Nonequilibrium Physics: Problem Sheet 4

www.thp.uni-koeln.de/~as/noneq13.html

7. Poker as a random walk problem

In the lecture we have argued that the number of chips of a Poker player in the absence of all-in bets is described by the discrete equation

$$x(t + \Delta t) = x(t) + \epsilon(t)b(t) \tag{1}$$

where $\epsilon(t)$ is a δ -correlated noise term with $\langle \epsilon(t) \rangle = 0$ and $b(t) = b_0 e^{t/t_0}$ is the blind at time t.

- a) Perform the continuum limit in time $(\Delta t \to 0)$ to derive a Langevin equation for x(t).
- **b)** Using the Langevin equation from a), derive the Fokker-Planck equation for P(x,t), the number of remaining players with x chips at time t.

 Hint: See the general procedure described earlier in the lecture.
- c) Show that

$$P_{\pm}(x,t) = \frac{N_0}{\sqrt{2\pi\tau(t)}} \exp\left(-\frac{(x \pm x_0)^2}{2\tau(t)}\right)$$

are solutions of the Fokker-Planck equation if $\dot{\tau}(t) = \sigma^2 b^2(t)$ where σ is the rescaled noise strength (see problem a)).

d) Show that $P(x,t) = P_+(x,t) - P_-(x,t)$ is the solution which satisfies the (absorbing) boundary condition P(x=0,t) = 0 and the initial condition $P(x,t=0) = N_0 \delta(x-x_0)$. Hint: Determine τ by integrating the condition derived in c). Show $\tau(t) \to 0$ for $t \to 0$. Note that $x(t) \ge 0$ for the "physical" solution.