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Abstract

In this work we put forward an effective Gaussian free field description of critical wavefunctions at 
the transition between plateaus of the integer quantum Hall effect. To this end, we expound our earlier 
proposal that powers of critical wave intensities prepared via point contacts behave as pure scaling fields 
obeying an Abelian operator product expansion. Our arguments employ the framework of conformal field 
theory and, in particular, lead to a multifractality spectrum which is parabolic. We also derive a number of 
old and new identities that hold exactly at the lattice level and hinge on the correspondence between the 
Chalker–Coddington network model and a supersymmetric vertex model.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Among the critical phenomena in two-dimensional quantum systems with disorder, the tran-
sition between Hall conductance plateaus of the integer quantum Hall effect (referred to as the 
IQHE transition for short) stands out as a possible paradigm for quantum-phase transitions of 
Anderson-localization type. Yet, in spite of numerous efforts [1–3] and a renewed interest com-
ing from the expanding research area of symmetry-protected topological phases [4], the IQHE 
transition has so far defied an analytical solution by the methods of conformal field theory and/or 
the theory of integrable systems.
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Due to wave interference by multiple scattering with random phases, a striking feature of 
critical stationary states at the IQHE transition is their multifractal nature. In the early going, 
analytical research on the subject had assumed a parabolic law for the spectrum of multifractal 
dimensions [5,1,6], in line with what happens for another, exactly solvable two-dimensional 
Anderson transition [7,8]. Later, several numerical studies [9,10] reported significant deviations 
from parabolicity. If correct, these studies would rule out any standard conformal field theory 
description of the IQHE transition.

The conundrum took a new perspective by a recent preprint by Suslov [11]. Based on a nat-
ural assumption, namely that the wave intensities |ψ(r)|2 obey an operator product expansion 
of Abelian form, he suggested that the parabolic law for the multifractality spectrum should 
hold at Anderson transitions in general. While perhaps too far reaching to be true uncondi-
tionally, this suggestion has good merit in two dimensions, where the principles of conformal 
field theory constrain the possible scenarios. In the present paper, we put Suslov’s suggestion on 
firm ground for the IQHE transition. The ultimate outcome will be that the (logarithm of the) 
field of wave intensities is distributed like a non-compact Gaussian free field with a background 
charge.

While the core of the argument is relatively short, we decided to seize this opportunity to 
write an expository paper, presenting a certain amount of material known to a small circle of 
experts but not the community at large. In doing so, we follow up on our recent proposal [12]
to employ point contacts and so-called “scattering states” as the optimal tool for the study of 
the multifractality spectrum. Our motivation is that the wave intensities of these states have sev-
eral attractive properties: they become independent of the system size in the large-volume limit, 
they show pure scaling behavior, and they do not suffer from termination of the multifractality 
spectrum.

The basis for our analytical arguments is the Chalker–Coddington network model [13] and its 
reformulation, by a variant of the Wegner–Efetov supersymmetry method, as a supersymmetric 
vertex model [14]. Pioneered by N. Read, this variant introduces a Fock space for bosons and 
fermions to take disorder averages of products of retarded and advanced Green functions. We 
give an introduction to second quantization of the network model and derive some key formulas 
to use in this context. We also expound our ideas [15,12] on how to construct pure-scaling fields 
from highest-weight vectors of the vertex model. Here an important technical point is that the 
Lie algebra of the non-compact sector has more than one conjugacy class of Cartan subalgebras, 
and one must choose the correct class to obtain highest-weight vectors that are positive and give 
rise to a continuum of scaling fields. To implement these highest-weight ideas, we derive new 
identities for a generating function relating wavefunction observables of the network model to 
correlation functions of the vertex model.

The paper is organized as follows. In Sect. 2 we describe our setup for the network model 
with point contacts. We define the notion of scattering states originating from point contacts and 
formulate the wavefunction observables of interest and their expressions in terms of Green func-
tions. The procedure of second quantization of the network model, including a useful but rather 
unknown Gaussian integral representation due to Howe, is reviewed in Sect. 3. In Sect. 4 we take 
the disorder average, passing from the network model to the vertex model. A long subsection, 
4.2, discusses the issue of Cartan subalgebras and positive highest-weight vectors. The relation 
between wavefunction observables of the network model and correlation functions of the vertex 
model is developed in Sect. 5. Finally, Sect. 6 presents our arguments in favor of the effective 
description by a Gaussian free field. The paper ends with a Conclusion in 7.
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Fig. 1. (Left) A portion of the network. Blue dots stand for the multiplication by random phases associated with links, and 
the red arrows indicate the paths for scattering at a node. (Right) Types of nodes and choice of labeling. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

2. The network model

2.1. Setup

The network model was introduced in [13]. It is defined on the directed square lattice sketched 
in Fig. 1, with two incoming and two outgoing links (or edges) at each node (or vertex). The sets 
of links and nodes are denoted by L and N respectively, and we will write N = |L| for the 
number of links. The Hilbert space of the model is

H =
⊕
�∈L

(C)� =C
N, (1)

and its discrete-time evolution operator U : H → H is defined as the following N × N unitary 
transformation:

U = Ur Us , (2)

with

Ur =
⊕
�∈L

eiφ�, (3)

Us =
⊕
n∈N

Sn , Sn : (C)1 ⊕ (C)2 → (C)3 ⊕ (C)4 . (4)

The unitary numbers eiφ� are phase factors associated to propagation along the links. They are 
assumed to be independent random variables that are identically distributed according to the 
uniform measure on the circle. Sn is a 2 × 2 unitary transformation connecting incoming to 
outgoing states at the node n, see Fig. 1. Labeling these as 1, 2 and 3, 4 respectively, we take Sn

as

Sn|1〉 = |3〉 e+iπ/4 cos(tn) + |4〉 e−iπ/4 sin(tn), (5)

Sn|2〉 = |3〉 e−iπ/4 sin(tn) + |4〉 e+iπ/4 cos(tn), (6)

where each |�〉 (� = 1, . . . , 4) is a unit vector in its summand (C)� ⊂H in (1). Thus the amplitude 
for a left turn is e+iπ/4 cos(tn), while the amplitude for a right turn is e−iπ/4 sin(tn), and we 
assume that 0 ≤ tn ≤ π/2. The network model is at a critical point when tn ≡ t (independent of 
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Fig. 2. A point contact. Incoming (in) and outgoing (out) semi-links are connected to a charge reservoir.

the node n) and the probability for turning right equals that for turning left: cos2(t) = sin2(t) =
1/2 [13].

A more general situation is that of an anisotropic network. For this generalization, one thinks 
of the square network as a bipartite lattice with two types of nodes labeled by, say, A and B , and 
one takes the couplings tn to depend only on the type of node (tn = tA resp. tn = tB ). The critical 
point now occurs when the probability for turning right (left) at a node of type A equals that for 
turning left (right) at a node of type B , i.e., when sin(tA) = cos(tB).

The setup described so far is for a closed network. Consider now a set of distinguished links 
labeled c1, . . . , cr , which we call point contacts, and form the projectors

P =
r∑

i=1

|ci〉〈ci | , Q = 1 − P. (7)

Point contacts were introduced in the present context in [5]. They are severed links, where both 
ends that result from cutting the link are connected to charge reservoirs, see Fig. 2. The incoming 
semi-link serves to inject current into the network, while the outgoing semi-link removes current 
from the network. Thus a point contact acts as a source and as a drain of charge or probability 
current. The loss of current through outgoing semi-links amounts to a loss of unitarity. This 
modification of the dynamics is taken into account by concatenating the closed-network time 
evolution operator U with a factor of Q:

T = QU. (8)

Thus T is the time-evolution operator of the open network.

2.2. Scattering states

Our interest in this work will be in states of the open network which are stationary (with 
quasi-energy E) and satisfy scattering boundary conditions, i.e., incoming-wave or outgoing-
wave boundary conditions at the point contacts. More precisely, we are interested in the statistical
properties of the wave amplitudes of such states, which we refer to as “scattering states” for short. 
By the choice of a uniform distribution for the random phases eiφ� , the wavefunction statistics is 
the same for all quasi-energies E. Thus without loss of generality we set E = 0 and look, roughly 
speaking, for solutions |ψ〉 of the stationarity condition U |ψ〉 = |ψ〉.

To explain this in detail, we first introduce some language and notation. The distinction be-
tween links without and with a point contact divides the network into a “bulk” and a “contact” 
part. When instituted for the Hilbert space H, this division determines an orthogonal decompo-
sition

H =Hbulk ⊕Hcontact , Hcontact = PH 
C
r , Hbulk = QH 
C

N−r . (9)

To formalize the picture of a point contact being both a source and a drain of current, we define 
Hin and Hout as the spaces of incoming and outgoing states at the point contacts. (Of course we 
have isomorphisms Hin 
Hcontact 
Hout.) In this way U : H → H turns into an operator
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U : Hbulk ⊕Hin −→ Hbulk ⊕Hout . (10)

Correspondingly, the forward and backward time-evolution operators of the open network (with 
loss of probability flux at the point contacts) operate as follows:

T = QU : Hbulk ⊕Hin −→ Hbulk , (11)

QU−1 : Hbulk ⊕Hout −→ Hbulk . (12)

In order for the dynamics to be free of trivial processes, we assume that the evolution for a 
single time step does not send back any of the network-incoming flux into the point contacts; in 
formulas:

QU |ψin〉 = U |ψin〉, QU−1|ψout〉 = U−1|ψout〉, (13)

where |ψin〉 ∈ Hin and |ψout〉 ∈ Hout.
The quantum-dynamical system evolving a state |ψ〉 ∈Hbulk from discrete time t to time t +1

is then defined by

|ψ(0)〉 = 0, |ψ(t + 1)〉 = T
(|ψ(t)〉 + |ψin〉

)
(t = 0,1,2, . . .). (14)

Here |ψin〉 ∈ Hin specifies an incoming-wave boundary condition, namely what are the wave 
amplitudes of the particle flux constantly injected at the point contacts per unit of time. If N < ∞
and the dynamics (14) is run for a very long time, then the state |ψ(t)〉 will ultimately settle down 
to a stationary state |ψ+〉 = limt→+∞ |ψ(t)〉 – which is what we call a “scattering state” for short. 
An explicit formula for |ψ+〉 can be had by solving the stationarity condition |ψ(t +1)〉 = |ψ(t)〉:

|ψ+〉 = (1 − T )−1T |ψin〉. (15)

Fig. 3 gives an idea of how such scattering states look at criticality.
Special scattering states are formed by choosing the incoming-wave boundary conditions to 

inject flux into just a single point contact:

|ψ+, ci
〉 = (1 − T )−1T |ci〉, i = 1, . . . , r. (16)

These states are linearly independent and thus span an r-dimensional subspace of Hbulk. Note, 
however, that they are neither orthogonal amongst each other (as vectors in the Hilbert space 
Hbulk), nor are they normalized to unity: 〈ψ+, ci

|ψ+, ci
〉 �= 1.

Considering the backward dynamics given by QU−1, one can construct scattering states 
|ψ−〉 ∈ Hbulk that satisfy outgoing-wave boundary conditions. For these the network-outgoing 
flux is prescribed to be |ψout〉 ∈ Hout:

|ψ−〉 = QU−1(|ψ−〉 + |ψout〉
)
. (17)

As before, we define special scattering states for outgoing-wave boundary conditions with one 
unit of flux on a prescribed outgoing link:

|ψ−, ci
〉 = (1 − QU−1)−1QU−1|ci〉, i = 1, . . . , r. (18)

We note that the states |ψ−, ci
〉 ∈ Hbulk for outgoing-wave boundary conditions and the states 

|ψ+, ci
〉 ∈ Hbulk for incoming-wave boundary conditions span the same r-dimensional subspace 

of Hbulk. Indeed, by a foundational and standard result of quantum scattering theory, they are 
related by a unitary r × r matrix known as the scattering matrix S:

|ψ+, ci
〉 =

r∑
j=1

|ψ−, cj
〉Sji . (19)
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Fig. 3. (Top) The absolute value |ψc| of a scattering-state wavefunction for a fixed disorder realization. The network has 
50 × 50 plaquettes and periodic boundary conditions (pbc). (Bottom) The disorder average of |ψc | (left) and |ψc|−1/2

(right) for a network of 20 × 20 plaquettes with pbc. The wavefunction is pinned to zero at the center where the net-
work is connected to a point contact. The average is over 5 × 105 disorder realizations. The code used to produce the 
scattering-state wavefunctions is available at https :/ /github.com /rbondesan /network _model /tree /master.

To verify this relation, one uses 〈cj |Uψ−, ci
〉 = 〈cj |ci〉 = δij and the definition of the scattering 

matrix elements by Sji = 〈cj |Uψ+, ci
〉.

2.3. Wavefunction observables

From here on, we shall take all point contacts ci to be located in a small part of the network, C, 
which we call the “contact region”. Our interest is in the statistics of wave intensities of scattering 
states as a function of the distance from that region. With this motivation, we will now describe 
a large class of scattering-state observables that are informative and tractable by the methods of 
the present paper.

In order to do quantitative analysis (especially, to have coarse-grained observables), we choose 
a positive measure � 
→ w(�) ≥ 0 supported on a small region R, which we call an “observation 
region”. Assuming r point contacts, we form the r × r matrix K(w) with matrix elements

https://github.com/rbondesan/network_model/tree/master
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Kij (w) =
∑
�∈R

w(�)ψ̄ci
(�)ψcj

(�), (20)

where ψci
(�) ≡ 〈�|ψ+,ci

〉 (i = 1, . . . , r) are the wave amplitudes of the scattering states of 
Sect. 2.2 for incoming-wave boundary conditions (or outgoing-wave boundary conditions; it 
doesn’t matter). Note that the matrix K(w) ≡ K is Hermitian and positive-definite.

Our observables of interest are formed by taking the r × r matrix K = K(w) to be the ar-
gument of a Schur polynomial (or generalizations thereof). Recall that Schur polynomials are 
defined as the characters of polynomial irreducible representations of GL(r), and the most gen-
eral such representation is labeled by r integers λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0. Let λ ≡ (λ1, . . . , λr) for 
short. Then if k1, . . . , kr are the eigenvalues of K , the Schur polynomial sλ(K) can be expressed 
as a ratio of determinants:

sλ(K) = �(k1, . . . , kr )
−1 Det

⎛⎜⎜⎜⎜⎝
k
λ1+r−1
1 k

λ1+r−1
2 . . . k

λ1+r−1
r

k
λ2+r−2
1 k

λ2+r−2
2 . . . k

λ2+r−2
r

...
...

. . .
...

k
λr

1 k
λr

2 . . . k
λr
r

⎞⎟⎟⎟⎟⎠ , (21)

with � the Vandermonde determinant:

�(k1, . . . , kr ) =
∏
i<j

(ki − kj ). (22)

For λ1 = . . . = λp = 1 and λp+1 = . . . = λr = 0 (physically speaking, p fermions on Cr ) one 
gets the elementary symmetric polynomials

sλ(K) ≡ ep(K) =
∑

1≤i1<...<ip≤r

ki1ki2 · · · kip . (23)

Their invariant expressions in terms of traces are given by the Newton–Girard formulas:

e1 = p1 , e2 = 1
2p2

1 − 1
2p2 , e3 = 1

6p3
1 − 1

2p1p2 + 1
3p3 , etc., pn ≡ Tr(Kn). (24)

Another Schur polynomial of special interest is the complete homogeneous symmetric polyno-
mial hq , given by λ1 = q , λ2 = . . . = λr = 0. In this case (q bosons on Cr ) one has

sλ(K) ≡ hq(K) =
∑

1≤i1≤...≤iq≤r

ki1ki2 · · ·kiq , (25)

or, in invariant terms,

h1 = p1 , h2 = 1
2p2

1 + 1
2p2 , h3 = 1

6p3
1 + 1

2p1p2 + 1
3p3 , etc. (26)

A very important remark is that, since all eigenvalues k1, . . . , kr of our matrix K are pos-
itive, the Schur polynomials sλ(K) also make sense for complex values of λ1, . . . , λr , by the 
determinantal expression (21) (although no longer as characters of polynomial representations). 
Our most general local observable then is (the disorder average) of sλ(K) for a set of complex 
numbers λ = (λ1, . . . , λr). Let us also remark that by Eq. (19) all functions sλ(K) indeed are 
independent of the choice of incoming-wave or outgoing-wave boundary conditions for the scat-
tering states.

The precise nature of the wavefunction observables sλ(K) is best understood by looking at 
some examples. In the special case of r = 1 with a single contact c and a Dirac measure w�(�

′) =
δ��′ one has
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hq

(
K(w�)

)= |ψc(�)|2q . (27)

This is the observable to be studied in much detail in Sect. 6, where q will be allowed to be 
complex. In the special case of r contacts and a Dirac measure w(r)(�) =∑r

i=1 δ�i � supported 
on r observation links one finds

er

(
K(w(r))

)= ∣∣∣Det
(
ψci

(�i′)
)
i,i′=1,...,r

∣∣∣2 . (28)

More generally, we can have several disjoint observation regions R1, . . . , Rn equipped with 
positive measures w1, . . . , wn where wj is supported in Rj (j = 1, . . . , n). Each observation 
region Rj is assumed to be “small” (from the coarse-grained perspective of a scaling limit) and 
can therefore be assigned a well-defined position xj in a suitably coarse-grained network. The 
matrix K then consists of n local pieces:

K =
n∑

j=1

K(xj ), Kii′(xj ) =
∑

�∈Rj

wj (�) ψ̄ci
(�)ψci′ (�). (29)

Our most general observable will be a disorder-averaged multi-point correlation function of the 
local wavefunction data K(x1), . . . , K(xn). We refer to Sect. 5.2 for the details.

2.4. Observables from Green functions

We now cast our multi-point correlation functions into a form suitable for processing and 
evaluation in the SUSY vertex model of Sect. 4.

Our first observation is that the trace of any power m ∈ N of the r × r-matrix K can be 
re-expressed as

TrCr (Km) = TrHbulk(G · w)m (30)

by the cyclic property of the trace operation. Here w =∑� |�〉w(�)〈�| is the link-diagonal opera-
tor associated with the positive measure w, and the operator G : Hbulk → Hbulk (a kind of Green 
operator) is defined in terms of the scattering states |ψ±, ci

〉 by

G =
r∑

i=1

|ψ+, ci
〉〈ψ+, ci

| =
r∑

i=1

|ψ−, ci
〉〈ψ−, ci

|. (31)

Like K , this operator G is self-adjoint and positive-definite of rank r .
Recalling the fact that all Schur functions sλ are determined by traces, it follows from the 

relation (30) that

sλ
(
K(w)

)= sλ(G · w). (32)

Thus we can express all observables of Sect. 2.3 as functions of G ·w. To make progress with the 
analytical theory of these observables, we need a good formula for G, making it calculable by 
the supersymmetry method of Sect. 3. Our first innovation in the present paper is the derivation 
of such a formula, as follows.

By recalling the definition of the projector P in Eq. (7) and the expression (18) for the scat-
tering states with outgoing-wave boundary conditions, we can write G as

G =
∑

i

|ψ−, ci
〉〈ψ−, ci

| = Q(1 − T †)−1U−1PU(1 − T )−1Q, (33)
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where T † = U−1Q is the adjoint of T = QU . Now, the middle factor can be reorganized as

U−1PU = 1 − T †T = (1 − T †)(1 − T ) + (1 − T †)T + T †(1 − T ), (34)

and hence

G = Q + T (1 − T )−1Q + Q(1 − T †)−1T †. (35)

When taking matrix elements between bulk states we obtain

〈�|G|�′〉 = 〈�|T (1 − T )−1 + (1 − T †)−1|�′〉, (36)

since Q + Q(1 − T †)−1T † = Q(1 − T †)−1. This is the desired formula for the Green operator 
G, which will serve as our reference point in Sect. 5.2.

For later reference, let us also note the identity

T

1 − T
+ 1

1 − T †
= 1

2

(
1 + T

1 − T
+ 1 + T †

1 − T †

)
. (37)

Hence, defining the real part of an operator A as ReA = 1
2 (A + A†), one has G = Re(QAT Q)

with AT = (1 + T )(1 − T )−1 the Cauchy transform of T .
As a word of caution, we should mention that the inverse of 1 − T as an operator on the full 

Hilbert space H = Hbulk ⊕ Hcontact is not well-defined when there is an eigenvector |φ〉 of U
which has eigenvalue 1 and also satisfies Q|φ〉 = |φ〉. This happens when the amplitudes for the 
two incoming links at a node conspire to make an outgoing amplitude vanish, so that placing a 
point contact on that outgoing link does not modify the wavefunction. However, this scenario 
(called a “bound state in the continuum”) does not pose a problem in our scattering-theoretic 
setting. Indeed, any such state |φ〉 satisfies 〈φ|ψin〉 = 〈φ|Q|ψin〉 = 0, and from the orthogonality 
〈φ|ψ(t)〉 = 0 at time t one infers the orthogonality 〈φ|ψ(t + 1)〉 = 0 at time t + 1 by the dynam-
ics of Eq. (14). Thus by induction on t it follows that the bound state |φ〉 is orthogonal to the 
stationary limit limt→∞ |ψ(t)〉 of the scattering state.

3. Second quantization of the network model

To perform the disorder average of our network-model observables, we employ a variant of 
the Wegner–Efetov supersymmetry method tailored to the model at hand. This variant was orig-
inally conceived by N. Read (unpublished notes) and has already appeared in several works in 
the past (e.g. [16,14]). The relevant mathematics underlying the formalism was spelled out at 
length in [17]. Nonetheless, to make the present paper self-contained we review the general for-
malism in Sects. 3.1–3.3, having in mind especially the observables put on stage in Sect. 2.3. The 
application to the network model is described in Sect. 3.4.

The first step is to second-quantize the network-model operators. For this purpose one intro-
duces annihilation and creation operators for retarded (+) and advanced (−) bosons and fermions 
at every link � of the lattice. Denoted by b±(�), b†

±(�) and f±(�), f †
±(�), these satisfy canonical 

commutation and anti-commutation relations:

[bα(�), b
†
β(�′)] = δαβ δ��′ , [bα(�), bβ(�′)] = [b†

α(�), b
†
β(�′)] = 0, (38)

{fα(�), f
†
β (�′)} = δαβ δ��′, {fα(�), fβ(�′)} = {f †

α (�), f
†
β (�′)} = 0, (39)

for all α, β = ± and all links �, �′ ∈ L of the network. We write F for the Fock space generated 
by the boson and fermion creation operators acting on the particle vacuum.
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In the following, we apply the standard procedure of second quantization to the network-
model operators, emphasizing the aspects of relevance for our goal.

3.1. Fermionic formulas

Given an invertible operator g = eX on the Hilbert space H of the network model, we define 
two operators σ±(g) acting on the Fock space F by

σ+
(

eX
)

= exp
∑

�,�′∈L
f

†
+(�)〈�|X|�′〉f+(�′) ≡ expf

†
+Xf+ , (40)

σ−
(

eX
)

= exp
∑

�,�′∈L
f−(�)〈�|X|�′〉f †

−(�′) ≡ expf−Xf
†
− . (41)

By letting g vary we get two maps σ± : GL(H) → GL(F). According to the principles of second 
quantization, these maps are Lie group homomorphisms (or representations), i.e., they satisfy 
σ±(gh) = σ±(g)σ±(h). (This standard fact will be reviewed in some detail below.) We refer to 
σ± as the retarded and advanced representations. They are related to each other by a particle–hole 
transformation exchanging creation with annihilation operators:

σ−(g) = Det(g)σ+(gT )−1
∣∣∣
f+→f−

. (42)

Their infinitesimal versions are maps dσ± : gl(H) → gl(F) defined by

dσ+(X) = d

dt
σ+(etX)

∣∣∣
t=0

= f
†
+Xf+ , (43)

dσ−(X) = d

dt
σ−(etX)

∣∣∣
t=0

= f−Xf
†
− . (44)

From the canonical anti-commutation relations (39), it is easy to see that both dσ+ and dσ− are 
Lie algebra representations:

[dσ±(X),dσ±(Y )] = dσ±([X,Y ]). (45)

Taking the commutator with the fermion Fock operators we have

[dσ+(X),f
†
+] = f

†
+X, [dσ+(X),f+] = −Xf+ , (46)

[dσ−(X),f−] = f−X, [dσ−(X),f
†
−] = −Xf

†
− . (47)

By exponentiating this commutator action and using the identity eAB e−A = e[A, ·]B , one obtains

σ+(g)
(
f

†
+ f+

)
σ+(g)−1 =

(
f

†
+g g−1f+

)
, (48)

σ−(g)
(
f− f

†
−
)

σ−(g)−1 =
(
f−g g−1f

†
−
)

. (49)

Thus f †
+(�) and f−(�) transform in the same way as the basis vectors |�〉 of H do under the 

fundamental action g|�〉 =∑ |�′〉〈�′|g|�〉 of GL(H) on H, while f+(�) and f †
−(�) transform like 

co-vectors in the anti-fundamental representation.
Useful objects to consider are the (super-)traces over Fock space of the two representations 

σ±(g). The results for these traces are quite simple (and motivate why the second-quantized 
representation is introduced in the first place):
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STrσ+(g) = Det(1 − g), (50)

STrσ−(g) = Det(g) Det(1 − g−1T
) = (−1)N Det(1 − g). (51)

In both cases, the supertrace STr is understood to be over the respective Fock space. It is defined 
by STrσ±(g) = Tr (−1)nf σ±(g) where nf is the number of fermions.

These formulas are immediate if g is diagonal in the chosen link basis of H. For diagonaliz-
able g = uλu−1 they follow by the conjugation invariance of the determinant, the representation 
property σ±(uλu−1) = σ±(u) σ±(λ) σ±(u)−1 and the invariance of the trace under cyclic permu-
tations. The case of non-diagonalizable g then follows by analytic extension. There also exists 
a direct proof for the general case using some standard multi-linear algebra not recorded here. 
Note also that the second formula follows from the first one by the relation (42).

3.2. Bosonic formulas

We now turn to the bosonic variants of the formulas above. The final formulas look very 
similar to those for fermions, but the analysis here needs a little more care. For X ∈ gl(H) we 
put

dω+(X) =
∑

�,�′∈L
b

†
+(�)〈�|X|�′〉b+(�′) ≡ b

†
+Xb+ , (52)

dω−(X) = −
∑

�,�′∈L
b−(�)〈�|X|�′〉b†

−(�′) ≡ −b−Xb
†
− . (53)

Similar to the case (45) of fermions, these maps dω± : gl(H) → gl(F) are easily seen to be 
homomorphisms of the commutator:

[dω±(X),dω±(Y )] = dω±([X,Y ]). (54)

Thus they are Lie algebra representations, and our notation dω± indicates that we are going to 
think of them as the infinitesimal versions of two Lie group representations ω± as before. The 
additional minus sign in the advanced case reflects the fact that b 
→ b† and b† 
→ −b (as opposed 
to f 
→ f † and f † 
→ +f for fermions) is an automorphism of the operator algebra for bosons.

The Lie algebra elements dω±(X) act on the Fock operators b, b† by the commutator:

[dω+(X), b
†
+] = b

†
+X, [dω+(X), b+] = −Xb+ , (55)

[dω−(X), b−] = b−X, [dω−(X), b
†
−] = −Xb

†
− . (56)

We observe that these formulas look exactly the same as their fermionic counterparts.
Next we exponentiate the operators introduced in (52), (53) to define

ω±(eX) = exp (dω±(X)) . (57)

Each of the two resulting maps ω± : GL(H) → GL(F) still has the representation property 
ω±(gh) = ω±(g) ω±(h). This prompts a comment. In general, a Lie algebra representation on 
the bosonic Fock space does not exponentiate to a Lie group representation on Fock space. 
(The difficulty is that the bosonic Fock space is infinite-dimensional and one has to restrict to 
a semi-group of contractions in order for the exponentiated operators to exist. This will happen 
in Sect. 5.1 below.) However, in the present instance we have a simplification because the Lie 
algebra representations (52), (53) conserve the number of bosons. Thus the infinite-dimensional 
representations ω± are really just (infinite) sums of finite-dimensional representations, one for 
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each boson number, and on every single one of these the operators ω±(g) make sense for any 
g ∈ GL(H).

As before, there exists a relation

ω−(g−1) = Det(g)ω+(gT )

∣∣∣
b+→b−

, (58)

and we have an action on boson operators by conjugation:

ω+(g)
(
b

†
+ b+

)
ω+(g)−1 =

(
b

†
+g g−1b+

)
, (59)

ω−(g)
(
b− b

†
−
)

ω−(g)−1 =
(
b−g g−1b

†
−
)

. (60)

Now the operator ω+(g) on F is trace class for g in the semi-group in GL(H) of contractions 
(g†g < 1), while ω−(g) is trace class for g in the semi-group of expansions (g†g > 1). Thus in 
both cases the trace over Fock space exists as an absolutely convergent sum. The outcomes are 
reciprocal to the corresponding expressions for fermions:

Trω+(g) = Det−1(1 − g), (61)

Trω−(g) = Det−1(g)Det−1
(

1 − g−1T
)

= (−1)N Det−1(1 − g). (62)

Again, these formulas are immediate if g is diagonal (the trace then factors and one just has 
to sum a geometric series for each eigenvalue or link � ∈ L). The general case requires more 
mathematical effort; see [18,17] and [19].

Let us anticipate that we are going to apply the formulas (61), (62) in the following way: we 
will take the trace of g = QεU in the retarded representation ω+ and the trace of g = Q−1

ε U in 
the advanced representation ω−, where Qε = e−εQ + (1 − e−ε)P and ε > 0 is a regularization 
parameter that will ultimately be removed (ε → 0+).

3.3. Gaussian integral representations

We have claimed that the Lie algebra representations dσ± exponentiate to group representa-
tions, and so do the dω± under the restriction to suitable semi-groups in GL(H). To substantiate 
this claim, we follow R. Howe [18] and consider an alternative representation by Gauss–Berezin 
integral operators, which also has the advantage of being more manageable for some computa-
tional purposes. The bosonic version can be found in [17]; see also [19]. For the fermionic and 
super-variants we do not know of a good reference but for [20].

We start by discussing the fermionic version, focusing on σ+ first. To keep the notation simple, 
we write σ+ ≡ σ for now; the omitted index will be re-instated in due course. Introducing a 
Grassmann algebra generated by 2N anti-commuting variables {ξ(�), ξ̄ (�)}�∈L, we define the 
operator

Tξ = eξ̄f +ξf † ≡ exp
∑
�∈L

(
ξ̄ (�)f (�) + ξ(�)f †(�)

)
. (63)

We use the standard convention that the Grassmann variables ξ , ξ̄ anti-commute with the Fock 
operators f , f †. Note that one can rewrite Tξ in normal-ordered fashion:

Tξ = eξf †
eξ̄f e− 1

2 ξ̄ ξ . (64)

A property of special importance is the composition law
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Tξ Tη = Tξ+η e− 1
2 (ξ̄η−η̄ξ ), (65)

where {η(�), η̄(�)}�∈L are another set of Grassmann algebra generators.
For an element g ∈ GL(H) with 1 − g invertible, consider now the Cauchy map

g 
→ Ag = 1 + g

1 − g
, (66)

which sends g to another operator Ag on H. Note the relation Ag−1 = −Ag . We then introduce 
the following operator on Fock space:

σ̃ (g) = Det(1 − g)

∫
ξ

e− 1
2 ξ̄Agξ Tξ , (67)

where the integral sign stands for the Berezin integral over anti-commuting variables:∫
ξ

=
∏
�

∂2

∂ξ̄ (�) ∂ξ(�)
. (68)

We will now argue that ̃σ = σ+. For this we first show that ̃σ and σ+ agree at the infinitesimal 
level. To that end, we set g = 1 + tX with invertible X and adopt the normal-ordered form (64)
of Tξ . Using the relation − 1

2(Ag + 1) = (tX)−1 we then get

σ̃ (1 + tX) = Det(−tX)

∫
ξ

eξ̄ (tX)−1ξ eξf †
eξ̄f (69)

= Det(−X)

∫
ξ

eξ̄X−1ξ etξf †
eξ̄f , (70)

where in the second line we scaled the variables ξ → tξ . Now we take the derivative with respect 
to t , set t = 0, and perform the Gaussian integral to arrive at

dσ̃ (X) = d

dt
σ̃ (1 + tX)

∣∣∣
t=0

(71)

= Det(−X)

∫
ξ

eξ̄X−1ξ (ξf †)(ξ̄f ) = f †Xf. (72)

Thus dσ̃ indeed coincides with dσ+ of Eq. (43).
In order to extend the equality dσ̃ = dσ+ beyond the infinitesimal level, recall from basic 

theory that a Lie algebra representation on a finite-dimensional vector space integrates to a Lie 
group representation by exponentiation if the Lie group is simply connected. (In the absence of 
the latter property, the exponential map may fail to give a single-valued representation.) Now 
GL(H) is not simply connected, as its deformation retract U(H) is not. Nevertheless, exponen-
tiation of dσ+ does yield a good (meaning single-valued) integrated representation, since the 
weights of the Lie algebra representation dσ+ on Fock space are fermion occupation numbers 
and hence integral.

Thus the Lie algebra representation dσ+ = dσ̃ does integrate to a Lie group representation 
σ+. Since there cannot be more than one integrated representation, the equality σ+ = σ̃ will 
follow if we can show that ̃σ has the representation property ̃σ(g) ̃σ(h) = σ̃ (gh). Let us therefore 
demonstrate this property.
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Initially we have to assume that g, h are such that all of Det(1 − g), Det(1 − h) and
Det(1 − gh) are non-zero, in order for σ̃ (g), σ̃ (h) and σ̃ (gh) to be defined by Eq. (67). We 

then use Det(1 − g) = Det−1
(

1
2 (Ag + 1)

)
, etc., and rewrite the product

σ̃ (g) σ̃ (h) = Det−1
(

1
2 (Ag + 1)

)
Det−1

(
1
2 (Ah + 1)

)
(73)

×
∫
ξ

e− 1
2 ξ̄Agξ

∫
η

e− 1
2 η̄Ahη e− 1

2 (ξ̄ η−η̄ξ ) Tξ+η (74)

by changing variables to α = ξ + η, ᾱ = ξ̄ + η̄ and β = η, β̄ = η̄. The quadratic form in the 
exponential transforms as

−1

2
ξ̄Agξ − 1

2
η̄Ahη − 1

2
(ξ̄ η − η̄ξ ) (75)

=−1

2
ᾱAgα − 1

2
β̄(Ah + Ag)β + 1

2
β̄(Ag + 1)α + 1

2
ᾱ(Ag − 1)β . (76)

Doing then the Gaussian integral over β, β̄ by completing the square we obtain

σ̃ (g) σ̃ (h) = Det−1
(

1
2 (Ag + 1)

)
Det−1

(
1
2 (Ah + 1)

)
Det
(

1
2 (Ag + Ah)

)
(77)

×
∫
α

e− 1
2 ᾱ
(
Ag−(Ag−1)(Ag+Ah)−1(Ag+1)

)
α Tα . (78)

To prove that this expression for σ̃ (g) ̃σ(h) is equal to that for σ̃ (gh), we first note that the 
quadratic form in the exponent can be written as

Ag − (Ag − 1)(Ag + Ah)
−1(Ag + 1) = (Ah + 1)(Ag + Ah)

−1(Ag + 1) − 1. (79)

Using simple algebraic manipulations, we then show that this expression equals Agh:

(Ah + 1)(Ag + Ah)
−1(Ag + 1) (80)

=
(
(Ag + 1)−1 + (Ah + 1)−1 − 2(Ag + 1)−1(Ah + 1)−1

)−1
(81)

= 2
(
(1 − g) + (1 − h) − (1 − h)(1 − g)

)−1 (82)

= 2(1 − gh)−1 = Agh + 1. (83)

With the help of this equation one can also check that the product of determinants

Det−1
(

1
2 (Ah + 1)

)
Det−1

(
1
2 (Ag + 1)

)
Det
(

1
2 (Ag + Ah)

)
(84)

=Det−1
(

1
2 (Ah + 1)(Ag + Ah)

−1(Ag + 1)
)

(85)

reduces to the one appearing in σ̃ (gh), namely Det−1
(

1
2 (Agh + 1)

)
. This proves that

σ̃ (g) ̃σ(h) = σ̃ (gh). It also completes the proof that the operators ̃σ(g) and σ+(g) are the same 
when both are defined. Moreover, it allows us to extend ̃σ+, initially defined only for g ∈ GL(H)

with 1 −g invertible, to all g ∈ GL(H). In the following we will abandon the distinction between 
σ+ and ̃σ and refer to both as σ+.

After this extensive discussion of σ+, let us turn to σ−. Given σ+, a quick way of arriving at the 
Gauss–Berezin integral formula for σ−(g) is to use Eq. (42) and the relation A(g−1)T = −(Ag)

T . 
The resulting expression is
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σ−(g) = Det(1 − g)

∫
ξ

e− 1
2 ξ̄Agξ eξ̄f

†
−+ξf− , (86)

which inherits the representation property σ−(gh) = σ−(g) σ−(h) from that of σ+.
The bosonic versions of the formulas above have been described in [18] and [17, Sect. 5], and 

we refer to these references for the details. Here we just report the result:

ω+(g) = Det−1(1 − g)

∫
v+

e− 1
2 v̄+Agv+ ev+b

†
+−v̄+b+ , (87)

where∫
v

= π−N

∫ ∏
�∈L

dRev(�)dImv(�). (88)

We observe that

ReAg = 1
2

(
Ag + A†

g

)
(89)

= 1
2 (1 − g†)−1

(
(1 − g†)(1 + g) + (1 + g†)(1 − g)

)
(1 − g)−1 (90)

= (1 − g†)−1(1 − g†g)(1 − g)−1. (91)

Thus for g a contraction (1 − g†g > 0) one has ReAg > 0, which makes the integral (87) con-
verge. The advanced representation is

ω−(g) = Det−1(g − 1)

∫
v−

e+ 1
2 v̄−Agv− ev̄−b

†
−−v−b− , (92)

and this converges for ReAg < 0 or, equivalently, g†g > 1. By manipulations similar to those 
performed in the fermionic case one can prove the property ω±(gh) = ω±(g) ω±(h).

3.4. Second-quantized time-evolution operator

Guided by our goal to derive formulas for the disorder-averaged observables of Sect. 2.3, we 
now put together the four representations (retarded/advanced for bosons/fermions). To keep the 
derivation straightforward and make the emerging supersymmetries manifest, we wish to perform 
manipulations such as (1 − T †)−1 = −T −1†

(1 − T −1†
)−1. These are not immediately possible, 

however, as Q and hence T † = U−1Q do not have inverses as operators on Hbulk ⊕ Hcontact. 
We therefore regularize Q, replacing it by an operator Qε that does have the property of being 
invertible. We choose

Qε = e−εQ + (1 − e−ε)P, (93)

with small ε > 0. Thus, for now, we take the network-model time evolution operators to be 
T = QεU and T † = U−1Qε . We will eventually take the limit ε → 0.

Physically speaking, a small ε introduces weak absorption on all links in the bulk and kills 
only a reduced fraction 1 − e−ε of the flux arriving in the outgoing semi-links. Beyond making 
T † invertible, the regularization (93) guarantees that

T T † = (QεU)(QεU)† = (Qε)
2 = e−2εQ + (1 − e−ε)2P < 1, (94)
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which ensures the convergence of the trace of ω+(T ) for T = QεU . By the same token, the 
convergence of the trace of ω−(T −1†

) for T −1† = Q−1
ε U is guaranteed.

At this point, it is useful to enlarge our framework and consider the space

W =H⊗ (C+ ⊕C
−) ⊗C

1|1 = W+
0 ⊕ W−

0 ⊕ W+
1 ⊕ W−

1 . (95)

Here the subscript 0, 1 refers to the even and odd subspaces of a Z2-graded vector space (see e.g. 
the introduction of [17] for a summary of useful concepts from supersymmetry that we are going 
to use here). The indices ± stand for retarded and advanced blocks. Note that each summand 
W±

0,1 is isomorphic to H. We write F = ∧(W+
1 ⊕ W−

1 ) ⊗ S(W+
0 ⊕ W−

0 ) for the tensor product 
of the fermionic and bosonic Fock spaces made from these summands of W .

Operators on W have a 4 × 4 block structure by the decomposition above. We introduce the 
block-diagonal operators

Q̂ε = diag
(
Qε,Q

−1
ε ,Qε,Q

−1
ε

)
, (96)

Ûε = Q̂ε · (U ⊗ 14) = diag
(
QεU,Q−1

ε U,QεU,Q−1
ε U

)
. (97)

The second-quantized representation of the time-evolution operator is then defined as the follow-
ing product:

ρ(Ûε) = ω+ (QεU)ω−
(
Q−1

ε U
)

σ+ (QεU)σ−
(
Q−1

ε U
)

(98)

= eb
†
+ log(QεU)b+ e−b− log(Q−1

ε U)b
†
− ef

†
+ log(QεU)f+ ef− log(Q−1

ε U)f
†
− . (99)

As mentioned above, the choice of regularization QεU , Q−1
ε U ensures the convergence of the 

traces of ω± over Fock space. In contrast, the choice of QεU , Q−1
ε U in the fermionic part is not 

forced by convergence but by the requirement that for any ε > 0 the operation of tracing ρ(Ûε)

over the fermionic and bosonic Fock spaces gives unity:

STrρ(Ûε) = 1. (100)

This property is at the heart of the supersymmetry method.

3.5. Supersymmetry of the model

Using the representation property of ω± and σ± we now separate the second-quantized time-
evolution operator of the open network into two factors:

ρ(Ûε) = ρ(Q̂ε)ρ(U ⊗ 14). (101)

Note that ρ(U ⊗ 14) is the second-quantized time-evolution operator of the closed network. This 
operator does exist, but it would not have a finite trace as an isolated operator. Finiteness of the 
trace is brought about by the other factor, ρ(Q̂ε).

An easy computation shows that limε→0 ρ(Q̂ε) yields the unit operator in the bulk and the 
projector on the Fock vacuum |vac〉ci

for each contact link ci :

π({ci}) ≡ lim
ε→0

ρ(Q̂ε) = lim
ε→0

ε
∑r

i=1(b
†
+b++f

†
+f++b

†
−b−+f

†
−f−)(ci ) =

r∏
i=1

|vac〉〈vac|ci
. (102)

Thus the point contacts translate to operator insertions under the trace over Fock space, where the 
inserted operators restrict the sum over Fock states on the contact links to a single state, namely 
the Fock vacuum. We will write π(c) ≡ π({ci}) for short.
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Let us add a word of caution here. It may happen for special disorder configurations (see the 
discussion at the end of Sect. 2.2) that the trace-class property of ρ(Q̂ε)ρ(U ⊗ 14) is lost in the 
limit ε → 0. However, such events are expected to occur with probability zero in the ensemble 
of disorder configurations assumed. Therefore, the Fock trace should remain well-defined and 
finite when the limit ε → 0 is taken after the disorder average (see Sect. 4.1).

We now exhibit some important global symmetries of the second-quantized version of the 
network model. To do so, we unify our framework by introducing the map

dρ : gl(W) → gl(F), (103)

dρ(X) =
∑
�,�′

3∑
a,b=0

c∗
a(�)〈�|Xab|�′〉cb(�

′) ≡ c∗Xc, (104)

where our unified notation for Fock operators is

c∗
0 = b

†
+, c∗

1 = f
†
+, c∗

2 = −b−, c∗
3 = f−, (105)

c0 = b+, c1 = f+, c2 = b
†
−, c3 = f

†
−. (106)

(Here we are using retarded-advanced ordering instead of boson–fermion ordering.)
Using the (Lie superbracket) commutation relations [ca(�), c∗

b(�
′)] = δabδ��′ for the Fock 

operators c and c∗ one can easily check that the mapping (103) furnishes a Lie superalgebra 
representation of gl(W) on Fock space:

[dρ(X),dρ(Y )] = dρ([X,Y ]). (107)

Note that dρ, when restricted to block-diagonal operators, coincides with the infinitesimal ver-
sion of ρ as defined by (98):

dρ
∣∣
W±

0 →W±
0

= dω± , dρ
∣∣
W±

1 →W±
1

= dσ± . (108)

In view of the tensor–product structure, it is now evident that for any constant element X ∈ gl2|2
the operator

dρ(1N ⊗ X) =
∑
�∈L

∑
ab

c∗
a(�)Xab cb(�) (109)

commutes with ρ(U ⊗ 14):

[dρ(1N ⊗ X),ρ(U ⊗ 14)] = 0. (110)

In this sense gl2|2 is a Lie superalgebra of global symmetries of the second-quantized formulation 
of the (closed) network model. Let us note that there exists a real Lie subalgebra u1,1 ⊕ u2 ⊂
gl2|2 which is represented (via dρ) by anti-Hermitian operators and exponentiates to a Lie group 
U(1, 1) ×U(2) acting by unitary operators on the Fock space of the network model. Some degrees 
of freedom in U(1, 1) are non-compact.

We also note that the point-contact operator π breaks some of the gl2|2 symmetries including 
all of the non-compact subgroups of U(1, 1) (this is crucial in order for the Fock trace of ρ(Ûε)

to converge to a finite value in the limit ε → 0, after disorder averaging). In fact, π is invariant 
only under the subalgebra k ⊂ gl2|2 of operators that are built (in the representation by dρ) from 

one creation (b†
±, f †

±) and one annihilation operator (b±, f±). In the decomposition by retarded 
and advanced sectors (instead of boson and fermion sectors) this is the subalgebra

k = gl1|1 ⊕ gl1|1 (111)

of block-diagonal matrices.
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4. The vertex model

In this section we will show that upon performing the disorder average in the second-quantized 
formulation of the network model, one obtains a supersymmetric (SUSY) vertex model with 
infinite-dimensional gl2|2-representations on the links.

4.1. Disorder average

Assuming the second-quantized formulation of the network model as described above, let 
now O be a local operator (or a product of local operators), i.e. an expression built from the 
boson and/or fermion creation and annihilation operators of a small region (or several small and 
well separated regions) of the network. We will assume O to be U(1)-invariant in a sense to be 
explained below.

We recall that U = UrUs, and we write Ur ⊗ 14 = Ûr, Us ⊗ 14 = Ûs, and U ⊗ 14 = Û . Before 
disorder averaging, the statistical average of O is defined as

〈O〉F := STrπ(c)ρ(Û)O, (112)

where π(c)ρ(Û) is the limit (ε → 0+) of ρ(Ûε) in (99). Note that in view of Eq. (100) this is a 
normalized statistical trace.

We now take the disorder average (denoted by E) of the statistical trace above:

E STrπ(c)ρ(Û)O. (113)

Recalling that ρ is a group representation, we factorize ρ(Û) = ρ(Ûr)ρ(Ûs). The disorder aver-
age is then easily performed to give

E STrπ(c)ρ(Û)O = STrPρ(Ûs)Oπ(c), (114)

where

P ≡ Eρ(Ûr) =
∏
�

2π∫
0

dφ�

2π
eiφ�(n+−n−)(�) , n± = b

†
±b± + f

†
±f± , (115)

projects the Fock space at each link � to the subspace V� of states with an equal number of 
particles in the advanced and retarded sectors:

V� = spanC
{
|0〉, (b

†
+b

†
−)(�)|0〉, (b

†
+f

†
−)(�)|0〉, (f

†
+b

†
−)(�)|0〉, (f

†
+f

†
−)(�)|0〉, . . .

}
.

(116)

Here |0〉 ≡ |vac〉� is the Fock vacuum at the link �. The assumed U(1)-invariance of O means 
that O commutes with eiφ�(n+−n−)(�) for all � and hence with the projection operator P . If we 
denote the total tensor product of spaces by V ,

V =
⊗

�

V� , (117)

we have

ESTrπ(c)ρ(Û)O = STrV ρ(Ûs)Oπ(c) ≡ 〈O〉V . (118)

The statistical sum on the right-hand side will turn out to be that of a vertex model.
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Fig. 4. The weights of the representation V in the two-dimensional lattice indexed by the number nf of fermions and nb

of bosons. The four-dimensional subspaces Wk (k = 1, 2, . . . ) are k-multiplets.

4.1.1. The representation V
We now discuss the representation space V ≡ V� for a fixed link of the lattice, suppressing 

for the moment the link index �. V is an irreducible lowest-weight representation of the Lie 
superalgebra gl2|2. To verify the lowest-weight property, notice that by the definition (104) all 
operators dρ(X) that come from a strictly lower-triangular matrix X annihilate the Fock vacuum. 
Thus if we take for the Cartan subalgebra of gl2|2 the diagonal matrices and for the lowering 
operators the strictly lower-triangular matrices, then the Fock vacuum is a lowest-weight vector 
for the gl2|2-representation dρ on V .

Moreover, all states of the representation V are obtained by repeatedly acting with raising 
operators dρ(X) (from strictly upper-triangular matrices X) on the Fock vacuum. (Note that 
not all of the raising operators act non-trivially, since the Hilbert ray of |0〉 is invariant under 
the subalgebra k of (111).) Conversely, from every state of V one can reach the Fock vacuum by 
repeatedly acting with lowering operators. This means that the representation is irreducible. Since 
an arbitrary number of boson pairs can be created by multiple actions of b†

+b
†
−, the representation 

space V is infinite-dimensional.
A simple graphical picture of V is drawn in the two-dimensional lattice of Fig. 4. The axes are 

indexed by the boson number nb and fermion number nf , each shifted by one unit. To motivate 
the shifts, note that gl2|2 has two sl2-subalgebras represented on V by

slbos
2 = spanC

{
b

†
+b+ + b−b

†
− , b−b+ , b

†
+b

†
−
}

, (119)

slferm
2 = spanC

{
f

†
+f+ − f−f

†
− , f−f+ , f

†
+f

†
−
}

. (120)

The numbers nb + 1 and nf − 1 are the eigenvalues (or weights) of the Cartan subalgebra gen-

erators b†
+b+ + b−b

†
− and f †

+f+ − f−f
†
−, respectively.

For good mathematical perspective, we here wish to mention the notion of a Howe pair [21]. 
By definition, a Howe pair in our context consists of a Lie superalgebra g and a classical Lie 
algebra h, with the property that g and h are mutual centralizers as subalgebras of an orthosym-
plectic Lie superalgebra. By the embedding into the latter, such a pair comes with a natural 
representation on a Fock space of bosons and fermions. The salient feature of a reductive Howe 
pair is that Fock space, viewed as a (g, h)-bimodule, has a multiplicity-free decomposition where 
each isomorphism class of g-irreducible representations that occur is associated with a unique 
isomorphism class of h-irreducible representations, and vice versa.

The Howe pair at hand consists of gl2|2 and gl1, where the latter coincides by accident with 
the center of gl2|2 (generated by the identity matrix in gl2|2). The identity generator of gl1 is 
represented via dρ as the difference between the number of retarded-type and advanced-type 



R. Bondesan et al. / Nuclear Physics B 918 (2017) 52–90 71
particles, n+ − n−. By the stated Howe-pair property of multiplicity-freeness, our Fock space 
decomposes into sectors of fixed charge n+ − n− for gl1, with each sector being acted upon 
irreducibly by gl2|2. The operation of taking the disorder average projects Fock space onto the 
gl1-singlet sector, which is V .

The two states with nb = 0 constitute the fundamental representation of the sl2 fermion–
fermion subalgebra, while the states with fixed fermion number nf = 0, nf = 1 (retarded), 
nf = 1 (advanced), and nf = 2, form four discrete-series irreducible representations of the 
boson–boson subalgebra. All the states with even fermion number (nf ∈ {0, 2}) form a unitary 
irreducible representation of U(1, 1) × U(2).

4.1.2. The vertex structure
We now move on to describe Pρ(Ûs). We recall from Eq. (4) that Us is a direct sum of 

linear transformations Sn (n ∈ N ), where Sn relates incoming to outgoing states at the node n. 
Correspondingly, Pρ(Ûs) can be written as

Pρ(Ûs) =
⊗

n
Rn , Rn : V1 ⊗ V2 → V3 ⊗ V4 , (121)

where 1, 2 (resp. 3, 4) label the two incoming (resp. outgoing) links at n. This formula tells us 
that the model which emerges after disorder averaging has the structure of what is called a vertex 
model.

To write an explicit expression for Rn, we recall from Eqs. (5), (6) that Sn can be written as 
an endomorphism of (C)1 ⊕ (C)2 with matrix(

e+iπ/4 cos(tn) e−iπ/4 sin(tn)

e−iπ/4 sin(tn) e+iπ/4 cos(tn)

)
= eiπ/4 e−itnσ1 (122)

followed by the identity map Id : (C)1 ⊕ (C)2 → (C)3 ⊕ (C)4 with respect to the fixed choice 
of basis |�〉 ∈ (C)� (� = 1, . . . , 4). According to the machinery developed in Sect. 3, the second-
quantized form of the factor e−itnσ1 is

ρ(14 ⊗ e−itnσ1) = exp
(
−itn

∑
a

(
c∗
a(1)ca(2) + c∗

a(2)ca(1)
))

, (123)

where ca and c∗
a (a = 0, 1, 2, 3) are the Fock operators defined in (105), (106). Similarly one has

ρ(14 ⊗ eiπ/412) = exp
(
(iπ/4)

∑
a

(
c∗
a(1)ca(1) + c∗

a(2)ca(2)
))

. (124)

Assembling the various factors we obtain

Rn = IdV3⊗V4←V1⊗V2 ×PV1⊗V2 × ρ(14 ⊗ e−itnσ1). (125)

The term representing the scalar phase factor eiπ/4 has disappeared because the projection P
trivializes 

∑
a c∗

aca = n+ − n− = 0.
The expression for Rn simplifies in the strongly anisotropic limit, where tn = ε (resp. tn =

π/2 − ε) on sublattice A (resp. B) of the network (see Fig. 1), and ε is taken to be very small. 
Expanding the exponential in (123), we see that the contribution of first order in ε vanishes due 
to the projection to V1 ⊗ V2. Going up to second order one obtains

Rn = IdV3⊗V4←V1⊗V2

(
1 − 2ε2

∑
ab

c∗
a(1)cb(1)(−1)|b|c∗

b(2)ca(2) + O(ε4)
)

, (126)

where |b| stands for the Z2-degree of the index b, i.e. |b| = 0 for b ∈ 2N and |b| = 1 for b ∈
2N + 1. The two-body operator (with coefficient ε2) is recognized as the gl2|2 quadratic Casimir 
operator realized on the tensor–product representation V1 ⊗ V2.
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4.2. Highest-weight elements

We now introduce certain operators which will be related to observables of the network model 
in the next section. These operators are the vertex-model analogs of the sigma-model pure scaling 
fields discussed in [15], and they appeared for the first time in our previous work [12]. We do 
not aim here at the derivation of the results of [12] in full generality, as this would take us too 
far from the concrete goals of the present paper. Instead, we will detail a subset of those results 
and briefly comment on the general case at the end. For now we fix a link and suppress the link 
label �.

To motivate the following construction, we begin with some Lie-theoretic perspective. Recall 
that the symmetry algebra gl2|2 contains two sl2-subalgebras, one in the boson–boson and an-
other one in the fermion–fermion sector. The main focus here will be on the former. For our 
present purposes, it is imperative to understand that the complex Lie algebra slbos

2 of (119)
contains a distinguished real form, su1,1. This is the subalgebra of generators in slbos

2 that are 
represented (via dρ) by anti-Hermitian operators:

su1,1 = spanR
{

i(b†
+b+ + b−b

†
−), i(b−b+ + b

†
+b

†
−), b−b+ − b

†
+b

†
−
}

. (127)

Its distinguishing feature is that the conjugation action on Fock operators by the associated non-
compact Lie group SU(1, 1) preserves not just the canonical commutation relations but also the 
relations under taking the Hermitian adjoint (†) in Fock space.

Due to non-compactness, the Cartan subalgebras of su1,1 organize into more than one con-
jugacy class [22]. In describing the representation space V , we made good use of the Cartan 
subalgebra generated by i(b†

+b+ + b−b
†
−). The following discussion, however, has to be based 

on a different Cartan subalgebra, namely the one generated by

H = e−iα b
†
+b

†
− − eiα b−b+ (128)

for some arbitrary (but fixed) angle α. This Cartan subalgebra cannot be conjugate to the former 
one, as it lies in a different norm sector of the Cartan–Killing form for sl2.

Adopting H as our Cartan generator, we have the usual sl2-commutation relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H, (129)

for an associated pair E, F of root vectors. We make the choice

E = B+C− , F = C+B− , (130)

where

B+ = 1√
2

(
b

†
+ − eiαb−

)
, B− = 1√

2

(
b+ + e−iαb

†
−
)

, (131)

C+ = 1√
2

(
b

†
+ + eiαb−

)
, C− = 1√

2

(
b+ − e−iαb

†
−
)

. (132)

(In [12] the operators B+, C− were denoted by B†, B .) To verify the sl2-commutation relations 
note that

[B−,B+] = 1, [C−,C+] = 1, H = B+B− − C+C− , (133)

and [B±, C±] = 0 = [B±, C∓]. Note also that su1,1 is spanned by H , iE, iF .
The key property of the present root-space decomposition su1,1 = R · H ⊕R · iE ⊕R · iF is 

that the root vector E is positive (and so is, in fact, F ). Indeed, we have
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C− = B
†
+ , C+ = B

†
−, (134)

and hence E = B+C− = C−B+ = B
†
+B+ is self-adjoint and non-negative. It is not difficult to 

see that there exists no vector in the gl2|2-representation space V which is annihilated by B+ or 
its adjoint. Hence we have strict positivity: E > 0. (Please note that no such property can be had 
with the “wrong” choice of Cartan generator as the boson number operator.) This feature will 
allow us to define Eq for complex values of q .

Turning to the fermion–fermion sector, we note that in this case all Cartan subalgebras of 
the compact real form su2 ⊂ slferm

2 are conjugate to one another and no serious harm would 
result from continuing to work with the Cartan subalgebra generated by the fermion number 
operator i(f †

+f+ − f−f
†
−) ∈ su2. However, it is desirable and useful for calculational purposes 

to preserve the symmetry between bosons and fermions. We therefore mimic the construction of 
the boson–boson sector.

With this motivation, we proceed to define fermionic counterparts for B±, C±:

F+ = 1√
2

(
f

†
+ + eiαf−

)
, F− = 1√

2

(
f+ + e−iαf

†
−
)

, (135)

G+ = 1√
2

(
f

†
+ − eiαf−

)
, G− = 1√

2

(
f+ − e−iαf

†
−
)

. (136)

Their bracket relations are

[F−,F+] = 1, [G−,G+] = 1, (137)

and [F±, G±] = 0 = [F±, G∓]. (Of course, in the present case of fermions the brackets are 
understood to mean the anti-commutator.) The relations under taking the Hermitian adjoint are 
now diagonal:

F+ = F
†
− , G+ = G

†
− . (138)

Altogether, the 16 operators made by multiplying one of the set {B+, C+, F+, G+} with one of 
{B−, C−, F−, G−} form another basis for the Fock-space representation of gl2|2. Truth be told, 
its one and only advantage compared with the original basis (105), (106) is the presence of the 
strictly positive operator B+C−.

In the remainder of this subsection, we focus on the quadratic expressions built by multiplying 
one of {B+, F+} with one of {C−, G−}. By construction, these four combinations have vanishing 
Lie superbrackets (commutators or anti-commutators, as the case may be) with one another, and 
they make part of a nilpotent subalgebra of raising operators for the Lie superalgebra gl2|2. Our 
goal now is to use this algebraic structure to construct highest-weight elements; by which we 
mean elements in the universal enveloping algebra of gl2|2 with the property that they are anni-
hilated by the commutator action of every one from a set of raising operators. This is achieved 
as follows.

We arrange our plus/minus basis of Fock operators in a specific order,

{B+,F+,G+,C+} and {B−,F−,G−,C−}, (139)

and we take the four-dimensional Cartan subalgebra of gl2|2 to be the algebra generated by

{B+B− , F+F− , G+G− , C+C−}. (140)

For the set of gl2|2-raising operators we take the quadratic operators whose plus factor occurs 
earlier in the ordered sequence than the minus factor. These are the combinations
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B+F− , B+G− , B+C− , F+G− , F+C− , G+C− . (141)

The remaining 42 − 4 − 6 = 6 quadratic combinations (where the plus factor occurs later than 
the minus factor) constitute the set of lowering operators.

It is useful to think of all 16 operators as being arranged in a square matrix, with the four Car-
tan generators placed on the diagonal according to the ordering of (140), the six raising operators 
placed above the diagonal (in the arrangement prescribed by the same ordering scheme), and the 
six lowering operators below the diagonal (also ordered by the same scheme). The usefulness of 
this picture stems from the fact that the operation of replacing each operator by the corresponding 
matrix with entry 1 in the position of the operator and zeroes everywhere else, is an isomorphism 
of Lie superalgebras, i.e. the Lie superbracket (or commutation) relations are preserved.

Now B+C− resides in the right upper corner of the 4 × 4 array. Therefore, in view of the 
isomorphism above, it is immediately clear that this operator has vanishing commutator with 
every one of the raising operators (141). It is also an eigenvector of the commutator action of 
any linear combination of the Cartan generators. Thus it is what is called a highest-weight vector 
[22] in the adjoint representation of gl2|2.

We now put in place the network-model structure, which has been ignored by our discussion 
so far. Following the blueprint of Sect. 2.3, we choose a positive measure � 
→ w(�) supported 
on a small observation region R. We then consider the coarse-grained operator

MBC =
∑

�
w(�) (B+C−)(�). (142)

Clearly, this still is a highest-weight vector for the adjoint action of the gl2|2 generators summed 
(with unit coefficients) over the observation region R.

Next, for algebraic completeness, we seek a second operator which shares the highest-weight 
properties of MBC . Given our fixed choice of root-space decomposition and raising operators, it 
is not possible to find another such element in the Lie superalgebra gl2|2 itself; for that, we need 
to pass to its universal enveloping algebra. Hence, consider the combination

(B+C−)(F+G−) − (F+C−)(B+G−). (143)

On a single link (or single representation space V ) this combination vanishes, since B+, F+, 
C−, G− generate a graded-commutative algebra in which the expression (143) is a difference 
of identical terms. However, it becomes non-zero when the network-model operation of coarse 
graining is brought into play. Let

MFG =
∑

�
w(�) (F+G−)(�) (144)

be the coarse-grained version of F+G− (one could also take a coarse-graining measure different 
from that for B+C−), and define MBG, MFC in the same way by coarse graining the operators 
B+G−, F+C−, respectively. We then ask whether the expression

MBC MFG − MFC MBG (145)

has the desired highest-weight property. To begin with, it is obvious that (145) commutes 
with the four R-summed gl2|2-raising operators made from the graded-commutative algebra 
of B+, F+, C−, G−. It is also clear that (145) is an eigenvector of the commutator action by 
the R-summed Cartan generators. What remains to be checked is that (145) commutes with the 
two raising operators 

∑
�∈R B+(�)F−(�) and 

∑
�∈R G+(�)C−(�). This can easily be verified by 

working out the commutators explicitly. For a more conceptual argument, one observes that the 
expression (145) is related to a superdeterminant:
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MBC MFG − MFC MBG = M2
BC

MFG − MFC M−1
BC MBG

MBC

= M2
BC SDet−1

(
MBC MBG

MFC MFG

)
. (146)

(Note that the superdeterminant is well-defined, as the algebra of MBC, MFG, MBG, MFC is 
graded-commutative; in particular, one has MBG MFC + MFC MBG = 0 and M2

FC = M2
BG = 0. 

Note also that our strictly positive operator MBC does have an inverse.) Using some Grassmann 
variable ξ to form the 1-parameter group exp

(
ξ
∑

� B+(�)F−(�)
)
, the desired result follows by 

the isomorphism to 4 × 4 (super-)matrices and the multiplicativity of the superdeterminant. This 
completes our conceptual verification that (145) indeed is a highest-weight element.

Since the operation of taking the (graded) commutator satisfies the (graded) Leibniz product 
rule, products of powers of highest-weight elements still have the highest-weight property. Thus 
the operators (142) and (145) are elementary building blocks for the construction of more general 
highest-weight elements, say the operator

�q, p(R) = M
q
BC

(
MFG − MFC M−1

BC MBG

)p

, (147)

where p has to be a non-negative integer while q may be complex (by the positivity of MBC

and fractional calculus or analytic continuation). The eigenvalue (or weight) λq,p of �q, p with 
respect to the system of Cartan generators (140) is seen to be

λq, p = (q,p,−p,−q). (148)

Moreover, the product of two highest-weight elements,

�q1, p1(R1)�q2, p2(R2), (149)

is still a highest-weight element, with weight given by the sum λq1+q2, p1+p2 of the individual 
weights (here we assume that the unit-coefficient sum of gl2|2-generators is extended so as to 
cover both observation regions R1 and R2). It is this “abelian fusion” that makes the correlation 
functions of highest-weight elements more tractable than those of other operators.

Finally, let us comment briefly on the more general situation depicted in Sect. 2.3. What 
we have described here will enable us (in Sect. 5) to transcribe to the vertex-model setting the 
network-model observables hq(K) ep(K). The more general observables of Sect. 2.3 can be 
treated in a similar way by introducing replicas; cf. [15].

5. Relation between network and vertex-model observables

We will now build on the previous sections to introduce certain correlation functions in the 
vertex model and establish their relation to observables in the network model. As a last prepara-
tion, we will introduce one more piece of mathematics.

5.1. More on the representation ρ

We present here the extension of the character formulas (50), (51) and (61), (62) to the more 
general case of operators mixing the different sectors (i.e., retarded and advanced bosons and 
fermions). First of all, the extension to the case of retarded and advanced fermions is immediate. 
In that case, one has from (50) the easy result



76 R. Bondesan et al. / Nuclear Physics B 918 (2017) 52–90
STr exp
∑
��′

(
f

†
+(�) f−(�)

)(〈�|X++|�′〉 〈�|X+−|�′〉
〈�|X−+|�′〉 〈�|X−−|�′〉

)(
f+(�′)
f

†
−(�′)

)
(150)

≡ STr exp
(
f

†
+ f−

)(
X++ X+−
X−+ X−−

)(
f+
f

†
−

)
= (−1)N Det(1 − eX), (151)

by making a particle–hole transformation (induced by a complex-linear transformation of 
Fock space) in the advanced sector: f− ↔ f

†
−, and then using that the supertrace STr(•) =

Tr (−1)
∑

f
†
+f++∑ f

†
−f−(•) reacts with a change of sign factor (−1)N due to the reversal of 

fermion parity for odd N .
There exists a bosonic counterpart to this formula, which looks very similar:

Tr exp
(
b

†
+ −b−

)(
X++ X+−
X−+ X−−

)(
b+
b

†
−

)
= (−1)N Det−1(1 − eX). (152)

The proof, however, is more difficult, as there exists no operator on the bosonic Fock space that 
would induce a particle–hole transformation b− ↔ b

†
−. As a matter of fact, one must impose a 

restriction on X in order for the Fock trace in (152) to exist and the formula to hold true. The 
restriction is best formulated in terms of the group element g = eX and reads (cf. [17])

g†s g < s, (153)

where s is the identity (resp. minus the identity) in the retarded (resp. advanced) sector. In the 
special case of X+− = X−+ = 0 this condition reduces to ReX++ < 0 < ReX−−.

We now combine these formulas and give the extension to the super-setting. First, we extend 
by linearity the representation dρ of Eq. (103) to supermatrices, i.e. matrices whose entries in 
the odd blocks are Grassmann variables. We denote by ̃g the Lie algebra obtained by tensoring 
the odd part of glN ⊗ gl2|2 = gl2N |2N with a Grassmann algebra generated by 2N2 variables. 
Then for a supermatrix X̂ ∈ g̃ [with a boson–boson block that satisfies the restriction of (153)] 
the general character formula is:

STr edρ(X̂) = SDet−1 (1 − eX̂
)
. (154)

Given (151) and (152), its proof is just a simple exercise in manipulating power series that ter-
minate after finitely many terms.

For completeness, we recall [23] that the (reciprocal of the) superdeterminant of a supermatrix 
with even blocks A, D and odd blocks B, C is defined as

SDet−1
(

A B

C D

)
= Det(D − CA−1B)

Det(A)
. (155)

This formula, which was already assumed in Eq. (146), holds whenever A is invertible. Let us 
also mention in passing that it is straightforward to extend the fermionic and bosonic Gaussian 
integral representations of Sect. 3.3 to the super-setting.

5.2. Generating function of observables

We now continue the line of development of Sect. 4.2. Our goal is to relate the statistical aver-
age of the vertex-model operators �q, p to the disorder average of the corresponding observables 
in the network model. This is conveniently done by employing a generating function on both 
sides of the correspondence, as follows.
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Starting on the vertex-model side, let there be n (for n “observation regions”) 2 × 2 super-
matrices Yj , each consisting of two ordinary parameters Y 00

j , Y 11
j and two Grassmann variables 

Y 01
j , Y 10

j , and consider the operator

M(Y) =
n∑

j=1

∑
�∈Rj

wj (�)
(
B+(�) F+(�)

)(Y 00
j Y 01

j

Y 10
j Y 11

j

)(
C−(�)

G−(�)

)
, (156)

with weights wj(�) > 0. The symbol Rj stands for the set of links in one of n small observation 
regions of the network. We adopt the standard convention that the Grassmann variables Y 01

j , Y 10
j

anti-commute with the fermionic operators F+(�) and G−(�).
Our generating function is the vertex-model trace of the exponential of M(Y):

Z(Y ) := 〈eM(Y)
〉
V = STrV π(c)ρ(Ûs) eM(Y). (157)

To convert this into a network-model quantity, we first of all re-introduce the disorder average E, 
returning in Eq. (118) to the left-hand side:

Z(Y ) = E STrπ(c)ρ(Û) eM(Y) = lim
ε→0+E STrρ(Ûε) eM(Y). (158)

The second equality trades the point-contact operator π(c) for our regularization procedure with 
parameter ε = 0+; cf. Eqs. (97) and (98).

The plan now is to use the character formula (154). For that purpose, we observe that M(Y)

can be written as the second quantization (104) of a supermatrix-valued operator Ŷw ∈ g̃:

M(Y) = dρ(Ŷw), Ŷw =
∑

wj ⊗ (Eα/2) ⊗ Yj , (159)

wj =
∑

|�〉wj(�) 〈�|, Eα =
(

1
eiα

)
⊗ (1 −e−iα

)= ( 1 −e−iα

eiα −1

)
. (160)

In specifying Ŷw we have used the isomorphism gl2N |2N = glN ⊗ gl2 ⊗ gl1|1 which factors 
the retarded-advanced structure (gl2) out of the super-structure (gl1|1) and the network model 
structure (glN ). The matrix Eα/2 acting in the retarded-advanced sector appears because (154)
requires that the Fock operators B+, F+, C−, G− be expressed in terms of the original basis 
(105), (106) assumed in (104). Note that Eα is nilpotent: E2

α = 0.

We now use the representation property ρ(Ûε) edρ(Ŷw) = ρ(Ûε eŶw ) and apply the character 
formula (154) to obtain

Z(Y ) = lim
ε→0+E STrρ(Ûε) edρ(Ŷw) = lim

ε→0+E SDet−1 (1 − Ûε eŶw
)
. (161)

Here we recall that STr means the supertrace over the tensor product of four Fock spaces 
(retarded and advanced, bosonic and fermionic), whereas SDet is a superdeterminant on the 
first-quantized Hilbert space W =H⊗ (C+ ⊕C

−) ⊗C
1|1.

To evaluate the expression (161) further, we use two elementary facts. The first one is the 
nilpotency of Eα , which entails Ŷ 2

w = 0. The second one is that

SDet−1 (1 − Ûε

)= 1 (162)

due to the definition Ûε = diag(QεU, Q−1
ε U) ⊗ 11|1. We thus obtain

Z(Y ) = lim
ε→0+E SDet−1 (1 − (1 − Ûε)

−1ÛεŶw

)
. (163)

Next, recalling the definition T = QU , we carry out the limit ε → 0+:
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lim
ε→0+(1 − Ûε)

−1Ûε = diag
(
(1 − T )−1T ,−(1 − T †)−1

)
⊗ 11|1 . (164)

Since the nilpotent matrix Eα in the retarded-advanced sector has rank one, the superdetermi-
nant in (163) can be reduced further. A quick (if formal) way to arrive at the reduced expression 
is to use SDet = exp◦ STr◦ log along with the power series of the logarithm x 
→ log(1 − x) and 
the identity

TrC+⊕C−(EαD)k = (TrC+D − TrC−D
)k (165)

for any operator D that is diagonal in the retarded-advanced space C+ ⊕ C
−. Applying this to 

(1 − Ûε)
−1ÛεŶw in the limit given by (164), we obtain the formula

Z(Y ) = E SDet−1
(

1 − 1
2

∑
j
(G · wj) ⊗ Yj

)
, (166)

where G is the network-model Green operator introduced in Eq. (31) and expressed in terms of 
T in (36). Note that the superdeterminant is now taken over the reduced space H ⊗ C

1|1. The 
final step is convert the determinant over H⊗C

1|1 to a determinant over Cr ⊗C
1|1, by passing 

from G · w to the r × r matrices K(xj ) of Eq. (29):

Z(Y ) = E SDet−1
(

1 − 1
2

∑
j
K(xj ) ⊗ Yj

)
. (167)

In summary, the formula (167) re-expresses the vertex-model generating function (157) with 
parameters Y as a generating function for multi-point correlation functions of the local wave-
function data K(x1), . . . , K(xn) in the network model. It is a key result of the present work.

5.3. Correlation functions

We will now specialize the equality between the generating functions (157) and (167) to 
express certain correlators in the vertex model as network-model observables. The continuum 
limit of these correlation functions will be analyzed in Sect. 6.

As a disclaimer, we should mention that the network-model observables to be obtained in the 
present section constitute only a subset of those introduced in Sect. 2.3. To handle the whole 
class of observables of Sect. 2.3, one would need to replicate the basic Fock operators for bosons 
and fermions. Although replica indices are easily incorporated into the present formalism, we 
will continue to concentrate on the minimal theory which we have developed so far.

To begin the discussion of correlation functions, a first remark is that since the theory before
taking the disorder average is a theory of free bosons and fermions, correlation functions obey 
Wick’s theorem. One has〈

(B+C−)(�1) · · · (B+C−)(�k)(F+G−)(�′
1) · · · (F+G−)(�′

m)
〉
V

=

E Perm
(〈

B+(�i)C−(�j )
〉
F

)k

i,j=1
Det
(〈

F+(�′
i )G−(�′

j )
〉
F

)m

i,j=1
,

(168)

with Perm the permanent, and the two-point functions given by〈
B+(�)C−(�′)

〉
F = − 〈F+(�)G−(�′)

〉
F = 1

2

r∑
i=1

ψci
(�)ψ̄ci

(�′). (169)

At this point, we recall the definitions (112) and (118) of the Fock-statistical averages before 
and after taking the disorder average. However, while Wick’s theorem in principle allows one to 
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compute any correlation function, it is simpler in practice to start directly from Eq. (167), which 
conveniently takes care of the combinatorics needed to resum all Wick contractions.

In the next two sections, we will discuss explicitly the case of the bosonic and fermionic 
operators introduced in Sect. 4.2. Correlators of the general highest-weight operator �q, p in 
(147) can be treated in a similar way.

5.3.1. Bosonic observables
Consider the following correlation function of bosonic highest-weight elements:

fq1,..., qn(c ;x1, . . . , xn) = 〈MBC(x1)
q1 · · ·MBC(xn)

qn
〉
V (170)

= STrV π(c)ρ(Ûs)MBC(x1)
q1 · · ·MBC(xn)

qn, (171)

where, as we recall from Sect. 4.2, MBC is a sum of strictly positive operators,

MBC(xj ) =
∑

�∈Rj

wj (�)B+(�)C−(�), (172)

with weights wj(�) > 0. As before, the symbol Rj stands for the set of links in a small obser-
vation region of the network. The position argument xj of MBC(xj ) is to indicate the coarse-
grained location of the small region Rj in the continuum limit. Note, however, that all formulas 
here and in the following sections hold exactly (without assuming any continuum approxima-
tion).

The type of correlator (170) can be extracted from the generating function Z(Y ) for Y 00
j ≡ −tj

and Y 11
j = Y 01

j = Y 10
j = 0. To do so, we use an integral representation involving the Gamma 

function:

ξq = 1

�(−q)

∞∫
0

dt t−q−1 e−tξ , (173)

which converges for Req < 0 assuming that ξ > 0. Let n = 1 for now. Then, making the identi-
fication ξ ≡ MBC(x) our master formula (167) gives

〈
MBC(x)q

〉
V = 1

�(−q)

∞∫
0

dt t−q−1
EDet−1 (1 + t

2K(x)
)
. (174)

Recall that the determinant is over the r-dimensional space of scattering states.
In the case of a natural number q ∈ N, one has the simplification that one can expand both 

sides of (167) in powers of t to obtain〈
MBC(x)q

〉
V = 2−q �(1 + q)Ehq

(
K(x)

)
, (175)

where hq is the complete homogeneous symmetric polynomial of degree q; cf. Sect. 2.3. This 
formula is consistent with (174) by analytic continuation in q . As a matter of fact, it extends to 
complex q if hq ≡ sλ is understood in the sense of Eq. (21) with λ1 = q and λ2 = . . . = λr = 0.

The situation with a general number n ≥ 1 of observation regions can be handled in the same 
way. Starting from our equality of generating functions,〈

e−∑n
j=1 tj MBC(xj )

〉
V = EDet−1

(
1 + 1

2

∑
j
tjK(xj )

)
, (176)

one can produce a formula which expresses the correlator (170) in terms of pure and mixed traces 
of powers of the local wavefunction data K(x1), . . . , K(xn). Here we discuss only the case of a 



80 R. Bondesan et al. / Nuclear Physics B 918 (2017) 52–90
single point contact, say at the link c. Then K has rank one, and after performing the integrals 
we get:

fq1,..., qn(c ;x1, . . . , xn) = 2−(q1+...+qn)�(1 + q1 + . . . + qn)

×E
(
K(x1)

q1 · · ·K(xn)
qn
) (177)

with K(xj ) =∑�∈Rj
wj (�)|ψc(�)|2. Thus in the case of a single point contact, the relation 

between vertex-model and network-model observables is particularly easy to state: one passes 
from one side of the correspondence to the other by replacing the bosonic highest-weight operator 
MBC(x) with the square K(x) of the scattering state’s absolute value and, at the same time, 
replacing the vertex-model statistical average (with an operator insertion for the point contact) 
with the disorder average.

5.3.2. Fermionic observables
We now turn briefly to the fermionic counterparts of the bosonic observables of the preceding 

section. For a set p1, . . . , pn of non-negative integers, consider

gp1, ..., pn(c ;x1, . . . , xn) = 〈MFG(x1)
p1 · · ·MFG(xn)

pn
〉
V (178)

= STrV π(c)ρ(Ûs)MFG(x1)
p1 · · ·MFG(xn)

pn, (179)

with MFG(xj ) =∑�∈Rj
wj (�) F+(�)G−(�). By setting Y 00

j = Y 01
j = Y 10

j = 0 and Y 11
j = tj one 

gets from Eq. (167) the general formula

gp1, ..., pn(c ;x1, . . . , xn) =
n∏

j=1

∂pj

∂t
pj

j

∣∣∣∣
tj =0

EDet
(

1 − 1
2

∑
j
tjK(xj )

)
. (180)

Since the determinant is a polynomial in the parameters tj of degree r , there is a constraint 
(absent in the bosonic case) on the powers pj in order for the result to be non-trivial:

p1 + . . . + pn ≤ r. (181)

Thus, a non-trivial fermionic correlator with n observation regions requires at least n point con-
tacts. In the special case of a single observation region (n = 1) one again obtains a very neat 
expression, now by the elementary symmetric polynomial:〈

MFG(x)p
〉
V = p!

(−2)p
E ep

(
K(x)

)
. (182)

5.3.3. Weyl-symmetry relation
Here we specialize to the particular situation of a single observation region with just one link, 

�, in which case our matrix Kik = ψ̄ci
(�)ψck

(�) has rank one with non-zero eigenvalue

TrK =
r∑

i=1

|ψci
(�)|2 ≡ A. (183)

In this situation it is known [24] that there exists a remarkable relation,

E(Aq) = E(A1−q), (184)

which has its foundation in a Weyl-group symmetry and holds exactly for any (finite) lattice and 
for any value of the scattering parameters tn of the time-evolution operator of the network model; 
cf. Eqs. (5), (6). In fact, in order for the relation (184) to hold one only needs the property that 
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the random phases of the network model are independent of each other and uniformly distributed 
[25].

Our proof proceeds by showing that E(Aq) can be written as an integral

E(Aq) =
∫
R

eqϕω(ϕ)dϕ, (185)

where the function ω(ϕ) obeys the symmetry relation

eϕ/2ω(ϕ) = e−ϕ/2ω(−ϕ). (186)

The result (184) then follows immediately.
Thus, we need to establish Eqs. (185), (186). We begin the calculation by applying the identity 

(175) to translate the disorder average into a vertex-model statistical average:

E(Aq) = 2q

�(1 + q)
STrV π(c)ρ(Ûs)

(
B+(�)C−(�)

)q
. (187)

Now, for the sake of the argument, imagine that we have carried out the supertrace STrV over all 
vertex-model states but those at the link �. What then remains is a final trace over the represen-
tation space V ≡ V� at the link �; cf. (118):

E(Aq) = 2q

�(1 + q)
STrV �(B+C−)q, (188)

where B+ = B+(�), C− = C−(�) and the operator � is the result of tracing the product 
π(c)ρ(Ûs) over all the non-� degrees of freedom.

Next we convert the trace (188) into an integral over the (super-)coset space G/K where 
G = U(1, 1|2) is the (real) symmetry group of the SUSY vertex-model operator ρ(Ûs) and K =
U(1|1) × U(1|1) ⊂ G the subgroup of symmetries of the Fock vacuum |0〉 and the point-contact 
operator π(c). The conversion is done by a general formula

STrV (O) =
∫

G/K

dgK〈0|ρ(g)−1O ρ(g)|0〉, (189)

which is known from the theory of spin-coherent states (here: highest-weight vectors of the 
G-representation space V built on the K-invariant Fock vacuum). The symbol dgK stands for 
the invariant Berezin integration form on G/K , and g 
→ ρ(g) is the representation (98) restricted 
to the link �.

In view of (188) we need to compute ρ(g)−1(B+C−)qρ(g) for a well-chosen representative g
of the coset gK ∈ G/K . For this we parametrize ρ(g) as ρ(g) = ρ(n) eϕH/2 with H the operator 
in (128) and ρ(n) in the centralizer of B+C− (such a parametrization does exist). From the 
commutation relation (129) we then obtain

ρ(g)−1(B+C−)qρ(g) = e−qϕ(B+C−)q . (190)

Altogether, we now have for E(Aq) the integral representation

E(Aq) =
∫

G/K

dgK e−qϕ(g)�(g), (191)

where �(g) is a modified coherent-state expectation value:
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�(g) = 2q

�(1 + q)
〈0|ρ(g)−1�ρ(g)(B+C−)q |0〉 (192)

= 1

�(1 + q)�(−q)

∞∫
0

dt t−q−1〈0|ρ(g)−1�ρ(g) e−2tB+C−|0〉. (193)

Next, the operator e−2tB+C− in the integral formula for �(g) has the following Gauss decompo-
sition w.r.t. the original (particle-number) Cartan subalgebra:

e−2tB+C− = et (1+t)−1e−iαb
†
+b

†
− e− log(1+t)(b

†
+b++b−b

†
−) et (1+t)−1eiαb−b+ . (194)

This identity is readily verified by multiplying the corresponding matrices in SL2(C). By apply-
ing the Gauss decomposition to the Fock vacuum, we get

e−2tB+C−|0〉 = et (1+t)−1e−iαb
†
+b

†
−|0〉 (1 + t)−1. (195)

When this is inserted into Eq. (193) the exponential disappears, since �(g) is independent of 
eiα [recall Eq. (191)] and we may average over the parameter α. By standard identities for the 
Gamma function, the t -integral now simply gives unity:

1

�(1 + q)�(−q)

∞∫
0

dt t−q−1(1 + t)−1 = 1. (196)

In this way we arrive at

E(Aq) =
∫

G/K

dgK e−qϕ(g)φ(g), φ(g) = 〈0|ρ(g)−1�ρ(g)|0〉. (197)

The key feature of the function φ(g) is its bi-invariance φ(k1gk2) = φ(g) for k1, k2 ∈ K , with 
the right invariance being part of the spin-coherent state construction and the left one stemming 
from the K-invariance of the operator π(c)ρ(Ûs).

Finally, changing integration variables as gK = naK and the corresponding invariant mea-
sures as dgK = dn eϕdϕ with a defined by ρ(a) = eϕH/2, we obtain

E(Aq) =
∫
R

e−qϕω(−ϕ)dϕ, e−ϕ/2ω(−ϕ) = eϕ/2
∫

dnφ(na), (198)

which is Eq. (185) but for ϕ → −ϕ. By the SUSY generalization [24] of a classical result due to 
Harish-Chandra, one has the Weyl-group symmetry [26]

eϕ/2
∫

dnφ(na) = e−ϕ/2
∫

dnφ(na−1), (199)

which is the same as Eq. (186) and therefore completes our proof of (184).

6. Effective description by a Gaussian free field

In this section we will consider the continuum limit of the critical network model. Since the 
model under investigation does not fall into the category of quantum-integrable lattice models 
[14], there is little hope to obtain exact formulas on the lattice and take their limits. Nevertheless, 
building on the generally accepted hypothesis that the continuum limit is a conformal field theory 
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(CFT), one may impose certain a priori constraints on the correlation functions. This, together 
with extensive numerical simulations, allowed us in [12] to derive several predictions concerning 
the continuum limit of the correlation functions discussed in Sect. 5.3.

In the next subsection, we will review the results of [12] and point out that the Abelian op-
erator product expansion (OPE) invoked there implies the description by a Gaussian free field, 
corresponding to a parabolic multifractality spectrum. This description is in agreement with our 
numerical studies, which confirm the abelian OPE and find unnaturally small deviations from 
parabolicity; see also the previous works [9,10]. It should be mentioned that parabolicity of the 
spectrum was also proposed in a recent preprint [11] without any reference to CFT. Our reason-
ing leads to the same conclusion by relying on the well-established structure of conformal field 
theories.

6.1. Review of previous results

Our discussion here will focus on correlators of the bosonic highest-weight operators Mq
BC

only. It is for this sector of the theory that the constraints are most powerful. We will address 
possible generalizations at the end of the discussion.

When a critical lattice model is taken to the thermodynamic limit, one expects that lattice 
operators can be expanded in terms of CFT fields, and correlation functions can be computed 
within the framework of (perturbed) CFT. The global gl2|2-symmetry of the vertex model will 
now be used in order to classify fields of the CFT and select the ones to appear in the lattice 
expansions. (Assuming that coarse graining is understood, we frequently write B+C− for MBC .)

We start the analysis with some representation theory. While we have already discussed the 
representation-theoretic properties of MBC , we still need to review those of π = πvac. In con-
trast to our highest-weight vectors, πvac does not transform according to a single irreducible 
representation; instead, the following decomposition was established in [5]:

πvac(c) =
∫

1
2 +iR+

dμ(q0) 〈V,V ∗|q0〉φlat
q0

(c). (200)

The operators φlat
q0

are K-invariant elements in a principal series of gl2|2-irreducible infinite-

dimensional representations labeled by q0 ∈ 1
2 + iR+, and dμ(q0) and 〈V, V ∗|q0〉 are a known 

Plancherel measure and Clebsch–Gordan coefficients, which we do not need explicitly here. 
The relation between φlat

q and the highest-weight vector (B+C−)q is φlat
q can be obtained as the 

K-average of (B+C−)q :

φlat
q =

∫
K

dk ρ(k)(B+C−)qρ(k)−1, (201)

with dk the Haar–Berezin measure on K = U(1|1) × U(1|1) and ρ(k) the representation (98)
restricted to a single link and to elements k ∈ K . (Note, however, that due to the presence of 
Grassmann derivations in the measure, the right-hand side is trivially zero when q = 0 or q = 1.)

Generic operators in the lattice model will have a similar decomposition over a continuum 
of representations. Let us then fully appreciate the fruit of all our labors: the highest-weight 
operators Mq

BC , transforming purely under the symmetry, will not involve any integral over rep-
resentations! Furthermore, they satisfy an Abelian fusion algebra of gl2|2-representations, and the 
combination of these aspects simplifies our discussion both on the lattice and in the continuum.
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Before presenting the CFT predictions we stress that, trying to proceed constructively, we 
do not assume a priori the existence of a Kac–Moody symmetry in the CFT. Instead, we try to 
analyze the problem assuming no more than the well-accepted existence of a Virasoro algebra. 
In fact, it is known [27] that a subsector of the CFT for a localization problem in class C does 
not possess a Kac–Moody symmetry, at least not the one extending the full global symmetry 
algebra. It is also known that the study of supersymmetric CFTs is complicated by non-unitarity 
and the presence of logarithmic fields [28]. Note, however, that logarithms are expected to appear 
for atypical representations and not to appear for the typical (or generic) representations which 
underlie our correlation functions. (See [29] for a recent discussion of logarithmic operators in 
localization problems.)

Let us now denote by Vq the leading field in the expansion of (B+C−)q in terms of CFT 
fields:

(B+C−)q(�) = ε�q Vq(z, z̄) + o(ε�q ). (202)

Here �q is the scaling dimension of Vq and z = z(�) the complex coordinate of the link � on 
the grid of mesh size ε. We will sometimes call Vq a vertex operator. A selection rule is that Vq

and the subleading terms have to transform in the same way as the operator on the left-hand side 
under the action of the gl2|2-symmetry. The lattice fields φlat

q will admit a similar expansion by 
CFT fields, and we denote by φq the leading term. By the relation (201), φq has the same scaling 
dimension �q .

In [12] we put forth two conjectures: (i) Vq and φq are spinless Virasoro primary fields, and 
(ii) the operators Vq are closed under the fusion of Virasoro representations: Vq1 ×Vq2 = Vq1+q2 . 
At present, the only reliable way for us to test these conjectures is numerics. Now the first one 
leads to the following prediction for the correlator on the infinite plane:〈

π(c)(B+C−)q(�)
〉= ε2�q fq |z0 − z|−2�q + o(ε2�q ), q ∈ 1

2 + iR, (203)

for some constant fq and z0 = z0(c) the coordinate of the point contact; and we adapted our 
notation for correlation functions,〈

πvac(c)(B+C−)q(�)
〉≡ 〈(B+C−)q(�)

〉
V , (204)

in order to bring the point-contact operator πvac out into the open. Note that because of the change 
of Cartan subalgebra made in the construction of the highest-weight vectors, no constraint on the 
“charge” q emerges from gl2|2-symmetry. Instead, it is the emerging conformal symmetry that 
selects the single component with dimension �q out of the continuum of operators φq entering 
the decomposition of πvac. In fact, this follows already from the weaker assumption that φq

and Vq are quasi-primaries [30]. Our assumption (i) that the fields are spinless primaries leads 
to a prediction for the infinite cylinder as well as any other geometry which can be obtained 
by a conformal map from the plane. It is the cylinder prediction that was extensively checked 
numerically in [12].

Once the pure scaling behavior is assumed, the exact symmetry relation of Sect. 5.3.3 implies 
the same symmetry relation for the scaling dimensions:

�q = �1−q . (205)

In particular, �1 = �0 = 0. We also remark that while the formulas initially were derived for 
q ∈ 1

2 + iR only, the results make sense for other complex/real values of q .
Similar to (203), another consequence of conjecture (i) is that the subleading terms entering 

the lattice expansion (202) are descendant fields obtained by acting on Vq with the Virasoro 
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algebra. Their scaling dimensions are �q +n with n a positive integer. We caution, however, that 
this is expected to fail for q = 1 because of the presence of the (highest-weight component of 
the) gl2|2 current and its descendants in the expansion of the lattice operator. (The same happens 
for the well-understood case of vertex models of compact type; see [31] for a recent discussion.) 
Actually, we could replace B+C− by the more general highest-weight vector MBC of Sect. 4.2, 
whose flexible definition by a weight function w allows one to choose the weights so as to 
eliminate the current. We refrain from elaborating this issue here and henceforth consider the 
case of generic q .

Turning to the operator product expansion (OPE), a first remark is that by the gl2|2-highest 
weight property, Vq1+q2 is the only field among the Vq that can appear in the OPE of Vq1 × Vq2 . 
Our second conjecture, (ii), says that no other primary field intervenes, at least not so when 
correlators with an insertion only of the point-contact operator are considered. Hence, we have 
the formula

Vq1(z1, z1)Vq2(z2, z2) = |z12|�q1+q2 −�q1−�q2 Vq1+q2(z2, z2) + . . . (206)

with z12 = z1 − z2 and the subleading terms being Virasoro descendants only.
Using Eq. (206), one can reduce any correlator involving a string of operators 

∏n
i=1 Vqi

to one 
involving only Vq1+...+qn and its descendants. This shows that πvac contributes a single scaling 
dimension �q0 , with

q0 = 1 − (q1 + . . . + qn), (207)

in all multi-point functions of the form (170). While an equivalent choice for q0 in (207) would 
be q0 =∑qi , the present definition of q0 lets us think about the point contact as contributing a 
charge q0 that makes the total sum of charges q0 + q1 + . . . + qn equal to the background value 
of Q = 1.

For consistency, the OPE between a vertex operator Vqi
and the point contact can only involve 

one fusion channel, this time that of dimension �q0+qi
with q0 as above. When specialized to a 

three-point function on the plane, the abelian OPE implies

〈π(c)(B+C−)q1(�1)(B+C−)q2(�2)〉 = ε�q0 +�q1 +�q2 fq1,q2 |z0 − z1|�q2 −�q0 −�q1

× |z0 − z2|�q1 −�q0−�q2 |z1 − z2|�q0 −�q1−�q2 + o(ε�q0 +�q1+�q2 ),
(208)

where as before, q0 = 1 − (q1 + q2), and {z0, z1, z2} are the coordinates of {c, �1, �2}. This 
prediction has also been tested and confirmed numerically in [12].

Let us also point out another direct consequence of the abelian OPE, which is that in spite of 
the relation �q = �1−q , there is no such relation for the vertex operator,

Vq(z, z̄) �= R(q)V1−q(z, z̄), (209)

if R(q) is a function of q only. This is so even though the representations indexed by q = 1/2 + iλ
and 1 − q = 1/2 − iλ for λ ∈ R are equivalent, i.e., there exists a gl2|2-equivariant isomor-
phism intertwining them. (The latter generalizes the known equivalence of the corresponding 
su1,1-representations, which can be found e.g. in [32].) To avoid running into a contradiction, 
one must now appreciate the following loop hole: our highest-weight vertex operators Vq [or 
their lattice parents (B+C−)q ], unlike the K-invariant vectors φq (or φlat

q ), are not vectors in 
the L2-space of the gl2|2-representation; rather, they are distributions in the Schwartz sense 
of continuous linear functions on vectors. More concretely, if X is a compact linear operator 
(such as the vacuum projector X = πvac) acting on the gl2|2-representation space V , then the 
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continuous linear mapping X 
→ STrV X(B+C−)q for q = 1/2 ± iλ picks out the component 
of X ∈ End(V ) 
 V ⊗ V ∗ in a gl2|2-irreducible representation space V|λ| ⊂ V ⊗ V ∗, although 
(B+C−)q ∈ End(V ) 
 V ⊗ V ∗ itself is not a vector inside that space V|λ|. The upshot is that in 
spite of the equality �q = �1−q of scaling dimensions, the operators (B+C−)q and (B+C−)1−q

are not proportional to each other, and this distinction carries over to the CFT-fields Vq .
From a Lagrangian perspective, what we are after is the conformal field theory of a single 

scalar field ϕ such that Vq(z, ̄z) = eqϕ(z,z̄). (Such a field ϕ exists due to Vq ∼ (B+C−)q and 
the positivity of B+C−.) The Lagrangian should emerge from the full theory as an effective 
Lagrangian by integrating out all the other fields (in a procedure that replaces the point contact by 
an effective operator which is a function of ϕ with properties dictated by conformal symmetry as 
discussed above). Even if we do not know the full theory and cannot do the exercise of integrating 
out the fields, we can still make the following point: the inequality (209) means that there is no 
need for screening charges [30] in a Coulomb-gas description of the problem. Thus there exists 
no obstruction for the correlators of Vq to be those of a free theory. In fact, in the next section we 
will argue the case for a Gaussian free field starting from the postulate of the Abelian OPE.

6.2. New predictions: multi-point functions and parabolicity

Consider the following four-point function on the Riemann sphere:

G({zi, z̄i}) = 〈π(z0, z0)Vq1(z1, z1)Vq2(z2, z2)Vq3(z2, z3)
〉
, (210)

which, according to the chain of arguments in this paper, controls the leading behavior of the 
wavefunction correlator

E

(
|ψc(z1)|2q1 |ψc(z2)|2q2 |ψc(z3)|2q3

)
(211)

in the presence of a point contact c at z0. The aim here is to show that demanding crossing sym-
metry of this correlation function entails the scenario of a Gaussian free field, and in particular, a 
parabolic spectrum of multifractal dimensions �q . The derivation employs nothing but standard 
CFT reasoning and will closely follow [33].

For our purposes it is sufficient to consider the function

Y(x, x) = |x|�q2 +�q3 −2γ /3|1 − x|�q1 +�q2−2γ /3〈π |Vq1(1,1)Vq2(x, x)|Vq3〉, (212)

where we set the complex stereographic coordinates (z0, z1, z3) to fixed values (∞, 1, 0), and 
we multiplied by a prefactor for later convenience. With q0 = 1 − (q1 + q2 + q3) the exponent γ
is given by

γ =
3∑

i=0

hqi
, (213)

where hq = �q/2 denotes the holomorphic dimension. Using the Abelian OPE and the holomor-
phic factorization into a chiral and anti-chiral Virasoro algebra [30], one has Y(x, x) = |F(x)|2. 
Moreover, F(x) has singularities only at x = 0, 1, ∞. By the OPE given in (206) the leading 
behaviors are

F(x) = xhq2+q3 −γ /3[a0 + o(x)] (214)

= (1 − x)hq1+q2−γ /3[b0 + o(1 − x)] (215)

= (1/x)hq1+q3−γ /3[c0 + o(1/x)], (216)
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for some numbers a0, b0, c0. This constrains F(x) to be of the form

F(x) = xhq2+q3−γ /3(1 − x)hq1+q2−γ /3F̃ (x), (217)

where F̃ is analytic in a neighborhood of x = 0 and x = 1, and for x → ∞ behaves as F̃ (x) =
xM(c + o(1/x)) with exponent

M = γ − hq1+q2 − hq2+q3 − hq1+q3 . (218)

Now F̃ cannot have a branch point at x = ∞, or else there would be a branch cut from ∞ to, 
say 0, in conflict with the requirement of regularity at the origin. M is therefore an integer and 
F̃ an entire function with a pole at ∞, i.e., a polynomial of order M . Since hq is a continuous 
function of q , the integer M cannot vary with q , and by taking the qi to zero, its value is inferred 
to be M = 0. It follows that F̃ is constant. The vanishing of M now amounts to a constraint on 
the scaling dimensions:

�q1+q2+q3 + �q1 + �q2 + �q3 − �q1+q2 − �q2+q3 − �q1+q3 = 0, (219)

where �q0 = �q1+q2+q3 was used. This condition appeared in early works of the CFT literature 
[34,33] and was first put forth in the Anderson-localization context in [11]. Given Eq. (219), the 
parabolic law for the multifractality spectrum �q follows by setting q1 = q and q2 = q3 = η

and expanding in η, which at second order gives a constant second derivative �′′
q = �′′

0. Since 
�0 = �1 = 0, this fixes �q to be

�q = Xq(1 − q), (220)

leaving one free parameter, X.
With the conformal block F(x) determined, global conformal invariance allows one to recon-

struct the four-point function G({zi, ̄zi}) for arbitrary positions [30]:

G({zi, z̄i}) ∝
3∏

i=1

|z0i |−2X(1−q1−q2−q3) qi
∏

1≤i<j≤3

|zij |−2Xqiqj . (221)

Up to a prefactor, this coincides with the following correlator〈
δ(ϕ(z0, z0)) eq1ϕ(z1,z1)eq2ϕ(z2,z2)eq3ϕ(z3,z3)

〉
GFF

, (222)

where the expectation value is taken in a Gaussian free field (GFF) theory with action

S = 1

8πX

∫
d2z
√|g| ((∂μϕ)(∂μϕ) + QXϕR

)
. (223)

Here R is the curvature of the metric g, the number Q is the background charge (in our case: 
Q = 1), and X is the stiffness constant of the boson which determines the prefactor in the 
parabolic law for the scaling dimensions. The results of numerical studies [12] are compatible 
with the value X = 1/4.

We remark that the computation of the four-point function allows us to fix the coefficients of 
the OPE of two fields Vq1Vq2 as that of two vertex operators eq1ϕeq2ϕ , with ϕ the free field above. 
Thus we can identify generic multi-point correlators with those of a free boson and produce a 
prediction for correlators on the plane:

E
(|ψc(z1)|2q1 · · · |ψc(zn)|2qn

)∼ 〈δ(ϕ(z0, z0)) eq1ϕ(z1,z̄1) · · · eqnϕ(zn,z̄n)
〉
GFF

(224)

∝
∏
j

|z0 − zj |−2Xqj (1−∑i qi )
∏
i<j

|zi − zj |−2Xqiqj , (225)
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where ∼ has to be understood as the leading behavior in the continuum limit.
Let us mention that the free-boson effective theory (223) has central charge c = 1 + 3Q2X. 

As indicated at the end of Sect. 6.1 this should be interpreted as the result of integrating out all 
other fields in an unknown full CFT, and it is not in contradiction with the fact that the partition 
function of the full theory is unity.

Let us add some perspective to our result. In a unitary CFT (or unitary QFT, for that matter) 
one has a Hermitian scalar product and thus the structure of a Hilbert space, with the vacuum 
and the excited states all being vectors in that Hilbert space. It should be clear by now that this 
standard mathematical framework is not appropriate for the SUSY vertex model at hand. Rather, 
the proper framework is the more general setting of statistical mechanics where one has a space 
of observables and a dual space of states or Gibbs measures, and statistical expectation values 
are given by the pairing between observables and states. To put it concretely, our observables 
Vq ∼ eqϕ are unbounded (!) operators, and in order to get sensible correlation functions one 
must take the trace of these unbounded observables against states or density matrices that are 
regularized by the insertion of a compact operator such as πvac.

One may be tempted to compare our GFF scenario with that of the H 3+ Wess–Zumino–Witten 
model or of quantum Liouville theory, but when making such comparisons one should be aware 
of some important differences. On the one hand, (i) the H 3+ WZW model and Liouville theory do 
not possess an invariant ground state, (ii) the one-point function 〈Vq(x)〉 does not exist, (iii) the 
two-point function 〈Vq1(x1)Vq2(x2)〉 exists only in the distributional sense, but (iv) all n-point 
functions for n ≥ 3 exist. In contrast, (i) our SUSY vertex model does have a gl2|2-invariant 
ground state due to the presence of the fermionic degrees of freedom, (ii) the one-point function 
exists (and is zero, i.e., spontaneous symmetry breaking does not occur), (iii) the two-point func-
tion still exists in the distributional sense, but (iv) the n-point functions of the vertex operators 
Vq do not exist for any n ≥ 3 (all these properties are easily checked in the quasi-1D limit). As 
we have seen, what exists are n-point functions of the Vq with the insertion of a point contact. 
Alternatively, one may regularize the theory by the presence of a conducting boundary or an 
absorbing background. (Incidentally, we feel that the important issue of regularization and how 
this might or might not invalidate the argument leading to the GFF description, is not treated in 
convincing fashion in [11].)

7. Conclusion

In this work and its companion [12] we have developed a systematic approach to the Chalker–
Coddington network model of the integer quantum Hall plateau transition. Our approach is based 
on a symmetry analysis of the equivalent vertex model, whose foundations were spelled out in 
Sects. 2–5. While some of the formulas derived here were known in the literature, the substantial 
material regarding highest-weight operators of the non-compact sector of the vertex model and 
their correlation functions is new. A key feature of these unbounded operators is that they give 
rise to primary fields of the CFT albeit not of L2-type. Our formalism allowed us to make contact 
with CFT correlation functions and to obtain several new results. A major result of this work is 
the derivation of a free-boson effective field theory. This is based on the abelian OPE conjectured 
and verified numerically in [12]. In particular, it gives an affirmative answer to the long-standing 
question of whether the spectrum of multi-fractal dimensions at the IQHE transition (and similar 
Anderson transitions) is parabolic.

One may wonder why numerical studies of the multifractality spectrum have so much diffi-
culty [9,10] seeing convergence to the parabolic law (220). Most likely, the reason is the presence 
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in the conformal fixed-point theory of an irrelevant perturbation which is close to marginal (or 
even marginal), thereby causing corrections that disappear very slowly (perhaps only logarith-
mically) with increasing system size. Hence, any future numerical study using finite-size scaling 
will have to exercise the greatest possible care in order to ascertain that the scaling limit has (or 
has not been) reached.

The focus in this paper was solely on the Chalker–Coddington network model. Nonetheless, 
it should be clear that our concepts are of more general applicability. The emerging picture is 
that some (if not all) Anderson transitions in two dimensions where our methods apply, contain 
a free-boson sector describing certain correlation functions of critical wave functions. In each 
such case, the multifractality spectrum �q will correspond to that of vertex operators which are 
exponentials of the free boson field, and by the symmetry relation �q = �q∗−q [24], it will be 
determined up to the stiffness constant for the boson. We also stress that a similar description by 
free bosons can be derived not only for the observables of Sect. 6, but for the more general class 
considered in [12]. This, together with the generalized symmetry relations of [15], allows one 
to fix the scaling dimensions of all these operators up to a single number. To take this reasoning 
further, we are currently investigating the transcription of our work to the network model of 
class C (also known as a spin quantum Hall system). This is a promising direction, since a 
compact-target subsector of that model has been solved exactly [35].

From the physics standpoint, the free-boson correlators discussed in this paper describe wave-
function observables at the critical point of an Anderson transition. To predict other characteris-
tics such as the critical exponent of the localization length, an understanding of the full theory 
is required. It thus remains highly desirable to derive the full theory, of which the free boson 
elucidated in this paper is just one subsector.
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