1. Übung zur Vorlesung Einführung in die Hydrodynamik

im Wintersemester 2003/04

1. Substantielle Ableitung

Berechne die substantielle Ableitung des zeitunabhängigen Vektorfeldes $\vec{A}(x,y,z) = x\vec{a}$ mit konstantem Vektor \vec{a} für das Geschwindigkeitsfeld $\vec{v}(\vec{r},t) = \frac{f(t)}{r}\hat{r}$, wobei \hat{r} der radiale Einheitsvektor in Zylinderkoordinaten ist. Was fällt auf?

2. Kontinuitätsgleichung

Wir betrachten eine Flüssigkeit, deren Dichte räumlich stets konstant ist. Das Geschwindigkeitsfeld sei sphärisch symmetrisch und ändere sich harmonisch in der Zeit. Bestimme die Dichte und das Geschwindigkeitsfeld!

3. Flüssigkeit im Schwerefeld

Löse die statische Euler-Gleichung für eine Flüssigkeit im Schwerefeld der Erde. Betrachte dabei die Fälle

- a) $\rho = const$: inkompressible Flüssigkeit
- b) $\rho = Ap \ (A = const.)$: ideales Gas

und diskutiere die Ergebnisse.

Besprechung der Aufgaben: 28. Oktober 2003, 13⁴⁵ Uhr

Hinweis: Die Vorlesung muß am 27.10.03 leider ausfallen!

Aktuelle Informationen zur Vorlesung finden Sie unter www.thp.uni-koeln.de/~as