our results, as well as a discussion of
open questions and directions for further research.
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II. REPLICA σ -MODELS AND WEGNER’s RESULTS

The replica method leads to the reformulation of the
localization problem as a theory of fields taking values in a
symmetric space G/K , a nonlinear σ model.3,30 If one uses
fermionic replicas, the resulting σ -model target spaces are
compact, and for the Wigner-Dyson unitary class (a.k.a. class
A) they are of the type G/K with G = U(m1 + m2) and K =
U(m1) × U(m2). Bosonic replicas lead to the noncompact
counterpart G′/K where G′ = U(m1,m2). The total number
of replicas m = m1 + m2 is taken to zero at the end of any
calculation, but at intermediate stages it has to be sufficiently
large in order for the σ model to describe high-enough
moments of the observables of interest. The σ -model field
Q is a matrix, Q = g
g−1, where 
 = diag(1m1 , − 1m2 ) and
g ∈ G. Since Q does not change when g is multiplied on the
right (g → gk) by any element k ∈ K , the set of matrices Q

realizes the symmetric space G/K . Clearly, Q satisfies the
constraint Q2 = 1. Roughly speaking, one may think of the
symmetric space G/K as a “generalized sphere.”

The action functional of the σ model has the following
structure:

S[Q] = 1

16πt

∫
ddr Tr(∇Q)2 + h

∫
ddr TrQ
. (2.1)

Here Q(r) is the Q-matrix field depending on the spatial
coordinates r. The parameter 1/16πt in front of the first
term is 1/8 times the conductivity (in natural units). In the
RG framework, t serves as a running coupling constant of
the theory. While the first term is invariant under conjugation
Q(r) → g0Q(r)g−1

0 of the Q-matrix field by any (spatially
uniform) element g0 ∈ G, the second term causes a reduction
of the symmetry from G to K; i.e., only conjugation Q(r) →
k0Q(r)k−1

0 by k0 ∈ K leaves the full action invariant. The
second term provides an infrared regularization of the theory in
infinite volume; physically, h is proportional to the frequency.
When studying scaling properties, it is usually convenient
to work at an imaginary frequency, which gives a nonzero
width to the energy levels. If the physical system has a spatial
boundary with coupling to metallic leads, then boundary terms
arise which are K invariant like the second term in Eq. (2.1).

Quite generally, physical observables are represented by
composite operators of the corresponding field theory. For the
case of the compact σ model resulting from fermionic replicas,
a classification of composite operators without spatial deriva-
tives was developed by Höf and Wegner27 and Wegner.28,29

It goes roughly as follows. The composite operators were
constructed as polynomials in the matrix elements of Q,

P =
∑

i1,...,i2k

Ti1,...,i2k
Qi1,i2 · · · Qi2k−1,i2k

. (2.2)

Such polynomials transform as tensors under the action (Q →
gQg−1) of the group G = U(m1 + m2). They decompose
into polynomials that transform irreducibly under G, and
composite operators (or polynomials in Q) belonging to
different irreducible representations of the symmetry group
G do not mix under the RG flow. The renormalization within
each irreducible representation is characterized by a single
renormalization constant. Therefore, fixing any irreducible
representation it is sufficient to focus on operators in a

suitable one-dimensional subspace. In view of the K symmetry
of the action, a natural choice of subspace is given by
K-invariant operators, i.e., those polynomials that satisfy
P (Q) = P (k0Qk−1

0 ) for all k0 ∈ K . It can be shown27 that
each irreducible representation occurring in Eq. (2.2) contains
exactly one such operator. We may therefore restrict our
attention to K-invariant operators. By their K invariance,
such operators can be represented as linear combinations of
operators of the form

Pλ = Tr(
Q)k1 · · · Tr(
Q)k , (2.3)

where  = min{m1,m2} and λ ≡ {k1, . . . ,k} is a partition
k = k1 + · · · + k such that k1 � · · · � k � 0. In particular,
for k = 1 we have one such operator, {1}, for k = 2 �  two
operators, {2} and {1,1}, for k = 3 �  three operators {3},
{2,1}, and {1,1,1}, for k = 4 �  five operators {4}, {3,1},
{2,2}, {2,1,1}, and {1,1,1,1}, and so on.26 As described below,
operators of order k correspond to observables of order k in
the LDOS or, equivalently, of order 2k in the wave-function
amplitudes.

It turns out that the counting of partitions yields the number
of different irreducible representations that occur for each
order k of the operator. More precisely, there is a one-to-one
correspondence between the irreducible representations of
G = U(m1 + m2) which occur in (2.2) and the set of irre-
ducible representations of U(),  = min(m1,m2), as given by
partitions λ = (k1, . . . ,k). We may also think of the partition λ

as a Young diagram for U(). (Please note that Young diagrams
and the corresponding partitions are commonly denoted by
using parentheses as opposed to the curly braces of the above
discussion. An introduction to Young diagrams and their use
in our context is given in Appendix A.)

The claimed relation with the representation theory of U()
becomes plausible if one uses the Cartan decomposition G =
KAK , by which each element of G is represented as g = kak′,
where k,k′ ∈ K , a ∈ A, and A � U(1) is a maximal Abelian
subgroup of G with Lie algebra contained in the tangent
space of G/K at the origin. In this decomposition one has
Q = ka
a−1k−1. A K-invariant operator P satisfies P (Q) =
P (ka
a−1k−1) = P (a
a−1). In other words, P depends only
on a set of  “K-radial” coordinates for a ∈ A � U(1); this is
ultimately responsible for the one-to-one correspondence with
the irreducible representations of U().

The K-invariant operators associated with irreducible
representations are known as zonal spherical functions. For the
case of G/K = U(2)/U(1) × U(1) = S2, which is the usual
two-sphere, they are just the Legendre polynomials, i.e., the
usual spherical harmonics with magnetic quantum number
zero; see also Appendix B. Please note that here and throughout
the paper we use the convention that the symbol for the direct
product takes precedence over the symbol for the quotient
operation. Thus,

G/K1 × K2 ≡ G/(K1 × K2).

From the work of Harish-Chandra31 it is known that the zonal
spherical functions have a very simple form when expressed
by N -radial coordinates that originate from the Iwasawa
decomposition G = NAK; see Sec. III below. This will make
it possible to connect Wegner’s classification of composite

125144-3



I. A. GRUZBERG, A. D. MIRLIN, AND M. R. ZIRNBAUER PHYSICAL REVIEW B 87, 125144 (2013)

operators with our SUSY classification, where we use the
Iwasawa decomposition.

Höf and Wegner27 calculated the anomalous dimensions
of the polynomial composite operators (2.2) for σ models on
the target spaces G(m1 + m2)/G(m1) × G(m2) for G = O,
U, and Sp (whose replica limits correspond to the Anderson
localization problem in the Wigner-Dyson classes A, AI,
and AII, respectively) in 2 + ε dimensions up to three-loop
order. Wegner28,29 extended this calculation up to four-loop
order. The results of Wegner for the anomalous dimen-
sions are summarized in the ζ function for each composite
operator:

ζλ(t) = a2(λ)ρ(t) + ζ (3)c3(λ)t4 + O(t5), (2.4)

where t , serving as a small parameter of the expansion, is
the renormalized coupling constant of the σ model. The
coefficients a2 and c3 depend on the operator Pλ (defined
by the Young diagram λ) and on the type of model (O, U, or
Sp, as well as m1 and m2). The function ρ(t) depends on the
model only and not on λ. The coefficient a2 happens to be the
quadratic Casimir eigenvalue associated to the representation
with Young diagram λ (A6). For the case of unitary symmetry
(class A), on which we focus, the coefficients satisfy the
following symmetry relations:

a2(λ,m) = −a2(λ̃, − m), (2.5)

c3(λ,m) = c3(λ̃, − m), (2.6)

where λ̃ is the Young diagram conjugate to λ; i.e., λ̃ is obtained
by reflection of λ with respect to the main diagonal. By using
the results of Table II from Ref. 29, complementing them
with these symmetry relations, and taking the replica limit
m1 = m2 = 0, we can obtain the values of the coefficients
a2 and c3 for all polynomial composite operators up to order
k = 5. These values are presented in Table I. The function ρ(t)

TABLE I. Coefficients a2 and c3 of the ζ function for class A
in the replica limit. Results for composite operators characterized by
Young diagrams up to size |λ| = k = 5 are shown.

|λ| λ a2 c3

1 (1) 0 0
2 (2) 2 6

(1,1) −2 6
3 (3) 6 54

(2,1) 0 0
(1,1,1) −6 54

4 (4) 12 216
(3,1) 4 24
(2,2) 0 0

(2,1,1) −4 24
(1,1,1,1) −12 216

5 (5) 20 600
(4,1) 10 150
(3,2) 4 24

(3,1,1) 0 0
(2,2,1) −4 24

(2,1,1,1) −10 150
(1,1,1,1,1) −20 600

is given for this model (unitary case, replica limit) by

ρ(t) = t + 3
2 t3. (2.7)

A note on conventions and nomenclature is in order here.
The way we draw Young diagrams (see Appendix A) is the
standard way. Thus, the horizontal direction corresponds to
symmetrization and the vertical one to antisymmetrization. In
Wegner’s approach fermionic replicas are used; hence, his
natural observables are antisymmetrized products of wave
functions, whereas the description of symmetrized products
(like LDOS moments) requires the symmetry group to be
enlarged. Wegner uses a different convention for labeling the
invariant scaling operators, employing the Young diagrams
conjugate to the usual ones used here. Thus, for example,
the LDOS moment 〈νq〉 corresponds in our convention to the
Young diagram (q), while it is labeled by (1q) in Wegner’s
works. This has to be kept in mind when comparing our
Table I with Table II of Ref. 29. Of course, if one uses bosonic
replicas, the situation is reversed: The natural objects then
are symmetrized products and the roles of the horizontal and
vertical directions get switched.

While the works 27–29 signified a very important advance
in the theory of critical phenomena described by nonlinear σ

models, the classification of gradientless composite operators
developed there is complete only for compact models. This
can be understood already by inspecting the simple example
of U(2)/U(1) × U(1) = S2 (two-sphere), which is the target
space of the conventional O(3) nonlinear σ model. As men-
tioned above, the corresponding K-invariant composite oper-
ators are the usual spherical harmonics Yl0 with l = 0,1, . . .,
which are Legendre polynomials in cos θ . (The polar angle θ

parametrizes the Abelian group A, which is one-dimensional
in this case.) It is well known that the spherical harmonics
indeed form a complete system on the sphere. The angular
momentum l plays the role of the size k = |λ| of the Young
diagram. The situation changes, however, when we pass to
the noncompact counterpart, U(1,1)/U(1) × U(1), which is a
hyperboloid H 2. The difference is that now the polar direction
(parametrized by the coordinate θ ) becomes noncompact. For
this reason, nothing forces the angular momentum l to be
quantized. Indeed, the spherical functions on a hyperboloid
H 2 are characterized by a continuous parameter (determining
the order of an associated Legendre function) which takes the
role of the discrete angular momentum on the sphere S2. See
Appendix B for more details.

The above simple example reflects the general situation:
For theories defined on noncompact symmetric spaces the
polynomial composite operators by no means exhaust the set of
all composite operators. In the field theory of Anderson local-
ization, we are thus facing the following conundrum: two theo-
ries, a compact and a noncompact one [U(m1 + m2)/U(m1) ×
U(m2) resp. U(m1,m2)/U(m1) × U(m2) for class A], which
should describe in the replica limit m1 = m2 = 0 the same
Anderson localization problem, have essentially different
operator content. This is a manifestation of the fact that the
replica trick has a very tricky character indeed. In this paper
we resolve this ambiguity by using an alternative, well-defined
approach based on supersymmetry.
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III. SUSY σ MODELS: IWASAWA DECOMPOSITION AND
CLASSIFICATION OF COMPOSITE OPERATORS

In the SUSY formalism the σ -model target space is the
coset space

G/K = U(n,n|2n)/U(n|n) × U(n|n). (3.1)

This manifold combines compact and noncompact features
“dressed” by anticommuting (Grassmann) variables. Its base
manifold M0 × M1 is a product of noncompact and com-
pact symmetric spaces: M0 = U(n,n)/U(n) × U(n) and M1 =
U(2n)/U(n) × U(n).

The action functional of the SUSY theory still has the
same form (2.1), except that the trace Tr is now replaced
by the supertrace STr. It is often useful to consider a lattice
version of the model (i.e., with discrete rather than continuous
spatial coordinates); our analysis based solely on symmetry
considerations remains valid in this case as well. Furthermore,
it also applies to models with a topological term (e.g., for
quantum Hall systems in 2D).

The size parameter n of the supergroups involved needs
to be sufficiently large in order for the model to contain the
observables of interest; this is discussed in detail in Sec. V. The
minimal variant of the model with n = 1 can accommodate
arbitrary moments 〈νq〉 of the LDOS ν,23 but is in general
insufficient to give more complex observables, e.g., moments
of the Hartree-Fock matrix element (1.5). We first describe the
construction of operators for the n = 1 model23 and then the
generalization for arbitrary n.

Our approach is based on the Iwasawa decomposition for
symmetric superspaces,32,33 generalizing the corresponding
construction for noncompact classical symmetric spaces.34

The Iwasawa decomposition factorizes G as G = NAK ,
where A is (as above) a maximal Abelian subgroup for G/K ,
and N is a nilpotent group defined as follows. One considers
the adjoint action (i.e., the action by the commutator) of
elements of the Lie algebra a of A on the Lie algebra g of
G. Since a is Abelian, all its elements can be diagonalized
simultaneously. The corresponding eigenvectors in the adjoint
representation are called root vectors, and the eigenvalues are
called roots. Viewed as linear functions on a, roots lie in the
space a∗ dual to a. A system of positive roots is defined by
choosing some hyperplane through the origin of a∗ which
divides a∗ in two halves and then defining one of these
halves as positive. All roots that lie on the positive side of
the hyperplane are considered as positive. The nilpotent Lie
algebra n is generated by the set of root vectors associated
with positive roots; its exponentiation yields the group N . The
Iwasawa decomposition G = NAK represents any element
g ∈ G in the form g = nak, with n ∈ N , a ∈ A, and k ∈ K .
This factorization is unique once the system of positive roots
is fixed.

An explanation is in order here. The Iwasawa decompo-
sition G = NAK is defined as such only for the case of a
noncompact group G with maximal compact subgroup K .
Now the latter condition appears to exclude the symmetric
spaces G/K that arise in the SUSY context, as their subgroups
K fail to be maximal compact in general. This apparent diffi-
culty, however, can be circumvented by a process of analytic
continuation.32 Indeed, the classical Iwasawa decomposition

G = NAK determines a triple of functions n : G → N , a :
G → A, k : G → K by the uniqueness of the factorization
g = n(g)a(g)k(g). In our SUSY context, where K is not
maximal compact and the Iwasawa decomposition does not
exist, the functions n(g), a(g), and k(g) still exist, but they do
as functions on G with values in the complexified groups
NC, AC, and KC, respectively. In particular, the Iwasawa
decomposition gives us a multivalued function ln a which
assigns to every group element g ∈ G an element ln a(g) of
the (complexification of the) Abelian Lie algebra a.

Note that for n0 ∈ N , k0 ∈ K one has a(n0gk0) = a(g)
by construction. Thus, one gets a function ã(Q) on G/K by
defining ã(g
g−1) ≡ a(g). This function is N -radial; i.e., it
depends only on the “radial” factor A in the parametrization
G/K � NA and is constant along the nilpotent group N :
ã(n0Qn−1

0 ) = ã(Q). Its multivalued logarithm ln ã(Q) will
play some role in what follows.

In the case n = 1, which was considered in Ref. 23, the
space a∗ is two-dimensional, and we denote its basis of linear
coordinate functions by x and y, with x corresponding to the
boson-boson and y to the fermion-fermion sector of the theory.
In terms of this basis we can choose the positive roots to be

2x (1), 2iy (1), x + iy (−2), x − iy (−2), (3.2)

where the multiplicities of the roots are shown in parentheses;
note that odd roots are counted with negative multiplicity.
(A root is called even or odd depending on whether the
corresponding eigenspace is in the even or odd part of
the Lie superalgebra. Even root vectors are located within
the boson-boson and fermion-fermion supermatrix blocks,
whereas odd root vectors belong to the boson-fermion and
fermion-boson blocks.) For this choice of positive root system,
the Weyl covector ρ (or half the sum of the positive roots with
multiplicities) is

ρ = −x + iy. (3.3)

The crucial advantage of using the symmetric-space
parametrization generated by the Iwasawa decomposition is
that the N -radial spherical functions ϕμ have the very simple
form of exponentials (or “plane waves”),

ϕμ(Q) = e(ρ+μ)(ln ã(Q)) = e(−1+μ0)x(ln ã(Q))+(1+μ1)iy(ln ã(Q)),

(3.4)

labeled by a weight vector μ = μ0x + μ1iy in a∗. The boson-
boson component μ0 of the weight μ can be any complex
number, while the fermion-fermion component is constrained
by

μ1 ∈ {−1, − 3, − 5, . . .} (3.5)

to ensure that ei(1+μ1)(ln ã(Q)) is single-valued in spite of the
presence of the logarithm.

From here on we adopt a simplified notation where we use
the same symbol x also for the composition of x with ln ã (and
similar for y). Thus, x may now have two different meanings:
either its old meaning as a linear function on a or the new one
as an N -radial function x ◦ ln ã on G/K . It should always be
clear from the context which of the two functions x we mean.
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With this convention, Eq. (3.4) reads ϕμ = eρ+μ =
e(−1+μ0)x+(1+μ1)iy . We also use the notation

q = 1 − μ0

2
, p = −1 + μ1

2
∈ Z+, (3.6)

where Z+ means the set of non-negative integers. In this
notation the exponential functions (3.4) take the form

ϕμ ≡ ϕq,p = e−2qx−2ipy . (3.7)

We mention in passing that the quantization of p is
nothing but the familiar quantization of the angular momentum
l for the well-known spherical functions on S2. Indeed,
the “momentum” p is conjugate to the “radial variable” y

corresponding to the compact (fermion-fermion) sector. The
absence of any quantization for q should also be clear from
the discussion at the end of Sec. II. In fact, q is conjugate to
the radial variable x of the noncompact (boson-boson) sector,
which is a hyperboloid H 2.

By simple reasoning based on the observation that A

normalizes N (i.e., for any a0 ∈ A and n0 ∈ N one has
a−1

0 n0a0 ∈ N ), each plane wave ϕμ is an eigenfunction of the
Laplace-Beltrami operator and all other invariant differential
operators on G/K .35 [The same conclusion follows from more
general considerations based on highest-weight vectors (see
Sec. VI F).] The eigenvalue of the Laplace-Beltrami operator
is

μ2
0 − μ2

1 = 4q(q − 1) − 4p(p + 1), (3.8)

up to a constant factor.
It should be stressed that the N -radial spherical functions,

which depend only on a in the Iwasawa decomposition g =
nak, differ from the K-radial spherical functions (depending
only on a′ in the Cartan decomposition g = k′a′k′′; see Sec. II),
since for a given element Q = g
g−1 or gK of G/K the radial
elements a and a′ of these two factorizations are different.
However, a link between the two types of radial spherical
function can easily be established. Indeed, if ϕ(Q) is a
spherical function, then for any element k ∈ K the transformed
function ϕ(kgk−1) is still a spherical function from the same
representation. Therefore, we can construct a K-invariant
spherical function ϕ̃μ by simply averaging ϕμ(k−1Qk) over K ,

ϕ̃μ(Q) =
∫

K

dk ϕμ(k−1Qk), (3.9)

provided, of course, that the integral does not vanish.
For n � 1 the space a∗ has dimension 2n. We label the

linear coordinates as xj , yj with j = 1, . . . ,n; following the
notation above, the xj and yj correspond to the noncompact
and compact sectors, respectively. The positive root system
can be chosen as follows:

xj − xk (2), xj + xk (2), 2xj (1),

i(yl − ym) (2), i(yl + ym) (2), 2iyl (1), (3.10)

xj + iyl (−2), xj − iyl (−2),

where 1 � j < k � n and 1 � m < l � n. As before, the
multiplicities of the roots are given in parentheses, and a
negative multiplicity means that the corresponding root is odd,
or fermionic. The half-sum of these roots (still weighted by

multiplicities) now is

ρ =
n∑

j=1

cjxj + i

n∑
l=1

blyl, (3.11)

with

cj = 1 − 2j,bl = 2l − 1. (3.12)

The N -radial spherical functions are constructed just like
for n = 1. They are still “plane waves” ϕμ = eρ+μ but now
the weight vector μ has 2n components μ0

j and μ1
l , the latter

of which take values

μ1
l ∈ {−bl, − bl − 2, − bl − 4, . . .}. (3.13)

We also write

qj = −μ0
j + cj

2
, pl = −μ1

l + bl

2
∈ Z+. (3.14)

In this notation our N -radial spherical functions are

ϕμ ≡ ϕq,p = exp

⎛⎝−2
n∑

j=1

qjxj − 2i

n∑
l=1

plyl

⎞⎠ . (3.15)

On general grounds, these are eigenfunctions of the Laplace-
Beltrami operator (and all other invariant differential opera-
tors) on G/K , with the eigenvalue being

1
4

n∑
j=1

(μ0
j )2 − 1

4

n∑
l=1

(μ1
l )2

=
n∑

j=1

qj (qj + cj ) −
n∑

l=1

pl(pl + bl)

= q1(q1 − 1) + q2(q2 − 3) + · · · + qn(qn − 2n + 1)

−p1(p1 + 1) − p2(p2 + 3) − · · · − pn(pn + 2n − 1),

(3.16)

up to a constant factor.

IV. SUSY-REPLICA CORRESPONDENCE FOR THE n = 1
SUPERSYMMETRIC MODEL

Let us summarize the results of two preceding sections. In
Sec. II we reviewed Wegner’s classification of polynomial
spherical functions for compact replica models, with irre-
ducible representations labeled by Young diagrams (or sets
of nonincreasing positive integers giving the length of each
row of the diagram). In Sec. III we presented an alternative
classification based on the Iwasawa decomposition of the
SUSY σ -model field. There, the N -radial spherical functions
are labeled by a set of non-negative integers pl and a set of
parameters qj that are not restricted to integer or non-negative
values. Obviously, the second classification is broader, in
view of the continuous nature of the qj . Furthermore, since
the SUSY scheme is expected to give, in some sense, a
complete set of spherical functions, it should contain Wegner’s
classification, i.e., each Young diagram of Sec. II should
occur as some N -radial plane wave with a certain set of pl

and qj . We are now going to establish this correspondence
explicitly.
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p+1 1 1 1 1 1

q

1

1

1

1

FIG. 1. Hook-shaped Young diagrams λ = (q,1p) label the scal-
ing operators that can be described within the minimal (n = 1) SUSY
model. The numbers of boxes in each row and in each column are
indicated to the left and above the diagram. The example shown in
the figure corresponds to q = 6, p = 4.

We begin with the case of minimal SUSY, n = 1. The
starting point is a representation of Green’s functions as
functional integrals over a supervector field containing one
bosonic and one fermionic component in both the retarded
and advanced sectors. Correlation functions of bosonic fields
are symmetric with respect to the spatial coordinates, whereas
correlation functions of fermionic fields are antisymmetric.
Thus, within the minimal SUSY model one can represent
correlation functions involving symmetrization over one set
of variables and/or antisymmetrization over another set. On
simple representation-theoretic grounds, it follows that the n =
1 model is sufficient to make for the presence of representations
with Young diagrams of the type shown in Fig. 1. We refer to
such diagrams as hooks or hook-shaped for obvious reasons.
We introduce two “dual” notations (see Appendix A for
detailed definitions) for Young diagrams by counting the
number of boxes either in rows or in columns; in the first
case we put the numbers in round brackets and in the second
case in square brackets. In particular, the hook diagram of
Fig. 1 is denoted either as (q,1p) or as [p + 1,1q−1]. Below,
we point out an explicit correspondence between the spherical
functions of the n = 1 SUSY model and these hook diagrams
by computing the values of the quadratic Casimir operators
and identifying the relevant physical observables.

Evaluating the quadratic Casimir (A6) for the hook di-
agrams (q,1p) = [p + 1,1q−1], and taking the replica limit
m = 0, we get

a2((q,1p); 0) = q(q − 1) − 2 − 4 − · · · − 2p

= q(q − 1) − p(p + 1), (4.1)

which is the same (up to a constant factor) as the eigenvalue of
the Laplace-Beltrami operator (3.8) associated with the plane
wave ϕp,q (3.7) in the SUSY formalism. This fully agrees with
our expectations and indicates the required correspondence:
The Young diagram of the type (q,1p) of the replica formalism
corresponds to the plane wave ϕq,p (or, more precisely, to
the corresponding representation) of the SUSY formalism.
While a full proof of the correspondence follows from our
arguments in Sec. VI (see especially the Sec. VI D), we feel
that the agreement between the quadratic Casimir eigenvalues
is already convincing enough for our immediate purposes.

At this point, it is worth commenting on an apparent
“asymmetry” between p and q in the above correspondence:
The spherical function ϕq,p corresponds to the Young diagram
that has q boxes in its first row but p + 1 boxes in the first

column. The reason for this asymmetry is the specific choice
of positive roots (3.2). If instead of x − iy we chose −x + iy to
be a positive root (keeping the other three roots), the half-sum
ρ would change to

ρ̃ = x − iy. (4.2)

This corresponds to a different choice of nilpotent subgroup
Ñ (generated by the root vectors corresponding to the positive
roots) in the Iwasawa decomposition, and thus, to another
choice of (Ñ -)radial coordinates x̃ and ỹ on the superspace
G/K . As a result, the plane wave

ϕq̃,p̃(x̃,ỹ) = e−2q̃x̃−2ip̃ỹ (4.3)

characterized by quantum numbers p̃,q̃ in these new coordi-
nates, is an eigenfunction of the Laplace-Beltrami operator
with eigenvalue

(2q̃ + 1)2 − (2p̃ − 1)2 = 4q̃(q̃ + 1) − 4p̃(p̃ − 1). (4.4)

This is the same eigenvalue as Eq. (3.8) if one makes the
identifications q̃ = q − 1 and p̃ = p + 1. We thus see that
in the new coordinates the asymmetry between p̃ and q̃

is reversed: The function e−2q̃x̃−2ip̃ỹ corresponds to a hook
Young diagram with q̃ + 1 boxes in the first row and p̃ boxes
in the first column. Of course, the functions e−2qx−2ipy and
e−2q̃x̃−2ip̃ỹ with q̃ = q − 1 and p̃ = p + 1 are not identical
(since an N -radial function is not Ñ -radial in general), but
they belong to the same representation.

Choosing a system of positive roots for the Iwasawa
decomposition is just a matter of convenience; it is simply
a choice of coordinate frame. The positive root system (3.2)
is particularly convenient, since with this choice the plane
waves corresponding to the most relevant operators (the LDOS
moments) depend on x only (and not on y). Of course, our final
results do not depend on this choice.

We are now going to identify the physical observables that
correspond to the operators of the n = 1 SUSY model. For
p = 0 the Young diagrams of the type (q,1p) reduce to a
single row with q boxes, i.e., (q) = [1q], which in our SUSY
approach represents the spherical function e−2qx . As we have
already mentioned, this function corresponds to the moment
〈νq〉 of the LDOS. Note that for symmetry class A, where the
global density of states is noncritical, the moment 〈νq〉 has the
same scaling as the expectation value of the qth power of a
critical wave-function intensity,

A1(r) = |ψ(r)|2. (4.5)

For the unconventional symmetry classes there is a similarly
simple relation; one just has to take care of the exponent
xρ controlling the scaling of the average density of states;
see Eqs. (1.1) and (2.2). The meaning of the subscript in
the notation A1 introduced in Eq. (4.5) will become clear
momentarily. We express the equivalence in the scaling
behavior by

〈νq〉 ∼ 〈
A

q

1(r)
〉
. (4.6)

We now sketch the derivation23 that links 〈νq〉 with the
spherical function e−2qx of the SUSY σ model.

The calculation of an observable (i.e., some correlation
function of the LDOS or of wave functions) in the SUSY
approach begins with the relevant combination of Green’s

125144-7



I. A. GRUZBERG, A. D. MIRLIN, AND M. R. ZIRNBAUER PHYSICAL REVIEW B 87, 125144 (2013)

functions being expressed as an integral over a supervector
field.19,36–38 In particular, retarded and advanced Green’s
functions

GR,A(r,r′) = (E ± iη − Ĥ )−1(r,r′) (4.7)

(where η is the level broadening, which for our purposes can
be chosen to be of the order of several mean level spacings)
are represented as

GR(r,r′) = −i〈SR(r)S∗
R(r′)〉,

(4.8)
GA(r,r′) = i〈SA(r)S∗

A(r′)〉.

Here SR,A are the bosonic components of the supervector
field � = (SR,ξR,SA,ξA) (with subscripts R,A referring to the
retarded and advanced subspaces, respectively), and 〈· · · 〉 on
the right-hand side of Eq. (4.8) denotes the integration over �

with the corresponding Gaussian action of �. Alternatively, the
Green’s functions can be represented by using the fermionic
(anticommuting) components ξR,A; we return to this possibility
below. In order to obtain the qth power νq of the density of
states,

ν(r0) = 1

2πi
(GA(r0,r0) − GR(r0,r0)), (4.9)

one has to take the corresponding combination of the bosonic
components Si as a pre-exponential in the � integral:

νq(r0) = 1

(2π )qq!
〈(SR(r0) − eiαSA(r0))q

× (S∗
R(r0) − e−iαS∗

A(r0))q〉, (4.10)

where eiα is any unitary number. The next steps are to take the
average over the disorder and reduce the theory to the nonlinear
σ model form. The contractions on the right-hand side of
Eq. (4.10) then generate the corresponding pre-exponential
expression in the σ -model integral:

〈νq〉= 2−q
〈
(QRR − QAA + e−iαQRA − eiαQAR)qbb

〉
, (4.11)

where Q ≡ Q(r0). The indices b,f refer to the boson-fermion
decomposition.

Although the following goes through for any value of α,
we now take eiα = 1 for brevity. It is then convenient to
switch to Q = Q
 ≡ Qσ3; here we introduce Pauli matrices
σj in the RA space, with σ3 = 
. It is also convenient to
perform a unitary transformation Q → Q̃ ≡ UQU−1 in the
RA space by the matrix U = (1 + iσ1 + iσ2 + iσ3)/2, which
cyclically permutes the Pauli matrices: UσjU

−1 = σj−1. The
combination of Qij entering Eq. (4.11) then becomes

(1/2)(QRR − QAA + QRA − QAR)bb = Q̃AA,bb. (4.12)

The Iwasawa decomposition g = nak leads to Q =
na2σ3n

−1σ3, where we used kσ3k
−1 = σ3 and aσ3a

−1 = a2σ3.
Upon making the transformation Q → Q̃, this takes the form

Q̃ = ñã2σ2ñ
−1σ2, or explicitly,

Q̃ =

⎛⎜⎜⎜⎝
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

e2x 0 0 0

0 e2iy 0 0

0 0 e−2iy 0

0 0 0 e−2x

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝
1 0 0 0

∗ 1 0 0

∗ ∗ 1 0

∗ ∗ ∗ 1

⎞⎟⎟⎟⎠, (4.13)

where the symbol ∗ denotes some nonzero matrix elements of
nilpotent matrices, and we have reversed the boson-fermion
order in the advanced sector in order to reveal the meaning
of the Iwasawa decomposition in the best possible way. As
explained above, the variables x and y parametrize the Abelian
group A which is noncompact in the x direction and compact
in the y direction. By observing that the 44 element of the
product of matrices on the right-hand side of (4.13) is e−2x , it
follows that the matrix element (4.12) is equal to

Q̃AA,bb = e−2x. (4.14)

This completes our review of the correspondence between
LDOS or wave-function moments and the spherical functions
of the SUSY formalism:23〈

A
q

1

〉 ∼ 〈νq〉 ←→ ϕq,0 = e−2qx. (4.15)

Let us emphasize that, although our derivation assumes
q to be a non-negative integer, the correspondence (4.15)
actually holds for any complex value of q. Indeed, both sides
of Eq. (4.15) are defined for all q ∈ C, and by Carlson’s
theorem the complex-analytic function q �→ 〈νq〉 is uniquely
determined by its values for q ∈ N.

At this point the unknowing reader might worry that the
positivity of 〈νq〉 > 0 could be in contradiction with the
pure-scaling nature of the operator ϕq,0 = e−2qx . Indeed, one
might argue that if the symmetry group G is compact, then
every observable A that transforms according to a nontrivial
irreducible representation of G must have zero expectation
value with respect to any G-invariant distribution. This
apparent paradox is resolved by observing that our symmetry
group G is not compact (or, if fermionic replicas are used,
that the replica trick is very tricky). In fact, the SUSY σ

model has a noncompact sector which requires regularization
by the second term (or similar) in the action functional (2.1).
Removing the G-symmetry breaking regularization (h → 0)
to evaluate observables such as 〈νq〉, one is faced with a limit
of the type 0 × ∞, which does lead to a nonzero expectation
value 〈ϕq,0〉 �= 0.

We now turn to Young diagrams (1p̃) = [p̃] (where we
use the notation p̃ = p + 1 as before), which encode total
antisymmetrization by the permutation group. These corre-
spond to the maximally antisymmetrized correlation function
of wave functions. In fact, such a diagram gives the scaling
of the expectation value of the modulus squared of the Slater
determinant,

Ap̃(r1, . . . ,rp̃) = |Dp̃(r1, . . . ,rp̃)|2, (4.16)
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Dp̃(r1, . . . ,rp̃) = Det

⎛⎜⎜⎝
ψ1(r1) · · · ψ1(rp̃)
...

. . .
...

ψp̃(r1) · · · ψp̃(rp̃)

⎞⎟⎟⎠. (4.17)

Here all points ri are assumed to be close to each other (on a
distance scale given by the mean free path l), so that after the
mapping to the σ model they become a single point. Actually,
the scaling of the average 〈Ap̃〉 with system size L does not
depend on the distances |ri − rj | as long as all of them are kept
fixed when the limit L → ∞ is taken. However, we prefer to
keep the distances sufficiently small, so that our observables
reduce to local operators of the σ model. Moreover, all of
the wave functions ψi are supposed to be close to each
other in energy (say, within several level spacings). Again,
larger energy differences will not affect the scaling exponent;
they only set an infrared cutoff that determines the size of
the largest system displaying critical behavior. Clearly, Ap̃

reduces to A1 = |ψ(r)|2 when p̃ = 1 (which was the reason
for introducing the notation A1 above).

In the SUSY formalism the average 〈Ap̃〉 can be represented
in the following way. We start with

Ap̃ ∼ 〈[ξ ∗
R(r1) − ξ ∗

A(r1)][ξR(r1) − ξA(r1)]

× [ξ ∗
R(r2) − ξ ∗

A(r2)][ξR(r2) − ξA(r2)] · · ·
× [ξ ∗

R(rp̃) − ξ ∗
A(rp̃)][ξR(rp̃) − ξA(rp̃)]〉, (4.18)

where ξ,ξ ∗ are the fermionic components of the supervector �

used to represent electron Green’s functions. This expression
can now be disorder averaged and reduced to a σ -model
correlation function. By a calculation similar to that for the
moment 〈νq〉 we now end up with the average of the p̃th
moment of the fermion-fermion matrix element Q̃AA,ff of
the Q̃ matrix. Here the alternative choice of positive root
system mentioned above (for which the radial coordinates
were denoted by x̃, ỹ) is more convenient since, in a sense, it
interchanges the roles of x and y in the process of fixing the
system of positive roots. As a result, we get the correspondence

Ap̃ ←→ ϕ0,p̃ = e−2ip̃ỹ . (4.19)

Combining the two examples above [a single-row Young
diagram (q) and a single-column Young diagram (1p+1)], one
might guess that a general hook-shaped diagram (q,1p) would
correspond to the correlator〈

A
q−1
1 Ap+1

〉
. (4.20)

This turns out to be almost correct: The hook diagram (q,1p)
indeed gives the leading scaling behavior of (4.20). However,
the correlation function (4.20) is in general not a pure scaling
operator but contains subleading corrections to the scaling for
(q,1p).

We note in this connection that in the two examples
above each of the wave-function combinations A

q

1 and Ap

corresponds to a single exponential function on the σ -model
target space, and thus to a single G representation. Therefore,
at the level of the σ model these combinations do correspond
to pure scaling operators. (For the LDOS moments A

q

1 this
was evident from the results of Ref. 23 but we did not stress it
there.) We show below how to construct more complicated

wave-function correlators that correspond to pure scaling
operators of the σ model.

V. GENERAL WAVE-FUNCTION CORRELATORS

Clearly, one can construct a variety of wave-function cor-
relators that are different from the totally symmetric (Aq

1) and
totally antisymmetric (Ap) correlators considered in Sec. IV.
One example is provided by correlation functions that arise
when one studies the influence of interactions on Anderson
and quantum Hall transitions.26 In that context, one is led to
consider moments of the Hartree-Fock matrix element (1.6),
which involves the antisymmetrized combination (1.5) of
two critical wave functions. In terms of the quantities Ap

introduced above, Ref. 26 calculated

〈A2(ψ1,ψ2; r1,r2)A2(ψ3,ψ4; r3,r4)〉, (5.1)

where the expanded notation indicates the wave functions and
corresponding coordinates on which the A2 are constructed.
Thus, all four points and all four wave functions were taken
to be different (although all points and all energies were still
close to each other). To leading order, the correlator (5.1) scales
in the same way as 〈A2

2〉 (where we take ψ1 = ψ3, ψ2 = ψ4,
r1 = r3, r2 = r4). The importance of the phrase “to leading
order” becomes clear in Sec. VI.

As we discussed in Sec. IV, the scaling of the average 〈A2〉
is given by the representation with Young diagram (12) =
[2]. The analysis26 of the second moment 〈A2

2〉 shows that its
leading behavior is given by the diagram (22) = [22]. A natural
generalization of this is the following proposition: The Young
diagram

λ = [p1,p2, . . . ,pm] (5.2)

relates to the replica σ -model operator that describes the
leading scaling behavior of the correlation function

〈Ap1Ap2 · · · Apm
〉. (5.3)

We argue in Sec. VI below that this is indeed correct. Here we
wish to add a few comments.

In general, all combinations Api
may contain different

points and different wave functions (as long as the points and
the energies are close) without changing the leading scaling
behavior. Thus, a general correlator corresponding to a Young
diagram λ will involve |λ| points and the same number of wave
functions. However, if

λ = [p1,p2, . . . ,pm] = [
k

a1
1 , . . . ,kas

s

]
, (5.4)

we may choose to use the same points and wave functions
for all ai combinations Aki

of a given size ki . This yields a
somewhat simpler correlator

Kλ = 〈
A

a1
k1

· · ·Aas

ks

〉
, (5.5)

with the same leading scaling. If we use the alternative
notation,

λ = (q1,q2, . . . ,qn) = (
l
b1
1 , . . . ,lbs

s

)
, (5.6)

for the Young diagram (5.2), the correlator (5.5) can also be
written as

Kλ = 〈
A

l1−l2
b1

A
l2−l3
b1+b2

· · · Als−1−ls
b1+···+bs−1

A
ls
b1+···+bs

〉
; (5.7)
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see Eqs. (A2) and (A5) in Appendix A. In fact, as is easy to
see, this can also be rewritten in a natural way as

K(q1,...,qn) = 〈
A

q1−q2
1 A

q2−q3
2 · · · Aqn−1−qn

n−1 Aqn

n

〉
. (5.8)

If we introduce the notation

ν1 = A1, νi = Ai

Ai−1
, 2 � i � n, (5.9)

then the correlator Kλ can also be cast in the following form:

K(q1,...,qn) = 〈
ν

q1
1 ν

q2
2 · · · νqn−1

n−1 νqn

n

〉
. (5.10)

Below we establish the correspondence of the correlation
functions (5.10) with Young diagrams that was stated in this
section. We also show how to build pure-scaling correlation
functions and establish a connection with the Fourier analysis
on the symmetric space of the SUSY σ model.

VI. EXACT SCALING OPERATORS

Let us now come back to the issue of exact scaling operators.
In the preceding section we wrote a large family (5.3) of wave-
function correlators. In general, the members of this family do
not show pure scaling. We are now going to argue, however,
that if we appropriately symmetrize (or appropriately choose)
the points or wave functions that enter the correlation function,
then pure power-law scaling does hold.

A. An example

Let us begin with the simplest example illustrating the fact
stated above. This example is worked out in detail in Sec. 3.3.3
of Ref. 37 and is provided by the correlation function

〈|ψ1(r1)ψ2(r2)|2〉. (6.1)

When the two points and the two wave functions are different,
this yields

〈(QRR,bb − QAA,bb)2〉 = 2 − 2〈QRR,bbQAA,bb〉 (6.2)

after the transformation to the σ model. Now the expression
1 − QRR,bbQAA,bb is not a pure-scaling σ -model operator: By
decomposing it according to representations, one finds that it
contains not only the leading term with Young diagram (2),
but also the subleading one, (1,1). To get the exact scaling
operator for (2), which is

1 − 〈QRR,bbQAA,bb + QRA,bbQAR,bb〉, (6.3)

one has to symmetrize the product of wave functions in
Eq. (6.1) with respect to points (or wave-function indices):
The correlator that does exhibit pure scaling is

〈|ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1)|2〉. (6.4)

Alternatively, one can take the points to be equal and consider
the correlation function

〈|ψ1(r1)ψ2(r1)|2〉. (6.5)

Then one gets the exact scaling operator right away, since the
correlation function (6.5) already has the required symmetry.
One can also take the same wave function:

〈|ψ1(r1)ψ1(r2)|2〉, 〈|ψ1(r1)|4〉. (6.6)

All of these reduce to the same exact scaling operator (6.3) in
the σ -model approximation.

B. Statement of result

The example above gives us a good indication of how to
get wave-function correlators corresponding to pure-scaling
operators: The product of wave functions should be appro-
priately (anti)symmetrized before the square of the absolute
value is taken. To be precise, in order to get a pure-scaling
correlation function for the diagram (5.2) [giving the leading
scaling contribution to Eq. (5.3)], one should proceed in the
following way.

(i) View the points and wave functions as filling the Young
diagram (5.2) by forming the normal Young tableau T0 (see
Appendix A for definitions).

(ii) Consider the product of wave-function amplitudes

ψ1(r1)ψ2(r2) · · · ψN (rN ), N = p1 + · · · + pm. (6.7)

In the notation of Appendix A this is �λ(T0,T0).
(iii) Perform the Young symmetrization cλ = bλaλ accord-

ing to the rules described in Appendix A (symmetrization
aλ with respect to all points in each row followed by
antisymmetrization bλ with respect to all points in each
column). In this way we obtain

�λ(T0,cλT0). (6.8)

(iv) Take the absolute value squared of the resulting expres-
sion:

|�λ(T0,cλT0)|2. (6.9)

Several comments are in order here. First, one can define
several slightly different procedures of Young symmetrization.
Specifically, one can perform it with respect to points (as de-
scribed above) or, alternatively, with respect to wave functions
[obtaining |�λ(cλT0,T0)|2]. Also, one can perform the Young
symmetrization in the opposite order (first antisymmetrization
along the columns, then symmetrization along the rows:
c̃λ = aλbλ). In fact, it is not difficult to see that carrying out
c̃λ with respect to wave functions is the same as performing
cλ with respect to points, and vice versa; see Eqs. (A24)
and (A25). While for different schemes one will, in general,
obtain from Eq. (6.7) slightly different expressions, they will
scale in the same way upon averaging, as they belong to the
same irreducible representation. Furthermore, once a Young
symmetrization of the product (6.7) has been performed, one
can, instead of taking the absolute value squared, simply
multiply it with the product ψ∗

1 (r1)ψ∗
2 (r2) · · · ψ∗

N (rN ). Finally,
the symmetrization with respect to points is redundant if the
corresponding points (or wave functions) are taken to be the
same; see Eq. (A28).

To illustrate the procedure, let us return again to the
correlation function (5.1)

〈A2(ψ1,ψ2; r1,r2)A2(ψ3,ψ4; r3,r4)〉, (6.10)

considered in Ref. 26. As we have already discussed, its leading
scaling is that of the Young diagram (22); however, Eq. (6.10)
includes also corrections due to subleading operators. In order
to get the corresponding pure-scaling correlation function, we
should start from the product ψ1(r1)ψ2(r2)ψ3(r3)ψ4(r4) and
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apply the Young symmetrization rules corresponding to the
diagram (22). This will lead to the expression

[ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1)]

× [ψ3(r3)ψ4(r4) + ψ3(r4)ψ4(r3)], (6.11)

further antisymmetrized with respect to the interchange of r1

with r3 and with respect to interchange of r2 with r4. Finally,
one should take the absolute value squared. As an alternative
to the symmetrization, one can simply set r1 = r2 and r3 = r4

(which means choosing the minimal Young tableau Tmin for
Tr ), in which case there is no need to symmetrize. This results
in

|[ψ1(r1)ψ3(r3) − ψ1(r3)ψ3(r1)]

× [ψ2(r1)ψ4(r3) − ψ2(r3)ψ4(r1)]|2. (6.12)

A similar expression can be gotten by setting ψ1 = ψ2 and
ψ3 = ψ4. Finally, one can do both, keeping only two points
and two wave functions. This results exactly in

|�(22)(Tmin,b(22)Tmin)|2 = ∣∣D2
2

∣∣2 = A2
2, (6.13)

which is thus a pure scaling operator.
This has a natural generalization to the higher-order

correlation functions (5.8) as follows. Let r1, . . . ,rn be a set
of n distinct points. For each m � n evaluate Am at the point
rm on a set of wave functions ψ

(m)
1 , . . . ,ψ (m)

m . The coincidence
of evaluation points takes care of the symmetrization along all
rows of the Young diagram. Moreover, the antisymmetrization
is included in the definition of the Ai . Therefore, with such a
choice of points the correlation function (5.8) will show pure
scaling. This statement is independent of the choice of wave
functions ψ

(m)
j : All of them can be different, or some of them

corresponding to different m can be taken to be equal. The most
“economical” choice is to take only n different wave functions
ψ1, . . . ,ψn and for each m set ψ

(m)
j = ψj (independent of m)

for j = 1, . . . ,m. This is the choice made by the minimal
tableau [see Eq. (A29)]:

�λ(Tmin,bλTmin) = D
q1−q2
1 D

q2−q3
2 · · ·Dqn

n , (6.14)

where the numbers (q1, . . . ,qn) specify the representation with
Young diagram λ as in Eq. (5.6).

C. Sketch of proof

We now sketch the proof of the relation between the wave-
function correlation functions with the proper symmetry and
the σ -model operators from the corresponding representation.
In accordance with Eq. (4.10), we begin with an integral over
a supervector field S,

〈cλ{S−
1 (r1) · · · S−

N (rN )} cλ{S∗−
1 (r1) · · · S∗−

N (rN )}〉. (6.15)

As before, S denotes the bosonic components of the superfield;
the superscript in S− reflects the structure in the advanced-
retarded space: S− = SR − SA. This structure ensures that,
upon performing contractions, we get the required combina-
tions of Green’s functions, GR − GA. We emphasize, however,
that one could equally well choose SR + SA or SR − eiαSA

for any α, as was done in Eq. (4.10). Indeed, by Eq. (4.8)
all that matters is that the coefficients of SR and SA have
the same absolute value. We also mention that the freedom

in choosing α is elucidated in more detail in Sec. VI F and
Appendix B 2.

The subscript of the S fields in Eq. (6.15) is the replica
index. (Recall that we consider an enlarged number of
field components.) The symbol cλ{· · · } denotes the Young
symmetrization of the replica indices according to the cho-
sen Young diagram λ = (q1,q2, . . .) = [p1,p2, . . .], and N =
|λ| = ∑

pi = ∑
qj . It is given by the product cλ = bλaλ

of the corresponding symmetrization and antisymmetrization
operators. [Although in Eq. (6.15) we put cλ twice, it would
actually be sufficient to Young symmetrize only S fields,
or only S∗ fields.] It is possible to express the correlation
function (6.15) in a more economical way (i.e., by introducing
fewer field components), without changing the scaling oper-
ator that results on passing to the σ model. This economy
of description is achieved by observing that symmetrization
is provided simply by the repeated use of the same replica
index:〈

bλ

{
S−

1

(
r(1)

1

) · · · S−
1

(
r(1)
q1

)
S−

2

(
r(2)

1

) · · · S−
2

(
r(2)
q2

) · · ·
× S−

n

(
r(n)

1

) · · · S−
n

(
r(n)
qn

)}
× bλ

{
S∗−

1

(
r(1)

1

) · · · S∗−
1

(
r(1)
q1

)
S∗−

2

(
r(2)

1

) · · · S∗−
2

(
r(2)
q2

) · · ·
× S∗−

n

(
r(n)

1

) · · · S∗−
n

(
r(n)
qn

)}〉
. (6.16)

Here we denoted by r(j )
1 , . . . ,r(j )

qj
the points filling the j th

row of the Young diagram (q1, . . . qn) = [p1, . . . ,pm], and
bλ{· · · } still denotes the operation of antisymmetrization along
the columns of the Young diagram. Performing all Wick
contractions and writing Green’s functions as sums over wave
functions, one sees that Eqs. (6.15) and (6.16) give (up to
an irrelevant overall factor) exactly the Young-symmetrized
correlation function of wave functions that was described in
Sec. VI. Specifically, the obtained correlation function yields
the average of Eq. (6.9).

By the process of transforming to the σ model, the 2N field
values of S and S∗ in Eqs. (6.15) and (6.16) get paired up in all
possible ways to form a polynomial of N th order in the matrix
elements of Q. The general rule for this is37

S−
p1

(r1)S∗−
p2

(r2) → f (|r1 − r2|)Q̂p1p2

(
1
2 (r1 + r2)

)
, (6.17)

where the prefactor f (|r1 − r2|) = (πν)−1Im〈GA(r1,r2)〉 de-
pends on the distance between the two points, and Q̂ ≡
Q̃AA,bb = 1

2 (QRR − QAA + QRA − QAR)bb was introduced
in Eq. (4.12). In a 2D system, for example, f (r) =
e−r/2lJ0(kF r). The key properties of the function f (r) are
f (0) = 1 [more generally, f (r) � 1 as long as the distance
is much smaller than the Fermi wave length, r � λF ] and
f (r) � 1 for r � λF . In the latter case the corresponding
pairing between the fields S and S∗ can be neglected. Assuming
that all points in the correlation function (6.15) are separated
by distances r � λF , we get an expression of the diagonal
structure 〈(

c
(L)
λ ⊗ c

(R)
λ

)
(Q̂11Q̂22 · · · Q̂NN )

〉
, (6.18)

where c
(L)
λ ⊗ c

(R)
λ means that we Young symmetrize separately

with respect to both sets of indices (left and right). [If in
Eq. (6.15) only one Young symmetrizer is included, then
only the corresponding set of indices is Young symmetrized
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here; this does not change the irreducible representation that
Eq. (6.18) belongs to.] Similarly, starting from Eq. (6.16) and
assuming that all points are sufficiently well separated, we
obtain 〈(

c
(L)
λ ⊗ c

(R)
λ

)
(Q̂j1j1Q̂j2j2 · · · Q̂jN jN

)
〉
, (6.19)

where the first q1 indices ji are equal to 1, the next q2 are
equal to 2, and so on, and the last qn are equal to n. In
this case the operator aλ for symmetrization is redundant
(since symmetrization of equal indices has a trivial effect)
and we may simplify the expression by replacing cλ by the
operator bλ for antisymmetrization along the columns of the
Young diagram. One can also take some points in the original
expressions (6.15) and (6.16) to coincide (provided that the
result does not vanish upon antisymmetrization); this will not
influence the symmetry and scaling nature of the resulting
correlation functions.

To complete our (sketch of) proof, we must show that the
polynomial

Pλ = (
c

(L)
λ ⊗ c

(R)
λ

)(
Q̂j1j1Q̂j2j2 · · · Q̂jN jN

)
(6.20)

is a pure-scaling operator of the nonlinear σ model. This will
be achieved by showing that Pλ is an eigenfunction of all
Laplace-Casimir operators for G/K . The latter can be done
in two different ways. First, one may argue with the help of
the Iwasawa decomposition that Pλ is an N -radial spherical
function and thus has the desired eigenfunction property. In
Sec. VI D below, we spell out this argument along with its
natural generalization to complex powers q. Second, it is
possible to get the desired result directly (without invoking
the Iwasawa decomposition) by showing that the function Pλ

is a highest-weight vector for the action of G on the matrices
Q. This is done in Sec. VI F.

D. Argument via Iwasawa decomposition

We now argue that the polynomial Pλ is an eigenfunction
of all Laplace-Casimir operators for G/K . To this end, our key
observation is that Pλ can be written as a product of powers
of the principal minors (i.e., in our case, the determinants of
the right lower square sub-matrices) of the matrix Q̂ ≡ Q̃AA,bb

for the case of n replicas. Indeed, following the derivation of
Eqs. (6.14) and (A29), we can associate the left indices of the
n × n matrix Q̂ with one minimal Young tableau, and the right
indices with another minimal tableau. As a result, if we denote
by dj the principal minor of Q̂ of size j × j , we see that

Pλ ∝ d
q1−q2
1 d

q2−q3
2 · · · dqn

n , (6.21)

since the Young symmetrizer cλ here acts essentially as the
antisymmetrizer bλ, producing determinants of the principal
submatrices of Q̂.

The final step of the argument is to show that Pλ agrees
(up to a constant) with the N -radial spherical function ϕq,0 of
Eq. (3.15),

Pλ ∝ ϕq,0, (6.22)

which is already known to have the desired property. For that,
let us write Q̂ in Iwasawa decomposition as⎛⎜⎜⎜⎜⎝

1 . . . ∗ ∗
...

. . .
...

...

0 . . . 1 ∗
0 . . . 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

e−2xn . . . 0 0
...

. . .
...

...

0 . . . e−2x2 0

0 . . . 0 e−2x1

⎞⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎝
1 . . . 0 0
...

. . .
...

...

∗ . . . 1 0

∗ . . . ∗ 1

⎞⎟⎟⎟⎟⎠. (6.23)

[Precisely speaking, this is the Iwasawa decomposition of the
full matrix Q̃ = ñã2σ2ñ

−1σ2 projected to the boson-boson part
of the right lower block; cf. Eq. (4.13).] Due to the triangular
form of the first and last matrices in this decomposition, the
principal minors dj of this matrix are

dj =
j∏

i=1

e−2xi = exp

(
−2

j∑
i=1

xi

)
. (6.24)

When this expression is substituted into Eq. (6.21), we get
exactly the function ϕq,0 of Eq. (3.15) for the set q =
(q1, . . . ,qn) of positive integers qj . Since this function is an
eigenfunction of all Laplace-Casimir operators for G/K , it
follows that Pλ has the same property. This completes our
proof.

To summarize, recall that in Sec. VI B we specified a certain
set of wave-function correlators. Our achievement here is that
we have related these correlators to pure-scaling operators of
the nonlinear σ model. By doing so, we have arrived at the
prediction that our wave-function correlators exhibit the same
pure-power scaling.

Finally, let us remark that, although the analysis above
was formulated in the language of the SUSY σ model, it
could have been done equally well for the replica σ models.
(In the presence of a compact sector, where the Iwasawa
decomposition is not available without complexification, it
would actually be more appropriate to carry out the final step
of the argument by the theory of highest-weight vector as
outlined in Sec. VI F and Appendix B.)

E. Generalization to arbitrary q j

We now come to a generalization of our correspondence.
The correlators considered in Sec. VI up to now were
polynomials (of even order) in wave-function amplitudes ψ

and ψ∗, and the resulting σ -model operators were polynomials
in Q. The important point to emphasize here is that the wave-
function correlation functions (5.8) are perfectly well-defined
for all complex values of the exponents qj (j = 1, . . . ,n). At
the same time, while the polynomial σ -model operators of
Wegner’s classification clearly require the numbers qj to be
non-negative integers, the N -radial spherical functions (3.15)
given by the SUSY formalism,

ϕq,0 = exp

⎛⎝−2
n∑

j=1

qjxj

⎞⎠ , (6.25)
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do exist for arbitrary quantum numbers q = (q1, . . . ,qn). Thus,
one may suspect that our correspondence extends beyond
the integers to all values of q. This turns out to be true by
uniqueness of analytic continuation, as follows.

We gave an indication of the argument in Sec. IV and
will now provide more detail. Let n = 1 for simplicity (the
reasoning for higher n is no different), and consider

f (q) ≡ 〈νq〉/〈ν〉q (q ∈ C). (6.26)

The triangle inequality gives |f (q)| � f (Re q). By the def-
inition of ν and the fact that the total density of states is
self-averaging, one has an a priori bound for positive real
values of q :

0 � f (q) � (L/l)dq (q � 0), (6.27)

where l is the lattice spacing (or UV cutoff) of the d-
dimensional system. In conjunction with the functional
relation23 f (q) = f (1 − q), this inequality leads to a bound
of the form

|f (q)| � eCL(1+|Re q|) (q ∈ C), (6.28)

where CL ∝ ln L is a constant. Thus, in finite volume, f is
an entire function of exponential type and is also bounded
along the imaginary axis. By Carlson’s theorem, this implies
that f is uniquely determined by its values on the non-
negative integers. It follows that the result of our derivation,
taking the pure-scaling correlation functions (5.8) to σ -model
expectation values of the N -radial spherical functions ϕq,0

of (6.25), extends from non-negative integer values of q to all
complex values of q. This relation is expected to persist in the
infinite-volume limit L → ∞.

F. Alternative construction of scaling operators: Highest-weight
vectors

In previous sections we constructed scaling operators in
the σ model from the Iwasawa decomposition. Here we show
how to construct the same operators by using a different
approach based on the notion of highest-weight vector. We
just outline the basic idea of this approach, relegating details
of the construction to Appendix B.

The σ -model field Q takes values in a symmetric space
G/K . Our goal is to identify gradientless scaling operators of
the σ model, i.e., operators that reproduce (up to multiplication
by a constant) under transformations of the RG. We know
that the change of a local σ -model operator, say A, under
an infinitesimal RG transformation can be expressed by
differential operators acting on A considered as a function on
G/K . Assuming that the σ -model Lagrangian is G invariant,
the infinitesimal RG action is by differential operators which
are G invariant (also known as Laplace-Casimir operators).
Thus, a gradientless operator of the σ model is a pure
scaling operator if it is an eigenfunction of the full set of
Laplace-Casimir operators on G/K .

Such eigenfunctions can be constructed by exploiting the
notion of highest-weight vector, as follows. Let g ≡ gC denote
the complexified Lie algebra of the Lie group G. The elements
X ∈ g act on functions f (Q) on G/K as first-order differential

operators X̂:

(X̂f )(Q) = d

dt

∣∣∣∣
t=0

f (e−tXQ etX). (6.29)

By definition, this action preserves the commutation relations:
[X̂,Ŷ ] = ̂[X,Y ].

Fixing a Cartan subalgebra h ⊂ g we get a root-space
decomposition,

g = n+ ⊕ h ⊕ n−, (6.30)

where the nilpotent Lie algebras n± are generated by positive
and negative root vectors. We refer to elements of n+ (n−)
as raising (lowering) operators. (Comparing with the Iwasawa
decomposition of Sec. III, we observe that n+ is the same as
the complexification of n, and a is a subalgebra of h, with
the additional generators of h lying in the complexified Lie
algebra of K .)

Now suppose that ϕλ is a function on G/K with the
properties

1. X̂ϕλ = 0 for all X ∈ n+,
(6.31)

2. Ĥϕλ = λ(H )ϕλ for all H ∈ h.

Thus, ϕλ is annihilated by the raising operators from n+ and
is an eigenfunction of the Cartan generators from h. Such an
object ϕλ is called a highest-weight vector, and the eigenvalue
λ is called a highest weight.

Since the Lie algebra acts on functions on G/K by
first-order differential operators, it immediately follows that
the product ϕλ1+λ2 = ϕλ1ϕλ2 of two highest-weight vectors,
as well as an arbitrary power ϕqλ = ϕ

q

λ of a highest-weight
vector, are again highest-weight vectors with highest weights
λ1 + λ2 and qλ, respectively. In the compact case the power
q has to be quantized (a non-negative integer) so that ϕ

q

λ

is defined globally on the space G/K . On the other hand,
in the noncompact case, we can find a positive (ϕλ > 0)
highest-weight vector, and then it can be raised to an arbitrary
complex power q.

Now recall that a Casimir invariant C is a polynomial in the
generators of g with the property that [C,X] = 0 for all X ∈ g.
The Laplace-Casimir operator Ĉ is the invariant differential
operator which corresponds to the Casimir invariant C by
the action (6.29). If a function ϕλ has the highest-weight
properties (6.31), then this function is an eigenfunction of all
Laplace-Casimir operators of G. To see this, one observes that
on general grounds every Casimir invariant C can be expressed
as

C = Ch +
∑
α>0

DαXα, (6.32)

where every summand in the second term on the right-hand
side contains some Xα ∈ n+ as a right factor. Thus, the second
term annihilates the highest-weight vector ϕλ. The first term,
Ch, is a polynomial in the generators of the commutative
algebra h and thus has ϕλ as an eigenfunction by the second
relation in (6.31).

In summary, gradientless scaling operators can be con-
structed as functions that have the properties of a highest-
weight vector. To generate the whole set of such operators,
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one uses the fact that powers and products of highest-weight
vectors are again highest-weight vectors.

Let us discuss how this construction is related to the
Iwasawa decomposition G = NAK . N -radial functions f (Q)
on G/K by definition have the invariance property

f (nQn−1) = f (Q) ∀ n ∈ N. (6.33)

Any such function is automatically a highest-weight vector
if the nilpotent group N is such that its (complexified) Lie
algebra coincides with the algebra n+ of raising operators.
Indeed, if X is an element of the Lie algebra of N , then

(X̂f )(Q) = d

dt

∣∣∣∣
t=0

f (e−tXQ etX) = 0, (6.34)

since the expression under the t derivative does not depend on
t by the invariance (6.33).

In Appendix B we implement this construction explicitly.
We consider certain linear functions of the matrix elements of
Q, which we write as

μY (Q) = Tr(YQ). (6.35)

From the definition (6.29) it is easy to see that

(X̂μY )(Q) = d

dt

∣∣∣∣
t=0

Tr(etXY e−tXQ) = μ[X,Y ](Q). (6.36)

Then, if [X,Y ] = 0, the function μY (Q) is annihilated by X̂. To
construct highest-weight vectors, which are annihilated by all
X̂ for X ∈ n+, we then build certain polynomials from these
linear functions, and form products of their powers. In this
manner we recover exactly the set of scaling operators (6.21)
and (6.25).

VII. WEYL GROUP AND SYMMETRY RELATIONS
BETWEEN SCALING EXPONENTS

In the preceding sections we constructed wave-function
observables that show pure-power scaling, by establishing
their correspondence with scaling operators of the SUSY σ

model. Now we are ready to explore the impact of Weyl-group
invariance on the spectrum of scaling exponents for these
operators (and the corresponding observables) at criticality.
The Weyl group W is a discrete group acting on the Lie algebra
a of the group A, or equivalently, on its dual a∗. Acting on a∗,
W is generated by reflections rα at the hyperplanes orthogonal
to the even roots α:

rα : a∗ → a∗, μ �→ μ − 2α
〈α,μ〉
〈α,α〉 , (7.1)

where 〈·,·〉 is the Euclidean scalar product of the Euclidean
vector space a∗.

Key to the following is the Harish-Chandra isomorphism;
see Refs. 34, and 31 for the classical version and Ref. 33 for
the SUSY generalization (which we need). The statement is
that there exists a homomorphism (actually, an isomorphism in
classical situations) from the algebra of G-invariant differential
operators on G/K to the algebra of W -invariant differential
operators on A. This homomorphism (or isomorphism, as
the case may be) is easy to describe: Given a G-invariant
differential operator D on G/K , one restricts it to its N -radial
part, which can be viewed as a differential operator on A, and

then performs a so-called Harish-Chandra shift (λ → λ − ρ)
by the half-sum of positive roots ρ. The shifted operator turns
out to be W invariant.

This property of W invariance is what matters to us here,
for it has the consequence that if χμ(D) denotes the eigenvalue
of D on the spherical function (or highest-weight vector) ϕμ

[see Eq. (3.15)], then

χwμ = χμ (7.2)

for all w ∈ W . In words, if two spherical functions ϕμ

and ϕλ have highest weights λ = wμ related by a Weyl-
group element w ∈ W , then their eigenvalues are the same,
χμ(D) = χλ(D), for any D. To the extent that the σ -model
RG transformation is G invariant (and hence is generated
by some G-invariant differential operator on G/K), we have
the following important consequence: The scaling dimensions
of the scaling operators (which arise as eigenvalues of the
G-invariant operator associated with the fixed point of the RG
flow) are W invariant.

For our purposes it will be sufficient to focus on the
subgroup of the Weyl group which is generated by the
following transformations on a∗: (i) sign inversion of any
one of the μ0 components: μ0

i → −μ0
i (reflection at the hyper-

plane μ0
i = 0), and (ii) pairwise exchange of μ0 components:

μ0
i ↔ μ0

j (reflection at the hyperplane μ0
i − μ0

j = 0). In view
of Eq. (3.14) these induce the following transformations of the
plane-wave numbers qj :

(i) sign inversion of qj + cj

2 for any j ∈ {1,2, . . . ,n},
qj → −cj − qj , (7.3)

where cj is the coefficient in front of xj in the expression for
the half-sum ρ of positive roots [see Eqs. (3.11) and (3.12)];

(ii) permutation of qi + ci

2 and qj + cj

2 for some pair i,j ∈
{1,2, . . . ,n},

qi → qj + cj − ci

2
; qj → qi + ci − cj

2
. (7.4)

By combining all such operations, one generates a sub-
group W0 ⊂ W of the Weyl group. Whenever two scaling
operators with quantum numbers q = (q1,q2, . . . ,qn) and
q ′ = (q ′

1,q
′
2, . . . ,q

′
n) are related by a Weyl transformation

w ∈ W0, the scaling dimensions of these scaling operators
must be equal. We now present some examples of this general
statement. As before, we focus on class A, for which cj =
1 − 2j ; see Eq. (3.12). Generalizations to the other classes are
discussed below.

Consider first the most symmetric representations (q),
which are characterized by a single number q1 ≡ q. (Here,
for convenience, we continue to use Young-diagram notation,
even though q1 need not be a positive integer and does
not correspond to a representation of polynomial type.) The
invariance under the Weyl group then implies that the two
representations

(q), (1 − q) (7.5)

(here we used c1 = −1) give identical scaling dimensions.
This is exactly the symmetry statement (1.4) governing the
multifractal scaling of the LDOS moments.

Next, consider representations of the type (q1,q2). By ap-
plying the Weyl symmetry operations above, we can generate
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from it a series of eight representations:

(q1,q2), (1 − q1,q2), (q1,3 − q2), (1 − q1,3 − q2),

(2 − q2,2 − q1), (−1 + q2,2 − q1),

(2 − q2,1 + q1), (−1 + q2,1 + q1). (7.6)

Again, all of them are predicted to give the same scaling
dimension. As an important example, starting from the trivial
representation (0) ≡ (0,0) (i.e., the unit operator) we generate
the following set:

(0,0) , (1,0) , (0,3) , (1,3) ,

(2,2) , (−1,2) , (2,1) , (−1,1) . (7.7)

Since (0,0) has scaling dimension zero, we expect the same
to hold for all other representations of this list, as long as
the Anderson-transition fixed point is in class A. This is a
remarkable statement.

In fact, among the set of representations (7.7), four are
of polynomial type and “standard” in that they are also
present in the replica approach of Wegner. Aside from the
trivial representation (0,0), these are (1,0), (2,2), and (2,1).
The representation (1,0) corresponds to 〈Q〉, which is well
known to be noncritical in the replica limit. However, for the
polynomial representations (2,2) and (2,1), our exact result
seems to be new. It is worth emphasizing that Wegner’s
four-loop perturbative ζ function29 is fully consistent with our
finding: Coefficients a2 and c3 vanish for these operators in
the replica limit; see Table I above. Moreover, a numerical
analysis26 of the correlation function (5.1), whose leading
scaling behavior is controlled by (2,2), also yielded a result
consistent with χ(2,2) = 0.

For our next example of importance, consider the case of
q1 = q2. Inspecting Eq. (7.6) we see, in particular, that the σ -
model operators (q,q) and (2 − q,2 − q) have the same scaling
dimensions. Now we know [see Sec. VI D and Eq. (5.8)] that
the operator (q,q) corresponds to the moment 〈Aq

2〉 of the
Hartree-Fock type correlation function A2, Eq. (1.5). Thus,
we learn that the multifractal spectrum of scaling dimensions
for the Hartree-Fock moments A

q

2 is symmetric under the
reflection q ↔ 2 − q.

One can continue these considerations and look at equiva-
lences between scaling dimensions for n = 3, i.e., for operators
(q1,q2,q3), and so on. In general, the Weyl orbit of an operator
(q1, . . . ,qn) with n different components consists of 2nn!
operators (due to 2n sign inversions and n! permutations) with
equal scaling dimensions. We have checked that all results
obtained by Wegner,29 who analyzed operators described by
Young diagrams up to size 5 and up to four loops (see Table I),
are fully consistent with this prediction.

This includes the aforementioned representations (1), (2,1),
and (2,2), as well as (3,1,1): All of them are related to the
trivial representation by Weyl-group operations and, indeed,
Wegner obtained zero values of a2 and c3 for all of them (in
the replica limit). Furthermore, the operators (3,2) = [2,2,1]
and (3,1) = [2,1,1] are clearly related to each other by the
Weyl reflection q2 → 3 − q2. Again, as is shown in Table I,
Wegner’s four-loop results, a2 = 4 and c3 = 24, are the same
for these.

VIII. OTHER SYMMETRY CLASSES

In order to apply the Weyl-symmetry argument to the other
symmetry classes, we need the expressions for the half-sum of
positive roots for them. More specifically, we now present the
“bosonic” part ρb (which is a linear combination of the basic
functions xj ) of ρ. By transcription of the above analysis, its
coefficients cj determine the Harish-Chandra shift entering the
Weyl transformation rules for the operators (q1, . . . ,qn); see
Eqs. (7.3) and (7.4).

The target spaces of the supersymmetric σ models for all
symmetry classes are listed in Table II, and their root systems
are listed in Table III of Appendix C. The resulting ρb are

ρb =
∑

cjxj , (8.1)

where the coefficients cj (j = 1,2, . . . ) read

cj = 1 − 2j, class A, (8.2)

cj = −j, class AI, (8.3)

cj = 3 − 4j, class AII, (8.4)

cj = 1 − 4j, class C, (8.5)

cj = 1 − j, class D, (8.6)

cj = −2j, class CI, (8.7)

cj = 2 − 2j, class DIII, (8.8)

cj = 1

2
− j, class BDI, (8.9)

cj = 2 − 4j, class CII, (8.10)

cj = 1 − 2j, class AIII. (8.11)

The results obtained above for class A generalize in a
straightforward manner to four of the other classes, which
comprise the two remaining Wigner-Dyson classes, AI and
AII, and two of the Bogoliubov–de Gennes classes, C and CI.
The Weyl-symmetry operations involve the pertinent values
of cj in each case. For example, for the most symmetric
operators (q) (characterizing the LDOS moments) we obtain
the correspondence (q) ↔ (−c1 − q), where −c1 has value 1
for the classes A, AI, and AII, value 2 for class CI, and value
3 for class C. This is exactly the symmetry (1.4) obtained in
Ref. 23, with q∗ = −c1.

Correspondences between the representations with two
or more numbers (q1, . . . ,qn) are obtained in exactly the
same way as described in Sec. VII for class A. Again, we
have checked that the four-loop results of Wegner29 for the
orthogonal and symplectic classes (AI and AII) conform with
our exact symmetry relations. Specifically, for class AI, our
results imply the following Weyl-symmetry relations (and
thus equal values of the scaling dimensions): (i) (2,2) ↔ (2);
(ii) (1,1) ↔ (2,1,1); (iii) (3,2) ↔ (3); (iv) (2,2,1) ↔ (1) ↔
(0) (scaling exponent equal to zero); these are the Young
diagrams up to size 5 studied in Ref. 29. For class AII the
dual correspondences hold: (i) (2,2) ↔ (1,1); (ii) (2) ↔ (3,1);
(iii) (2,2,1) ↔ (1,1,1); (iv) (3,2) ↔ (1) ↔ (0). Needless to
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say, the results of Ref. 29 for the coefficients a2, c3 for these
operators do conform with the predicted relations.

Generalization to the remaining five classes (D, DIII, BDI,
CII, and AIII) is more subtle due to peculiarities of their σ -
model manifolds. We defer this issue to Sec. X.

IX. TRANSPORT OBSERVABLES

We now address the question whether the classification and
symmetry analysis of the present paper are also reflected in
transport observables. To begin, we remind the reader that
such a correspondence between wave-function and transport
observables has previously been found for the case of the
(q) operators. Specifically, one can consider the scaling of
moments of the two-point conductance at criticality,39,40

〈gq(r,r′)〉 ∼ |r − r′|−�q . (9.1)

Actually, gq(r,r′) is not a pure-scaling operator39 (unlike the
LDOS moments considered above); thus, Eq. (9.1) should
be understood as characterizing the leading long-distance
behavior of 〈gq(r,r′)〉. Nevertheless, it turned out that the
transport exponents �q and the LDOS exponents xq = �q +
qxρ are related as3

�q =
{

2xq, q � q∗/2,

2xq∗ , q � q∗/2.
(9.2)

Notice that while the LDOS spectrum xq is symmetric with
respect to the point q∗/2 = −c1/2, the two-point conductance
spectrum �q “terminates” (i.e., has a nonanalyticity and
becomes constant) at this point. Yet, the spectrum �q clearly
carries information about the Weyl symmetry: If one performs
its analytic continuation (starting from the region below q∗/2),
one gets the spectrum 2xq = 2xq∗−q .

A physically intuitive argument explaining Eq. (9.2) is as
follows. For sufficiently low q, the moments of g(r,r′) are
controlled by small values of the conductance. When g(r,r′)
is small, one can think of it as a tunneling conductance that
is proportional to the product of the LDOS at the points r
and r′. The corresponding correlation function 〈νq(r)νq(r′)〉
scales with |r − r′| with the exponent 2xq , in agreement with
the first line of Eq. (9.2). (This argument can be also cast
in the RG language; see the end of Sec. IX B.) On the other
hand, the two-point conductance cannot be larger than unity.
For this reason the relation �q = 2xq does not hold beyond
the symmetry point q = q∗/2. The moments with q � q∗/2
are controlled by the probability to have g(r,r′) of order unity.

In view of the relation (9.2), a natural question is whether
there are any transport observables corresponding to the
composite operators (q1,q2, . . .) beyond the dominant one, (q).
We argue below that this is indeed the case, construct explicitly
these transport observables, and conjecture a relation between
the critical exponents.

In order to get some insight into this problem, it is instruc-
tive to look first at quasi-1D metallic systems, whose transport
properties can be described within the DMPK formalism.3,41

The rationale behind this is as follows. First, the classification
of transport observables that we are aiming at is based (in
analogy with the classification of wave-function observables
as developed above) purely on symmetry considerations and,
therefore, should be equally applicable to metallic systems.

Second, a 2D metallic system is “weakly critical” (at distances
shorter than the localization length), and the corresponding
anomalous dimensions can be studied within the perturbative
RG (which is essentially the same as Wegner’s RG analysis in
2 + ε dimensions). By a conformal mapping, a 2D system can
be related to the same problem in a quasi-1D geometry (with
a power-law behavior translating into an exponential decay).
Therefore, if some symmetry properties of spectra of transport
observables generically hold at criticality, we may expect to
see some manifestations of them already in the solution of the
DMPK equation.

A. DMPK, localized regime

In the DMPK approach, the transfer matrix of a quasi-1D
system is described by “radial” coordinates (with respect to
a Cartan decomposition) Xj , j = 1,2, . . . ,N , where N is the
number of channels. All transport properties of the wire are
expressed in terms of these radial coordinates. In particular,
the dimensionless conductance is

g =
N∑

j=1

Tj = Tr T = Tr t t†, (9.3)

where

Tj = 1

cosh2 Xj

(9.4)

are the transmission eigenvalues, i.e., the eigenvalues of T =
t t† (and t†t), where t is the transmission matrix.

The DMPK equations describe the evolution with system
length (playing the role of a fictitious time) of the joint
distribution function for the transmission eigenvalues (or the
coordinates Xj ), and they have the form of diffusion equations
on the symmetric space associated with the noncompact
group of transfer matrices. In the localized regime, where the
wire length L is much larger than the localization length ξ ,
the typical value of each transmission eigenvalue becomes
exponentially large relative to the next one: 1 � T1 � T2 �
· · · � TN . As a result, the equations for the random variables
Xj decouple, yielding an advection-diffusion equation for
each Xj . The solution has a Gaussian form, with both the
average 〈Xj 〉 and the variance var(Xj ) proportional to L/ξ

and with var(Xj ) independent of j . Each of the symmetry
classes therefore gives rise to a set of numbers 〈Xj 〉/var(Xj )
(which depend solely on the corresponding symmetric spaces).
Remarkably, comparing the above results (8.2)–(8.11) with the
known DMPK results, we observe that for all symmetry classes
one has

−cj = 〈Xj 〉
var(Xj )

. (9.5)

[In the case of the chiral classes, we note that Eq. (9.5) holds
when the Xj evolve according to the DMPK equations with
an even number of channels.]

This result allows us to draw a link between the transport
quantity Tj and the LDOS observable νj defined in Eq. (5.9).
Indeed, if we use the approximation Tj ≈ 4e−2Xj , which is
valid in the localized regime, we get

〈T q

j 〉 ∼ exp{2vq(q + cj )}, v = var(Xj ). (9.6)
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This expression for 〈T q

j 〉 has a point q = −cj /2 of reflection
symmetry. [We should add that this requires a continuation
of Eq. (9.6) from its range of actual validity to a region of
larger q; see the discussion below Eq. (9.2).] Now we recall
that the scaling of 〈νq

j 〉 is determined by the representation
(0, . . . ,0,q,0, . . .), with q at the j th position; see Eq. (5.10).
Hence, 〈νq

j 〉 ∼ 〈ν−cj −q

j 〉; i.e., the symmetry point of the
multifractal spectrum for νj is exactly −cj /2. This links Tj

with νj , as stated above.
We now write

Tm = T1T2 · · · Tm

T1T2 · · · Tm−1
= Sm

Sm−1
, Sm = T1 · · · Tm, (9.7)

and draw an analogy between Eqs. (9.7) and (5.9). Specifically,
Tm corresponds to νm (as we have already seen earlier) and Sm

to Am. To further strengthen the analogy, we point out that
Sm can be presented in the form of the absolute value squared
of a determinant. Indeed, consider first m = 2. Choose two
incoming (p,q) and two outgoing (r,s) channels and consider
the 2 × 2 matrix t (2) formed by the elements tij , i = p,q, j =
r,s, of the transmission matrix. Then calculate the absolute
value squared of the determinant of this matrix, and sum over
the channel indices p,q,r,s:∑

p,q,r,s

∣∣det t
(2)
ij

∣∣2 =
∑

p,q,r,s

|tpr tqs − tps tqr |2

= 2(Tr t t†)2 − 2Tr(t t†)2 = 2(Tr T )2 − 2Tr T 2

= 2
[
(T1 + T2)2 − (

T 2
1 + T 2

2

)] = 4T1T2 = 4S2. (9.8)

The same applies to higher correlation functions: By
considering the determinant of an m × m matrix t (m) and taking
its absolute value squared, we get Sm (up to a factor). If the
total number of channels is m, this is straightforward (the
modulus squared of the determinant then equals T1T2 · · · Tm);
if the total number of channels is larger than m, then, strictly
speaking, averaging over the choice of m channels is required.
We expect, however, that the determinant will typically behave
in the same way for any choice of the channels.

To summarize, the transmission eigenvalues Tm of the
DMPK model characterize the leading contribution to the
decay of transport quantities Sm/Sm−1, where the Sm are
given by the absolute values squared of the determinants of
m × m transmission matrices. There is a clear correspondence
between the wave-function observables νi = Ai/Ai−1 and the
transport observables Tm = Sm/Sm−1. In the next section we
generalize this construction to critical systems.

B. Transport observables at criticality

We are now ready to formulate a conjecture about the
scaling of subleading transport quantities at criticality. It
generalizes the relation (9.2) between the scaling exponents of
the moments of the conductance (�q) and of the LDOS (xq).

Consider a system at criticality and take two points r1 and
r2 separated by a (large) distance R. Attach N incoming and
N outgoing transport channels near each of these two points.
This yields an N × N transmission matrix t . Define Bm as
the absolute value squared of the determinant of its upper-left
m × m corner (i.e., of the transmission matrix t (m) for the first
m incoming and first m outgoing channels). This lets us build

a family of transport correlation functions (n � N ):

Mq1q2...qn
(R) = 〈

B
q1−q2
1 B

q2−q3
2 · · · Bqn−1−qn

n−1 Bqn

n

〉
= 〈

τ
q1
1 · · · τ qn

n

〉
, (9.9)

where τn = Bn/Bn−1. The conjecture is that the critical
index �q1q2...qn

determining the leading dependence on R of
Mq1q2...qn

(R) is

�q1q2...qn
= 2xq1q2...qn

, (9.10)

where xq1q2...qn
is the scaling exponent of the σ -model operator

(q1, . . . ,qn) for the correlator (5.10). This is a generalization
of Eq. (9.2). As with Eq. (9.2), the relation (9.10) is expected
to be valid only for qi not too large; probably, the condition
is qi � −ci/2 for all i.

Let us sketch an RG argument in favor of Eq. (9.10). We
expect that the quantity (9.9) is represented in field-theory
language as a correlation function of two local operators
(at points r1 and r2, respectively), each of which has the
same scaling properties as ν

q1
1 · · · νqn

n . Performing an RG
transformation that reduces the scale R down to a microscopic
scale, we will then get a factor R−2xq1q2 ...qn . After this the
correlation function becomes of the order of unity; thus,
we obtain Eq. (9.10). Possibly, a rigorous proof may be
constructed for class A by a generalization of the formula
of Ref. 40.

It should be stressed that we do not expect the correlation
functions Eq. (9.9) to show pure scaling: As we pointed out,
not even the moments of the conductance show it.39

X. CLASSES WITH O(1) AND U(1) ADDITIONAL
DEGREES OF FREEDOM

There are five symmetry classes with σ -model target spaces
that either have two connected components and thus an
associated Z2 = O(1) degree of freedom (classes D and DIII),
or have Z for their fundamental group due to the presence of a
U(1) degree of freedom (classes BDI, CII, AIII). These degrees
of freedom complicate the application of our Weyl-symmetry
argument.

We mention in passing that the classes at hand are the five
symmetry classes that feature topological insulators in 1D [pre-
cisely because, owing to the O(1) and U(1) degrees of freedom,
their σ -model spaces have the said topological properties].
Below we briefly outline our present understanding of the
Weyl-symmetry issue for these classes and the open questions.

A. Classes D and DIII

The target manifolds of the σ models for these symmetry
classes consist of two disjoint parts [O(1) = Z2 degree of
freedom]. In general, the σ -model field can “jump” between
the two components, thereby creating domain walls. The
arguments based on the Weyl symmetry in the form presented
above apply directly if such domain walls are prohibited (i.e.,
if the σ -model field stays within a single component of the
manifold). There are several situations when this is the case.

(i) The DMPK model of a quasi-1D wire does not include
domain walls.42 This explains the agreement between our
symmetry result and the DMPK results for these two classes.
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(ii) The O(1) version of the Chalker-Coddington network
model in 2D.43

(iii) A good metal in 2D. (In this case domain walls are,
strictly speaking, present but their effect is exponentially small
and thus expected to be negligible.)

Note that the Weyl-group invariance of the LDOS moments
for the classes D and DIII yields the symmetry point q∗/2 =
−c1/2 = 0. This implies that the distribution function P (ln ν)
is symmetric under ln ν → − ln ν [see Eq. (1.3) with q∗ = 0];
i.e., ln ν = 0 is the most probable (or typical) value. This
result is incompatible with exponential localization of the
eigenstates, which would imply exponentially small typical
LDOS values. We thus arrive at the conclusion that, in the
absence of domain walls, systems described by the σ model for
class D or DIII cannot have a localized phase. The models listed
in the previous paragraph exemplify this general statement.

In the case of a good 2D metal in class D or DIII, the scaling
behavior can be found by perturbative RG, with the smallness
of the inverse conductance 1/g � 1 ensuring the validity of
the loop expansion. In particular, the one-loop RG calculation
of the average DOS scaling yields44 〈ν〉 ∝ ln L ∝ g(L). We
know that the scaling exponents for the LDOS moments
depend quadratically on q in one-loop approximation (which
is governed by the quadratic Laplace-Casimir operator).
Therefore, in view of the q → −q Weyl symmetry, we expect
the LDOS moments to behave as

〈νq〉 ∝ (ln L)q
2
. (10.1)

It should, of course, be possible to check this directly by a
numerical calculation.

B. Chiral classes

For the chiral classes, the situation is even more subtle.
We expect that the Weyl-group invariance should show up
most explicitly in operators that are scalars with respect to
the additional U(1) degree of freedom. The LDOS moments,
however, do not belong to this category. We leave the SUSY-
based classification of operators and the investigation of the
impact of the Weyl-group invariance to future work.

XI. SUMMARY AND OUTLOOK

In this paper we have developed a classification of
composite operators without spatial derivatives at Anderson-
transition critical points in disordered systems. These operators
represent observables describing correlations of the LDOS
(or wave-function amplitudes). Our classification is motivated
by the Iwasawa decomposition for the (complexification of
the) SUSY σ -model field. The Iwasawa decomposition has
the attractive feature that it gives rise to spherical functions
which have the form of “plane waves” when expressed in
terms of the corresponding radial coordinates. Viewed as
composite operators of the σ model, these functions exhibit
pure-power scaling at criticality. Alternatively, and in fact
more appropriately, the same operators can be constructed
as highest-weight vectors.

We further showed that a certain Weyl-group invariance
(due to the Harish-Chandra isomorphism) leads to numerous
exact symmetry relations among the scaling dimensions of the

composite operators. Our symmetry relations generalize those
derived earlier for the multifractal exponents of the leading
operators.

While we focused on the Wigner-Dyson unitary symmetry
class (A) in most of the paper, we have also sketched the
generalization of our results to some other symmetry classes.
More precisely, our results are directly applicable to five (of
the ten) symmetry classes: the three Wigner-Dyson classes (A,
AI, AII) and two of the Bogoliubov–de Gennes classes (C and
CI). Moreover, they should also be valid for the remaining
two Bogoliubov–de Gennes classes (D and DIII), as long
as σ -model domain walls are suppressed (i.e., the σ -model
field stays within a single component of the manifold). Our
results imply that in this situation the system is protected
from Anderson localization. In other words, localization in
the symmetry classes D and DIII may take place only due to
the appearance of domain walls.

We have further explored the relation of our results
for the LDOS (or wave-function) correlators to transport
characteristics. We have constructed transport observables that
are counterparts of the composite operators for wave-function
correlators and conjectured a relation between the scaling
exponents.

It is worth emphasizing once more that the relations
between the scaling exponents derived in the present work
are exact, as they are based solely on the symmetries of the
underlying theory. In particular, they are applicable also to
strong-coupling fixed points (such as Anderson transitions in
3D and 2D or the quantum Hall transition) even when no
analytical description of the fixed-point theory is available.
Remarkably, even in these situations, where the exponents
cannot be found by controlled analytical means, our theory
predicts many exact relations between them. Moreover, we
are able to show that some of the exponents are exactly zero.
In our view, this is a striking demonstration of the power of
the σ -model approach.

Our work opens a number of further research directions;
here we list some of them.

(1) Verification of our predictions by numerical simulation
of systems housing critical points of various dimensionali-
ties, symmetries, and topologies would be highly desirable.
While the LDOS multifractal spectra have been studied
for a considerable number of critical points, the numerical
investigation of the scaling of subleading operators is still in its
infancy. Preliminary numerical results for the spectra of scaling
exponents of the moments 〈Aq

2〉 and 〈Aq

3〉 at the quantum Hall
critical point45 do support our predictions. Furthermore, it
would be very interesting to check numerically our predictions
for the scaling of transport observables.

(2) As mentioned in Sec. X B, it remains to be seen to what
extent our results can be generalized to the chiral symmetry
classes and what their implications for observables will be.

(3) In this work, we have studied critical points of non-
interacting fermions. In some cases the electron-electron
interaction is RG-irrelevant at the fixed point in question,
so that the classification remains valid in the presence of
the interaction. An example of such a situation is provided
by the integer quantum Hall critical point with a short-range
electron-electron interaction.24–26 However, if the interaction
is of long-range (Coulomb) character, the system is driven
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to another fixed point. [This also happens in the presence
of short-range interactions for fixed points with spin-rotation
symmetry: In this case, the Hartree-Fock cancellation of the
leading term in the two-point function (1.5) does not take
place.] The classification of operators and relevant observables
at such interacting fixed points, as well as the analysis of
possible implications of the Weyl-group invariance, remain
challenging problems for future research.
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APPENDIX A: YOUNG DIAGRAMS, TABLEAUX, AND
SYMMETRIZERS

In this paper we use a standard notation for Young
diagrams; see, for example, Ref. 46. Thus, the Young diagram
corresponding to the partition q1 + q2 + · · · + qn (where the
integers qj are subject to q1 � q2 � · · · � qn � 0) is denoted
by λ = (q1,q2, . . . ,qn), and consists of left-aligned rows with
the top row containing q1 boxes, the next row containing q2

boxes, etc. Another notation that we use is λ = (lb1
1 , . . . ,lbs

s )
to denote the partition that has bi copies of the integer li ,
1 � i � s. For an example, on the left in Fig. 2 we show the
Young diagram λ = (6,6,4,4,2,1) = (62,42,2,1) with six rows
and four distinct row lengths.

At the top of the diagram in Fig. 2 we also display the
numbers of boxes p1,p2, . . . ,pm in each column. Like the
numbers q1, . . . ,qn, these completely specify the diagram, and
we use (for the same diagram) the alternative notation λ =
[p1,p2, . . . ,pm] = [ka1

1 , . . . ,kas
s ], where the second notation

means that the partition by the integers pi has aj copies of the
integer kj , 1 � j � s. In this notation the diagram shown in
Fig. 2 on the left is λ = [6,5,42,22]. The numbers pi also define
the conjugate diagram λ̃ = (p1,p2, . . . ,pm). For illustration,
the diagram λ̃ = (6,5,42,22) = [62,42,2,1] is shown in Fig. 2

p1 p2 p3 p4 p5 p6

q1

q2

q3

q4

q5

q6

p1 p2 p3 p4 p5 p6

q1

q2

q3

q4

q5

q6

FIG. 2. Young diagram λ = (62,42,2,1) = [6,5,42,22] (left) and
its conjugate λ̃ = (6,5,42,22) = [62,42,2,1] (right).

on the right. (Notice that the number s of distinct parts is the
same for a Young diagram and its conjugate, and is the same as
the number of “corners” on the boundary of the diagram.) The
number of boxes of λ and λ̃, called the size of λ, is denoted by

|λ| = |λ̃| =
n∑

i=1

qi =
m∑

i=1

pi = N. (A1)

For a given Young diagram, the integers li and ai are related
by

a1 = ls ,

a2 = ls−1 − ls ,

...

as = l1 − l2. (A2)

Solving this for li gives

l1 = a1 + a2 + · · · + as,

l2 = a1 + a2 + · · · + as−1,

...

ls = a1. (A3)

Similar relations exist between ki and bi :

b1 = ks,

b2 = ks−1 − ks,

...

bs = k1 − k2. (A4)

k1 = b1 + b2 + · · · + bs,

k2 = b1 + b2 + · · · + bs−1,

...

ks = b1. (A5)

Young diagrams are used to label irreducible representa-
tions (irreps) of the permutation groups and some classical
matrix groups. Irreps of G = U(n) of polynomial type are in
one-to-one correspondence with Young diagrams that have at
most n rows. The eigenvalue of the quadratic Casimir operator
in the irrep of U(n) with Young diagram λ = (q1,q2, . . . ,qn)
is

a2(λ,n) =
n∑

i=1

qi(qi + n + 1 − 2i). (A6)

It is known that the quadratic Casimir eigenvalue for the
conjugate Young diagram λ̃ is related to the one for λ by

a2(λ̃,n) = −a2(λ, − n). (A7)

Next we need the notion of Young tableaux. A tableau T is
a Young diagram λ with each of its boxes filled with a positive
integer from the set {1,2, . . . ,N = |λ|}. A tableau is called
semistandard if the integers in the boxes (i) weakly increase
from left to right along each row and (ii) strictly increase from
top to bottom along each column. The minimal semistandard
tableau (denoted by Tmin) for a given shape λ = [ka1

1 , . . . ,kas
s ]

is the one where all the integers in the first row are 1, in
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1 2 3 4 4 7
2 3 5 5
3 4 6 7
5 6
(a) Semistandard

tableau

1 1 1 1 1 1
2 2 2 2
3 3 3 3
4 4

(b) Minimal tableau

1 3 7 12 13 15
2 5 10 14
4 8 11 16
6 9

(c) Standard tableau

1 2 3 4 5 6
7 8 9 10
11 12 13 14
15 16
(d) Normal tableau

FIG. 3. Young tableaux.

the second row 2, and so on, up to k1 in the last row. A
semistandard tableau is called standard if it is filled according
to the above rules so that each number from the set {1, . . . ,N}
occurs exactly once. A normal tableau (which we denote by
T0) is a standard Young tableau in which the numbers are in
order, left to right and top to bottom. If a tableau T is obtained
by filling a Young diagram λ, we say that λ is the shape of T .
To give an example, Fig. 3 shows a semistandard, the minimal,
a standard, and the normal tableau of shape (6,42,2).

The permutation group SN acts on tableaux with N boxes
by permuting the integers in the boxes. If σ ∈ SN , we denote
by σT the tableau which has the number σ (i) in the box
where T has i. For each Young diagram λ of size N we define
R(λ) and C(λ) as the subgroups of SN that preserve the rows
and columns of λ, respectively. One can consider formal linear
combinations of the elements of SN [these form what is known
as the group algebra A(SN ) of SN ] and define the following
operators:

aλ =
∑

σ∈R(λ)

σ, bλ =
∑

τ∈C(λ)

sgn(τ )τ. (A8)

When acting on a tableau T , the operator aλ symmetrizes all
the numbers in T along its rows. Similarly, bλ antisymmetrizes
entries of a tableau along the columns. Finally, the Young
symmetrizers are defined as the products

cλ = bλaλ. (A9)

Sometimes one uses an alternative definition of the Young sym-
metrizers where the order of the operations of symmetrization
and antisymmetrization is reversed:

c̃λ = aλbλ. (A10)

All operators aλ, bλ, cλ, and c̃λ are idempotent; this means
that their squares are proportional to the operators themselves:

a2
λ = nRaλ, b2

λ = nCbλ,
(A11)

c2
λ = nλcλ, c̃2

λ = nλc̃λ,

where nR and nC are the orders of the subgroups R(λ) and
C(λ) and nλ is another positive integer.

For Young diagrams of type (q) = [1q] the Young sym-
metrizer reduces to the total symmetrizer along the single
row. Similarly, for the diagrams of type (1p) = [p] the Young

symmetrizer is the total antisymmetrizer along the single
column:

c(q) = a(q),c[p] = b[p]. (A12)

To illustrate these operators, consider the normal tableau T0

for λ = (2,1). In that case,

a(2,1)
1 2
3

= 1 2
3

+ 2 1
3 (A13)

b(2,1)
1 2
3

= 1 2
3

− 3 2
1 (A14)

c(2,1)
1 2
3

= b(2,1)
1 2
3

+ b(2,1)
2 1
3

= 1 2
3

− 3 2
1

+ 2 1
3

− 3 1
2

(A15)

c̃(2,1)
1 2
3

= a(2,1)
1 2
3

− a(2,1)
3 2
1

= 1 2
3

+ 2 1
3

− 3 2
1

− 2 3
1

(A16)

For the purposes of this paper we also need to consider
tableaux filled by points and wave-function symbols rather
than integers. The action of the permutation groups and Young
symmetrizers on such tableaux is defined in the same way as
on tableaux filled by integers: The points and wave functions
are permuted according to their positions in a tableau. Now,
suppose we have a young diagram λ and two tableaux, Tψ

and Tr , of shape λ, filled with wave functions and points,
respectively. We can define a pairing of these two tableaux as
the following product of wave functions:

�λ(Tψ,Tr ) =
∏
i∈λ

ψi(ri), (A17)

where i runs over the boxes of the diagram λ. The tableaux
used in this definition need not be standard or semistandard but
can be arbitrary. For example, for the following two tableaux

Tψ = ψ2 ψ4 ψ5

ψ1 ψ5

ψ3

Tr = r1 r2 r3

r1 r3

r4

,
(A18)

the corresponding product of wave functions is

�(3,2,1)(Tψ,Tr ) = ψ1(r1)ψ2(r1)ψ3(r4)ψ4(r2)ψ2
5 (r3).

When an element s ∈ A(S|λ|) of the group algebra of the
symmetric group S|λ| acts on one of the arguments of
�λ(Tψ,Tr ), we understand, say

�λ(Tψ,sTr ), (A19)

as the linear combination of the corresponding products. It is
easy to derive some useful properties of such actions. First of
all, it is clear that if we permute the entries in both tableaux
Tψ and Tr in the same way, then we do not change the pairing
of these two tableaux:

�λ(σTψ,σTr ) = �λ(Tψ,Tr ), σ ∈ S|λ|. (A20)
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Now take the inverse σ−1 of a permutation σ ∈ S|λ|, and apply
it to both tableaux in �λ(Tψ,σTr ). Then

�λ(Tψ,σTr ) = �λ(σ−1Tψ,Tr ). (A21)

Next, if the permutation σ in the last equation runs over either
of the subgroups R(λ) or C(λ), its inverse σ−1 does the same.
Moreover, the parities of σ and σ−1 are the same. Therefore,
summing Eq. (A21) over R(λ) or over C(λ) with appropriate
sign factors, we get

�λ(Tψ,aλTr ) = �λ(aλTψ,Tr ), (A22)

�λ(Tψ,bλTr ) = �λ(bλTψ,Tr ). (A23)

Finally, using the last two equations it is easy to obtain

�λ(Tψ,cλTr ) = �λ(bλTψ,aλTr ) = �λ(c̃λTψ,Tr ), (A24)

�λ(Tψ,c̃λTr ) = �λ(aλTψ,bλTr ) = �λ(cλTψ,Tr ). (A25)

The combinations of wave functions that play a special role
in the paper are �λ(T ,cλT ), where T is a standard tableau of
shape λ. It is these particular combinations that lead to pure
scaling operators in the σ model, see Sec. VI. For example, we
can take both Tψ and Tr to be the normal tableau and obtain
�λ(T0,cλT0).

Let us look at a few simple examples. If we take both Tψ and
Tr to be the normal tableau for the diagram (2,1) and act on Tr

by the Young symmetrizer c(2,1) of (A9), then by using (A15)
we get

�(2,1)(T0,c(2,1)T0)

= ψ1(r1)ψ2(r2)ψ3(r3) − ψ1(r3)ψ2(r2)ψ3(r1)

+ψ1(r2)ψ2(r1)ψ3(r3) − ψ1(r3)ψ2(r1)ψ3(r2)

= ψ2(r2)D2(r1,r3) + ψ2(r1)D2(r2,r3). (A26)

It is an easy exercise to show that one has the same expression
for �(2,1)(c̃(2,1)T0,T0).

In the notation of Eq. (A19) the Slater determinants (4.16)
can be written as

Dp(r1, . . . ,rp) = �(1p)(T0,b(1p)T0). (A27)

If we build our product of wave functions by taking the min-
imal semistandard tableau of a given shape λ = [ka1

1 , . . . ,kas
s ]

for both Tψ and Tr , then the operation of symmetrization along
the rows is clearly redundant, and we get

�λ(Tmin,cλTmin) ∝ �λ(Tmin,bλTmin)

= �λ(bλTmin,Tmin) = D
a1
k1

· · · Das

ks
, (A28)

where each determinant Dj is evaluated on wave functions
ψ1, . . . ,ψj at the points r1, . . . ,rj . Adopting the notation λ =
(q1,q2, . . . ,qn), an alternative form of this expression is

�λ(Tmin,cλTmin) ∝ D
q1−q2
1 D

q2−q3
2 · · ·Dqn

n . (A29)

APPENDIX B: CONSTRUCTION OF HIGHEST-WEIGHT
VECTORS

In this appendix we construct the scaling operators (6.21)
and (6.25) by using the idea of the highest-weight vector
sketched in Sec. VI F. As was discussed there, we first focus
on linear functions μY (Q) (6.35) of the matrix elements of the

σ -model field Q specified by a matrix Y : μY (Q) = Tr(YQ).
Let us denote by Eij the matrix which contains the number one
at the intersection of the ith row with the j th column and zeros
everywhere else. Such matrices are sometimes called “matrix
units.” Individual matrix elements of Q can be written as

μEij
(Q) = Qji. (B1)

We begin with two simple examples: functions on a sphere
S2 and on a hyperboloid H 2. These are symmetric spaces of
compact and noncompact type, respectively.

1. Functions on a sphere

Consider the space of functions on the two-sphere

G/K = U(2)/U(1) × U(1) = SU(2)/U(1) = S2. (B2)

To make the presentation here similar to the general case
considered later, we represent points on the sphere by the
matrix

Q = g
g−1, (B3)

where g ∈ SU(2) and 
 = σ3 is the third Pauli matrix. Using
a parametrization of SU(2) by Euler angles,

g =
(

e−i(φ+ψ)/2 cos θ
2 −e−i(φ−ψ)/2 sin θ

2

ei(φ−ψ)/2 sin θ
2 ei(φ+ψ)/2 cos θ

2

,

)
(B4)

we get

Q =
(

x3 x1 − ix2

x1 + ix2 −x3

)
, (B5)

where

x1 = sin θ cos φ, x2 = sin θ sin φ, x3 = cos θ, (B6)

are the three basic functions which arise by restricting the
Cartesian coordinates of the Euclidean space R3 to the sphere
x2

1 + x2
2 + x2

3 = 1.
Let us choose Xk = σk/(2i) as our system of generators

of the Lie algebra su(2). The standard choice for the Cartan
generator is X3, and the raising and lowering generators [in
the complexification sl(2,C) of su(2)] are X± = iX1 ∓ X2.
Notice that

X+ = E12, X− = E21. (B7)

Now the function

ϕ1(Q) = μX+ (Q) = Q21 = x1 + ix2 = sin θ eiφ (B8)

is a highest-weight vector for the SU(2) action. Indeed, by
Eq. (6.36) we have

X̂+ϕ1 = μ[X+,X+] = 0, (B9)

X̂3ϕ1 = μ[X3,X+] = μ−iX+ = −iϕ1. (B10)

Powers of this function,

ϕl(Q) ≡ ϕl
1(Q) = (x1 + ix2)l = sinl θ eilφ, (B11)

are also highest-weight vectors. To make them globally well
defined on the sphere, the power l has to be a non-negative
integer. Constant multiples of ϕl are known as the spherical
harmonics Yll in the irreducible representation of SU(2) of
dimension 2l + 1.
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There exist other choices of Cartan and nilpotent subal-
gebras. For example, if we chose X1 as the Cartan generator,
and X′

+ = −X3 + iX2 as the raising operator, then the (linear)
highest-weight vector would be

ϕ′
1 = i

2
(Q11 − Q21 + Q12 − Q22)

= i(x3 + ix2) = i cos θ − sin θ sin φ. (B12)

Similarly, the choice of X2 as the Cartan generator would lead
to the highest-weight vector

ϕ′′
1 = x3 + ix1 = cos θ + i sin θ cos φ. (B13)

Both ϕ′
1 and ϕ′′

1 can be raised to non-negative integer powers
to produce other highest-weight vectors.

In this example of functions on a compact symmetric space,
all three choices of Cartan subalgebra or highest-weight vector
are equivalent and can be transformed into each other by an
element of G = SU(2). [In fact, they are just three “points”
on an SU(2) orbit of Cartan subalgebras or highest-weight
vectors.] This will not be the case in our next example of
functions on the two-hyperboloid.

2. Functions on a hyperboloid

We now consider the space of functions on a noncompact
analog of the two-sphere, the two-hyperboloid

G/K = SU(1,1)/U(1) = H 2. (B14)

One may view this space as a noncompact variant of the
sphere S2, by analytically continuing the compact angle θ

to the noncompact radial variable on H 2 (denoted by the
same symbol θ ). If we make the replacement θ → iθ in
the function (B8), we get i sinh θ eiφ . While this function
is a highest-weight vector for some choice of the Cartan
subalgebra, it is not positive on the hyperboloid, so it cannot
be raised to an arbitrary complex power. However, there exist
other, inequivalent choices of the Cartan subalgebra which do
give the desired positivity property. In fact, if we analytically
continue θ → iθ in, say, Eq. (B13), we get the highest-weight
vector cosh θ − sinh θ cos φ, which is strictly positive on H 2

and, therefore, can be raised to an arbitrary complex power.
Here is how it is done more formally.

Matrices g ∈ SU(1,1) satisfy the relation

g−1 = σ3g
†σ3 (B15)

and can be parametrized in terms of generalized Euler angles
as

g =
(

ei(φ+ψ)/2 cosh θ
2 −iei(φ−ψ)/2 sinh θ

2

ie−i(φ−ψ)/2 sinh θ
2 e−i(φ+ψ)/2 cosh θ

2

.

)
(B16)

Elements of the coset space G/K = H 2 are represented by
matrices

Q = gσ3g
−1 =

(
x3 ix1 + x2

ix1 − x2 −x3

)
. (B17)

The matrix elements x1,x2,x3 may be viewed as the Cartesian
coordinates of the Euclidean space R3 restricted to the

hyperboloid x2
3 − x2

1 − x2
2 = 1. By adopting the parametriza-

tion (B16) we express them as

x1 = sinh θ cos φ, x2 = sinh θ sin φ, x3 = cosh θ. (B18)

The Lie algebra su(1,1) � R3 is spanned by the matrices iX1,
iX2, and X3. Choosing X3 for the Cartan generator and X± =
iX1 ∓ X2 for the nilpotent generators, we get the highest-
weight vector

ϕ1 = Q21 = ix1 − x2 = i sinh θ eiφ. (B19)

This is the analog of Eq. (B8) for the hyperboloid, and it is not
a positive function. To obtain a positive highest-weight vector,
we need to choose a linear combination of iX1 and iX2 for the
Cartan generator.

Thus, let the Cartan generator be iX1 cos α − iX2 sin α for
some choice of parameter α. Taking

X′
+ = X2 cos α + X1 sin α + iX3

for the raising operator, we have the following expression for
the corresponding highest-weight vector:

ϕ′
1 = μX′+ = 1

2 (Q11 − Q22 + e−iαQ12 − eiαQ21)

= x3 + x2 cos α + x1 sin α

= cosh θ + sinh θ sin(φ + α), (B20)

which already arose in the closely related context of Eq. (4.11).
An arbitrary complex power of this positive function is also a
highest-weight vector,

ϕ′
q = (cosh θ + sinh θ sin(φ + α))q, q ∈ C, (B21)

and this function (or rather, its extension to the SUSY setting)
is the σ -model scaling operator for the qth power of the LDOS.

While it is clear by inspection that the function ϕ′
1 is

positive, a more formal proof that generalizes to cases of higher
rank is as follows. We write

ϕ′
1 = 1

2 Tr[(σ3 − iσ2 cos α − iσ1 sin α) gσ3g
−1]

= 1
2 Tr[(1 − σ1 cos α + σ2 sin α)gg†], (B22)

where we have used the SU(1,1) defining relation (B15).
The matrix � = (1 − σ1 cos α + σ2 sin α)/2 is a projection
operator: �† = � = �2. We thus see that the function ϕ′

1
is the manifestly positive expectation value of gg† > 0 in the
eigenvector of the projector � with eigenvalue 1.

3. Arbitrary n, compact case

We now come back to the general case of functions on the
compact symmetric space for class A:

G/K = U(2n)/U(n) × U(n), (B23)

which arises from the use of fermionic replicas. Elements of
this coset space, or points on the manifold, are represented by
matrices Q = g
g−1, where now


 = �3 =
(

11n 0

0 −11n

)
. (B24)

We begin with a choice of root-space decomposition g =
n+ ⊕ h ⊕ n−; see Eq. (6.30). We take h to be spanned by
the diagonal matrices and n+ (n−) be spanned by the upper
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(respectively, lower) triangular matrices in g = gl(2n,C).
Schematically,

h =

⎛⎜⎜⎜⎜⎜⎜⎝

∗ 0 . . . 0 0

0 ∗ . . . 0 0
...

...
. . .

...
...

0 0 . . . ∗ 0

0 0 . . . 0 ∗

⎞⎟⎟⎟⎟⎟⎟⎠,

n+ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 ∗ . . . ∗ ∗
0 0 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . 0 ∗
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠. (B25)

We also need the (refined) Cartan decomposition g = p+ ⊕
k ⊕ p−, where k = gl(n,C) ⊕ gl(n,C) is the complexified Lie
algebra of K = U(n) × U(n), while p± are the eigenspaces of
the adjoint (or commutator) action of �3:

k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ . . . ∗ 0 . . . 0
...

. . .
...

...
. . .

...

∗ . . . ∗ 0 . . . 0

0 . . . 0 ∗ . . . ∗
...

. . .
...

...
. . .

...

0 . . . 0 ∗ . . . ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

p+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 ∗ . . . ∗
...

. . .
...

...
. . .

...

0 . . . 0 ∗ . . . ∗
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B26)

Note the commutation relations

[k,p+] = p+, [p+,p+] = 0, (B27)

as well as the following decomposition of the space n+ of
raising operators:

n+ = p+ ⊕ (n+ ∩ k). (B28)

Our attention now focuses on the space of complex-valued
functions μY [see Eq. (6.35)] for Y ∈ p+. We use such
functions as building blocks to construct functions that have the
properties of a highest-weight vector; see Eq. (6.31). In fact,
by the second set of commutation relations in Eq. (B27) any
function μY for Y ∈ p+ is already annihilated by all first-order
differential operators that represent generators of p+:

X̂μY = μ[X,Y ] = 0 for X,Y ∈ p+. (B29)

However, μY for general Y ∈ p+ is not annihilated by all
raising operators from n+ ∩ k. To implement this annihilation
condition, we construct certain polynomials of the matrix
elements of Q in the following way.

For 1 � i,j � n we introduce the functions

νij = μEi,2n+1−j
= Q2n+1−j,i . (B30)

Notice that the matrix Ei,2n+1−j ∈ p+, so the functions νij are
exactly of the type discussed in the previous paragraph. Now
we demonstrate that for any integer m in the range 1 � m � n

the m × m determinant

fm = Det

⎛⎜⎜⎝
ν11 . . . ν1m

...
. . .

...

νm1 . . . νmm

⎞⎟⎟⎠ (B31)

is a highest-weight vector for the decomposition (6.30).
We first establish that X̂fm = 0 for all X ∈ n+. Due to the

decomposition (B28) there are two cases to consider. First, let
X ∈ p+. Then, as we have already mentioned, X̂νij = 0 and,
therefore, X̂fm = 0. Now let X be in the space n+ ∩ k, which
is spanned by Eii ′ for 1 � i < i ′ � n and Ejj ′ for n + 1 �
j < j ′ � 2n. If X = Eii ′ with m < i ′ � n, then we still have
X̂fm = 0, since for all 1 � i ′′,j � m the commutator

[Eii ′ ,Ei ′′,2n+1−j ] = Eii ′Ei ′′,2n+1−j (B32)

vanishes due to i ′ �= i ′′. Now let X = Eii ′ , with 1 � i < i ′ �
m. In this case we obtain

Êii ′fm = d

dt

∣∣∣∣
t=0

Det[Tr(etEii′ Ei ′′,2n+1−j e
−tEii′ Q)]mi ′′,j=1

= d

dt

∣∣∣∣
t=0

Det[νi ′′j + tδi ′i ′′νij ]mi ′′,j=1. (B33)

The matrix under the determinant sign in the last equation
factorizes as (1 + tEi ′i)ν; therefore,

Êii ′fm = fm
d
dt

∣∣∣∣
t=0

Det(1 + tEi ′i) = 0, (B34)

since the determinant in the last equation does not depend
on t .

It remains to show that fm is an eigenfunction of the
operators from h. To this end we express H ∈ h as H =∑2n

i=1 hiEii , where hi ∈ C. This is a diagonal matrix, and so
is etH = ∑2n

i=1 ethi Eii . Then we have

Ĥ νij = d

dt

∣∣∣∣
t=0

∑
kl

et(hk−hl )Tr(EkkEi,2n+1−jEllQ)

= d

dt

∣∣∣∣
t=0

et(hi−h2n+1−j )νij , (B35)

and, indeed, the property (6.31) follows:

Ĥfm = d

dt

∣∣∣∣
t=0

Det[et(hi−h2n+1−j )νij ]mi,j=1

= fm

d

dt

∣∣∣∣
t=0

et
∑m

i=1(hi−h2n+1−i ) = λm(H )fm,

λm(H ) =
m∑

i=1

(hi − h2n+1−i). (B36)

125144-23



I. A. GRUZBERG, A. D. MIRLIN, AND M. R. ZIRNBAUER PHYSICAL REVIEW B 87, 125144 (2013)

Since all functions fm for 1 � m � n have the highest-
weight property, so does the product

ϕ(q1,...,qn) = f
q1−q2
1 f

q2−q3
2 · · · f qn−1−qn

n−1 f qn

n (B37)

for a weakly decreasing sequence of n integers q1 � q2 �
· · · � qn � 0. The powers in this expression are restricted to
be non-negative integers, since the functions fm are complex-
valued. The functions ϕ(q1,...,qn) are the most general highest-
weight vectors in the present situation.

Note that if H = ∑n
i=1 hiEii is a diagonal generator of

GL(n,C), then

Ĥϕ(q1,...,qn) =
(

n∑
i=1

qihi

)
ϕ(q1,...,qn). (B38)

By standard facts of representation theory it follows that
(q1, . . . ,qn) my be interpreted as the sequence of numbers de-
termining the Young diagram of an irreducible representation
of GL(n,C).

4. Arbitrary n, noncompact case

We now turn to the general noncompact situation for class
A and consider the space of functions on

G/K = U(n,n)/U(n) × U(n), (B39)

which results from the use of bosonic replicas. Points on this
manifold are represented by matrices Q = g
g−1, where 
 =
�3 is defined in Eq. (B24). Elements of the pseudounitary
group U(n,n) satisfy

g−1 = �3g
†�3. (B40)

Hence, the functions μY (Q) can be rewritten as

μY (Q) = Tr(Yg�3g
−1) = Tr(gg†�3Y ). (B41)

We try to follow the development of the compact case as
much as possible. One major change comes from the fact that
by the hyperbolic nature of the Lie algebra g = u(n,n), there
exist several G-inequivalent choices of Cartan subalgebra h.
For our purposes, the good choice to consider is as follows.

We make an orthogonal transformation of the standard basis
{ei} of C2n to introduce a new basis {ẽi}:

ẽj = ej + ej+n√
2

, ẽ2n+1−j = ej − ej+n√
2

, (B42)

where 1 � j � n. We then define linear operators Ẽij on
C2n by the relation Ẽij ẽk = δjkẽi . Thus, in the new basis the
operators Ẽij are the “matrix units.” They can be expressed in
terms of the matrix units with respect to the original basis:

Ẽij = 1
2 (Eij + Ei+n,j + Ei,j+n + Ei+n,j+n),

Ẽ2n+1−i,j = 1
2 (Eij − Ei+n,j + Ei,j+n − Ei+n,j+n),

Ẽi,2n+1−j = 1
2 (Eij + Ei+n,j − Ei,j+n − Ei+n,j+n),

Ẽ2n+1−i,2n+1−j = 1
2 (Eij − Ei+n,j − Ei,j+n + Ei+n,j+n).

With these conventions, let us choose the Cartan sub-
algebra h and the subalgebra n+ of raising operators as

follows:

h = spanC
{
Ẽjj ,1 � j � 2n

}
, (B43)

n+ = spanC
{
Ẽij ,1 � i < j � 2n

}
. (B44)

Thus, our Cartan generators in the transformed basis ẽ are still
diagonal and the raising operators are still upper triangular. As
before, we introduce a set of functions

νij = μẼi,2n+1−j
≡ Qji

= 1
2 (Qji + Qj,i+n − Qj+n,i − Qj+n,i+n) (B45)

for 1 � i,j � n. We point out that in the advanced-retarded
space this is exactly the structure that appeared before in
Eq. (4.12).

We now define functions fm for 1 � m � n in the same
way as in the compact case:

fm = Det[ν(m)], ν(m) =

⎛⎜⎜⎝
ν11 . . . ν1m

...
. . .

...

νm1 . . . νmm

⎞⎟⎟⎠. (B46)

By the same argument as for the compact case, each of the fm

has the properties (6.31) of a highest-weight vector.
Moreover, each of the functions fm is real-valued and

positive. This is seen as follows. Recalling the second
expression in Eq. (B41) we have

νij = Tr(gg†�ij ), (B47)

where

�ij = �3Ẽi,2n+1−j = Ẽ2n+1−i,2n+1−j . (B48)

This shows that νij is, in fact, a single matrix element of the
positive definite matrix gg† in the new basis, in the subspace
spanned by {ẽ2n+1−i}1�i�n:

νij = (gg†)2n+1−j,2n+1−i . (B49)

Then the determinant fm = Det[ν(m)] is a principal minor of
this positive definite matrix, and, therefore is positive as well.
Hence, in the construction of a general highest-weight vector,

ϕ(q1,...,qn) = f
q1−q2
1 f

q2−q3
2 . . . f

qn−1−qn

n−1 f qn

n , (B50)

we may take the qi to be arbitrary complex numbers.
Notice, on the other hand, that the functions fm are the

principal minors of the appropriate block of the matrix Q; see
Eq. (B45). Therefore, in the notation introduced in Sec. VI for
these minors, fm = dm, the highest-weight vector ϕ(q1,...,qn) is
the same as the function ϕq,0 in Eq. (6.25).

Finally, we comment that the generalization to the SUSY
case is straightforward. We simply need to replace all traces
with supertraces and determinants with superdeterminants.
Otherwise, everything goes through in the same way as before.
For the purposes of this paper, it is sufficient to consider only
the noncompact (boson-boson) sector of the super σ model. In
this case the powers qi can again take arbitrary complex values.
We thus reproduce eigenfunctions (6.21) which, as explained
in Sec. VI D, are none other than the N -radial functions (6.25)
of the Iwasawa-decomposition approach. If we do not restrict
ourselves to the boson-boson sector, we obtain a broader class
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of eigenfunctions that, by the same token, will be equivalent to the plane waves (3.15). The powers pl corresponding
to the compact sector are then non-negative integers as in Appendix B 3.

APPENDIX C: TABLES OF σ -MODEL TARGET SPACES AND THEIR ROOT SYSTEMS

TABLE II. σ -model spaces. The σ -model target spaces for the localization problem fall into the large families of Riemannian symmetric
superspaces. The last two columns list the compact and noncompact components of their underlying manifolds.

Symmetry NLσM Compact space Noncompact space
class (n-c|c) (ff sector) (bb sector)

A (UE) AIII|AIII U(2n)/U(n) × U(n) U(n,n)/U(n) × U(n)

AI (OE) BDI|CII Sp(4n)/Sp(2n) × Sp(2n) O(n,n)/O(n) × O(n)

AII (SE) CII|BDI O(2n)/O(n) × O(n) Sp(2n,2n)/Sp(2n) × Sp(2n)

AIII (chUE) A|A U(n) GL(n,C)/U(n)

BDI (chOE) AI|AII U(2n)/Sp(2n) GL(n,R)/O(n)

CII (chSE) AII|AI U(n)/O(n)
GL(n,H)/Sp(2n)

≡ U∗(2n)/Sp(2n)

C (SC) DIII|CI Sp(2n)/U(n) SO∗(2n)/U(n)

CI (SC) D|C Sp(2n) SO(n,C)/SO(n)

BD (SC) CI|DIII O(2n)/U(n) Sp(2n,R)/U(n)

DIII (SC) C|D O(n) Sp(2n,C)/Sp(2n)

TABLE III. Root systems for the σ -model target spaces. We choose the system of positive roots such that, in the notation used in the table,
1 � j < k � p and 1 � m < l � r (notice the opposite choice for the bb and ff sectors). As appropriate for our σ -model target spaces, we
only consider the orthogonal groups in even dimensions. The last two columns list the coefficients of the expansions of the half-sum of positive
roots ρ = ∑p

j=1 cjxj + i
∑r

l=1 blyl .

Symmetry NLσM xj − xk xj + xk 2xj i(yl − ym) i(yl + ym) 2iyl xj − iyl xj + iyl p r cj bl

class (n-c|c)

A AIII|AIII 2 2 1 2 2 1 −2 −2 N N 1 − 2j 2l − 1
AI BDI|CII 1 1 0 4 4 3 −2 −2 2N N −j 4l − 1
AII CII|BDI 4 4 3 1 1 0 −2 −2 N 2N 3 − 4j l − 1

AIII A|A 2 0 0 2 0 0 −2 0 N N 1 − 2j 2l − 1
BDI AI|AII 1 0 0 4 0 0 −2 0 2N N 1

2 − j 4l − 2
CII AII|AI 4 0 0 1 0 0 −2 0 N 2N 2 − 4j l − 1

2

C DIII|CI 4 4 1 1 1 1 −2 −2 N 2N 1 − 4j l

CI D|C 2 2 0 2 2 2 −2 −2 N N −2j 2l

BD CI|DIII 1 1 1 4 4 1 −2 −2 2N N 1 − j 4l − 3
DIII C|D 2 2 2 2 2 0 −2 −2 N N 2 − 2j 2l − 2

125144-25



I. A. GRUZBERG, A. D. MIRLIN, AND M. R. ZIRNBAUER PHYSICAL REVIEW B 87, 125144 (2013)

1P. W. Anderson, Phys. Rev. 109, 1492 (1958).
2E. Abrahams (editor), 50 Years of Anderson Localization (World
Scientific, Singapore, 2010).

3For a review, see F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80,
1355 (2008).

4D. S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Nature
(London) 390, 671 (1997).

5J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature
(London) 453, 891 (2008); G. Roati, C. D’Errico, L. Fallani,
M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and
M. Inguscio, ibid. 453, 895 (2008).

6S. Faez, A. Strybulevych, J. H. Page, A. Lagendijk, and B. A.
vanTiggelen, Phys. Rev. Lett. 103, 155703 (2009).

7G. Lemarie, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau,
Phys. Rev. Lett. 105, 090601 (2010).

8A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142
(1997).

9M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).
10P. Heinzner, A. Huckleberry, and M. R. Zirnbauer, Commun. Math.

Phys. 257, 725 (2005).
11For a review, see A. H. Castro Neto, F. Guinea, N. M. R. Peres,

K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

12For a review, see M. Z. Hasan and C. L. Kane, Rev. Mod.
Phys. 82, 3045 (2010); X.-L. Qi and S.-C. Zhang, ibid. 83, 1057
(2011).

13Promising experimental advances include in particular (i) the
observation of the quantum Hall effect (and thus corresponding
transitions) in graphene down to relatively low magnetic fields and
up to relatively high temperatures14; (ii) the observation in graphene
of an essentially temperature-independent resistivity at the Dirac
point down to very low temperatures,15 which suggests closeness
to a quantum critical point of Anderson-transition type16; (iii) the
possibility to drive 2D HgTe-based structures from the topological
insulator to the conventional insulator phase by changing the
thickness of the quantum well.17

14K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005); Y. B. Zhang, Y. W. Tan,
H. L. Stormer, and P. Kim, ibid. 438, 201 (2005); K. S. Novoselov,
Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler,
J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science
315, 1379 (2007).

15Y.-W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Eur. Phys. J. Spec.
Top. 148, 15 (2007).

16P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Eur. Phys. J. Spec.
Top. 148, 63 (2007).

17M. König, S. Wiedmann, C. Bruene, A. Roth, H. Buhmann,
L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766
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